1 /*
   2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import sun.awt.geom.PathConsumer2D;
  29 import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
  30 import jdk.internal.misc.Unsafe;
  31 
  32 final class Renderer implements PathConsumer2D, MarlinRenderer {
  33 
  34     static final boolean DISABLE_RENDER = false;
  35 
  36     static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
  37     static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
  38 
  39     private static final int ALL_BUT_LSB = 0xFFFFFFFE;
  40     private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
  41 
  42     private static final double POWER_2_TO_32 = 0x1.0p32d;
  43 
  44     // use float to make tosubpix methods faster (no int to float conversion)
  45     static final float SUBPIXEL_SCALE_X = (float) SUBPIXEL_POSITIONS_X;
  46     static final float SUBPIXEL_SCALE_Y = (float) SUBPIXEL_POSITIONS_Y;
  47     static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
  48     static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
  49 
  50     static final float RDR_OFFSET_X = 0.5f / SUBPIXEL_SCALE_X;
  51     static final float RDR_OFFSET_Y = 0.5f / SUBPIXEL_SCALE_Y;
  52 
  53     // number of subpixels corresponding to a tile line
  54     private static final int SUBPIXEL_TILE
  55         = TILE_H << SUBPIXEL_LG_POSITIONS_Y;
  56 
  57     // 2176 pixels (height) x 8 subpixels = 68K
  58     static final int INITIAL_BUCKET_ARRAY
  59         = INITIAL_PIXEL_HEIGHT * SUBPIXEL_POSITIONS_Y;
  60 
  61     // crossing capacity = edges count / 4 ~ 1024
  62     static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2;
  63 
  64     // common to all types of input path segments.
  65     // OFFSET as bytes
  66     // only integer values:
  67     public static final long OFF_CURX_OR  = 0;
  68     public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
  69     public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
  70     public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
  71     public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
  72     public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
  73 
  74     // size of one edge in bytes
  75     public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
  76 
  77     // curve break into lines
  78     // cubic error in subpixels to decrement step
  79     private static final float CUB_DEC_ERR_SUBPIX
  80         = MarlinProperties.getCubicDecD2() * (SUBPIXEL_POSITIONS_X / 8.0f); // 1.0 / 8th pixel
  81     // cubic error in subpixels to increment step
  82     private static final float CUB_INC_ERR_SUBPIX
  83         = MarlinProperties.getCubicIncD1() * (SUBPIXEL_POSITIONS_X / 8.0f); // 0.4 / 8th pixel
  84     // scale factor for Y-axis contribution to quad / cubic errors:
  85     public static final float SCALE_DY = ((float) SUBPIXEL_POSITIONS_X) / SUBPIXEL_POSITIONS_Y;
  86 
  87     // TestNonAARasterization (JDK-8170879): cubics
  88     // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
  89 // 2018
  90     // 1.0 / 0.2: bad paths (67194/100000 == 67,19%, 117394 bad pixels (avg = 1,75 - max =  9), 4042 warnings (avg = 0,06)
  91 
  92     // cubic bind length to decrement step
  93     public static final float CUB_DEC_BND
  94         = 8.0f * CUB_DEC_ERR_SUBPIX;
  95     // cubic bind length to increment step
  96     public static final float CUB_INC_BND
  97         = 8.0f * CUB_INC_ERR_SUBPIX;
  98 
  99     // cubic countlg
 100     public static final int CUB_COUNT_LG = 2;
 101     // cubic count = 2^countlg
 102     private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
 103     // cubic count^2 = 4^countlg
 104     private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
 105     // cubic count^3 = 8^countlg
 106     private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
 107     // cubic dt = 1 / count
 108     private static final float CUB_INV_COUNT = 1.0f / CUB_COUNT;
 109     // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
 110     private static final float CUB_INV_COUNT_2 = 1.0f / CUB_COUNT_2;
 111     // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
 112     private static final float CUB_INV_COUNT_3 = 1.0f / CUB_COUNT_3;
 113 
 114     // quad break into lines
 115     // quadratic error in subpixels
 116     private static final float QUAD_DEC_ERR_SUBPIX
 117         = MarlinProperties.getQuadDecD2() * (SUBPIXEL_POSITIONS_X / 8.0f); // 0.5 / 8th pixel
 118 
 119     // TestNonAARasterization (JDK-8170879): quads
 120     // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
 121 // 2018
 122     // 0.50px  = bad paths (62915/100000 == 62,92%, 103810 bad pixels (avg = 1,65), 6512 warnings (avg = 0,10)
 123 
 124     // quadratic bind length to decrement step
 125     public static final float QUAD_DEC_BND
 126         = 8.0f * QUAD_DEC_ERR_SUBPIX;
 127 
 128 //////////////////////////////////////////////////////////////////////////////
 129 //  SCAN LINE
 130 //////////////////////////////////////////////////////////////////////////////
 131     // crossings ie subpixel edge x coordinates
 132     private int[] crossings;
 133     // auxiliary storage for crossings (merge sort)
 134     private int[] aux_crossings;
 135 
 136     // indices into the segment pointer lists. They indicate the "active"
 137     // sublist in the segment lists (the portion of the list that contains
 138     // all the segments that cross the next scan line).
 139     private int edgeCount;
 140     private int[] edgePtrs;
 141     // auxiliary storage for edge pointers (merge sort)
 142     private int[] aux_edgePtrs;
 143 
 144     // max used for both edgePtrs and crossings (stats only)
 145     private int activeEdgeMaxUsed;
 146 
 147     // crossings ref (dirty)
 148     private final IntArrayCache.Reference crossings_ref;
 149     // edgePtrs ref (dirty)
 150     private final IntArrayCache.Reference edgePtrs_ref;
 151     // merge sort initial arrays (large enough to satisfy most usages) (1024)
 152     // aux_crossings ref (dirty)
 153     private final IntArrayCache.Reference aux_crossings_ref;
 154     // aux_edgePtrs ref (dirty)
 155     private final IntArrayCache.Reference aux_edgePtrs_ref;
 156 
 157 //////////////////////////////////////////////////////////////////////////////
 158 //  EDGE LIST
 159 //////////////////////////////////////////////////////////////////////////////
 160     private int edgeMinY = Integer.MAX_VALUE;
 161     private int edgeMaxY = Integer.MIN_VALUE;
 162     private float edgeMinX = Float.POSITIVE_INFINITY;
 163     private float edgeMaxX = Float.NEGATIVE_INFINITY;
 164 
 165     // edges [ints] stored in off-heap memory
 166     private final OffHeapArray edges;
 167 
 168     private int[] edgeBuckets;
 169     private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
 170     // used range for edgeBuckets / edgeBucketCounts
 171     private int buckets_minY;
 172     private int buckets_maxY;
 173 
 174     // edgeBuckets ref (clean)
 175     private final IntArrayCache.Reference edgeBuckets_ref;
 176     // edgeBucketCounts ref (clean)
 177     private final IntArrayCache.Reference edgeBucketCounts_ref;
 178 
 179     // Flattens using adaptive forward differencing. This only carries out
 180     // one iteration of the AFD loop. All it does is update AFD variables (i.e.
