--- old/src/java.desktop/share/classes/sun/java2d/marlin/DDasher.java 2018-02-15 13:11:09.968310969 +0100 +++ new/src/java.desktop/share/classes/sun/java2d/marlin/DDasher.java 2018-02-15 13:11:09.816306805 +0100 @@ -1,5 +1,5 @@ /* - * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it @@ -26,6 +26,8 @@ package sun.java2d.marlin; import java.util.Arrays; +import sun.java2d.marlin.DTransformingPathConsumer2D.CurveBasicMonotonizer; +import sun.java2d.marlin.DTransformingPathConsumer2D.CurveClipSplitter; /** * The DDasher class takes a series of linear commands @@ -40,8 +42,9 @@ */ final class DDasher implements DPathConsumer2D, MarlinConst { - static final int REC_LIMIT = 4; - static final double ERR = 0.01d; + /* huge circle with radius ~ 2E9 only needs 12 subdivision levels */ + static final int REC_LIMIT = 16; + static final double CURVE_LEN_ERR = MarlinProperties.getCurveLengthError(); // 0.01 initial static final double MIN_T_INC = 1.0d / (1 << REC_LIMIT); // More than 24 bits of mantissa means we can no longer accurately @@ -63,8 +66,10 @@ private boolean dashOn; private double phase; - private double sx, sy; - private double x0, y0; + // The starting point of the path + private double sx0, sy0; + // the current point + private double cx0, cy0; // temporary storage for the current curve private final double[] curCurvepts; @@ -75,11 +80,34 @@ // flag to recycle dash array copy boolean recycleDashes; + // We don't emit the first dash right away. If we did, caps would be + // drawn on it, but we need joins to be drawn if there's a closePath() + // So, we store the path elements that make up the first dash in the + // buffer below. + private double[] firstSegmentsBuffer; // dynamic array + private int firstSegidx; + // dashes ref (dirty) final DoubleArrayCache.Reference dashes_ref; // firstSegmentsBuffer ref (dirty) final DoubleArrayCache.Reference firstSegmentsBuffer_ref; + // Bounds of the drawing region, at pixel precision. + private double[] clipRect; + + // the outcode of the current point + private int cOutCode = 0; + + private boolean subdivide = DO_CLIP_SUBDIVIDER; + + private final LengthIterator li = new LengthIterator(); + + private final CurveClipSplitter curveSplitter; + + private double cycleLen; + private boolean outside; + private double totalSkipLen; + /** * Constructs a DDasher. * @param rdrCtx per-thread renderer context @@ -95,6 +123,8 @@ // we need curCurvepts to be able to contain 2 curves because when // dashing curves, we need to subdivide it curCurvepts = new double[8 * 2]; + + this.curveSplitter = rdrCtx.curveClipSplitter; } /** @@ -115,10 +145,13 @@ // Normalize so 0 <= phase < dash[0] int sidx = 0; dashOn = true; + double sum = 0.0d; for (double d : dash) { sum += d; } + this.cycleLen = sum; + double cycles = phase / sum; if (phase < 0.0d) { if (-cycles >= MAX_CYCLES) { @@ -167,6 +200,12 @@ this.recycleDashes = recycleDashes; + if (rdrCtx.doClip) { + this.clipRect = rdrCtx.clipRect; + } else { + this.clipRect = null; + this.cOutCode = 0; + } return this; // fluent API } @@ -204,33 +243,42 @@ @Override public void moveTo(final double x0, final double y0) { if (firstSegidx != 0) { - out.moveTo(sx, sy); + out.moveTo(sx0, sy0); emitFirstSegments(); } - needsMoveTo = true; + this.needsMoveTo = true; this.idx = startIdx; this.dashOn = this.startDashOn; this.phase = this.startPhase; - this.sx = x0; - this.sy = y0; - this.x0 = x0; - this.y0 = y0; + this.cx0 = x0; + this.cy0 = y0; + + // update starting point: + this.sx0 = x0; + this.sy0 = y0; this.starting = true; + + if (clipRect != null) { + final int outcode = DHelpers.outcode(x0, y0, clipRect); + this.cOutCode = outcode; + this.outside = false; + this.totalSkipLen = 0.0d; + } } private void emitSeg(double[] buf, int off, int type) { switch (type) { case 8: - out.curveTo(buf[off+0], buf[off+1], - buf[off+2], buf[off+3], - buf[off+4], buf[off+5]); + out.curveTo(buf[off ], buf[off + 1], + buf[off + 2], buf[off + 3], + buf[off + 4], buf[off + 5]); return; case 6: - out.quadTo(buf[off+0], buf[off+1], - buf[off+2], buf[off+3]); + out.quadTo(buf[off ], buf[off + 1], + buf[off + 2], buf[off + 3]); return; case 4: - out.lineTo(buf[off], buf[off+1]); + out.lineTo(buf[off], buf[off + 1]); return; default: } @@ -246,12 +294,6 @@ } firstSegidx = 0; } - // We don't emit the first dash right away. If we did, caps would be - // drawn on it, but we need joins to be drawn if there's a closePath() - // So, we store the path elements that make up the first dash in the - // buffer below. - private double[] firstSegmentsBuffer; // dynamic array - private int firstSegidx; // precondition: pts must be in relative coordinates (relative to x0,y0) private void goTo(final double[] pts, final int off, final int type, @@ -267,7 +309,7 @@ } else { if (needsMoveTo) { needsMoveTo = false; - out.moveTo(x0, y0); + out.moveTo(cx0, cy0); } emitSeg(pts, off, type); } @@ -278,8 +320,8 @@ } needsMoveTo = true; } - this.x0 = x; - this.y0 = y; + this.cx0 = x; + this.cy0 = y; } private void goTo_starting(final double[] pts, final int off, final int type) { @@ -305,10 +347,56 @@ @Override public void lineTo(final double x1, final double y1) { - final double dx = x1 - x0; - final double dy = y1 - y0; + final int outcode0 = this.cOutCode; + + if (clipRect != null) { + final int outcode1 = DHelpers.outcode(x1, y1, clipRect); + + // Should clip + final int orCode = (outcode0 | outcode1); - double len = dx*dx + dy*dy; + if (orCode != 0) { + final int sideCode = outcode0 & outcode1; + + // basic rejection criteria: + if (sideCode == 0) { + // ovelap clip: + if (subdivide) { + // avoid reentrance + subdivide = false; + // subdivide curve => callback with subdivided parts: + boolean ret = curveSplitter.splitLine(cx0, cy0, x1, y1, + orCode, this); + // reentrance is done: + subdivide = true; + if (ret) { + return; + } + } + // already subdivided so render it + } else { + this.cOutCode = outcode1; + skipLineTo(x1, y1); + return; + } + } + + this.cOutCode = outcode1; + + if (this.outside) { + this.outside = false; + // Adjust current index, phase & dash: + skipLen(); + } + } + _lineTo(x1, y1); + } + + private void _lineTo(final double x1, final double y1) { + final double dx = x1 - cx0; + final double dy = y1 - cy0; + + double len = dx * dx + dy * dy; if (len == 0.0d) { return; } @@ -327,8 +415,7 @@ boolean _dashOn = dashOn; double _phase = phase; - double leftInThisDashSegment; - double d, dashdx, dashdy, p; + double leftInThisDashSegment, d; while (true) { d = _dash[_idx]; @@ -349,24 +436,15 @@ _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; } - - // Save local state: - idx = _idx; - dashOn = _dashOn; - phase = _phase; - return; + break; } - dashdx = d * cx; - dashdy = d * cy; - if (_phase == 0.0d) { - _curCurvepts[0] = x0 + dashdx; - _curCurvepts[1] = y0 + dashdy; + _curCurvepts[0] = cx0 + d * cx; + _curCurvepts[1] = cy0 + d * cy; } else { - p = leftInThisDashSegment / d; - _curCurvepts[0] = x0 + p * dashdx; - _curCurvepts[1] = y0 + p * dashdy; + _curCurvepts[0] = cx0 + leftInThisDashSegment * cx; + _curCurvepts[1] = cy0 + leftInThisDashSegment * cy; } goTo(_curCurvepts, 0, 4, _dashOn); @@ -377,19 +455,95 @@ _dashOn = !