< prev index next >

modules/javafx.graphics/src/main/java/com/sun/marlin/DStroker.java

Print this page

        

@@ -25,16 +25,16 @@
 
 package com.sun.marlin;
 
 import java.util.Arrays;
 
-import com.sun.javafx.geom.PathConsumer2D;
+
 
 // TODO: some of the arithmetic here is too verbose and prone to hard to
 // debug typos. We should consider making a small Point/Vector class that
 // has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
-public final class Stroker implements PathConsumer2D, MarlinConst {
+public final class DStroker implements DPathConsumer2D, MarlinConst {
 
     private static final int MOVE_TO = 0;
     private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
     private static final int CLOSE = 2;
 

@@ -68,99 +68,99 @@
      */
     public static final int CAP_SQUARE = 2;
 
     // pisces used to use fixed point arithmetic with 16 decimal digits. I
     // didn't want to change the values of the constant below when I converted
-    // it to floating point, so that's why the divisions by 2^16 are there.
-    private static final float ROUND_JOIN_THRESHOLD = 1000/65536f;
+    // it to doubleing point, so that's why the divisions by 2^16 are there.
+    private static final double ROUND_JOIN_THRESHOLD = 1000/65536D;
 
-    private static final float C = 0.5522847498307933f;
+    private static final double C = 0.5522847498307933D;
 
     private static final int MAX_N_CURVES = 11;
 
-    private PathConsumer2D out;
+    private DPathConsumer2D out;
 
     private int capStyle;
     private int joinStyle;
 
-    private float lineWidth2;
-    private float invHalfLineWidth2Sq;
+    private double lineWidth2;
+    private double invHalfLineWidth2Sq;
 
-    private final float[] offset0 = new float[2];
-    private final float[] offset1 = new float[2];
-    private final float[] offset2 = new float[2];
-    private final float[] miter = new float[2];
-    private float miterLimitSq;
+    private final double[] offset0 = new double[2];
+    private final double[] offset1 = new double[2];
+    private final double[] offset2 = new double[2];
+    private final double[] miter = new double[2];
+    private double miterLimitSq;
 
     private int prev;
 
     // The starting point of the path, and the slope there.
-    private float sx0, sy0, sdx, sdy;
+    private double sx0, sy0, sdx, sdy;
     // the current point and the slope there.
-    private float cx0, cy0, cdx, cdy; // c stands for current
+    private double cx0, cy0, cdx, cdy; // c stands for current
     // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the
     // first and last points on the left parallel path. Since this path is
     // parallel, it's slope at any point is parallel to the slope of the
     // original path (thought they may have different directions), so these
     // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that
     // would be error prone and hard to read, so we keep these anyway.
-    private float smx, smy, cmx, cmy;
+    private double smx, smy, cmx, cmy;
 
     private final PolyStack reverse;
 
     // This is where the curve to be processed is put. We give it
     // enough room to store all curves.
-    private final float[] middle = new float[MAX_N_CURVES * 8];
-    private final float[] lp = new float[8];
-    private final float[] rp = new float[8];
-    private final float[] subdivTs = new float[MAX_N_CURVES - 1];
+    private final double[] middle = new double[MAX_N_CURVES * 8];
+    private final double[] lp = new double[8];
+    private final double[] rp = new double[8];
+    private final double[] subdivTs = new double[MAX_N_CURVES - 1];
 
     // per-thread renderer context
-    final RendererContext rdrCtx;
+    final DRendererContext rdrCtx;
 
     // dirty curve
-    final Curve curve;
+    final DCurve curve;
 
     /**
-     * Constructs a <code>Stroker</code>.
+     * Constructs a <code>DStroker</code>.
      * @param rdrCtx per-thread renderer context
      */
-    Stroker(final RendererContext rdrCtx) {
+    DStroker(final DRendererContext rdrCtx) {
         this.rdrCtx = rdrCtx;
 
         this.reverse = new PolyStack(rdrCtx);
         this.curve = rdrCtx.curve;
     }
 
     /**
-     * Inits the <code>Stroker</code>.
+     * Inits the <code>DStroker</code>.
      *
-     * @param pc2d an output <code>PathConsumer2D</code>.
+     * @param pc2d an output <code>DPathConsumer2D</code>.
      * @param lineWidth the desired line width in pixels
      * @param capStyle the desired end cap style, one of
      * <code>CAP_BUTT</code>, <code>CAP_ROUND</code> or
      * <code>CAP_SQUARE</code>.
      * @param joinStyle the desired line join style, one of
      * <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or
      * <code>JOIN_BEVEL</code>.
      * @param miterLimit the desired miter limit
      * @return this instance
      */
-    public Stroker init(PathConsumer2D pc2d,
-              float lineWidth,
+    public DStroker init(DPathConsumer2D pc2d,
+              double lineWidth,
               int capStyle,
               int joinStyle,
-              float miterLimit)
+              double miterLimit)
     {
         this.out = pc2d;
 
