< prev index next >

src/java.desktop/share/classes/sun/java2d/marlin/Dasher.java

Print this page

        

*** 1,7 **** /* ! * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this --- 1,7 ---- /* ! * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this
*** 25,34 **** --- 25,36 ---- package sun.java2d.marlin; import java.util.Arrays; import sun.awt.geom.PathConsumer2D; + import sun.java2d.marlin.TransformingPathConsumer2D.CurveBasicMonotonizer; + import sun.java2d.marlin.TransformingPathConsumer2D.CurveClipSplitter; /** * The <code>Dasher</code> class takes a series of linear commands * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and * <code>end</code>) and breaks them into smaller segments according to a
*** 39,50 **** * semantics are unclear. * */ final class Dasher implements PathConsumer2D, MarlinConst { ! static final int REC_LIMIT = 4; ! static final float ERR = 0.01f; static final float MIN_T_INC = 1.0f / (1 << REC_LIMIT); // More than 24 bits of mantissa means we can no longer accurately // measure the number of times cycled through the dash array so we // punt and override the phase to just be 0 past that point. --- 41,53 ---- * semantics are unclear. * */ final class Dasher implements PathConsumer2D, MarlinConst { ! /* huge circle with radius ~ 2E9 only needs 12 subdivision levels */ ! static final int REC_LIMIT = 16; ! static final float CURVE_LEN_ERR = MarlinProperties.getCurveLengthError(); // 0.01 static final float MIN_T_INC = 1.0f / (1 << REC_LIMIT); // More than 24 bits of mantissa means we can no longer accurately // measure the number of times cycled through the dash array so we // punt and override the phase to just be 0 past that point.
*** 62,88 **** private int idx; private boolean dashOn; private float phase; ! private float sx, sy; ! private float x0, y0; // temporary storage for the current curve private final float[] curCurvepts; // per-thread renderer context final RendererContext rdrCtx; // flag to recycle dash array copy boolean recycleDashes; // dashes ref (dirty) final FloatArrayCache.Reference dashes_ref; // firstSegmentsBuffer ref (dirty) final FloatArrayCache.Reference firstSegmentsBuffer_ref; /** * Constructs a <code>Dasher</code>. * @param rdrCtx per-thread renderer context */ Dasher(final RendererContext rdrCtx) { --- 65,116 ---- private int idx; private boolean dashOn; private float phase; ! // The starting point of the path ! private float sx0, sy0; ! // the current point ! private float cx0, cy0; // temporary storage for the current curve private final float[] curCurvepts; // per-thread renderer context final RendererContext rdrCtx; // flag to recycle dash array copy boolean recycleDashes; + // We don't emit the first dash right away. If we did, caps would be + // drawn on it, but we need joins to be drawn if there's a closePath() + // So, we store the path elements that make up the first dash in the + // buffer below. + private float[] firstSegmentsBuffer; // dynamic array + private int firstSegidx; + // dashes ref (dirty) final FloatArrayCache.Reference dashes_ref; // firstSegmentsBuffer ref (dirty) final FloatArrayCache.Reference firstSegmentsBuffer_ref; + // Bounds of the drawing region, at pixel precision. + private float[] clipRect; + + // the outcode of the current point + private int cOutCode = 0; + + private boolean subdivide = DO_CLIP_SUBDIVIDER; + + private final LengthIterator li = new LengthIterator(); + + private final CurveClipSplitter curveSplitter; + + private float cycleLen; + private boolean outside; + private float totalSkipLen; + /** * Constructs a <code>Dasher</code>. * @param rdrCtx per-thread renderer context */ Dasher(final RendererContext rdrCtx) {
*** 94,103 **** --- 122,133 ---- firstSegmentsBuffer = firstSegmentsBuffer_ref.initial; // we need curCurvepts to be able to contain 2 curves because when // dashing curves, we need