 181     // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
 182     private void quadBreakIntoLinesAndAdd(float x0, float y0,
 183                                           final Curve c,
 184                                           final float x2, final float y2)
 185     {
 186         int count = 1; // dt = 1 / count
 187 
 188         // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
 189         float maxDD = Math.abs(c.dbx) + Math.abs(c.dby) * SCALE_DY;
 190 
 191         final float _DEC_BND = QUAD_DEC_BND;
 192 
 193         while (maxDD >= _DEC_BND) {
 194             // divide step by half:
 195             maxDD /= 4.0f; // error divided by 2^2 = 4
 196 
 197             count <<= 1;
 198             if (DO_STATS) {
 199                 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
 200             }
 201         }
 202 
 203         final int nL = count; // line count
 204 
 205         if (count > 1) {
 206             final float icount = 1.0f / count; // dt
 207             final float icount2 = icount * icount; // dt^2
 208 
 209             final float ddx = c.dbx * icount2;
 210             final float ddy = c.dby * icount2;
 211             float dx = c.bx * icount2 + c.cx * icount;
 212             float dy = c.by * icount2 + c.cy * icount;
 213 
 214             // we use x0, y0 to walk the line
 215             for (float x1 = x0, y1 = y0; --count > 0; dx += ddx, dy += ddy) {
 216                 x1 += dx;
 217                 y1 += dy;
 218 
 219                 addLine(x0, y0, x1, y1);
 220                 x0 = x1;
 221                 y0 = y1;
 222             }
 223         }
 224         addLine(x0, y0, x2, y2);
 225 
 226         if (DO_STATS) {
 227             rdrCtx.stats.stat_rdr_quadBreak.add(nL);
 228         }
 229     }
 230 
 231     // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
 232     // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
 233     // numerical errors, and our callers already have the exact values.
 234     // Another alternative would be to pass all the control points, and call
 235     // c.set here, but then too many numbers are passed around.
 236     private void curveBreakIntoLinesAndAdd(float x0, float y0,
 237                                            final Curve c,
 238                                            final float x3, final float y3)
 239     {
 240         int count           = CUB_COUNT;
 241         final float icount  = CUB_INV_COUNT;   // dt
 242         final float icount2 = CUB_INV_COUNT_2; // dt^2
 243         final float icount3 = CUB_INV_COUNT_3; // dt^3
 244 
 245         // the dx and dy refer to forward differencing variables, not the last
 246         // coefficients of the "points" polynomial
 247         float dddx, dddy, ddx, ddy, dx, dy;
 248         dddx = 2.0f * c.dax * icount3;
 249         dddy = 2.0f * c.day * icount3;
 250         ddx = dddx + c.dbx * icount2;
 251         ddy = dddy + c.dby * icount2;
 252         dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
 253         dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
 254 
 255         int nL = 0; // line count
 256 
 257         final float _DEC_BND = CUB_DEC_BND;
 258         final float _INC_BND = CUB_INC_BND;
 259         final float _SCALE_DY = SCALE_DY;
 260 
 261         // we use x0, y0 to walk the line
 262         for (float x1 = x0, y1 = y0; count > 0; ) {
 263             // inc / dec => ratio ~ 5 to minimize upscale / downscale but minimize edges
 264 
 265             // float step:
 266             // can only do this on even "count" values, because we must divide count by 2
 267             while ((count % 2 == 0)
 268                     && ((Math.abs(ddx) + Math.abs(ddy) * _SCALE_DY) <= _INC_BND
 269 //                     && (Math.abs(ddx + dddx) + Math.abs(ddy + dddy) * _SCALE_DY) <= _INC_BND
 270                   )) {
 271                 dx = 2.0f * dx + ddx;
 272                 dy = 2.0f * dy + ddy;
 273                 ddx = 4.0f * (ddx + dddx);
 274                 ddy = 4.0f * (ddy + dddy);
 275                 dddx *= 8.0f;
 276                 dddy *= 8.0f;
 277 
 278                 count >>= 1;
 279                 if (DO_STATS) {
 280                     rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
 281                 }
 282             }
 283 
 284             // divide step by half:
 285             while ((Math.abs(ddx) + Math.abs(ddy) * _SCALE_DY) >= _DEC_BND
 286 //                || (Math.abs(ddx + dddx) + Math.abs(ddy + dddy) * _SCALE_DY) >= _DEC_BND
 287                   ) {
 288                 dddx /= 8.0f;
 289                 dddy /= 8.0f;
 290                 ddx = ddx / 4.0f - dddx;
 291                 ddy = ddy / 4.0f - dddy;
 292                 dx = (dx - ddx) / 2.0f;
 293                 dy = (dy - ddy) / 2.0f;
 294 
 295                 count <<= 1;
 296                 if (DO_STATS) {
 297                     rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
 298                 }
 299             }
 300             if (--count == 0) {
 301                 break;
 302             }
 303 
 304             x1 += dx;
 305             y1 += dy;
 306             dx += ddx;
 307             dy += ddy;
 308             ddx += dddx;
 309             ddy += dddy;
 310 
 311             addLine(x0, y0, x1, y1);
 312             x0 = x1;
 313             y0 = y1;
 314         }
 315         addLine(x0, y0, x3, y3);
 316 
 317         if (DO_STATS) {
 318             rdrCtx.stats.stat_rdr_curveBreak.add(nL + 1);
 319         }
 320     }
 321 
 322     private void addLine(float x1, float y1, float x2, float y2) {
 323         if (DO_MONITORS) {
 324             rdrCtx.stats.mon_rdr_addLine.start();
 325         }
 326         if (DO_STATS) {
 327             rdrCtx.stats.stat_rdr_addLine.add(1);
 328         }
 329         int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
 330         if (y2 < y1) {
 331             or = 0;
 332             float tmp = y2;
 333             y2 = y1;
 334             y1 = tmp;
 335             tmp = x2;
 336             x2 = x1;
 337             x1 = tmp;
 338         }
 339 
 340         // convert subpixel coordinates [float] into pixel positions [int]
 341 
 342         // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
 343         // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
 344         // ceil(y1) or ceil(y2)
 345         // upper integer (inclusive)
 346         final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
 347 
 348         // note: use boundsMaxY (last Y exclusive) to compute correct coverage