-        this.lineWidth2 = lineWidth / 2f;
-        this.invHalfLineWidth2Sq = 1f / (2f * lineWidth2 * lineWidth2);
+        this.lineWidth2 = lineWidth / 2D;
+        this.invHalfLineWidth2Sq = 1D / (2D * lineWidth2 * lineWidth2);
         this.capStyle = capStyle;
         this.joinStyle = joinStyle;
 
-        float limit = miterLimit * lineWidth2;
+        double limit = miterLimit * lineWidth2;
         this.miterLimitSq = limit * limit;
 
         this.prev = CLOSE;
 
         rdrCtx.stroking = 1;

@@ -175,30 +175,30 @@
     void dispose() {
         reverse.dispose();
 
         if (DO_CLEAN_DIRTY) {
             // Force zero-fill dirty arrays:
-            Arrays.fill(offset0, 0f);
-            Arrays.fill(offset1, 0f);
-            Arrays.fill(offset2, 0f);
-            Arrays.fill(miter, 0f);
-            Arrays.fill(middle, 0f);
-            Arrays.fill(lp, 0f);
-            Arrays.fill(rp, 0f);
-            Arrays.fill(subdivTs, 0f);
+            Arrays.fill(offset0, 0D);
+            Arrays.fill(offset1, 0D);
+            Arrays.fill(offset2, 0D);
+            Arrays.fill(miter, 0D);
+            Arrays.fill(middle, 0D);
+            Arrays.fill(lp, 0D);
+            Arrays.fill(rp, 0D);
+            Arrays.fill(subdivTs, 0D);
         }
     }
 
-    private static void computeOffset(final float lx, final float ly,
-                                      final float w, final float[] m)
-    {
-        float len = lx*lx + ly*ly;
-        if (len == 0f) {
-            m[0] = 0f;
-            m[1] = 0f;
+    private static void computeOffset(final double lx, final double ly,
+                                      final double w, final double[] m)
+    {
+        double len = lx*lx + ly*ly;
+        if (len == 0D) {
+            m[0] = 0D;
+            m[1] = 0D;
         } else {
-            len = (float) Math.sqrt(len);
+            len =  Math.sqrt(len);
             m[0] =  (ly * w) / len;
             m[1] = -(lx * w) / len;
         }
     }
 

@@ -208,28 +208,28 @@
     // This is equivalent to detecting whether a point q is on the right side
     // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and
     // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a
     // clockwise order.
     // NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left.
-    private static boolean isCW(final float dx1, final float dy1,
-                                final float dx2, final float dy2)
+    private static boolean isCW(final double dx1, final double dy1,
+                                final double dx2, final double dy2)
     {
         return dx1 * dy2 <= dy1 * dx2;
     }
 
-    private void drawRoundJoin(float x, float y,
-                               float omx, float omy, float mx, float my,
+    private void drawRoundJoin(double x, double y,
+                               double omx, double omy, double mx, double my,
                                boolean rev,
-                               float threshold)
+                               double threshold)
     {
-        if ((omx == 0f && omy == 0f) || (mx == 0f && my == 0f)) {
+        if ((omx == 0D && omy == 0D) || (mx == 0D && my == 0D)) {
             return;
         }
 
-        float domx = omx - mx;
-        float domy = omy - my;
-        float len = domx*domx + domy*domy;
+        double domx = omx - mx;
+        double domy = omy - my;
+        double len = domx*domx + domy*domy;
         if (len < threshold) {
             return;
         }
 
         if (rev) {

@@ -239,25 +239,25 @@
             my  = -my;
         }
         drawRoundJoin(x, y, omx, omy, mx, my, rev);
     }
 
-    private void drawRoundJoin(float cx, float cy,
-                               float omx, float omy,
-                               float mx, float my,
+    private void drawRoundJoin(double cx, double cy,
+                               double omx, double omy,
+                               double mx, double my,
                                boolean rev)
     {
         // The sign of the dot product of mx,my and omx,omy is equal to the
         // the sign of the cosine of ext
         // (ext is the angle between omx,omy and mx,my).
-        final float cosext = omx * mx + omy * my;
+        final double cosext = omx * mx + omy * my;
         // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
         // need 1 curve to approximate the circle section that joins omx,omy
         // and mx,my.
-        final int numCurves = (cosext >= 0f) ? 1 : 2;
+        final int numDCurves = (cosext >= 0D) ? 1 : 2;
 
-        switch (numCurves) {
+        switch (numDCurves) {
         case 1:
             drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);
             break;
         case 2:
             // we need to split the arc into 2 arcs spanning the same angle.

