1 /*
   2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 final class Curve {
  29 
  30     float ax, ay, bx, by, cx, cy, dx, dy;
  31     float dax, day, dbx, dby;
  32 
  33     Curve() {
  34     }
  35 
  36     void set(final float[] points, final int type) {
  37         // if instead of switch (perf + most probable cases first)
  38         if (type == 8) {
  39             set(points[0], points[1],
  40                 points[2], points[3],
  41                 points[4], points[5],
  42                 points[6], points[7]);
  43         } else if (type == 4) {
  44             set(points[0], points[1],
  45                 points[2], points[3]);
  46         } else {
  47             set(points[0], points[1],
  48                 points[2], points[3],
  49                 points[4], points[5]);
  50         }
  51     }
  52 
  53     void set(final float x1, final float y1,
  54              final float x2, final float y2,
  55              final float x3, final float y3,
  56              final float x4, final float y4)
  57     {
  58         final float dx32 = 3.0f * (x3 - x2);
  59         final float dy32 = 3.0f * (y3 - y2);
  60         final float dx21 = 3.0f * (x2 - x1);
  61         final float dy21 = 3.0f * (y2 - y1);
  62         ax = (x4 - x1) - dx32;  // A = P3 - P0 - 3 (P2 - P1) = (P3 - P0) + 3 (P1 - P2)
  63         ay = (y4 - y1) - dy32;
  64         bx = (dx32 - dx21);     // B = 3 (P2 - P1) - 3(P1 - P0) = 3 (P2 + P0) - 6 P1
  65         by = (dy32 - dy21);
  66         cx = dx21;              // C = 3 (P1 - P0)
  67         cy = dy21;
  68         dx = x1;                // D = P0
  69         dy = y1;
  70         dax = 3.0f * ax;
  71         day = 3.0f * ay;
  72         dbx = 2.0f * bx;
  73         dby = 2.0f * by;
  74     }
  75 
  76     void set(final float x1, final float y1,
  77              final float x2, final float y2,
  78              final float x3, final float y3)
  79     {
  80         final float dx21 = (x2 - x1);
  81         final float dy21 = (y2 - y1);
  82         ax = 0.0f;              // A = 0
  83         ay = 0.0f;
  84         bx = (x3 - x2) - dx21;  // B = P3 - P0 - 2 P2
  85         by = (y3 - y2) - dy21;
  86         cx = 2.0f * dx21;       // C = 2 (P2 - P1)
  87         cy = 2.0f * dy21;
  88         dx = x1;                // D = P1
  89         dy = y1;
  90         dax = 0.0f;
  91         day = 0.0f;
  92         dbx = 2.0f * bx;
  93         dby = 2.0f * by;
  94     }
  95 
  96     void set(final float x1, final float y1,
  97              final float x2, final float y2)
  98     {
  99         final float dx21 = (x2 - x1);
 100         final float dy21 = (y2 - y1);
 101         ax = 0.0f;              // A = 0
 102         ay = 0.0f;
 103         bx = 0.0f;              // B = 0
 104         by = 0.0f;
 105         cx = dx21;              // C = (P2 - P1)
 106         cy = dy21;
 107         dx = x1;                // D = P1
 108         dy = y1;
 109         // useless derivatives for lines
 110         if (false) {
 111             dax = 0.0f;
 112             day = 0.0f;
 113             dbx = 0.0f;
 114             dby = 0.0f;
 115         }
 116     }
 117 
 118     int dxRoots(final float[] roots, final int off) {
 119         return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
 120     }
 121 
 122     int dyRoots(final float[] roots, final int off) {
 123         return Helpers.quadraticRoots(day, dby, cy, roots, off);
 124     }
 125 
 126     int infPoints(final float[] pts, final int off) {
 127         // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
 128         // Fortunately, this turns out to be quadratic, so there are at
 129         // most 2 inflection points.
 130         final float a = dax * dby - dbx * day;
 131         final float b = 2.0f * (cy * dax - day * cx);
 132         final float c = cy * dbx - cx * dby;
 133 
 134         return Helpers.quadraticRoots(a, b, c, pts, off);
 135     }
 136 
 137     int xPoints(final float[] ts, final int off, final float x)
 138     {
 139         return Helpers.cubicRootsInAB(ax, bx, cx, dx - x, ts, off, 0.0f, 1.0f);
 140     }
 141 
 142     int yPoints(final float[] ts, final int off, final float y)
 143     {
 144         return Helpers.cubicRootsInAB(ay, by, cy, dy - y, ts, off, 0.0f, 1.0f);
 145     }
 146 
 147     // finds points where the first and second derivative are
 148     // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
 149     // * is a dot product). Unfortunately, we have to solve a cubic.
 150     private int perpendiculardfddf(final float[] pts, final int off) {
 151         assert pts.length >= off + 4;
 152 
 153         // these are the coefficients of some multiple of g(t) (not g(t),
 154         // because the roots of a polynomial are not changed after multiplication
 155         // by a constant, and this way we save a few multiplications).