_dashOn; _phase = 0.0d; } + // Save local state: + idx = _idx; + dashOn = _dashOn; + phase = _phase; } - // shared instance in DDasher - private final LengthIterator li = new LengthIterator(); + private void skipLineTo(final double x1, final double y1) { + final double dx = x1 - cx0; + final double dy = y1 - cy0; + + double len = dx * dx + dy * dy; + if (len != 0.0d) { + len = Math.sqrt(len); + } + + // Accumulate skipped length: + this.outside = true; + this.totalSkipLen += len; + + // Fix initial move: + this.needsMoveTo = true; + this.starting = false; + + this.cx0 = x1; + this.cy0 = y1; + } + + public void skipLen() { + double len = this.totalSkipLen; + this.totalSkipLen = 0.0d; + + final double[] _dash = dash; + final int _dashLen = this.dashLen; + + int _idx = idx; + boolean _dashOn = dashOn; + double _phase = phase; + + // -2 to ensure having 2 iterations of the post-loop + // to compensate the remaining phase + final long fullcycles = (long)Math.floor(len / cycleLen) - 2L; + + if (fullcycles > 0L) { + len -= cycleLen * fullcycles; + + final long iterations = fullcycles * _dashLen; + _idx = (int) (iterations + _idx) % _dashLen; + _dashOn = (iterations + (_dashOn ? 1L : 0L) & 1L) == 1L; + } + + double leftInThisDashSegment, d; + + while (true) { + d = _dash[_idx]; + leftInThisDashSegment = d - _phase; + + if (len <= leftInThisDashSegment) { + // Advance phase within current dash segment + _phase += len; + + // TODO: compare double values using epsilon: + if (len == leftInThisDashSegment) { + _phase = 0.0d; + _idx = (_idx + 1) % _dashLen; + _dashOn = !_dashOn; + } + break; + } + + len -= leftInThisDashSegment; + // Advance to next dash segment + _idx = (_idx + 1) % _dashLen; + _dashOn = !_dashOn; + _phase = 0.0d; + } + // Save local state: + idx = _idx; + dashOn = _dashOn; + phase = _phase; + } // preconditions: curCurvepts must be an array of length at least 2 * type, // that contains the curve we want to dash in the first type elements private void somethingTo(final int type) { - if (pointCurve(curCurvepts, type)) { + final double[] _curCurvepts = curCurvepts; + if (pointCurve(_curCurvepts, type)) { return; } final LengthIterator _li = li; - final double[] _curCurvepts = curCurvepts; final double[] _dash = dash; final int _dashLen = this.dashLen; @@ -401,17 +555,16 @@ // initially the current curve is at curCurvepts[0...type] int curCurveoff = 0; - double lastSplitT = 0.0d; + double prevT = 0.0d; double t; double leftInThisDashSegment = _dash[_idx] - _phase; while ((t = _li.next(leftInThisDashSegment)) < 1.0d) { if (t != 0.0d) { - DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT), + DHelpers.subdivideAt((t - prevT) / (1.0d - prevT), _curCurvepts, curCurveoff, - _curCurvepts, 0, - _curCurvepts, type, type); - lastSplitT = t; + _curCurvepts, 0, type); + prevT = t; goTo(_curCurvepts, 2, type, _dashOn); curCurveoff = type; } @@ -439,7 +592,29 @@ _li.reset(); } - private static boolean pointCurve(double[] curve, int type) { + private void skipSomethingTo(final int type) { + final double[] _curCurvepts = curCurvepts; + if (pointCurve(_curCurvepts, type)) { + return; + } + final LengthIterator _li = li; + + _li.initializeIterationOnCurve(_curCurvepts, type); + + // In contrary to somethingTo(), + // just estimate properly the curve length: + final double len = _li.totalLength(); + + // Accumulate skipped length: + this.outside = true; + this.totalSkipLen += len; + + // Fix initial move: + this.needsMoveTo = true; + this.starting = false; + } + + private static boolean pointCurve(final double[] curve, final int type) { for (int i = 2; i < type; i++) { if (curve[i] != curve[i-2]) { return false; @@ -462,15 +637,14 @@ // tree; however, the trees we are interested in have the property that // every non leaf node has exactly 2 children static final class LengthIterator { - private enum Side {LEFT, RIGHT} // Holds the curves at various levels of the recursion. The root // (i.e. the original curve) is at recCurveStack[0] (but then it // gets subdivided, the left half is put at 1, so most of the time // only the right half of the original curve is at 0) private final double[][] recCurveStack; // dirty - // sides[i] indicates whether the node at level i+1 in the path from + // sidesRight[i] indicates whether the node at level i+1 in the path from // the root to the current leaf is a left or right child of its parent. - private final Side[] sides; // dirty + private final boolean[] sidesRight; // dirty private int curveType; // lastT and nextT delimit the current leaf. private double nextT; @@ -491,7 +665,7 @@ LengthIterator() { this.recCurveStack = new double[REC_LIMIT + 1][8]; - this.sides = new Side[REC_LIMIT]; + this.sidesRight = new boolean[REC_LIMIT]; // if any methods are called without first initializing this object // on a curve, we want it to fail ASAP. this.nextT = Double.MAX_VALUE; @@ -513,7 +687,7 @@ for (int i = recLimit; i >= 0; i--) { Arrays.fill(recCurveStack[i], 0.0d); } - Arrays.fill(sides, Side.LEFT); + Arrays.fill(sidesRight, false); Arrays.fill(curLeafCtrlPolyLengths, 0.0d); Arrays.fill(nextRoots, 0.0d); Arrays.fill(flatLeafCoefCache, 0.0d); @@ -521,7 +695,7 @@ } } - void initializeIterationOnCurve(double[] pts, int type) { + void initializeIterationOnCurve(final double[] pts, final int type) { // optimize arraycopy (8 values faster than 6 = type): System.arraycopy(pts, 0, recCurveStack[0], 0, 8); this.curveType = type; @@ -533,11 +707,11 @@ goLeft(); // initializes nextT and lenAtNextT properly this.lenAtLastSplit = 0.0d; if (recLevel > 0) { - this.sides[0] = Side.LEFT; + this.sidesRight[0] = false; this.done = false; } else { // the root of the tree is a leaf so we're done. - this.sides[0] = Side.RIGHT; + this.sidesRight[0] = true; this.done = true; } this.lastSegLen = 0.0d; @@ -546,7 +720,7 @@ // 0 == false, 1 == true, -1 == invalid cached value. private int cachedHaveLowAcceleration = -1; - private boolean haveLowAcceleration(double err) { + private boolean haveLowAcceleration(final double err) { if (cachedHaveLowAcceleration == -1) { final double len1 = curLeafCtrlPolyLengths[0]; final double len2 = curLeafCtrlPolyLengths[1]; @@ -613,7 +787,7 @@ if (_flatLeafCoefCache[2] < 0.0d) { double x = curLeafCtrlPolyLengths[0], - y = x + curLeafCtrlPolyLengths[1]; + y = x + curLeafCtrlPolyLengths[1]; if (curveType == 8) { double z = y + curLeafCtrlPolyLengths[2]; _flatLeafCoefCache[0] = 3.0d * (x - y) + z; @@ -635,7 +809,8 @@ // we use cubicRootsInAB here, because we want only roots in 0, 1, // and our quadratic root finder doesn't filter, so it's just a // matter of convenience. - int n = DHelpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0d, 1.0d); + final int n = DHelpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0d, 1.0d); +// TODO: check NaN is impossible if (n == 1 && !Double.isNaN(nextRoots[0])) { t = nextRoots[0]; } @@ -656,6 +831,16 @@ return t; } + double totalLength() { + while (!done) { + goToNextLeaf(); + } + // reset LengthIterator: + reset(); + + return