/* * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.java2d.marlin; import static java.lang.Math.PI; import static java.lang.Math.cos; import static java.lang.Math.sqrt; import static java.lang.Math.cbrt; import static java.lang.Math.acos; import java.util.Arrays; import static sun.java2d.marlin.MarlinConst.INITIAL_EDGES_COUNT; import sun.java2d.marlin.stats.Histogram; import sun.java2d.marlin.stats.StatLong; final class DHelpers implements MarlinConst { private DHelpers() { throw new Error("This is a non instantiable class"); } static boolean within(final double x, final double y, final double err) { final double d = y - x; return (d <= err && d >= -err); } static int quadraticRoots(final double a, final double b, final double c, double[] zeroes, final int off) { int ret = off; double t; if (a != 0.0d) { final double dis = b*b - 4*a*c; if (dis > 0.0d) { final double sqrtDis = Math.sqrt(dis); // depending on the sign of b we use a slightly different // algorithm than the traditional one to find one of the roots // so we can avoid adding numbers of different signs (which // might result in loss of precision). if (b >= 0.0d) { zeroes[ret++] = (2.0d * c) / (-b - sqrtDis); zeroes[ret++] = (-b - sqrtDis) / (2.0d * a); } else { zeroes[ret++] = (-b + sqrtDis) / (2.0d * a); zeroes[ret++] = (2.0d * c) / (-b + sqrtDis); } } else if (dis == 0.0d) { t = (-b) / (2.0d * a); zeroes[ret++] = t; } } else { if (b != 0.0d) { t = (-c) / b; zeroes[ret++] = t; } } return ret - off; } // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B) static int cubicRootsInAB(double d, double a, double b, double c, double[] pts, final int off, final double A, final double B) { if (d == 0.0d) { int num = quadraticRoots(a, b, c, pts, off); return filterOutNotInAB(pts, off, num, A, B) - off; } // From Graphics Gems: // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c // (also from awt.geom.CubicCurve2D. But here we don't need as // much accuracy and we don't want to create arrays so we use // our own customized version). // normal form: x^3 + ax^2 + bx + c = 0 a /= d; b /= d; c /= d; // substitute x = y - A/3 to eliminate quadratic term: // x^3 +Px + Q = 0 // // Since we actually need P/3 and Q/2 for all of the // calculations that follow, we will calculate // p = P/3 // q = Q/2 // instead and use those values for simplicity of the code. double sq_A = a * a; double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b); double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c); // use Cardano's formula double cb_p = p * p * p; double D = q * q + cb_p; int num; if (D < 0.0d) { // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method final double phi = (1.0d/3.0d) * acos(-q / sqrt(-cb_p)); final double t = 2.0d * sqrt(-p); pts[ off+0 ] = ( t * cos(phi)); pts[ off+1 ] = (-t * cos(phi + (PI / 3.0d))); pts[ off+2 ] = (-t * cos(phi - (PI / 3.0d))); num = 3; } else { final double sqrt_D = sqrt(D); final double u = cbrt(sqrt_D - q); final double v = - cbrt(sqrt_D + q); pts[ off ] = (u + v); num = 1; if (within(D, 0.0d, 1e-8d)) { pts[off+1] = -(pts[off] / 2.0d); num = 2; } } final double sub = (1.0d/3.0d) * a; for (int i = 0; i < num; ++i) { pts[ off+i ] -= sub; } return filterOutNotInAB(pts, off, num, A, B) - off; } static double evalCubic(final double a, final double b, final double c, final double d, final double t) { return t * (t * (t * a + b) + c) + d; } static double evalQuad(final double a, final double b, final double c, final double t) { return t * (t * a + b) + c; } // returns the index 1 past the last valid element remaining after filtering static int filterOutNotInAB(double[] nums, final int off, final int len, final double a, final double b) { int ret = off; for (int i = off, end = off + len; i < end; i++) { if (nums[i] >= a && nums[i] < b) { nums[ret++] = nums[i]; } } return ret; } static double linelen(double x1, double y1, double x2, double y2) { final double dx = x2 - x1; final double dy = y2 - y1; return Math.sqrt(dx*dx + dy*dy); } static void subdivide(double[] src, int srcoff, double[] left, int leftoff, double[] right, int rightoff, int type) { switch(type) { case 6: DHelpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff); return; case 8: DHelpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff); return; default: throw new InternalError("Unsupported curve type"); } } static void isort(double[] a, int off, int len) { for (int i = off + 1, end = off + len; i < end; i++) { double ai = a[i]; int j = i - 1; for (; j >= off && a[j] > ai; j--) { a[j+1] = a[j]; } a[j+1] = ai; } } // Most of these are copied from classes in java.awt.geom because we need // both single and double precision variants of these functions, and Line2D, // CubicCurve2D, QuadCurve2D don't provide them. /** * Subdivides the cubic curve specified by the coordinates * stored in the src array at indices srcoff * through (srcoff + 7) and stores the * resulting two subdivided curves into the two result arrays at the * corresponding indices. * Either or both of the left and right * arrays may be null or a reference to the same array * as the src array. * Note that the last point in the first subdivided curve is the * same as the first point in the second subdivided curve. Thus, * it is possible to pass the same array for left * and right and to use offsets, such as rightoff * equals (leftoff + 6), in order * to avoid allocating extra storage for this common point. * @param src the array holding the coordinates for the source curve * @param srcoff the offset into the array of the beginning of the * the 6 source coordinates * @param left the array for storing the coordinates for the first * half of the subdivided curve * @param leftoff the offset into the array of the beginning of the * the 6 left coordinates * @param right the array for storing the coordinates for the second * half of the subdivided curve * @param rightoff the offset into the array of the beginning of the * the 6 right coordinates * @since 1.7 */ static void subdivideCubic(double[] src, int srcoff, double[] left, int leftoff, double[] right, int rightoff) { double x1 = src[srcoff + 0]; double y1 = src[srcoff + 1]; double ctrlx1 = src[srcoff + 2]; double ctrly1 = src[srcoff + 3]; double ctrlx2 = src[srcoff + 4]; double ctrly2 = src[srcoff + 5]; double x2 = src[srcoff + 6]; double y2 = src[srcoff + 7]; if (left != null) { left[leftoff + 0] = x1; left[leftoff + 1] = y1; } if (right != null) { right[rightoff + 6] = x2; right[rightoff + 7] = y2; } x1 = (x1 + ctrlx1) / 2.0d; y1 = (y1 + ctrly1) / 2.0d; x2 = (x2 + ctrlx2) / 2.0d; y2 = (y2 + ctrly2) / 2.0d; double centerx = (ctrlx1 + ctrlx2) / 2.0d; double centery = (ctrly1 + ctrly2) / 2.0d; ctrlx1 = (x1 + centerx) / 2.0d; ctrly1 = (y1 + centery) / 2.0d; ctrlx2 = (x2 + centerx) / 2.0d; ctrly2 = (y2 + centery) / 2.0d; centerx = (ctrlx1 + ctrlx2) / 2.0d; centery = (ctrly1 + ctrly2) / 2.0d; if (left != null) { left[leftoff + 2] = x1; left[leftoff + 3] = y1; left[leftoff + 4] = ctrlx1; left[leftoff + 5] = ctrly1; left[leftoff + 6] = centerx; left[leftoff + 7] = centery; } if (right != null) { right[rightoff + 0] = centerx; right[rightoff + 1] = centery; right[rightoff + 2] = ctrlx2; right[rightoff + 3] = ctrly2; right[rightoff + 4] = x2; right[rightoff + 5] = y2; } } static void subdivideCubicAt(double t, double[] src, int srcoff, double[] left, int leftoff, double[] right, int rightoff) { double x1 = src[srcoff + 0]; double y1 = src[srcoff + 1]; double ctrlx1 = src[srcoff + 2]; double ctrly1 = src[srcoff + 3]; double ctrlx2 = src[srcoff + 4]; double ctrly2 = src[srcoff + 5]; double x2 = src[srcoff + 6]; double y2 = src[srcoff + 7]; if (left != null) { left[leftoff + 0] = x1; left[leftoff + 1] = y1; } if (right != null) { right[rightoff + 6] = x2; right[rightoff + 7] = y2; } x1 = x1 + t * (ctrlx1 - x1); y1 = y1 + t * (ctrly1 - y1); x2 = ctrlx2 + t * (x2 - ctrlx2); y2 = ctrly2 + t * (y2 - ctrly2); double centerx = ctrlx1 + t * (ctrlx2 - ctrlx1); double centery = ctrly1 + t * (ctrly2 - ctrly1); ctrlx1 = x1 + t * (centerx - x1); ctrly1 = y1 + t * (centery - y1); ctrlx2 = centerx + t * (x2 - centerx); ctrly2 = centery + t * (y2 - centery); centerx = ctrlx1 + t * (ctrlx2 - ctrlx1); centery = ctrly1 + t * (ctrly2 - ctrly1); if (left != null) { left[leftoff + 2] = x1; left[leftoff + 3] = y1; left[leftoff + 4] = ctrlx1; left[leftoff + 5] = ctrly1; left[leftoff + 6] = centerx; left[leftoff + 7] = centery; } if (right != null) { right[rightoff + 0] = centerx; right[rightoff + 1] = centery; right[rightoff + 2] = ctrlx2; right[rightoff + 3] = ctrly2; right[rightoff + 4] = x2; right[rightoff + 5] = y2; } } static void subdivideQuad(double[] src, int srcoff, double[] left, int leftoff, double[] right, int rightoff) { double x1 = src[srcoff + 0]; double y1 = src[srcoff + 1]; double ctrlx = src[srcoff + 2]; double ctrly = src[srcoff + 3]; double x2 = src[srcoff + 4]; double y2 = src[srcoff + 5]; if (left != null) { left[leftoff + 0] = x1; left[leftoff + 1] = y1; } if (right != null) { right[rightoff + 4] = x2; right[rightoff + 5] = y2; } x1 = (x1 + ctrlx) / 2.0d; y1 = (y1 + ctrly) / 2.0d; x2 = (x2 + ctrlx) / 2.0d; y2 = (y2 + ctrly) / 2.0d; ctrlx = (x1 + x2) / 2.0d; ctrly = (y1 + y2) / 2.0d; if (left != null) { left[leftoff + 2] = x1; left[leftoff + 3] = y1; left[leftoff + 4] = ctrlx; left[leftoff + 5] = ctrly; } if (right != null) { right[rightoff + 0] = ctrlx; right[rightoff + 1] = ctrly; right[rightoff + 2] = x2; right[rightoff + 3] = y2; } } static void subdivideQuadAt(double t, double[] src, int srcoff, double[] left, int leftoff, double[] right, int rightoff) { double x1 = src[srcoff + 0]; double y1 = src[srcoff + 1]; double ctrlx = src[srcoff + 2]; double ctrly = src[srcoff + 3]; double x2 = src[srcoff + 4]; double y2 = src[srcoff + 5]; if (left != null) { left[leftoff + 0] = x1; left[leftoff + 1] = y1; } if (right != null) { right[rightoff + 4] = x2; right[rightoff + 5] = y2; } x1 = x1 + t * (ctrlx - x1); y1 = y1 + t * (ctrly - y1); x2 = ctrlx + t * (x2 - ctrlx); y2 = ctrly + t * (y2 - ctrly); ctrlx = x1 + t * (x2 - x1); ctrly = y1 + t * (y2 - y1); if (left != null) { left[leftoff + 2] = x1; left[leftoff + 3] = y1; left[leftoff + 4] = ctrlx; left[leftoff + 5] = ctrly; } if (right != null) { right[rightoff + 0] = ctrlx; right[rightoff + 1] = ctrly; right[rightoff + 2] = x2; right[rightoff + 3] = y2; } } static void subdivideAt(double t, double[] src, int srcoff, double[] left, int leftoff, double[] right, int rightoff, int size) { switch(size) { case 8: subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff); return; case 6: subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff); return; } } // From sun.java2d.loops.GeneralRenderer: static final int OUTCODE_TOP = 1; static final int OUTCODE_BOTTOM = 2; static final int OUTCODE_LEFT = 4; static final int OUTCODE_RIGHT = 8; static int outcode(final double x, final double y, final double[] clipRect) { int code; if (y < clipRect[0]) { code = OUTCODE_TOP; } else if (y >= clipRect[1]) { code = OUTCODE_BOTTOM; } else { code = 0; } if (x < clipRect[2]) { code |= OUTCODE_LEFT; } else if (x >= clipRect[3]) { code |= OUTCODE_RIGHT; } return code; } // a stack of polynomial curves where each curve shares endpoints with // adjacent ones. static final class PolyStack { private static final byte TYPE_LINETO = (byte) 0; private static final byte TYPE_QUADTO = (byte) 1; private static final byte TYPE_CUBICTO = (byte) 2; // curves capacity = edges count (8192) = edges x 2 (coords) private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1; // types capacity = edges count (4096) private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT; double[] curves; int end; byte[] curveTypes; int numCurves; // curves ref (dirty) final DoubleArrayCache.Reference curves_ref; // curveTypes ref (dirty) final ByteArrayCache.Reference curveTypes_ref; // used marks (stats only) int curveTypesUseMark; int curvesUseMark; private final StatLong stat_polystack_types; private final StatLong stat_polystack_curves; private final Histogram hist_polystack_curves; private final StatLong stat_array_polystack_curves; private final StatLong stat_array_polystack_curveTypes; PolyStack(final DRendererContext rdrCtx) { this(rdrCtx, null, null, null, null, null); } PolyStack(final DRendererContext rdrCtx, final StatLong stat_polystack_types, final StatLong stat_polystack_curves, final Histogram hist_polystack_curves, final StatLong