 349         // upper integer (exclusive)
 350         final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
 351 
 352         /* skip horizontal lines in pixel space and clip edges
 353            out of y range [boundsMinY; boundsMaxY] */
 354         if (firstCrossing >= lastCrossing) {
 355             if (DO_MONITORS) {
 356                 rdrCtx.stats.mon_rdr_addLine.stop();
 357             }
 358             if (DO_STATS) {
 359                 rdrCtx.stats.stat_rdr_addLine_skip.add(1);
 360             }
 361             return;
 362         }
 363 
 364         // edge min/max X/Y are in subpixel space (half-open interval):
 365         // note: Use integer crossings to ensure consistent range within
 366         // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
 367         if (firstCrossing < edgeMinY) {
 368             edgeMinY = firstCrossing;
 369         }
 370         if (lastCrossing > edgeMaxY) {
 371             edgeMaxY = lastCrossing;
 372         }
 373 
 374         // Use double-precision for improved accuracy:
 375         final double x1d   = x1;
 376         final double y1d   = y1;
 377         final double slope = (x1d - x2) / (y1d - y2);
 378 
 379         if (slope >= 0.0d) { // <==> x1 < x2
 380             if (x1 < edgeMinX) {
 381                 edgeMinX = x1;
 382             }
 383             if (x2 > edgeMaxX) {
 384                 edgeMaxX = x2;
 385             }
 386         } else {
 387             if (x2 < edgeMinX) {
 388                 edgeMinX = x2;
 389             }
 390             if (x1 > edgeMaxX) {
 391                 edgeMaxX = x1;
 392             }
 393         }
 394 
 395         // local variables for performance:
 396         final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
 397 
 398         final OffHeapArray _edges = edges;
 399 
 400         // get free pointer (ie length in bytes)
 401         final int edgePtr = _edges.used;
 402 
 403         // use substraction to avoid integer overflow:
 404         if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
 405             // suppose _edges.length > _SIZEOF_EDGE_BYTES
 406             // so doubling size is enough to add needed bytes
 407             // note: throw IOOB if neededSize > 2Gb:
 408             final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
 409                                         _edges.length,
 410                                         edgePtr + _SIZEOF_EDGE_BYTES);
 411 
 412             if (DO_STATS) {
 413                 rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
 414             }
 415             _edges.resize(edgeNewSize);
 416         }
 417 
 418 
 419         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 420         final long SIZE_INT = 4L;
 421         long addr   = _edges.address + edgePtr;
 422 
 423         // The x value must be bumped up to its position at the next HPC we will evaluate.
 424         // "firstcrossing" is the (sub)pixel number where the next crossing occurs
 425         // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
 426         // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
 427         // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
 428         // y1 = trueY - 0.5
 429         // trueY = y1 + 0.5
 430         // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
 431         //                             = firstcrossing - y1
 432         // The x coordinate at that HPC is then:
 433         // x1_intercept = x1 + (firstcrossing - y1) * slope
 434         // The next VPC is then given by:
 435         // VPC index = ceil(x1_intercept - 0.5), or alternately
 436         // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
 437         // epsilon is hard to pin down in floating point, but easy in fixed point, so if
 438         // we convert to fixed point then these operations get easier:
 439         // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
 440         // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
 441         //                 = fixed_floor(x1_fixed + 2^31 - 1)
 442         //                 = fixed_floor(x1_fixed + 0x7FFFFFFF)
 443         // and error       = fixed_fract(x1_fixed + 0x7FFFFFFF)
 444         final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
 445 
 446         // inlined scalb(x1_intercept, 32):
 447         final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
 448                                      + 0x7FFFFFFFL;
 449         // curx:
 450         // last bit corresponds to the orientation
 451         _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
 452         addr += SIZE_INT;
 453         _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
 454         addr += SIZE_INT;
 455 
 456         // inlined scalb(slope, 32):
 457         final long slope_fixed = (long) (POWER_2_TO_32 * slope);
 458 
 459         // last bit set to 0 to keep orientation:
 460         _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
 461         addr += SIZE_INT;
 462         _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
 463         addr += SIZE_INT;
 464 
 465         final int[] _edgeBuckets      = edgeBuckets;
 466         final int[] _edgeBucketCounts = edgeBucketCounts;
 467 
 468         final int _boundsMinY = boundsMinY;
 469 
 470         // each bucket is a linked list. this method adds ptr to the
 471         // start of the "bucket"th linked list.
 472         final int bucketIdx = firstCrossing - _boundsMinY;
 473 
 474         // pointer from bucket
 475         _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
 476         addr += SIZE_INT;
 477         // y max (exclusive)
 478         _unsafe.putInt(addr,  lastCrossing);
 479 
 480         // Update buckets:
 481         // directly the edge struct "pointer"
 482         _edgeBuckets[bucketIdx]       = edgePtr;
 483         _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
 484         // last bit means edge end
 485         _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
 486 
 487         // update free pointer (ie length in bytes)
 488         _edges.used += _SIZEOF_EDGE_BYTES;
 489 
 490         if (DO_MONITORS) {
 491             rdrCtx.stats.mon_rdr_addLine.stop();
 492         }
 493     }
 494 
 495 // END EDGE LIST
 496 //////////////////////////////////////////////////////////////////////////////
 497 
 498     // Cache to store RLE-encoded coverage mask of the current primitive
 499     final MarlinCache cache;
 500 
 501     // Bounds of the drawing region, at subpixel precision.