@@ -272,14 +272,14 @@
             // this vector that its length is lineWidth2 (this works because the
             // perpendicular bisector goes through the origin). This scaling doesn't
             // have numerical problems because we know that lineWidth2 divided by
             // this normal's length is at least 0.5 and at most sqrt(2)/2 (because
             // we know the angle of the arc is > 90 degrees).
-            float nx = my - omy, ny = omx - mx;
-            float nlen = (float) Math.sqrt(nx*nx + ny*ny);
-            float scale = lineWidth2/nlen;
-            float mmx = nx * scale, mmy = ny * scale;
+            double nx = my - omy, ny = omx - mx;
+            double nlen =  Math.sqrt(nx*nx + ny*ny);
+            double scale = lineWidth2/nlen;
+            double mmx = nx * scale, mmy = ny * scale;
 
             // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've
             // computed the wrong intersection so we get the other one.
             // The test above is equivalent to if (rev).
             if (rev) {

@@ -292,131 +292,131 @@
         default:
         }
     }
 
     // the input arc defined by omx,omy and mx,my must span <= 90 degrees.
-    private void drawBezApproxForArc(final float cx, final float cy,
-                                     final float omx, final float omy,
-                                     final float mx, final float my,
+    private void drawBezApproxForArc(final double cx, final double cy,
+                                     final double omx, final double omy,
+                                     final double mx, final double my,
                                      boolean rev)
     {
-        final float cosext2 = (omx * mx + omy * my) * invHalfLineWidth2Sq;
+        final double cosext2 = (omx * mx + omy * my) * invHalfLineWidth2Sq;
 
         // check round off errors producing cos(ext) > 1 and a NaN below
         // cos(ext) == 1 implies colinear segments and an empty join anyway
-        if (cosext2 >= 0.5f) {
+        if (cosext2 >= 0.5D) {
             // just return to avoid generating a flat curve:
             return;
         }
 
         // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc
         // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that
         // define the bezier curve we're computing.
         // It is computed using the constraints that P1-P0 and P3-P2 are parallel
         // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
-        float cv = (float) ((4.0 / 3.0) * Math.sqrt(0.5 - cosext2) /
+        double cv =  ((4.0 / 3.0) * Math.sqrt(0.5 - cosext2) /
                             (1.0 + Math.sqrt(cosext2 + 0.5)));
         // if clockwise, we need to negate cv.
         if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
             cv = -cv;
         }
-        final float x1 = cx + omx;
-        final float y1 = cy + omy;
-        final float x2 = x1 - cv * omy;
-        final float y2 = y1 + cv * omx;
-
-        final float x4 = cx + mx;
-        final float y4 = cy + my;
-        final float x3 = x4 + cv * my;
-        final float y3 = y4 - cv * mx;
-
-        emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
-    }
-
-    private void drawRoundCap(float cx, float cy, float mx, float my) {
-        final float Cmx = C * mx;
-        final float Cmy = C * my;
-        emitCurveTo(cx + mx - Cmy, cy + my + Cmx,
+        final double x1 = cx + omx;
+        final double y1 = cy + omy;
+        final double x2 = x1 - cv * omy;
+        final double y2 = y1 + cv * omx;
+
+        final double x4 = cx + mx;
+        final double y4 = cy + my;
+        final double x3 = x4 + cv * my;
+        final double y3 = y4 - cv * mx;
+
+        emitDCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
+    }
+
+    private void drawRoundCap(double cx, double cy, double mx, double my) {
+        final double Cmx = C * mx;
+        final double Cmy = C * my;
+        emitDCurveTo(cx + mx - Cmy, cy + my + Cmx,
                     cx - my + Cmx, cy + mx + Cmy,
                     cx - my,       cy + mx);
-        emitCurveTo(cx - my - Cmx, cy + mx - Cmy,
+        emitDCurveTo(cx - my - Cmx, cy + mx - Cmy,
                     cx - mx - Cmy, cy - my + Cmx,
                     cx - mx,       cy - my);
     }
 
     // Return the intersection point of the lines (x0, y0) -> (x1, y1)
     // and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1]
-    private static void computeMiter(final float x0, final float y0,
-                                     final float x1, final float y1,
-                                     final float x0p, final float y0p,
-                                     final float x1p, final float y1p,
-                                     final float[] m, int off)
-    {
-        float x10 = x1 - x0;
-        float y10 = y1 - y0;
-        float x10p = x1p - x0p;
-        float y10p = y1p - y0p;
+    private static void computeMiter(final double x0, final double y0,
+                                     final double x1, final double y1,
+                                     final double x0p, final double y0p,
+                                     final double x1p, final double y1p,
+                                     final double[] m, int off)
+    {
+        double x10 = x1 - x0;
+        double y10 = y1 - y0;
+        double x10p = x1p - x0p;
+        double y10p = y1p - y0p;
 