 156         final float a = 2.0f * (dax * dax + day * day);
 157         final float b = 3.0f * (dax * dbx + day * dby);
 158         final float c = 2.0f * (dax * cx  + day * cy) + dbx * dbx + dby * dby;
 159         final float d = dbx * cx + dby * cy;
 160 
 161         return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0.0f, 1.0f);
 162     }
 163 
 164     // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
 165     // a variant of the false position algorithm to find the roots. False
 166     // position requires that 2 initial values x0,x1 be given, and that the
 167     // function must have opposite signs at those values. To find such
 168     // values, we need the local extrema of the ROC function, for which we
 169     // need the roots of its derivative; however, it's harder to find the
 170     // roots of the derivative in this case than it is to find the roots
 171     // of the original function. So, we find all points where this curve's
 172     // first and second derivative are perpendicular, and we pretend these
 173     // are our local extrema. There are at most 3 of these, so we will check
 174     // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
 175     // points, so roc-w can have at least 6 roots. This shouldn't be a
 176     // problem for what we're trying to do (draw a nice looking curve).
 177     int rootsOfROCMinusW(final float[] roots, final int off, final float w2, final float err) {
 178         // no OOB exception, because by now off<=6, and roots.length >= 10
 179         assert off <= 6 && roots.length >= 10;
 180 
 181         int ret = off;
 182         final int end = off + perpendiculardfddf(roots, off);
 183         roots[end] = 1.0f; // always check interval end points
 184 
 185         float t0 = 0.0f, ft0 = ROCsq(t0) - w2;
 186 
 187         for (int i = off; i <= end; i++) {
 188             float t1 = roots[i], ft1 = ROCsq(t1) - w2;
 189             if (ft0 == 0.0f) {
 190                 roots[ret++] = t0;
 191             } else if (ft1 * ft0 < 0.0f) { // have opposite signs
 192                 // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
 193                 // ROC(t) >= 0 for all t.
 194                 roots[ret++] = falsePositionROCsqMinusX(t0, t1, w2, err);
 195             }
 196             t0 = t1;
 197             ft0 = ft1;
 198         }
 199 
 200         return ret - off;
 201     }
 202 
 203     private static float eliminateInf(final float x) {
 204         return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE :
 205                (x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x));
 206     }
 207 
 208     // A slight modification of the false position algorithm on wikipedia.
 209     // This only works for the ROCsq-x functions. It might be nice to have
 210     // the function as an argument, but that would be awkward in java6.
 211     // TODO: It is something to consider for java8 (or whenever lambda
 212     // expressions make it into the language), depending on how closures
 213     // and turn out. Same goes for the newton's method
 214     // algorithm in Helpers.java
 215     private float falsePositionROCsqMinusX(final float t0, final float t1,
 216                                            final float w2, final float err)
 217     {
 218         final int iterLimit = 100;
 219         int side = 0;
 220         float t = t1, ft = eliminateInf(ROCsq(t) - w2);
 221         float s = t0, fs = eliminateInf(ROCsq(s) - w2);
 222         float r = s, fr;
 223 
 224         for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
 225             r = (fs * t - ft * s) / (fs - ft);
 226             fr = ROCsq(r) - w2;
 227             if (sameSign(fr, ft)) {
 228                 ft = fr; t = r;
 229                 if (side < 0) {
 230                     fs /= (1 << (-side));
 231                     side--;
 232                 } else {
 233                     side = -1;
 234                 }
 235             } else if (fr * fs > 0.0f) {
 236                 fs = fr; s = r;
 237                 if (side > 0) {
 238                     ft /= (1 << side);
 239                     side++;
 240                 } else {
 241                     side = 1;
 242                 }
 243             } else {
 244                 break;
 245             }
 246         }
 247         return r;
 248     }
 249 
 250     private static boolean sameSign(final float x, final float y) {
 251         // another way is to test if x*y > 0. This is bad for small x, y.
 252         return (x < 0.0f && y < 0.0f) || (x > 0.0f && y > 0.0f);
 253     }
 254 
 255     // returns the radius of curvature squared at t of this curve
 256     // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
 257     private float ROCsq(final float t) {
 258         final float dx = t * (t * dax + dbx) + cx;
 259         final float dy = t * (t * day + dby) + cy;
 260         final float ddx = 2.0f * dax * t + dbx;
 261         final float ddy = 2.0f * day * t + dby;
 262         final float dx2dy2 = dx * dx + dy * dy;
 263         final float ddx2ddy2 = ddx * ddx + ddy * ddy;
 264         final float ddxdxddydy = ddx * dx + ddy * dy;
 265         return dx2dy2 * ((dx2dy2 * dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy * ddxdxddydy));
 266     }
 267 }