 502     private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
 503 
 504     // Current winding rule
 505     private int windingRule;
 506 
 507     // Current drawing position, i.e., final point of last segment
 508     private float x0, y0;
 509 
 510     // Position of most recent 'moveTo' command
 511     private float sx0, sy0;
 512 
 513     // per-thread renderer context
 514     final RendererContext rdrCtx;
 515     // dirty curve
 516     private final Curve curve;
 517 
 518     // clean alpha array (zero filled)
 519     private int[] alphaLine;
 520 
 521     // alphaLine ref (clean)
 522     private final IntArrayCache.Reference alphaLine_ref;
 523 
 524     private boolean enableBlkFlags = false;
 525     private boolean prevUseBlkFlags = false;
 526 
 527     /* block flags (0|1) */
 528     private int[] blkFlags;
 529 
 530     // blkFlags ref (clean)
 531     private final IntArrayCache.Reference blkFlags_ref;
 532 
 533     Renderer(final RendererContext rdrCtx) {
 534         this.rdrCtx = rdrCtx;
 535         this.curve = rdrCtx.curve;
 536         this.cache = rdrCtx.cache;
 537 
 538         this.edges = rdrCtx.newOffHeapArray(INITIAL_EDGES_CAPACITY); // 96K
 539 
 540         edgeBuckets_ref      = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
 541         edgeBucketCounts_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
 542 
 543         edgeBuckets      = edgeBuckets_ref.initial;
 544         edgeBucketCounts = edgeBucketCounts_ref.initial;
 545 
 546         // 4096 pixels large
 547         alphaLine_ref = rdrCtx.newCleanIntArrayRef(INITIAL_AA_ARRAY); // 16K
 548         alphaLine     = alphaLine_ref.initial;
 549 
 550         crossings_ref     = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 551         aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 552         edgePtrs_ref      = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 553         aux_edgePtrs_ref  = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 554 
 555         crossings     = crossings_ref.initial;
 556         aux_crossings = aux_crossings_ref.initial;
 557         edgePtrs      = edgePtrs_ref.initial;
 558         aux_edgePtrs  = aux_edgePtrs_ref.initial;
 559 
 560         blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line
 561         blkFlags     = blkFlags_ref.initial;
 562     }
 563 
 564     Renderer init(final int pix_boundsX, final int pix_boundsY,
 565                   final int pix_boundsWidth, final int pix_boundsHeight,
 566                   final int windingRule)
 567     {
 568         this.windingRule = windingRule;
 569 
 570         // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 571         this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
 572         this.boundsMaxX =
 573             (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
 574         this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
 575         this.boundsMaxY =
 576             (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
 577 
 578         if (DO_LOG_BOUNDS) {
 579             MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
 580                                 + boundsMaxX + "[ [" + boundsMinY + " ... "
 581                                 + boundsMaxY + "[");
 582         }
 583 
 584         // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
 585         // +1 for edgeBucketCounts
 586         final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
 587 
 588         if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
 589             if (DO_STATS) {
 590                 rdrCtx.stats.stat_array_renderer_edgeBuckets
 591                     .add(edgeBucketsLength);
 592                 rdrCtx.stats.stat_array_renderer_edgeBucketCounts
 593                     .add(edgeBucketsLength);
 594             }
 595             edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
 596             edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
 597         }
 598 
 599         edgeMinY = Integer.MAX_VALUE;
 600         edgeMaxY = Integer.MIN_VALUE;
 601         edgeMinX = Float.POSITIVE_INFINITY;
 602         edgeMaxX = Float.NEGATIVE_INFINITY;
 603 
 604         // reset used mark:
 605         edgeCount = 0;
 606         activeEdgeMaxUsed = 0;
 607         edges.used = 0;
 608 
 609         return this; // fluent API
 610     }
 611 
 612     /**
 613      * Disposes this renderer and recycle it clean up before reusing this instance
 614      */
 615     void dispose() {
 616         if (DO_STATS) {
 617             rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
 618             rdrCtx.stats.stat_rdr_edges.add(edges.used);
 619             rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 620             rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 621             rdrCtx.stats.totalOffHeap += edges.length;
 622         }
 623         // Return arrays:
 624         crossings = crossings_ref.putArray(crossings);
 625         aux_crossings = aux_crossings_ref.putArray(aux_crossings);
 626 
 627         edgePtrs = edgePtrs_ref.putArray(edgePtrs);
 628         aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
 629 
 630         alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
 631         blkFlags  = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
 632 
 633         if (edgeMinY != Integer.MAX_VALUE) {
 634             // if context is maked as DIRTY:
 635             if (rdrCtx.dirty) {
 636                 // may happen if an exception if thrown in the pipeline processing:
 637                 // clear completely buckets arrays:
 638                 buckets_minY = 0;
 639                 buckets_maxY = boundsMaxY - boundsMinY;
 640             }
 641             // clear only used part
 642             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
 643                                                                 buckets_maxY);
 644             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
 645                                                              buckets_minY,
 646                                                              buckets_maxY + 1);
 647         } else {
 648             // unused arrays
 649             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
 650             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
 651         }
 652 
 653         // At last: resize back off-heap edges to initial size
 654         if (edges.length != INITIAL_EDGES_CAPACITY) {
 655             // note: may throw OOME:
 656             edges.resize(INITIAL_EDGES_CAPACITY);
 657         }
 658         if (DO_CLEAN_DIRTY) {
 659             // Force zero-fill dirty arrays:
 660             edges.fill(BYTE_0);
 661         }
 662         if (DO_MONITORS) {
 663             rdrCtx.stats.mon_rdr_endRendering.stop();
 664         }
 665         // recycle the RendererContext instance
 666         MarlinRenderingEngine.returnRendererContext(rdrCtx);
 667     }
 668 
 669     private static float tosubpixx(final float pix_x) {
 670         return SUBPIXEL_SCALE_X * pix_x;
 671     }
 672 
 673     private static float tosubpixy(final float pix_y) {
 674         // shift y by -0.5 for fast ceil(y - 0.5):
 675         return SUBPIXEL_SCALE_Y * pix_y - 0.5f;
 676     }
 677 
 678     @Override
 679     public void moveTo(final float pix_x0, final float pix_y0) {
 680         closePath();
 681         final float sx = tosubpixx(pix_x0);
 682         final float sy = tosubpixy(pix_y0);
 683         this.sx0 = sx;
 684         this.sy0 = sy;
 685         this.x0 = sx;
 686         this.y0 = sy;
 687     }
 688 
 689     @Override
 690     public void lineTo(final float pix_x1, final float pix_y1) {
 691         final float x1 = tosubpixx(pix_x1);
 692         final float y1 = tosubpixy(pix_y1);
 693         addLine(x0, y0, x1, y1);
 694         x0 = x1;
 695         y0 = y1;
 696     }
 697 
 698     @Override
 699     public void curveTo(final float pix_x1, final float pix_y1,
 700                         final float pix_x2, final float pix_y2,
 701                         final float pix_x3, final float pix_y3)
 702     {
 703         final float xe = tosubpixx(pix_x3);
 704         final float ye = tosubpixy(pix_y3);
 705         curve.set(x0, y0,
 706                 tosubpixx(pix_x1), tosubpixy(pix_y1),
 707                 tosubpixx(pix_x2), tosubpixy(pix_y2),
 708                 xe, ye);
 709         curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 710         x0 = xe;
 711         y0 = ye;
 712     }
 713 
 714     @Override
 715     public void quadTo(final float pix_x1, final float pix_y1,
 716                        final float pix_x2, final float pix_y2)
 717     {
 718         final float xe = tosubpixx(pix_x2);
 719         final float ye = tosubpixy(pix_y2);
 720         curve.set(x0, y0,
 721                 tosubpixx(pix_x1), tosubpixy(pix_y1),
 722                 xe, ye);
 723         quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 724         x0 = xe;
 725         y0 = ye;
 726     }
 727 
 728     @Override
 729     public void closePath() {
 730         if (x0 != sx0 || y0 != sy0) {
 731             addLine(x0, y0, sx0, sy0);
 732             x0 = sx0;
 733             y0 = sy0;
 734         }
 735     }
 736 
 737     @Override
 738     public void pathDone() {
 739         closePath();
 740     }
 741 
 742     @Override