         // if this is 0, the lines are parallel. If they go in the
         // same direction, there is no intersection so m[off] and
         // m[off+1] will contain infinity, so no miter will be drawn.
         // If they go in the same direction that means that the start of the
         // current segment and the end of the previous segment have the same
         // tangent, in which case this method won't even be involved in
         // miter drawing because it won't be called by drawMiter (because
         // (mx == omx && my == omy) will be true, and drawMiter will return
         // immediately).
-        float den = x10*y10p - x10p*y10;
-        float t = x10p*(y0-y0p) - y10p*(x0-x0p);
+        double den = x10*y10p - x10p*y10;
+        double t = x10p*(y0-y0p) - y10p*(x0-x0p);
         t /= den;
         m[off++] = x0 + t*x10;
         m[off]   = y0 + t*y10;
     }
 
     // Return the intersection point of the lines (x0, y0) -> (x1, y1)
     // and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1]
-    private static void safecomputeMiter(final float x0, final float y0,
-                                         final float x1, final float y1,
-                                         final float x0p, final float y0p,
-                                         final float x1p, final float y1p,
-                                         final float[] m, int off)
-    {
-        float x10 = x1 - x0;
-        float y10 = y1 - y0;
-        float x10p = x1p - x0p;
-        float y10p = y1p - y0p;
+    private static void safecomputeMiter(final double x0, final double y0,
+                                         final double x1, final double y1,
+                                         final double x0p, final double y0p,
+                                         final double x1p, final double y1p,
+                                         final double[] m, int off)
+    {
+        double x10 = x1 - x0;
+        double y10 = y1 - y0;
+        double x10p = x1p - x0p;
+        double y10p = y1p - y0p;
 
         // if this is 0, the lines are parallel. If they go in the
         // same direction, there is no intersection so m[off] and
         // m[off+1] will contain infinity, so no miter will be drawn.
         // If they go in the same direction that means that the start of the
         // current segment and the end of the previous segment have the same
         // tangent, in which case this method won't even be involved in
         // miter drawing because it won't be called by drawMiter (because
         // (mx == omx && my == omy) will be true, and drawMiter will return
         // immediately).
-        float den = x10*y10p - x10p*y10;
-        if (den == 0f) {
-            m[off++] = (x0 + x0p) / 2f;
-            m[off] = (y0 + y0p) / 2f;
+        double den = x10*y10p - x10p*y10;
+        if (den == 0D) {
+            m[off++] = (x0 + x0p) / 2D;
+            m[off] = (y0 + y0p) / 2D;
             return;
         }
-        float t = x10p*(y0-y0p) - y10p*(x0-x0p);
+        double t = x10p*(y0-y0p) - y10p*(x0-x0p);
         t /= den;
         m[off++] = x0 + t*x10;
         m[off] = y0 + t*y10;
     }
 
-    private void drawMiter(final float pdx, final float pdy,
-                           final float x0, final float y0,
-                           final float dx, final float dy,
-                           float omx, float omy, float mx, float my,
+    private void drawMiter(final double pdx, final double pdy,
+                           final double x0, final double y0,
+                           final double dx, final double dy,
+                           double omx, double omy, double mx, double my,
                            boolean rev)
     {
         if ((mx == omx && my == omy) ||
-            (pdx == 0f && pdy == 0f) ||
-            (dx == 0f && dy == 0f))
+            (pdx == 0D && pdy == 0D) ||
+            (dx == 0D && dy == 0D))
         {
             return;
         }
 
         if (rev) {

@@ -428,13 +428,13 @@
 
         computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
                      (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
                      miter, 0);
 
-        final float miterX = miter[0];
-        final float miterY = miter[1];
-        float lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
+        final double miterX = miter[0];
+        final double miterY = miter[1];
+        double lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
 
         // If the lines are parallel, lenSq will be either NaN or +inf
         // (actually, I'm not sure if the latter is possible. The important
         // thing is that -inf is not possible, because lenSq is a square).
         // For both of those values, the comparison below will fail and

@@ -443,31 +443,31 @@
             emitLineTo(miterX, miterY, rev);
         }
     }
 