to subdivide it curCurvepts = new float[8 * 2]; + + this.curveSplitter = rdrCtx.curveClipSplitter; } /** * Initialize the <code>Dasher</code>. *
*** 114,127 **** --- 144,160 ---- this.out = out; // Normalize so 0 <= phase < dash[0] int sidx = 0; dashOn = true; + float sum = 0.0f; for (float d : dash) { sum += d; } + this.cycleLen = sum; + float cycles = phase / sum; if (phase < 0.0f) { if (-cycles >= MAX_CYCLES) { phase = 0.0f; } else {
*** 166,175 **** --- 199,214 ---- this.needsMoveTo = false; this.firstSegidx = 0; this.recycleDashes = recycleDashes; + if (rdrCtx.doClip) { + this.clipRect = rdrCtx.clipRect; + } else { + this.clipRect = null; + this.cOutCode = 0; + } return this; // fluent API } /** * Disposes this dasher:
*** 203,239 **** } @Override public void moveTo(final float x0, final float y0) { if (firstSegidx != 0) { ! out.moveTo(sx, sy); emitFirstSegments(); } ! needsMoveTo = true; this.idx = startIdx; this.dashOn = this.startDashOn; this.phase = this.startPhase; ! this.sx = x0; ! this.sy = y0; ! this.x0 = x0; ! this.y0 = y0; this.starting = true; } private void emitSeg(float[] buf, int off, int type) { switch (type) { case 8: ! out.curveTo(buf[off+0], buf[off+1], ! buf[off+2], buf[off+3], ! buf[off+4], buf[off+5]); return; case 6: ! out.quadTo(buf[off+0], buf[off+1], ! buf[off+2], buf[off+3]); return; case 4: ! out.lineTo(buf[off], buf[off+1]); return; default: } } --- 242,287 ---- } @Override public void moveTo(final float x0, final float y0) { if (firstSegidx != 0) { ! out.moveTo(sx0, sy0); emitFirstSegments(); } ! this.needsMoveTo = true; this.idx = startIdx; this.dashOn = this.startDashOn; this.phase = this.startPhase; ! this.cx0 = x0; ! this.cy0 = y0; ! ! // update starting point: ! this.sx0 = x0; ! this.sy0 = y0; this.starting = true; + + if (clipRect != null) { + final int outcode = Helpers.outcode(x0, y0, clipRect); + this.cOutCode = outcode; + this.outside = false; + this.totalSkipLen = 0.0f; + } } private void emitSeg(float[] buf, int off, int type) { switch (type) { case 8: ! out.curveTo(buf[off ], buf[off + 1], ! buf[off + 2], buf[off + 3], ! buf[off + 4], buf[off + 5]); return; case 6: ! out.quadTo(buf[off ], buf[off + 1], ! buf[off + 2], buf[off + 3]); return; case 4: ! out.lineTo(buf[off], buf[off + 1]); return; default: } }
*** 245,260 **** emitSeg(fSegBuf, i + 1, type); i += (type - 1); } firstSegidx = 0; } - // We don't emit the first dash right away. If we did, caps would be - // drawn on it, but we need joins to be drawn if there's a closePath() - // So, we store the path elements that make up the first dash in the - // buffer below. - private float[] firstSegmentsBuffer; // dynamic array - private int firstSegidx; // precondition: pts must be in relative coordinates (relative to x0,y0) private void goTo(final float[] pts, final int off, final int type, final boolean on) { --- 293,302 ----
*** 266,288 **** if (starting) { goTo_starting(pts, off, type); } else { if (needsMoveTo) { needsMoveTo = false; ! out.moveTo(x0, y0); } emitSeg(pts, off, type); } } else { if (starting) { // low probability test (hotspot) starting = false; } needsMoveTo = true; } ! this.x0 = x; ! this.y0 = y; } private void goTo_starting(final float[] pts, final int off, final int type) { int len = type - 1; // - 2 + 1 int segIdx = firstSegidx; --- 308,330 ---- if (starting) { goTo_starting(pts, off, type); } else { if (needsMoveTo) { needsMoveTo = false; ! out.moveTo(cx0, cy0); } emitSeg(pts, off, type); } } else { if (starting) { // low probability test (hotspot) starting = false; } needsMoveTo = true; } ! this.cx0 = x; ! this.cy0 = y; } private void goTo_starting(final float[] pts, final int off, final int type) { int len = type - 1; // - 2 + 1 int segIdx = firstSegidx;
*** 304,317 **** firstSegidx = segIdx + len; } @Override public void lineTo(final float x1, final float y1) { ! final float dx = x1 - x0; ! final float dy = y1 - y0; ! float len = dx*dx + dy*dy; if (len == 0.0f) { return; } len = (float) Math.sqrt(len); --- 346,405 ---- firstSegidx = segIdx + len; } @Override public void lineTo(final float x1, final float y1) { ! final int outcode0 = this.cOutCode; ! ! if (clipRect != null) { ! final int outcode1 = Helpers.outcode(x1, y1, clipRect); ! ! // Should clip ! final int orCode = (outcode0 | outcode1); ! if (orCode != 0) { ! final int sideCode = outcode0 & outcode1; ! ! // basic rejection criteria: ! if (sideCode == 0) { ! // ovelap clip: ! if (subdivide) { ! // avoid reentrance ! subdivide = false; ! // subdivide curve => callback with subdivided parts: ! boolean ret = curveSplitter.splitLine(cx0, cy0, x1, y1, ! orCode, this); ! // reentrance is done: ! subdivide = true; ! if (ret) { ! return; ! } ! } ! // already subdivided so render it ! } else { ! this.cOutCode = outcode1; ! skipLineTo(x1, y1); ! return; ! } ! } ! ! this.cOutCode = outcode1; ! ! if (this.outside) { ! this.outside = false; ! // Adjust current index, phase & dash: ! skipLen(); ! } ! } ! _lineTo(x1, y1); ! } ! ! private void _lineTo(final float x1, final float y1) { ! final float dx = x1 - cx0; ! final float dy = y1 - cy0; ! ! float len = dx * dx + dy * dy; if (len == 0.0f) { return; } len = (float) Math.sqrt(len);
*** 326,337 **** int _idx = idx; boolean _dashOn = dashOn; float _phase = phase; ! float leftInThisDashSegment; ! float d, dashdx, dashdy, p; while (true) { d = _dash[_idx]; leftInThisDashSegment = d - _phase; --- 414,424 ---- int _idx = idx; boolean _dashOn = dashOn; float _phase = phase; ! float leftInThisDashSegment, d; while (true) { d = _dash[_idx]; leftInThisDashSegment = d - _phase;
*** 348,398 **** if (len == leftInThisDashSegment) { _phase = 0.0f; _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; } ! ! // Save local state: ! idx = _idx; ! dashOn = _dashOn; ! phase = _phase; ! return; } - dashdx = d * cx; - dashdy = d * cy; - if (_phase == 0.0f) { ! _curCurvepts[0] = x0 + dashdx; ! _curCurvepts[1] = y0 + dashdy; } else { ! p = leftInThisDashSegment / d; ! _curCurvepts[0] = x0 + p * dashdx; ! _curCurvepts[1] = y0 + p * dashdy; } goTo(_curCurvepts, 0, 4, _dashOn); len -= leftInThisDashSegment; // Advance to next dash segment _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; _phase = 0.0f; } } ! // shared instance in Dasher ! private final LengthIterator li = new LengthIterator(); // preconditions: curCurvepts must be an array of length at least 2 * type, // that contains the curve we want to dash in the first type elements private void somethingTo(final int type) { ! if (pointCurve(curCurvepts, type)) { return; } final LengthIterator _li = li; - final float[] _curCurvepts = curCurvepts; final float[] _dash = dash; final int _dashLen = this.dashLen; _li.initializeIterationOnCurve(_curCurvepts, type); --- 435,552 ---- if (len == leftInThisDashSegment) { _phase = 0.0f; _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; } ! break; } if (_phase == 0.0f) { ! _curCurvepts[0] = cx0 + d * cx; ! _curCurvepts[1] = cy0 + d * cy; } else { ! _curCurvepts[0] = cx0 + leftInThisDashSegment * cx; ! _curCurvepts[1] = cy0 + leftInThisDashSegment * cy; } goTo(_curCurvepts, 0, 4, _dashOn); len -= leftInThisDashSegment; // Advance to next dash segment _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; _phase = 0.0f; } + // Save local state: + idx = _idx; + dashOn = _dashOn; + phase = _phase; } ! private void skipLineTo(final float x1, final float y1) { ! final float dx = x1 - cx0; ! final float dy = y1 - cy0; ! ! float len = dx * dx + dy * dy; ! if (len != 0.0f) { ! len = (float)Math.sqrt(len); ! } ! ! // Accumulate skipped length: ! this.outside = true; ! this.totalSkipLen += len; ! ! // Fix initial move: ! this.needsMoveTo = true; ! this.starting = false; ! ! this.cx0 = x1; ! this.cy0 = y1; ! } ! ! public void skipLen() { ! float len = this.totalSkipLen; ! this.totalSkipLen = 0.0f; ! ! final float[] _dash = dash; ! final int _dashLen = this.dashLen; ! ! int _idx = idx; ! boolean _dashOn = dashOn; ! float _phase = phase; ! ! // -2 to ensure having 2 iterations of the post-loop ! // to compensate the remaining phase ! final long fullcycles = (long)Math.floor(len / cycleLen) - 2L; ! ! if (fullcycles > 0L) { ! len -= cycleLen * fullcycles; ! ! final long iterations = fullcycles * _dashLen; ! _idx = (int) (iterations + _idx) % _dashLen; ! _dashOn = (iterations + (_dashOn ? 