 743     public long getNativeConsumer() {
 744         throw new InternalError("Renderer does not use a native consumer.");
 745     }
 746 
 747     private void _endRendering(final int ymin, final int ymax) {
 748         if (DISABLE_RENDER) {
 749             return;
 750         }
 751 
 752         // Get X bounds as true pixel boundaries to compute correct pixel coverage:
 753         final int bboxx0 = bbox_spminX;
 754         final int bboxx1 = bbox_spmaxX;
 755 
 756         final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
 757 
 758         // Useful when processing tile line by tile line
 759         final int[] _alpha = alphaLine;
 760 
 761         // local vars (performance):
 762         final MarlinCache _cache = cache;
 763         final OffHeapArray _edges = edges;
 764         final int[] _edgeBuckets = edgeBuckets;
 765         final int[] _edgeBucketCounts = edgeBucketCounts;
 766 
 767         int[] _crossings = this.crossings;
 768         int[] _edgePtrs  = this.edgePtrs;
 769 
 770         // merge sort auxiliary storage:
 771         int[] _aux_crossings = this.aux_crossings;
 772         int[] _aux_edgePtrs  = this.aux_edgePtrs;
 773 
 774         // copy constants:
 775         final long _OFF_ERROR    = OFF_ERROR;
 776         final long _OFF_BUMP_X   = OFF_BUMP_X;
 777         final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
 778 
 779         final long _OFF_NEXT     = OFF_NEXT;
 780         final long _OFF_YMAX     = OFF_YMAX;
 781 
 782         final int _ALL_BUT_LSB   = ALL_BUT_LSB;
 783         final int _ERR_STEP_MAX  = ERR_STEP_MAX;
 784 
 785         // unsafe I/O:
 786         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 787         final long    addr0  = _edges.address;
 788         long addr;
 789         final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
 790         final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
 791         final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
 792         final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
 793         final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
 794 
 795         final int _MIN_VALUE = Integer.MIN_VALUE;
 796         final int _MAX_VALUE = Integer.MAX_VALUE;
 797 
 798         // Now we iterate through the scanlines. We must tell emitRow the coord
 799         // of the first non-transparent pixel, so we must keep accumulators for
 800         // the first and last pixels of the section of the current pixel row
 801         // that we will emit.
 802         // We also need to accumulate pix_bbox, but the iterator does it
 803         // for us. We will just get the values from it once this loop is done
 804         int minX = _MAX_VALUE;
 805         int maxX = _MIN_VALUE;
 806 
 807         int y = ymin;
 808         int bucket = y - boundsMinY;
 809 
 810         int numCrossings = this.edgeCount;
 811         int edgePtrsLen = _edgePtrs.length;
 812         int crossingsLen = _crossings.length;
 813         int _arrayMaxUsed = activeEdgeMaxUsed;
 814         int ptrLen = 0, newCount, ptrEnd;
 815 
 816         int bucketcount, i, j, ecur;
 817         int cross, lastCross;
 818         int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
 819         int pix_x, pix_xmaxm1, pix_xmax;
 820 
 821         int low, high, mid, prevNumCrossings;
 822         boolean useBinarySearch;
 823 
 824         final int[] _blkFlags = blkFlags;
 825         final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
 826         final int _BLK_SIZE = BLOCK_SIZE;
 827 
 828         final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
 829 
 830         // Use block flags if large pixel span and few crossings:
 831         // ie mean(distance between crossings) is high
 832         boolean useBlkFlags = this.prevUseBlkFlags;
 833 
 834         final int stroking = rdrCtx.stroking;
 835 
 836         int lastY = -1; // last emited row
 837 
 838 
 839         // Iteration on scanlines
 840         for (; y < ymax; y++, bucket++) {
 841             // --- from former ScanLineIterator.next()
 842             bucketcount = _edgeBucketCounts[bucket];
 843 
 844             // marker on previously sorted edges:
 845             prevNumCrossings = numCrossings;
 846 
 847             // bucketCount indicates new edge / edge end:
 848             if (bucketcount != 0) {
 849                 if (DO_STATS) {
 850                     rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings);
 851                 }
 852 
 853                 // last bit set to 1 means that edges ends
 854                 if ((bucketcount & 0x1) != 0) {
 855                     // eviction in active edge list
 856                     // cache edges[] address + offset
 857                     addr = addr0 + _OFF_YMAX;
 858 
 859                     for (i = 0, newCount = 0; i < numCrossings; i++) {
 860                         // get the pointer to the edge
 861                         ecur = _edgePtrs[i];
 862                         // random access so use unsafe:
 863                         if (_unsafe.getInt(addr + ecur) > y) {
 864                             _edgePtrs[newCount++] = ecur;
 865                         }
 866                     }
 867                     // update marker on sorted edges minus removed edges:
 868                     prevNumCrossings = numCrossings = newCount;
 869                 }
 870 
 871                 ptrLen = bucketcount >> 1; // number of new edge
 872 
 873                 if (ptrLen != 0) {
 874                     if (DO_STATS) {
 875                         rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
 876                         if (ptrLen > 10) {
 877                             rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
 878                         }
 879                     }
 880                     ptrEnd = numCrossings + ptrLen;
 881 
 882                     if (edgePtrsLen < ptrEnd) {
 883                         if (DO_STATS) {
 884                             rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
 885                         }
 886                         this.edgePtrs = _edgePtrs
 887                             = edgePtrs_ref.widenArray(_edgePtrs, numCrossings,
 888                                                       ptrEnd);
 889 
 890                         edgePtrsLen = _edgePtrs.length;
 891                         // Get larger auxiliary storage:
 892                         aux_edgePtrs_ref.putArray(_aux_edgePtrs);
 893 
 894                         // use ArrayCache.getNewSize() to use the same growing
 895                         // factor than widenArray():
 896                         if (DO_STATS) {
 897                             rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
 898                         }
 899                         this.aux_edgePtrs = _aux_edgePtrs
 900                             = aux_edgePtrs_ref.getArray(
 901                                 ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
 902                             );
 903                     }
 904 
 905                     // cache edges[] address + offset
 906                     addr = addr0 + _OFF_NEXT;
 907 
 908                     // add new edges to active edge list:
 909                     for (ecur = _edgeBuckets[bucket];
 910                          numCrossings < ptrEnd; numCrossings++)
 911                     {
 912                         // store the pointer to the edge
 913                         _edgePtrs[numCrossings] = ecur;
 914                         // random access so use unsafe:
 915                         ecur = _unsafe.getInt(addr + ecur);
 916                     }
 917 
 918                     if (crossingsLen < numCrossings) {
 919                         // Get larger array:
 920                         crossings_ref.putArray(_crossings);
 921 
 922                         if (DO_STATS) {
 923                             rdrCtx.stats.stat_array_renderer_crossings
 924                                 .add(numCrossings);
 925                         }
 926                         this.crossings = _crossings
 927                             = crossings_ref.getArray(numCrossings);
 928 
 929                         // Get larger auxiliary storage:
 930                         aux_crossings_ref.putArray(_aux_crossings);
 931 
 932                         if (DO_STATS) {
 933                             rdrCtx.stats.stat_array_renderer_aux_crossings
 934                                 .add(numCrossings);
 935                         }
 936                         this.aux_crossings = _aux_crossings
 937                             = aux_crossings_ref.getArray(numCrossings);
 938 
 939                         crossingsLen = _crossings.length;
 940                     }
 941                     if (DO_STATS) {
 942                         // update max used mark
 943                         if (numCrossings > _arrayMaxUsed) {
 944                             _arrayMaxUsed = numCrossings;
 945                         }
 946                     }
 947                 } // ptrLen != 0
 948             } // bucketCount != 0
 949 
 950 
 951             if (numCrossings != 0) {
 952                 /*
 953                  * thresholds to switch to optimized merge sort
 954                  * for newly added edges + final merge pass.