lenAtNextT; + } + double lastSegLen() { return lastSegLen; } @@ -665,11 +850,11 @@ private void goToNextLeaf() { // We must go to the first ancestor node that has an unvisited // right child. + final boolean[] _sides = sidesRight; int _recLevel = recLevel; - final Side[] _sides = sides; - _recLevel--; - while(_sides[_recLevel] == Side.RIGHT) { + + while(_sides[_recLevel]) { if (_recLevel == 0) { recLevel = 0; done = true; @@ -678,19 +863,17 @@ _recLevel--; } - _sides[_recLevel] = Side.RIGHT; + _sides[_recLevel] = true; // optimize arraycopy (8 values faster than 6 = type): - System.arraycopy(recCurveStack[_recLevel], 0, - recCurveStack[_recLevel+1], 0, 8); - _recLevel++; - + System.arraycopy(recCurveStack[_recLevel++], 0, + recCurveStack[_recLevel], 0, 8); recLevel = _recLevel; goLeft(); } // go to the leftmost node from the current node. Return its length. private void goLeft() { - double len = onLeaf(); + final double len = onLeaf(); if (len >= 0.0d) { lastT = nextT; lenAtLastT = lenAtNextT; @@ -700,10 +883,11 @@ flatLeafCoefCache[2] = -1.0d; cachedHaveLowAcceleration = -1; } else { - DHelpers.subdivide(recCurveStack[recLevel], 0, - recCurveStack[recLevel+1], 0, - recCurveStack[recLevel], 0, curveType); - sides[recLevel] = Side.LEFT; + DHelpers.subdivide(recCurveStack[recLevel], + recCurveStack[recLevel + 1], + recCurveStack[recLevel], curveType); + + sidesRight[recLevel] = false; recLevel++; goLeft(); } @@ -718,7 +902,7 @@ double x0 = curve[0], y0 = curve[1]; for (int i = 2; i < _curveType; i += 2) { - final double x1 = curve[i], y1 = curve[i+1]; + final double x1 = curve[i], y1 = curve[i + 1]; final double len = DHelpers.linelen(x0, y0, x1, y1); polyLen += len; curLeafCtrlPolyLengths[(i >> 1) - 1] = len; @@ -726,10 +910,9 @@ y0 = y1; } - final double lineLen = DHelpers.linelen(curve[0], curve[1], - curve[_curveType-2], - curve[_curveType-1]); - if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { + final double lineLen = DHelpers.linelen(curve[0], curve[1], x0, y0); + + if ((polyLen - lineLen) < CURVE_LEN_ERR || recLevel == REC_LIMIT) { return (polyLen + lineLen) / 2.0d; } return -1.0d; @@ -741,41 +924,190 @@ final double x2, final double y2, final double x3, final double y3) { + final int outcode0 = this.cOutCode; + + if (clipRect != null) { + final int outcode1 = DHelpers.outcode(x1, y1, clipRect); + final int outcode2 = DHelpers.outcode(x2, y2, clipRect); + final int outcode3 = DHelpers.outcode(x3, y3, clipRect); + + // Should clip + final int orCode = (outcode0 | outcode1 | outcode2 | outcode3); + if (orCode != 0) { + final int sideCode = outcode0 & outcode1 & outcode2 & outcode3; + + // basic rejection criteria: + if (sideCode == 0) { + // ovelap clip: + if (subdivide) { + // avoid reentrance + subdivide = false; + // subdivide curve => callback with subdivided parts: + boolean ret = curveSplitter.splitCurve(cx0, cy0, x1, y1, x2, y2, x3, y3, + orCode, this); + // reentrance is done: + subdivide = true; + if (ret) { + return; + } + } + // already subdivided so render it + } else { + this.cOutCode = outcode3; + skipCurveTo(x1, y1, x2, y2, x3, y3); + return; + } + } + + this.cOutCode = outcode3; + + if (this.outside) { + this.outside = false; + // Adjust current index, phase & dash: + skipLen(); + } + } + _curveTo(x1, y1, x2, y2, x3, y3); + } + + private void _curveTo(final double x1, final double y1, + final double x2, final double y2, + final double x3, final double y3) + { final double[] _curCurvepts = curCurvepts; - _curCurvepts[0] = x0; _curCurvepts[1] = y0; - _curCurvepts[2] = x1; _curCurvepts[3] = y1; - _curCurvepts[4] = x2; _curCurvepts[5] = y2; - _curCurvepts[6] = x3; _curCurvepts[7] = y3; - somethingTo(8); + + // monotonize curve: + final CurveBasicMonotonizer monotonizer + = rdrCtx.monotonizer.curve(cx0, cy0, x1, y1, x2, y2, x3, y3); + + final int nSplits = monotonizer.nbSplits; + final double[] mid = monotonizer.middle; + + for (int i = 0, off = 0; i <= nSplits; i++, off += 6) { + // optimize arraycopy (8 values faster than 6 = type): + System.arraycopy(mid, off, _curCurvepts, 0, 8); + + somethingTo(8); + } + } + + private void skipCurveTo(final double x1, final double y1, + final double x2, final double y2, + final double x3, final double y3) + { + final double[] _curCurvepts = curCurvepts; + _curCurvepts[0] = cx0; _curCurvepts[1] = cy0; + _curCurvepts[2] = x1; _curCurvepts[3] = y1; + _curCurvepts[4] = x2; _curCurvepts[5] = y2; + _curCurvepts[6] = x3; _curCurvepts[7] = y3; + + skipSomethingTo(8); + + this.cx0 = x3; + this.cy0 = y3; } @Override public void quadTo(final double x1, final double y1, final double x2, final double y2) { + final int outcode0 = this.cOutCode; + + if (clipRect != null) { + final int outcode1 = DHelpers.outcode(x1, y1, clipRect); + final int outcode2 = DHelpers.outcode(x2, y2, clipRect); + + // Should clip + final int orCode = (outcode0 | outcode1 | outcode2); + if (orCode != 0) { + final int sideCode = outcode0 & outcode1 & outcode2; + + // basic rejection criteria: + if (sideCode == 0) { + // ovelap clip: + if (subdivide) { + // avoid reentrance + subdivide = false; + // subdivide curve => call lineTo() with subdivided curves: + boolean ret = curveSplitter.splitQuad(cx0, cy0, x1, y1, + x2, y2, orCode, this); + // reentrance is done: + subdivide = true; + if (ret) { + return; + } + } + // already subdivided so render it + } else { + this.cOutCode = outcode2; + skipQuadTo(x1, y1, x2, y2); + return; + } + } + + this.cOutCode = outcode2; + + if (this.outside) { + this.outside = false; + // Adjust current index, phase & dash: + skipLen(); + } + } + _quadTo(x1, y1, x2, y2); + } + + private void _quadTo(final double x1, final double y1, + final double x2, final double y2) + { + final double[] _curCurvepts = curCurvepts; + + // monotonize quad: + final CurveBasicMonotonizer monotonizer + = rdrCtx.monotonizer.quad(cx0, cy0, x1, y1, x2, y2); + + final int nSplits = monotonizer.nbSplits; + final double[] mid = monotonizer.middle; + + for (int i = 0, off = 0; i <= nSplits; i++, off += 4) { + // optimize arraycopy (8 values faster than 6 = type): + System.arraycopy(mid, off, _curCurvepts, 0, 8); + + somethingTo(6); + } + } + + private void skipQuadTo(final double x1, final double y1, + final double x2, final double y2) + { final double[] _curCurvepts = curCurvepts; - _curCurvepts[0] = x0; _curCurvepts[1] = y0; - _curCurvepts[2] = x1; _curCurvepts[3] = y1; - _curCurvepts[4] = x2; _curCurvepts[5] = y2; - somethingTo(6); + _curCurvepts[0] = cx0; _curCurvepts[1] = cy0; + _curCurvepts[2] = x1; _curCurvepts[3] = y1; + _curCurvepts[4] = x2; _curCurvepts[5] = y2; + + skipSomethingTo(6); + + this.cx0 = x2; + this.cy0 = y2; } @Override public void closePath() { - lineTo(sx, sy); + if (cx0 != sx0 || cy0 != sy0) { + lineTo(sx0, sy0); + } if (firstSegidx != 0) { if (!dashOn || needsMoveTo) { - out.moveTo(sx, sy); + out.moveTo(sx0, sy0); } emitFirstSegments(); } - moveTo(sx, sy); + moveTo(sx0, sy0); } @Override public void pathDone() { if (firstSegidx != 0) { - out.moveTo(sx, sy); + out.moveTo(sx0, sy0); emitFirstSegments(); } out.pathDone();