     @Override
-    public void moveTo(float x0, float y0) {
+    public void moveTo(double x0, double y0) {
         if (prev == DRAWING_OP_TO) {
             finish();
         }
         this.sx0 = this.cx0 = x0;
         this.sy0 = this.cy0 = y0;
-        this.cdx = this.sdx = 1f;
-        this.cdy = this.sdy = 0f;
+        this.cdx = this.sdx = 1D;
+        this.cdy = this.sdy = 0D;
         this.prev = MOVE_TO;
     }
 
     @Override
-    public void lineTo(float x1, float y1) {
-        float dx = x1 - cx0;
-        float dy = y1 - cy0;
-        if (dx == 0f && dy == 0f) {
-            dx = 1f;
+    public void lineTo(double x1, double y1) {
+        double dx = x1 - cx0;
+        double dy = y1 - cy0;
+        if (dx == 0D && dy == 0D) {
+            dx = 1D;
         }
         computeOffset(dx, dy, lineWidth2, offset0);
-        final float mx = offset0[0];
-        final float my = offset0[1];
+        final double mx = offset0[0];
+        final double my = offset0[1];
 
         drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my);
 
         emitLineTo(cx0 + mx, cy0 + my);
         emitLineTo( x1 + mx,  y1 + my);

@@ -489,14 +489,14 @@
         if (prev != DRAWING_OP_TO) {
             if (prev == CLOSE) {
                 return;
             }
             emitMoveTo(cx0, cy0 - lineWidth2);
-            this.cmx = this.smx = 0f;
+            this.cmx = this.smx = 0D;
             this.cmy = this.smy = -lineWidth2;
-            this.cdx = this.sdx = 1f;
-            this.cdy = this.sdy = 0f;
+            this.cdx = this.sdx = 1D;
+            this.cdy = this.sdy = 0D;
             finish();
             return;
         }
 
         if (cx0 != sx0 || cy0 != sy0) {

@@ -552,62 +552,62 @@
         }
 
         emitClose();
     }
 
-    private void emitMoveTo(final float x0, final float y0) {
+    private void emitMoveTo(final double x0, final double y0) {
         out.moveTo(x0, y0);
     }
 
-    private void emitLineTo(final float x1, final float y1) {
+    private void emitLineTo(final double x1, final double y1) {
         out.lineTo(x1, y1);
     }
 
-    private void emitLineToRev(final float x1, final float y1) {
+    private void emitLineToRev(final double x1, final double y1) {
         reverse.pushLine(x1, y1);
     }
 
-    private void emitLineTo(final float x1, final float y1,
+    private void emitLineTo(final double x1, final double y1,
                             final boolean rev)
     {
         if (rev) {
             emitLineToRev(x1, y1);
         } else {
             emitLineTo(x1, y1);
         }
     }
 
-    private void emitQuadTo(final float x1, final float y1,
-                            final float x2, final float y2)
+    private void emitQuadTo(final double x1, final double y1,
+                            final double x2, final double y2)
     {
         out.quadTo(x1, y1, x2, y2);
     }
 
-    private void emitQuadToRev(final float x0, final float y0,
-                               final float x1, final float y1)
+    private void emitQuadToRev(final double x0, final double y0,
+                               final double x1, final double y1)
     {
         reverse.pushQuad(x0, y0, x1, y1);
     }
 
-    private void emitCurveTo(final float x1, final float y1,
-                             final float x2, final float y2,
-                             final float x3, final float y3)
+    private void emitDCurveTo(final double x1, final double y1,
+                             final double x2, final double y2,
+                             final double x3, final double y3)
     {
         out.curveTo(x1, y1, x2, y2, x3, y3);
     }
 
-    private void emitCurveToRev(final float x0, final float y0,
-                                final float x1, final float y1,
-                                final float x2, final float y2)
+    private void emitDCurveToRev(final double x0, final double y0,
+                                final double x1, final double y1,
+                                final double x2, final double y2)
     {
         reverse.pushCubic(x0, y0, x1, y1, x2, y2);
     }
 
-    private void emitCurveTo(final float x0, final float y0,
-                             final float x1, final float y1,
-                             final float x2, final float y2,
-                             final float x3, final float y3, final boolean rev)
+    private void emitDCurveTo(final double x0, final double y0,
+                             final double x1, final double y1,
+                             final double x2, final double y2,
+                             final double x3, final double y3, final boolean rev)
     {
         if (rev) {
             reverse.pushCubic(x0, y0, x1, y1, x2, y2);
         } else {
             out.curveTo(x1, y1, x2, y2, x3, y3);