 955                  */
 956                 if ((ptrLen < 10) || (numCrossings < 40)) {
 957                     if (DO_STATS) {
 958                         rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
 959                         rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
 960                     }
 961 
 962                     /*
 963                      * threshold to use binary insertion sort instead of
 964                      * straight insertion sort (to reduce minimize comparisons).
 965                      */
 966                     useBinarySearch = (numCrossings >= 20);
 967 
 968                     // if small enough:
 969                     lastCross = _MIN_VALUE;
 970 
 971                     for (i = 0; i < numCrossings; i++) {
 972                         // get the pointer to the edge
 973                         ecur = _edgePtrs[i];
 974 
 975                         /* convert subpixel coordinates into pixel
 976                             positions for coming scanline */
 977                         /* note: it is faster to always update edges even
 978                            if it is removed from AEL for coming or last scanline */
 979 
 980                         // random access so use unsafe:
 981                         addr = addr0 + ecur; // ecur + OFF_F_CURX
 982 
 983                         // get current crossing:
 984                         curx = _unsafe.getInt(addr);
 985 
 986                         // update crossing with orientation at last bit:
 987                         cross = curx;
 988 
 989                         // Increment x using DDA (fixed point):
 990                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
 991 
 992                         // Increment error:
 993                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
 994                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
 995 
 996                         // Manual carry handling:
 997                         // keep sign and carry bit only and ignore last bit (preserve orientation):
 998                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
 999                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1000 
1001                         if (DO_STATS) {
1002                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
1003                         }
1004 
1005                         // insertion sort of crossings:
1006                         if (cross < lastCross) {
1007                             if (DO_STATS) {
1008                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
1009                             }
1010 
1011                             /* use binary search for newly added edges
1012                                in crossings if arrays are large enough */
1013                             if (useBinarySearch && (i >= prevNumCrossings)) {
1014                                 if (DO_STATS) {
1015                                     rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
1016                                 }
1017                                 low = 0;
1018                                 high = i - 1;
1019 
1020                                 do {
1021                                     // note: use signed shift (not >>>) for performance
1022                                     // as indices are small enough to exceed Integer.MAX_VALUE
1023                                     mid = (low + high) >> 1;
1024 
1025                                     if (_crossings[mid] < cross) {
1026                                         low = mid + 1;
1027                                     } else {
1028                                         high = mid - 1;
1029                                     }
1030                                 } while (low <= high);
1031 
1032                                 for (j = i - 1; j >= low; j--) {
1033                                     _crossings[j + 1] = _crossings[j];
1034                                     _edgePtrs [j + 1] = _edgePtrs[j];
1035                                 }
1036                                 _crossings[low] = cross;
1037                                 _edgePtrs [low] = ecur;
1038 
1039                             } else {
1040                                 j = i - 1;
1041                                 _crossings[i] = _crossings[j];
1042                                 _edgePtrs[i] = _edgePtrs[j];
1043 
1044                                 while ((--j >= 0) && (_crossings[j] > cross)) {
1045                                     _crossings[j + 1] = _crossings[j];
1046                                     _edgePtrs [j + 1] = _edgePtrs[j];
1047                                 }
1048                                 _crossings[j + 1] = cross;
1049                                 _edgePtrs [j + 1] = ecur;
1050                             }
1051 
1052                         } else {
1053                             _crossings[i] = lastCross = cross;
1054                         }
1055                     }
1056                 } else {
1057                     if (DO_STATS) {
1058                         rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1059                         rdrCtx.stats.hist_rdr_crossings_ratio
1060                             .add((1000 * ptrLen) / numCrossings);
1061                         rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1062                         rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1063                     }
1064 
1065                     // Copy sorted data in auxiliary arrays
1066                     // and perform insertion sort on almost sorted data
1067                     // (ie i < prevNumCrossings):
1068 
1069                     lastCross = _MIN_VALUE;
1070 
1071                     for (i = 0; i < numCrossings; i++) {
1072                         // get the pointer to the edge
1073                         ecur = _edgePtrs[i];
1074 
1075                         /* convert subpixel coordinates into pixel
1076                             positions for coming scanline */
1077                         /* note: it is faster to always update edges even
1078                            if it is removed from AEL for coming or last scanline */
1079 
1080                         // random access so use unsafe:
1081                         addr = addr0 + ecur; // ecur + OFF_F_CURX
1082 
1083                         // get current crossing:
1084                         curx = _unsafe.getInt(addr);
1085 
1086                         // update crossing with orientation at last bit:
1087                         cross = curx;
1088 
1089                         // Increment x using DDA (fixed point):
1090                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1091 
1092                         // Increment error:
1093                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
1094                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1095 
1096                         // Manual carry handling:
1097                         // keep sign and carry bit only and ignore last bit (preserve orientation):
1098                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1099                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1100 
1101                         if (DO_STATS) {
1102                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
1103                         }
1104 
1105                         if (i >= prevNumCrossings) {
1106                             // simply store crossing as edgePtrs is in-place:
1107                             // will be copied and sorted efficiently by mergesort later:
1108                             _crossings[i]     = cross;
1109 
1110                         } else if (cross < lastCross) {
1111                             if (DO_STATS) {
1112                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
1113                             }
1114 
1115                             // (straight) insertion sort of crossings:
1116                             j = i - 1;
1117                             _aux_crossings[i] = _aux_crossings[j];
1118                             _aux_edgePtrs[i] = _aux_edgePtrs[j];
1119 
1120                             while ((--j >= 0) && (_aux_crossings[j] > cross)) {
1121                                 _aux_crossings[j + 1] = _aux_crossings[j];
1122                                 _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
1123                             }
1124                             _aux_crossings[j + 1] = cross;
1125                             _aux_edgePtrs [j + 1] = ecur;
1126 
1127                         } else {
1128                             // auxiliary storage:
1129                             _aux_crossings[i] = lastCross = cross;
1130                             _aux_edgePtrs [i] = ecur;
1131                         }
1132                     }
1133 
1134                     // use Mergesort using auxiliary arrays (sort only right part)
1135                     MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