stat_array_polystack_curves, final StatLong stat_array_polystack_curveTypes) { curves_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_CURVES_COUNT); // 32K curves = curves_ref.initial; curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K curveTypes = curveTypes_ref.initial; numCurves = 0; end = 0; if (DO_STATS) { curveTypesUseMark = 0; curvesUseMark = 0; } this.stat_polystack_types = stat_polystack_types; this.stat_polystack_curves = stat_polystack_curves; this.hist_polystack_curves = hist_polystack_curves; this.stat_array_polystack_curves = stat_array_polystack_curves; this.stat_array_polystack_curveTypes = stat_array_polystack_curveTypes; } /** * Disposes this PolyStack: * clean up before reusing this instance */ void dispose() { end = 0; numCurves = 0; if (DO_STATS) { stat_polystack_types.add(curveTypesUseMark); stat_polystack_curves.add(curvesUseMark); hist_polystack_curves.add(curvesUseMark); // reset marks curveTypesUseMark = 0; curvesUseMark = 0; } // Return arrays: // curves and curveTypes are kept dirty curves = curves_ref.putArray(curves); curveTypes = curveTypes_ref.putArray(curveTypes); } private void ensureSpace(final int n) { // use substraction to avoid integer overflow: if (curves.length - end < n) { if (DO_STATS) { stat_array_polystack_curves.add(end + n); } curves = curves_ref.widenArray(curves, end, end + n); } if (curveTypes.length <= numCurves) { if (DO_STATS) { stat_array_polystack_curveTypes.add(numCurves + 1); } curveTypes = curveTypes_ref.widenArray(curveTypes, numCurves, numCurves + 1); } } void pushCubic(double x0, double y0, double x1, double y1, double x2, double y2) { ensureSpace(6); curveTypes[numCurves++] = TYPE_CUBICTO; // we reverse the coordinate order to make popping easier final double[] _curves = curves; int e = end; _curves[e++] = x2; _curves[e++] = y2; _curves[e++] = x1; _curves[e++] = y1; _curves[e++] = x0; _curves[e++] = y0; end = e; } void pushQuad(double x0, double y0, double x1, double y1) { ensureSpace(4); curveTypes[numCurves++] = TYPE_QUADTO; final double[] _curves = curves; int e = end; _curves[e++] = x1; _curves[e++] = y1; _curves[e++] = x0; _curves[e++] = y0; end = e; } void pushLine(double x, double y) { ensureSpace(2); curveTypes[numCurves++] = TYPE_LINETO; curves[end++] = x; curves[end++] = y; } void pullAll(final DPathConsumer2D io) { final int nc = numCurves; if (nc == 0) { return; } if (DO_STATS) { // update used marks: if (numCurves > curveTypesUseMark) { curveTypesUseMark = numCurves; } if (end > curvesUseMark) { curvesUseMark = end; } } final byte[] _curveTypes = curveTypes; final double[] _curves = curves; int e = 0; for (int i = 0; i < nc; i++) { switch(_curveTypes[i]) { case TYPE_LINETO: io.lineTo(_curves[e], _curves[e+1]); e += 2; continue; case TYPE_QUADTO: io.quadTo(_curves[e+0], _curves[e+1], _curves[e+2], _curves[e+3]); e += 4; continue; case TYPE_CUBICTO: io.curveTo(_curves[e+0], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); e += 6; continue; default: } } numCurves = 0; end = 0; } void popAll(final DPathConsumer2D io) { int nc = numCurves; if (nc == 0) { return; } if (DO_STATS) { // update used marks: if (numCurves > curveTypesUseMark) { curveTypesUseMark = numCurves; } if (end > curvesUseMark) { curvesUseMark = end; } } final byte[] _curveTypes = curveTypes; final double[] _curves = curves; int e = end; while (nc != 0) { switch(_curveTypes[--nc]) { case TYPE_LINETO: e -= 2; io.lineTo(_curves[e], _curves[e+1]); continue; case TYPE_QUADTO: e -= 4; io.quadTo(_curves[e+0], _curves[e+1], _curves[e+2], _curves[e+3]); continue; case TYPE_CUBICTO: e -= 6; io.curveTo(_curves[e+0], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); continue; default: } } numCurves = 0; end = 0; } @Override public String toString() { String ret = ""; int nc = numCurves; int last = end; int len; while (nc != 0) { switch(curveTypes[--nc]) { case TYPE_LINETO: len = 2; ret += "line: "; break; case TYPE_QUADTO: len = 4; ret += "quad: "; break; case TYPE_CUBICTO: len = 6; ret += "cubic: "; break; default: len = 0; } last -= len; ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len)) + "\n"; } return ret; } } }