1L : 0L) & 1L) == 1L; ! } ! ! float leftInThisDashSegment, d; ! ! while (true) { ! d = _dash[_idx]; ! leftInThisDashSegment = d - _phase; ! ! if (len <= leftInThisDashSegment) { ! // Advance phase within current dash segment ! _phase += len; ! ! // TODO: compare float values using epsilon: ! if (len == leftInThisDashSegment) { ! _phase = 0.0f; ! _idx = (_idx + 1) % _dashLen; ! _dashOn = !_dashOn; ! } ! break; ! } ! ! len -= leftInThisDashSegment; ! // Advance to next dash segment ! _idx = (_idx + 1) % _dashLen; ! _dashOn = !_dashOn; ! _phase = 0.0f; ! } ! // Save local state: ! idx = _idx; ! dashOn = _dashOn; ! phase = _phase; ! } // preconditions: curCurvepts must be an array of length at least 2 * type, // that contains the curve we want to dash in the first type elements private void somethingTo(final int type) { ! final float[] _curCurvepts = curCurvepts; ! if (pointCurve(_curCurvepts, type)) { return; } final LengthIterator _li = li; final float[] _dash = dash; final int _dashLen = this.dashLen; _li.initializeIterationOnCurve(_curCurvepts, type);
*** 400,420 **** boolean _dashOn = dashOn; float _phase = phase; // initially the current curve is at curCurvepts[0...type] int curCurveoff = 0; ! float lastSplitT = 0.0f; float t; float leftInThisDashSegment = _dash[_idx] - _phase; while ((t = _li.next(leftInThisDashSegment)) < 1.0f) { if (t != 0.0f) { ! Helpers.subdivideAt((t - lastSplitT) / (1.0f - lastSplitT), _curCurvepts, curCurveoff, ! _curCurvepts, 0, ! _curCurvepts, type, type); ! lastSplitT = t; goTo(_curCurvepts, 2, type, _dashOn); curCurveoff = type; } // Advance to next dash segment _idx = (_idx + 1) % _dashLen; --- 554,573 ---- boolean _dashOn = dashOn; float _phase = phase; // initially the current curve is at curCurvepts[0...type] int curCurveoff = 0; ! float prevT = 0.0f; float t; float leftInThisDashSegment = _dash[_idx] - _phase; while ((t = _li.next(leftInThisDashSegment)) < 1.0f) { if (t != 0.0f) { ! Helpers.subdivideAt((t - prevT) / (1.0f - prevT), _curCurvepts, curCurveoff, ! _curCurvepts, 0, type); ! prevT = t; goTo(_curCurvepts, 2, type, _dashOn); curCurveoff = type; } // Advance to next dash segment _idx = (_idx + 1) % _dashLen;
*** 438,448 **** // reset LengthIterator: _li.reset(); } ! private static boolean pointCurve(float[] curve, int type) { for (int i = 2; i < type; i++) { if (curve[i] != curve[i-2]) { return false; } } --- 591,623 ---- // reset LengthIterator: _li.reset(); } ! private void skipSomethingTo(final int type) { ! final float[] _curCurvepts = curCurvepts; ! if (pointCurve(_curCurvepts, type)) { ! return; ! } ! final LengthIterator _li = li; ! ! _li.initializeIterationOnCurve(_curCurvepts, type); ! ! // In contrary to somethingTo(), ! // just estimate properly the curve length: ! final float len = _li.totalLength(); ! ! // Accumulate skipped length: ! this.outside = true; ! this.totalSkipLen += len; ! ! // Fix initial move: ! this.needsMoveTo = true; ! this.starting = false; ! } ! ! private static boolean pointCurve(final float[] curve, final int type) { for (int i = 2; i < type; i++) { if (curve[i] != curve[i-2]) { return false; } }
*** 461,479 **** // limit+1 curves - one for each level of the tree + 1. // NOTE: the way we do things here is not enough to traverse a general // tree; however, the trees we are interested in