1136                                               _aux_crossings, _aux_edgePtrs,
1137                                               numCrossings,   prevNumCrossings);
1138                 }
1139 
1140                 // reset ptrLen
1141                 ptrLen = 0;
1142                 // --- from former ScanLineIterator.next()
1143 
1144 
1145                 /* note: bboxx0 and bboxx1 must be pixel boundaries
1146                    to have correct coverage computation */
1147 
1148                 // right shift on crossings to get the x-coordinate:
1149                 curxo = _crossings[0];
1150                 x0    = curxo >> 1;
1151                 if (x0 < minX) {
1152                     minX = x0; // subpixel coordinate
1153                 }
1154 
1155                 x1 = _crossings[numCrossings - 1] >> 1;
1156                 if (x1 > maxX) {
1157                     maxX = x1; // subpixel coordinate
1158                 }
1159 
1160 
1161                 // compute pixel coverages
1162                 prev = curx = x0;
1163                 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1164                 // last bit contains orientation (0 or 1)
1165                 crorientation = ((curxo & 0x1) << 1) - 1;
1166 
1167                 if (windingRuleEvenOdd) {
1168                     sum = crorientation;
1169 
1170                     // Even Odd winding rule: take care of mask ie sum(orientations)
1171                     for (i = 1; i < numCrossings; i++) {
1172                         curxo = _crossings[i];
1173                         curx  =  curxo >> 1;
1174                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1175                         // last bit contains orientation (0 or 1)
1176                         crorientation = ((curxo & 0x1) << 1) - 1;
1177 
1178                         if ((sum & 0x1) != 0) {
1179                             // TODO: perform line clipping on left-right sides
1180                             // to avoid such bound checks:
1181                             x0 = (prev > bboxx0) ? prev : bboxx0;
1182 
1183                             if (curx < bboxx1) {
1184                                 x1 = curx;
1185                             } else {
1186                                 x1 = bboxx1;
1187                                 // skip right side (fast exit loop):
1188                                 i = numCrossings;
1189                             }
1190 
1191                             if (x0 < x1) {
1192                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1193                                 x1 -= bboxx0; // in the alpha array.
1194 
1195                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1196                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1197 
1198                                 if (pix_x == pix_xmaxm1) {
1199                                     // Start and end in same pixel
1200                                     tmp = (x1 - x0); // number of subpixels
1201                                     _alpha[pix_x    ] += tmp;
1202                                     _alpha[pix_x + 1] -= tmp;
1203 
1204                                     if (useBlkFlags) {
1205                                         // flag used blocks:
1206                                         // note: block processing handles extra pixel:
1207                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1208                                     }
1209                                 } else {
1210                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1211                                     _alpha[pix_x    ]
1212                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1213                                     _alpha[pix_x + 1]
1214                                         += tmp;
1215 
1216                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1217 
1218                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1219                                     _alpha[pix_xmax    ]
1220                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1221                                     _alpha[pix_xmax + 1]
1222                                         -= tmp;
1223 
1224                                     if (useBlkFlags) {
1225                                         // flag used blocks:
1226                                         // note: block processing handles extra pixel:
1227                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1228                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1229                                     }
1230                                 }
1231                             }
1232                         }
1233 
1234                         sum += crorientation;
1235                         prev = curx;
1236                     }
1237                 } else {
1238                     // Non-zero winding rule: optimize that case (default)
1239                     // and avoid processing intermediate crossings
1240                     for (i = 1, sum = 0;; i++) {
1241                         sum += crorientation;
1242 
1243                         if (sum != 0) {
1244                             // prev = min(curx)
1245                             if (prev > curx) {
1246                                 prev = curx;
1247                             }
1248                         } else {
1249                             // TODO: perform line clipping on left-right sides
1250                             // to avoid such bound checks:
1251                             x0 = (prev > bboxx0) ? prev : bboxx0;
1252 
1253                             if (curx < bboxx1) {
1254                                 x1 = curx;
1255                             } else {
1256                                 x1 = bboxx1;
1257                                 // skip right side (fast exit loop):
1258                                 i = numCrossings;
1259                             }
1260 
1261                             if (x0 < x1) {
1262                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1263                                 x1 -= bboxx0; // in the alpha array.
1264 
1265                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1266                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1267 
1268                                 if (pix_x == pix_xmaxm1) {
1269                                     // Start and end in same pixel
1270                                     tmp = (x1 - x0); // number of subpixels
1271                                     _alpha[pix_x    ] += tmp;
1272                                     _alpha[pix_x + 1] -= tmp;
1273 
1274                                     if (useBlkFlags) {
1275                                         // flag used blocks:
1276                                         // note: block processing handles extra pixel:
1277                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1278                                     }
1279                                 } else {
1280                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1281                                     _alpha[pix_x    ]
1282                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1283                                     _alpha[pix_x + 1]
1284                                         += tmp;
1285 
1286                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1287 
1288                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1289                                     _alpha[pix_xmax    ]
1290                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1291                                     _alpha[pix_xmax + 1]
1292                                         -= tmp;
1293 
1294                                     if (useBlkFlags) {
1295                                         // flag used blocks:
1296                                         // note: block processing handles extra pixel:
1297                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1298                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1299                                     }
1300                                 }
1301                             }
1302                             prev = _MAX_VALUE;
1303                         }
1304 
1305                         if (i == numCrossings) {
1306                             break;
1307                         }
1308 
1309                         curxo = _crossings[i];
1310                         curx  =  curxo >> 1;
1311                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1312                         // last bit contains orientation (0 or 1)
1313                         crorientation = ((curxo & 0x1) << 1) - 1;
1314                     }
1315                 }
1316             } // numCrossings > 0
1317 
1318             // even if this last row had no crossings, alpha will be zeroed
1319             // from the last emitRow call. But this doesn't matter because
1320             // maxX < minX, so no row will be emitted to the MarlinCache.