@@ -616,15 +616,15 @@
 
     private void emitClose() {
         out.closePath();
     }
 
-    private void drawJoin(float pdx, float pdy,
-                          float x0, float y0,
-                          float dx, float dy,
-                          float omx, float omy,
-                          float mx, float my)
+    private void drawJoin(double pdx, double pdy,
+                          double x0, double y0,
+                          double dx, double dy,
+                          double omx, double omy,
+                          double mx, double my)
     {
         if (prev != DRAWING_OP_TO) {
             emitMoveTo(x0 + mx, y0 + my);
             this.sdx = dx;
             this.sdy = dy;

@@ -643,61 +643,61 @@
             emitLineTo(x0, y0, !cw);
         }
         prev = DRAWING_OP_TO;
     }
 
-    private static boolean within(final float x1, final float y1,
-                                  final float x2, final float y2,
-                                  final float ERR)
+    private static boolean within(final double x1, final double y1,
+                                  final double x2, final double y2,
+                                  final double ERR)
     {
         assert ERR > 0 : "";
         // compare taxicab distance. ERR will always be small, so using
         // true distance won't give much benefit
-        return (Helpers.within(x1, x2, ERR) &&  // we want to avoid calling Math.abs
-                Helpers.within(y1, y2, ERR)); // this is just as good.
+        return (DHelpers.within(x1, x2, ERR) &&  // we want to avoid calling Math.abs
+                DHelpers.within(y1, y2, ERR)); // this is just as good.
     }
 
-    private void getLineOffsets(float x1, float y1,
-                                float x2, float y2,
-                                float[] left, float[] right) {
+    private void getLineOffsets(double x1, double y1,
+                                double x2, double y2,
+                                double[] left, double[] right) {
         computeOffset(x2 - x1, y2 - y1, lineWidth2, offset0);
-        final float mx = offset0[0];
-        final float my = offset0[1];
+        final double mx = offset0[0];
+        final double my = offset0[1];
         left[0] = x1 + mx;
         left[1] = y1 + my;
         left[2] = x2 + mx;
         left[3] = y2 + my;
         right[0] = x1 - mx;
         right[1] = y1 - my;
         right[2] = x2 - mx;
         right[3] = y2 - my;
     }
 
-    private int computeOffsetCubic(float[] pts, final int off,
-                                   float[] leftOff, float[] rightOff)
+    private int computeOffsetCubic(double[] pts, final int off,
+                                   double[] leftOff, double[] rightOff)
     {
         // if p1=p2 or p3=p4 it means that the derivative at the endpoint
         // vanishes, which creates problems with computeOffset. Usually
         // this happens when this stroker object is trying to winden
         // a curve with a cusp. What happens is that curveTo splits
         // the input curve at the cusp, and passes it to this function.
         // because of inaccuracies in the splitting, we consider points
         // equal if they're very close to each other.
-        final float x1 = pts[off + 0], y1 = pts[off + 1];
-        final float x2 = pts[off + 2], y2 = pts[off + 3];
-        final float x3 = pts[off + 4], y3 = pts[off + 5];
-        final float x4 = pts[off + 6], y4 = pts[off + 7];
-
-        float dx4 = x4 - x3;
-        float dy4 = y4 - y3;
-        float dx1 = x2 - x1;
-        float dy1 = y2 - y1;
+        final double x1 = pts[off + 0], y1 = pts[off + 1];
+        final double x2 = pts[off + 2], y2 = pts[off + 3];
+        final double x3 = pts[off + 4], y3 = pts[off + 5];
+        final double x4 = pts[off + 6], y4 = pts[off + 7];
+
+        double dx4 = x4 - x3;
+        double dy4 = y4 - y3;
+        double dx1 = x2 - x1;
+        double dy1 = y2 - y1;
 
         // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
         // in which case ignore if p1 == p2
-        final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * Math.ulp(y2));
-        final boolean p3eqp4 = within(x3,y3,x4,y4, 6f * Math.ulp(y4));
+        final boolean p1eqp2 = within(x1,y1,x2,y2, 6D * Math.ulp(y2));
+        final boolean p3eqp4 = within(x3,y3,x4,y4, 6D * Math.ulp(y4));
         if (p1eqp2 && p3eqp4) {
             getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
             return 4;
         } else if (p1eqp2) {
             dx1 = x3 - x1;

@@ -706,14 +706,14 @@
             dx4 = x4 - x2;
             dy4 = y4 - y2;
         }
 
         // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
-        float dotsq = (dx1 * dx4 + dy1 * dy4);
+        double dotsq = (dx1 * dx4 + dy1 * dy4);
         dotsq *= dotsq;
-        float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
-        if (Helpers.within(dotsq, l1sq * l4sq, 4f * Math.ulp(dotsq))) {
+        double l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
+        if (DHelpers.within(dotsq, l1sq * l4sq, 4D * Math.ulp(dotsq))) {
             getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
             return 4;
         }
 
 //      What we're trying to do in this function is to approximate an ideal

@@ -761,37 +761,37 @@
 //      [dy1, dy4][c2]
 //      At this point we are left with a simple linear system and we solve it by
 //      getting the inverse of the matrix above. Then we use [c1,c2] to compute
 //      p2p and p3p.
 