have the property that // every non leaf node has exactly 2 children static final class LengthIterator { - private enum Side {LEFT, RIGHT} // Holds the curves at various levels of the recursion. The root // (i.e. the original curve) is at recCurveStack[0] (but then it // gets subdivided, the left half is put at 1, so most of the time // only the right half of the original curve is at 0) private final float[][] recCurveStack; // dirty ! // sides[i] indicates whether the node at level i+1 in the path from // the root to the current leaf is a left or right child of its parent. ! private final Side[] sides; // dirty private int curveType; // lastT and nextT delimit the current leaf. private float nextT; private float lenAtNextT; private float lastT; --- 636,653 ---- // limit+1 curves - one for each level of the tree + 1. // NOTE: the way we do things here is not enough to traverse a general // tree; however, the trees we are interested in have the property that // every non leaf node has exactly 2 children static final class LengthIterator { // Holds the curves at various levels of the recursion. The root // (i.e. the original curve) is at recCurveStack[0] (but then it // gets subdivided, the left half is put at 1, so most of the time // only the right half of the original curve is at 0) private final float[][] recCurveStack; // dirty ! // sidesRight[i] indicates whether the node at level i+1 in the path from // the root to the current leaf is a left or right child of its parent. ! private final boolean[] sidesRight; // dirty private int curveType; // lastT and nextT delimit the current leaf. private float nextT; private float lenAtNextT; private float lastT;
*** 490,500 **** // next() for more detail. private final float[] curLeafCtrlPolyLengths = new float[3]; LengthIterator() { this.recCurveStack = new float[REC_LIMIT + 1][8]; ! this.sides = new Side[REC_LIMIT]; // if any methods are called without first initializing this object // on a curve, we want it to fail ASAP. this.nextT = Float.MAX_VALUE; this.lenAtNextT = Float.MAX_VALUE; this.lenAtLastSplit = Float.MIN_VALUE; --- 664,674 ---- // next() for more detail. private final float[] curLeafCtrlPolyLengths = new float[3]; LengthIterator() { this.recCurveStack = new float[REC_LIMIT + 1][8]; ! this.sidesRight = new boolean[REC_LIMIT]; // if any methods are called without first initializing this object // on a curve, we want it to fail ASAP. this.nextT = Float.MAX_VALUE; this.lenAtNextT = Float.MAX_VALUE; this.lenAtLastSplit = Float.MIN_VALUE;
*** 512,530 **** if (DO_CLEAN_DIRTY) { final int recLimit = recCurveStack.length - 1; for (int i = recLimit; i >= 0; i--) { Arrays.fill(recCurveStack[i], 0.0f); } ! Arrays.fill(sides, Side.LEFT); Arrays.fill(curLeafCtrlPolyLengths, 0.0f); Arrays.fill(nextRoots, 0.0f); Arrays.fill(flatLeafCoefCache, 0.0f); flatLeafCoefCache[2] = -1.0f; } } ! void initializeIterationOnCurve(float[] pts, int type) { // optimize arraycopy (8 values faster than 6 = type): System.arraycopy(pts, 0, recCurveStack[0], 0, 8); this.curveType = type; this.recLevel = 0; this.lastT = 0.0f; --- 686,704 ---- if (DO_CLEAN_DIRTY) { final int recLimit = recCurveStack.length - 1; for (int i = recLimit; i >= 0; i--) { Arrays.fill(recCurveStack[i], 0.0f); } ! Arrays.fill(sidesRight, false); Arrays.fill(curLeafCtrlPolyLengths, 0.0f); Arrays.fill(nextRoots, 0.0f); Arrays.fill(flatLeafCoefCache, 0.0f); flatLeafCoefCache[2] = -1.0f; } } ! void initializeIterationOnCurve(final float[] pts, final int type) { // optimize arraycopy (8 values faster than 6 = type): System.arraycopy(pts, 0, recCurveStack[0], 0, 8); this.curveType = type; this.recLevel = 0; this.lastT = 0.0f;
*** 532,555 **** this.nextT = 0.0f; this.lenAtNextT = 0.0f; goLeft(); // initializes nextT and lenAtNextT properly this.lenAtLastSplit = 0.0f; if (recLevel > 0) { ! this.sides[0] = Side.LEFT; this.done = false; } else { // the root of the tree is a leaf so we're done. ! this.sides[0] = Side.RIGHT; this.done = true; } this.lastSegLen = 0.0f; } // 0 == false, 1 == true, -1 == invalid cached value. private int cachedHaveLowAcceleration = -1; ! private boolean haveLowAcceleration(float err) { if (cachedHaveLowAcceleration == -1) { final float len1 = curLeafCtrlPolyLengths[0]; final float len2 = curLeafCtrlPolyLengths[1]; // the test below is equivalent to !within(len1/len2, 1, err). // It is using a multiplication instead of a division, so it --- 706,729 ---- this.nextT = 0.0f; this.lenAtNextT = 0.0f; goLeft(); // initializes nextT and lenAtNextT properly this.lenAtLastSplit = 0.0f; if (recLevel > 0) { ! this.sidesRight[0] = false; this.done = false; } else { // the root of the tree is a leaf so we're done. ! this.sidesRight[0] = true; this.done = true; } this.lastSegLen = 0.0f; } // 0 == false, 1 == true, -1 == invalid cached value. private int cachedHaveLowAcceleration = -1; ! private boolean haveLowAcceleration(final float err) { if (cachedHaveLowAcceleration == -1) { final float len1 = curLeafCtrlPolyLengths[0]; final float len2 = curLeafCtrlPolyLengths[1]; // the test below is equivalent to !within(len1/len2, 1, err). // It is using a multiplication instead of a division, so it
*** 634,644 **** float d = t * _flatLeafCoefCache[3]; // we use cubicRootsInAB here, because we want only roots in 0, 1, // and our quadratic root finder doesn't filter, so it's just a // matter of convenience. ! int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0f, 1.0f); if (n == 1 && !Float.isNaN(nextRoots[0])) { t = nextRoots[0]; } } // t is relative to the current leaf, so we must make it a valid parameter --- 808,819 ---- float d = t * _flatLeafCoefCache[3]; // we use cubicRootsInAB here, because we want only roots in 0, 1, // and our quadratic root finder doesn't filter, so it's just a // matter of convenience. ! final int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0f, 1.0f); ! // TODO: check NaN is impossible if (n == 1 && !Float.isNaN(nextRoots[0])) { t = nextRoots[0]; } } // t is relative to the current leaf, so we must make it a valid parameter
*** 655,712 **** // loop, and lastSegLen will still be set to the right value. lastSegLen = len; return t; } float lastSegLen() { return lastSegLen; } // go to the next leaf (in an inorder traversal) in the recursion tree // preconditions: must be on a leaf, and that leaf must not be the root. private void goToNextLeaf() { // We must go to the first ancestor node that has an unvisited // right child. int _recLevel = recLevel; - final Side[] _sides = sides; - _recLevel--; ! while(_sides[_recLevel] == Side.RIGHT) { if (_recLevel == 0) { recLevel = 0; done = true; return; } _recLevel--; } ! _sides[_recLevel] = Side.RIGHT; // optimize arraycopy (8 values faster than 6 = type): ! System.arraycopy(recCurveStack[_recLevel], 0, ! recCurveStack[_recLevel+1], 0, 8); ! _recLevel++; ! recLevel = _recLevel; goLeft(); } // go to the leftmost node from the current node. Return its length. private void goLeft() { ! float len = onLeaf(); if (len >= 0.0f) { lastT = nextT; lenAtLastT = lenAtNextT; nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC; lenAtNextT += len; // invalidate caches flatLeafCoefCache[2] = -1.0f; cachedHaveLowAcceleration = -1; } else { ! Helpers.subdivide(recCurveStack[recLevel], 0, ! recCurveStack[recLevel+1], 0, ! recCurveStack[recLevel], 0, curveType); ! sides[recLevel] = Side.LEFT; recLevel++; goLeft(); } } --- 830,896 ---- // loop, and lastSegLen will still be set to the right value. lastSegLen = len; return t; } + float totalLength() { + while (!done) { + goToNextLeaf(); + } + // reset LengthIterator: + reset(); + + return lenAtNextT; + } + float lastSegLen() { return lastSegLen; } // go to the next leaf (in an inorder traversal) in the recursion tree // preconditions: must be on a leaf, and that leaf must not be the root. private void goToNextLeaf() { // We must go to the first ancestor node that has an unvisited // right child. + final boolean[] _sides = sidesRight; int _recLevel = recLevel; _recLevel--; ! ! while(_sides[_recLevel]) { if (_recLevel == 0) { recLevel = 0; done = true; return; } _recLevel--; } ! _sides[_recLevel] = true; // optimize arraycopy (8 values faster than 6 = type): ! System.arraycopy(recCurveStack[_recLevel++], 0, ! recCurveStack[_recLevel], 0, 8); recLevel = _recLevel; goLeft(); } // go to the leftmost node from the current node. Return its length. private void goLeft() { ! final float len = onLeaf(); if (len >= 0.0f) { lastT = nextT; lenAtLastT = lenAtNextT; nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC; lenAtNextT += len; // invalidate caches flatLeafCoefCache[2] = -1.0f; cachedHaveLowAcceleration = -1; } else { ! Helpers.subdivide(recCurveStack[recLevel], ! recCurveStack[recLevel + 1], ! recCurveStack[recLevel], curveType); ! ! sidesRight[recLevel] = false; recLevel++; goLeft(); } }
*** 717,738 **** final int _curveType = curveType; float polyLen = 0.0f; float x0 = curve[0], y0 = curve[1]; for (int i = 2; i < _curveType; i += 2) { ! final float x1 = curve[i], y1 = curve[i+1]; final float len = Helpers.linelen(x0, y0, x1, y1); polyLen += len; curLeafCtrlPolyLengths[(i >> 1) - 1] = len; x0 = x1; y0 = y1; } ! final float lineLen = Helpers.linelen(curve[0], curve[1], ! curve[_curveType-2], ! curve[_curveType-1]); ! if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { return (polyLen + lineLen) / 2.0f; } return -1.0f; } } --- 901,921 ---- final int _curveType = curveType; float polyLen = 0.0f; float x0 = curve[0], y0 = curve[1]; for (int i = 2; i < _curveType; i += 2) { ! final float x1 = curve[i], y1 = curve[i + 1]; final float len = Helpers.linelen(x0, y0, x1, y1); polyLen += len; curLeafCtrlPolyLengths[(i >> 1) - 1] = len; x0 = x1; y0 = y1; } ! final float lineLen = Helpers.linelen(curve[0], curve[1], x0, y0); ! ! if ((polyLen - lineLen) < CURVE_LEN_ERR || recLevel == REC_LIMIT) { return (polyLen + lineLen) / 2.0f; } return -1.0f; } }
*** 740,784 **** @Override public void curveTo(final float x1, final float y1, final float x2, final float y2, final float x3, final float y3) { final float[] _curCurvepts = curCurvepts; ! _curCurvepts[0] = x0; _curCurvepts[1] = y0; ! _curCurvepts[2] = x1; _curCurvepts[3] = y1; ! _curCurvepts[4] = x2; _curCurvepts[5] = y2; ! _curCurvepts[6] = x3; _curCurvepts[7] = y3; ! somethingTo(8); } @Override public void quadTo(final float x1, final float y1, final float x2, final float y2) { final float[] _curCurvepts = curCurvepts; ! _curCurvepts[0] = x0; _curCurvepts[1] = y0; ! _curCurvepts[2] = x1; _curCurvepts[3] = y1; ! _curCurvepts[4] = x2; _curCurvepts[5] = y2; ! somethingTo(6); } @Override public void closePath() { ! lineTo(sx, sy); if (firstSegidx != 0) { if (!dashOn || needsMoveTo) { ! out.moveTo(sx, sy); } emitFirstSegments(); } ! moveTo(sx, sy); } @Override public void pathDone() { if (firstSegidx != 0) { ! out.moveTo(sx, sy); emitFirstSegments(); } out.pathDone(); // Dispose this instance: --- 923,1116 ---- @Override public void curveTo(final float x1, final float y1, final float x2, final float y2, final float x3, final float y3) { + final int outcode0 = this.cOutCode; + + if (clipRect != null) { + final int outcode1 = Helpers.outcode(x1, y1, clipRect); + final int outcode2 = Helpers.outcode(x2, y2, clipRect); + final int outcode3 = Helpers.outcode(x3, y3, clipRect); + + // Should clip + final int orCode = (outcode0 | outcode1 | outcode2 | outcode3); + if (orCode != 0) { + final int sideCode = outcode0 & outcode1 & outcode2 & outcode3; + + // basic rejection criteria: + if (sideCode == 0) { + // ovelap clip: + if (subdivide) { + // avoid reentrance + subdivide = false; + // subdivide