1321             if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1322                 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1323 
1324                 // convert subpixel to pixel coordinate within boundaries:
1325                 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1326                 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1327 
1328                 if (maxX >= minX) {
1329                     // note: alpha array will be zeroed by copyAARow()
1330                     // +1 because alpha [pix_minX; pix_maxX[
1331                     // fix range [x0; x1[
1332                     // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1333                     // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
1334                     // (normally so never cleared below)
1335                     copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags);
1336 
1337                     // speculative for next pixel row (scanline coherence):
1338                     if (_enableBlkFlagsHeuristics) {
1339                         // Use block flags if large pixel span and few crossings:
1340                         // ie mean(distance between crossings) is larger than
1341                         // 1 block size;
1342 
1343                         // fast check width:
1344                         maxX -= minX;
1345 
1346                         // if stroking: numCrossings /= 2
1347                         // => shift numCrossings by 1
1348                         // condition = (width / (numCrossings - 1)) > blockSize
1349                         useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1350                             (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1351 
1352                         if (DO_STATS) {
1353                             tmp = FloatMath.max(1,
1354                                     ((numCrossings >> stroking) - 1));
1355                             rdrCtx.stats.hist_tile_generator_encoding_dist
1356                                 .add(maxX / tmp);
1357                         }
1358                     }
1359                 } else {
1360                     _cache.clearAARow(lastY);
1361                 }
1362                 minX = _MAX_VALUE;
1363                 maxX = _MIN_VALUE;
1364             }
1365         } // scan line iterator
1366 
1367         // Emit final row
1368         y--;
1369         y >>= _SUBPIXEL_LG_POSITIONS_Y;
1370 
1371         // convert subpixel to pixel coordinate within boundaries:
1372         minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1373         maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1374 
1375         if (maxX >= minX) {
1376             // note: alpha array will be zeroed by copyAARow()
1377             // +1 because alpha [pix_minX; pix_maxX[
1378             // fix range [x0; x1[
1379             // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1380             // inclusive: alpha[bboxx1] ignored then cleared and
1381             // alpha[bboxx1+1] == 0 (normally so never cleared after)
1382             copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags);
1383         } else if (y != lastY) {
1384             _cache.clearAARow(y);
1385         }
1386 
1387         // update member:
1388         edgeCount = numCrossings;
1389         prevUseBlkFlags = useBlkFlags;
1390 
1391         if (DO_STATS) {
1392             // update max used mark
1393             activeEdgeMaxUsed = _arrayMaxUsed;
1394         }
1395     }
1396 
1397     boolean endRendering() {
1398         if (DO_MONITORS) {
1399             rdrCtx.stats.mon_rdr_endRendering.start();
1400         }
1401         if (edgeMinY == Integer.MAX_VALUE) {
1402             return false; // undefined edges bounds
1403         }
1404 
1405         // bounds as half-open intervals
1406         final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
1407         final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX);
1408 
1409         // edge Min/Max Y are already rounded to subpixels within bounds:
1410         final int spminY = edgeMinY;
1411         final int spmaxY = edgeMaxY;
1412 
1413         buckets_minY = spminY - boundsMinY;
1414         buckets_maxY = spmaxY - boundsMinY;
1415 
1416         if (DO_LOG_BOUNDS) {
1417             MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1418                                 + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
1419             MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1420                                 + "[ [" + spminY + " ... " + spmaxY + "[");
1421         }
1422 
1423         // test clipping for shapes out of bounds
1424         if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
1425             return false;
1426         }
1427 
1428         // half open intervals
1429         // inclusive:
1430         final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1431         // exclusive:
1432         final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1433         // inclusive:
1434         final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1435         // exclusive:
1436         final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1437 
1438         // store BBox to answer ptg.getBBox():
1439         this.cache.init(pminX, pminY, pmaxX, pmaxY);
1440 
1441         // Heuristics for using block flags:
1442         if (ENABLE_BLOCK_FLAGS) {
1443             enableBlkFlags = this.cache.useRLE;
1444             prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1445 
1446             if (enableBlkFlags) {
1447                 // ensure blockFlags array is large enough:
1448                 // note: +2 to ensure enough space left at end
1449                 final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
1450                 if (blkLen > INITIAL_ARRAY) {
1451                     blkFlags = blkFlags_ref.getArray(blkLen);
1452                 }
1453             }
1454         }
1455 
1456         // memorize the rendering bounding box:
1457         /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1458            to have correct coverage computation */
1459         // inclusive:
1460         bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1461         // exclusive:
1462         bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1463         // inclusive:
1464         bbox_spminY = spminY;
1465         // exclusive:
1466         bbox_spmaxY = spmaxY;
1467 
1468         if (DO_LOG_BOUNDS) {
1469             MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1470                                 + "[ [" + pminY + " ... " + pmaxY + "[");
1471             MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1472                                 + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1473                                 + bbox_spmaxY + "[");
1474         }
1475 
1476         // Prepare alpha line:
1477         // add 2 to better deal with the last pixel in a pixel row.
1478         final int width = (pmaxX - pminX) + 2;
1479 
1480         // Useful when processing tile line by tile line
1481         if (width > INITIAL_AA_ARRAY) {
1482             if (DO_STATS) {
1483                 rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1484             }
1485             alphaLine = alphaLine_ref.getArray(width);
1486         }
1487 
1488         // process first tile line:
1489         endRendering(pminY);
1490 
1491         return true;
1492     }
1493 
1494     private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
1495 
1496     void endRendering(final int pminY) {
1497         if (DO_MONITORS) {
1498             rdrCtx.stats.mon_rdr_endRendering_Y.start();
1499         }
1500 
1501         final int spminY       = pminY << SUBPIXEL_LG_POSITIONS_Y;
1502         final int fixed_spminY = FloatMath.max(bbox_spminY, spminY);
1503 
1504         // avoid rendering for last call to nextTile()
1505         if (fixed_spminY < bbox_spmaxY) {
1506             // process a complete tile line ie scanlines for 32 rows
1507             final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
1508 
1509             // process tile line [0 - 32]
1510             cache.resetTileLine(pminY);
1511 
1512             // Process only one tile line:
1513             _endRendering(fixed_spminY, spmaxY);
1514         }
1515         if (DO_MONITORS) {
1516             rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1517         }
1518     }
1519 
1520     void copyAARow(final int[] alphaRow,
1521                    final int pix_y, final int pix_from, final int pix_to,
1522                    final boolean useBlockFlags)
1523     {
1524         if (DO_MONITORS) {
1525             rdrCtx.stats.mon_rdr_copyAARow.start();
1526         }
1527         if (useBlockFlags) {
1528             if (DO_STATS) {
1529                 rdrCtx.stats.hist_tile_generator_encoding.add(1);
1530             }
1531             cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1532         } else {
1533             if (DO_STATS) {
1534                 rdrCtx.stats.hist_tile_generator_encoding.add(0);
1535             }
1536             cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
1537         }
1538         if (DO_MONITORS) {
1539             rdrCtx.stats.mon_rdr_copyAARow.stop();
1540         }
1541     }
1542 }