curve => callback with subdivided parts: + boolean ret = curveSplitter.splitCurve(cx0, cy0, x1, y1, x2, y2, x3, y3, + orCode, this); + // reentrance is done: + subdivide = true; + if (ret) { + return; + } + } + // already subdivided so render it + } else { + this.cOutCode = outcode3; + skipCurveTo(x1, y1, x2, y2, x3, y3); + return; + } + } + + this.cOutCode = outcode3; + + if (this.outside) { + this.outside = false; + // Adjust current index, phase & dash: + skipLen(); + } + } + _curveTo(x1, y1, x2, y2, x3, y3); + } + + private void _curveTo(final float x1, final float y1, + final float x2, final float y2, + final float x3, final float y3) + { final float[] _curCurvepts = curCurvepts; ! ! // monotonize curve: ! final CurveBasicMonotonizer monotonizer ! = rdrCtx.monotonizer.curve(cx0, cy0, x1, y1, x2, y2, x3, y3); ! ! final int nSplits = monotonizer.nbSplits; ! final float[] mid = monotonizer.middle; ! ! for (int i = 0, off = 0; i <= nSplits; i++, off += 6) { ! // optimize arraycopy (8 values faster than 6 = type): ! System.arraycopy(mid, off, _curCurvepts, 0, 8); ! ! somethingTo(8); ! } ! } ! ! private void skipCurveTo(final float x1, final float y1, ! final float x2, final float y2, ! final float x3, final float y3) ! { ! final float[] _curCurvepts = curCurvepts; ! _curCurvepts[0] = cx0; _curCurvepts[1] = cy0; ! _curCurvepts[2] = x1; _curCurvepts[3] = y1; ! _curCurvepts[4] = x2; _curCurvepts[5] = y2; ! _curCurvepts[6] = x3; _curCurvepts[7] = y3; ! ! skipSomethingTo(8); ! ! this.cx0 = x3; ! this.cy0 = y3; } @Override public void quadTo(final float x1, final float y1, final float x2, final float y2) { + final int outcode0 = this.cOutCode; + + if (clipRect != null) { + final int outcode1 = Helpers.outcode(x1, y1, clipRect); + final int outcode2 = Helpers.outcode(x2, y2, clipRect); + + // Should clip + final int orCode = (outcode0 | outcode1 | outcode2); + if (orCode != 0) { + final int sideCode = outcode0 & outcode1 & outcode2; + + // basic rejection criteria: + if (sideCode == 0) { + // ovelap clip: + if (subdivide) { + // avoid reentrance + subdivide = false; + // subdivide curve => call lineTo() with subdivided curves: + boolean ret = curveSplitter.splitQuad(cx0, cy0, x1, y1, + x2, y2, orCode, this); + // reentrance is done: + subdivide = true; + if (ret) { + return; + } + } + // already subdivided so render it + } else { + this.cOutCode = outcode2; + skipQuadTo(x1, y1, x2, y2); + return; + } + } + + this.cOutCode = outcode2; + + if (this.outside) { + this.outside = false; + // Adjust current index, phase & dash: + skipLen(); + } + } + _quadTo(x1, y1, x2, y2); + } + + private void _quadTo(final float x1, final float y1, + final float x2, final float y2) + { + final float[] _curCurvepts = curCurvepts; + + // monotonize quad: + final CurveBasicMonotonizer monotonizer + = rdrCtx.monotonizer.quad(cx0, cy0, x1, y1, x2, y2); + + final int nSplits = monotonizer.nbSplits; + final float[] mid = monotonizer.middle; + + for (int i = 0, off = 0; i <= nSplits; i++, off += 4) { + // optimize arraycopy (8 values faster than 6 = type): + System.arraycopy(mid, off, _curCurvepts, 0, 8); + + somethingTo(6); + } + } + + private void skipQuadTo(final float x1, final float y1, + final float x2, final float y2) + { final float[] _curCurvepts = curCurvepts; ! _curCurvepts[0] = cx0; _curCurvepts[1] = cy0; ! _curCurvepts[2] = x1; _curCurvepts[3] = y1; ! _curCurvepts[4] = x2; _curCurvepts[5] = y2; ! ! skipSomethingTo(6); ! ! this.cx0 = x2; ! this.cy0 = y2; } @Override public void closePath() { ! if (cx0 != sx0 || cy0 != sy0) { ! lineTo(sx0, sy0); ! } if (firstSegidx != 0) { if (!dashOn || needsMoveTo) { ! out.moveTo(sx0, sy0); } emitFirstSegments(); } ! moveTo(sx0, sy0); } @Override public void pathDone() { if (firstSegidx != 0) { ! out.moveTo(sx0, sy0); emitFirstSegments(); } out.pathDone(); // Dispose this instance:
< prev index next >