-        float x = (x1 + 3f * (x2 + x3) + x4) / 8f;
-        float y = (y1 + 3f * (y2 + y3) + y4) / 8f;
+        double x = (x1 + 3D * (x2 + x3) + x4) / 8D;
+        double y = (y1 + 3D * (y2 + y3) + y4) / 8D;
         // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to
         // c*B'(0.5) for some constant c.
-        float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;
+        double dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;
 
         // this computes the offsets at t=0, 0.5, 1, using the property that
         // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
         // the (dx/dt, dy/dt) vectors at the endpoints.
         computeOffset(dx1, dy1, lineWidth2, offset0);
         computeOffset(dxm, dym, lineWidth2, offset1);
         computeOffset(dx4, dy4, lineWidth2, offset2);
-        float x1p = x1 + offset0[0]; // start
-        float y1p = y1 + offset0[1]; // point
-        float xi  = x  + offset1[0]; // interpolation
-        float yi  = y  + offset1[1]; // point
-        float x4p = x4 + offset2[0]; // end
-        float y4p = y4 + offset2[1]; // point
-
-        float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4));
-
-        float two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;
-        float two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;
-        float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
-        float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
+        double x1p = x1 + offset0[0]; // start
+        double y1p = y1 + offset0[1]; // point
+        double xi  = x  + offset1[0]; // interpolation
+        double yi  = y  + offset1[1]; // point
+        double x4p = x4 + offset2[0]; // end
+        double y4p = y4 + offset2[1]; // point
+
+        double invdet43 = 4D / (3D * (dx1 * dy4 - dy1 * dx4));
+
+        double two_pi_m_p1_m_p4x = 2D * xi - x1p - x4p;
+        double two_pi_m_p1_m_p4y = 2D * yi - y1p - y4p;
+        double c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
+        double c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
 
-        float x2p, y2p, x3p, y3p;
+        double x2p, y2p, x3p, y3p;
         x2p = x1p + c1*dx1;
         y2p = y1p + c1*dy1;
         x3p = x4p + c2*dx4;
         y3p = y4p + c2*dy4;
 

@@ -799,15 +799,15 @@
         leftOff[2] = x2p; leftOff[3] = y2p;
         leftOff[4] = x3p; leftOff[5] = y3p;
         leftOff[6] = x4p; leftOff[7] = y4p;
 
         x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
-        xi = xi - 2f * offset1[0]; yi = yi - 2f * offset1[1];
+        xi = xi - 2D * offset1[0]; yi = yi - 2D * offset1[1];
         x4p = x4 - offset2[0]; y4p = y4 - offset2[1];
 
-        two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;
-        two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;
+        two_pi_m_p1_m_p4x = 2D * xi - x1p - x4p;
+        two_pi_m_p1_m_p4y = 2D * yi - y1p - y4p;
         c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
         c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
 
         x2p = x1p + c1*dx1;
         y2p = y1p + c1*dy1;

@@ -820,23 +820,23 @@
         rightOff[6] = x4p; rightOff[7] = y4p;
         return 8;
     }
 
     // compute offset curves using bezier spline through t=0.5 (i.e.
-    // ComputedCurve(0.5) == IdealParallelCurve(0.5))
+    // ComputedDCurve(0.5) == IdealParallelDCurve(0.5))
     // return the kind of curve in the right and left arrays.
-    private int computeOffsetQuad(float[] pts, final int off,
-                                  float[] leftOff, float[] rightOff)
+    private int computeOffsetQuad(double[] pts, final int off,
+                                  double[] leftOff, double[] rightOff)
     {
-        final float x1 = pts[off + 0], y1 = pts[off + 1];
-        final float x2 = pts[off + 2], y2 = pts[off + 3];
-        final float x3 = pts[off + 4], y3 = pts[off + 5];
-
-        final float dx3 = x3 - x2;
-        final float dy3 = y3 - y2;
-        final float dx1 = x2 - x1;
-        final float dy1 = y2 - y1;
+        final double x1 = pts[off + 0], y1 = pts[off + 1];
+        final double x2 = pts[off + 2], y2 = pts[off + 3];
+        final double x3 = pts[off + 4], y3 = pts[off + 5];
+
+        final double dx3 = x3 - x2;
+        final double dy3 = y3 - y2;
+        final double dx1 = x2 - x1;
+        final double dy1 = y2 - y1;
 
         // if p1=p2 or p3=p4 it means that the derivative at the endpoint
         // vanishes, which creates problems with computeOffset. Usually
         // this happens when this stroker object is trying to winden
         // a curve with a cusp. What happens is that curveTo splits

@@ -844,36 +844,36 @@
         // because of inaccuracies in the splitting, we consider points
         // equal if they're very close to each other.
 
         // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
         // in which case ignore.
-        final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * Math.ulp(y2));
-        final boolean p2eqp3 = within(x2,y2,x3,y3, 6f * Math.ulp(y3));
+        final boolean p1eqp2 = within(x1,y1,x2,y2, 6D * Math.ulp(y2));
+        final boolean p2eqp3 = within(x2,y2,x3,y3, 6D * Math.ulp(y3));
         if (p1eqp2 || p2eqp3) {
             getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
             return 4;
         }
 
         // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
-        float dotsq = (dx1 * dx3 + dy1 * dy3);
+        double dotsq = (dx1 * dx3 + dy1 * dy3);
         dotsq *= dotsq;
-        float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
-        if (Helpers.within(dotsq, l1sq * l3sq, 4f * Math.ulp(dotsq))) {
+        double l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
+        if (DHelpers.within(dotsq, l1sq * l3sq, 4D * Math.ulp(dotsq))) {
             getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
             return 4;
         }
 
         // this computes the offsets at t=0, 0.5, 1, using the property that
         // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
         // the (dx/dt, dy/dt) vectors at the endpoints.
         computeOffset(dx1, dy1, lineWidth2, offset0);
         computeOffset(dx3, dy3, lineWidth2, offset1);
 
-        float x1p = x1 + offset0[0]; // start
-        float y1p = y1 + offset0[1]; // point
-        float x3p = x3 + offset1[0]; // end
-        float y3p = y3 + offset1[1]; // point
+        double x1p = x1 + offset0[0]; // start
+        double y1p = y1 + offset0[1]; // point
+        double x3p = x3 + offset1[0]; // end
+        double y3p = y3 + offset1[1]; // point
         safecomputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
         leftOff[0] = x1p; leftOff[1] = y1p;
         leftOff[4] = x3p; leftOff[5] = y3p;
 
         x1p = x1 - offset0[0]; y1p = y1 - offset0[1];

@@ -889,86 +889,86 @@
     // TODO: until those are fixed, we should work around that by
     // manually inlining this into curveTo and quadTo.
 /******************************* WORKAROUND **********************************
     private void somethingTo(final int type) {
         // need these so we can update the state at the end of this method
-        final float xf = middle[type-2], yf = middle[type-1];
-        float dxs = middle[2] - middle[0];
-        float dys = middle[3] - middle[1];
-        float dxf = middle[type - 2] - middle[type - 4];
-        float dyf = middle[type - 1] - middle[type - 3];
+        final double xf = middle[type-2], yf = middle[type-1];
+        double dxs = middle[2] - middle[0];
+        double dys = middle[3] - middle[1];
+        double dxf = middle[type - 2] - middle[type - 4];
+        double dyf = middle[type - 1] - middle[type - 3];
         switch(type) {
         case 6:
-            if ((dxs == 0f && dys == 0f) ||
-                (dxf == 0f && dyf == 0f)) {
+            if ((dxs == 0D && dys == 0D) ||
+                (dxf == 0D && dyf == 0D)) {
                dxs = dxf = middle[4] - middle[0];
                dys = dyf = middle[5] - middle[1];
             }
             break;
         case 8:
-            boolean p1eqp2 = (dxs == 0f && dys == 0f);
-            boolean p3eqp4 = (dxf == 0f && dyf == 0f);
+            boolean p1eqp2 = (dxs == 0D && dys == 0D);
+            boolean p3eqp4 = (dxf == 0D && dyf == 0D);
             if (p1eqp2) {
                 dxs = middle[4] - middle[0];
                 dys = middle[5] - middle[1];
-                if (dxs == 0f && dys == 0f) {
+                if (dxs == 0D && dys == 0D) {
                     dxs = middle[6] - middle[0];
                     dys = middle[7] - middle[1];
                 }
             }
             if (p3eqp4) {
                 dxf = middle[6] - middle[2];
                 dyf = middle[7] - middle[3];
-                if (dxf == 0f && dyf == 0f) {
+                if (dxf == 0D && dyf == 0D) {
                     dxf = middle[6] - middle[0];
                     dyf = middle[7] - middle[1];
                 }
             }
         }
-        if (dxs == 0f && dys == 0f) {
+        if (dxs == 0D && dys == 0D) {
             // this happens iff the "curve" is just a point
             lineTo(middle[0], middle[1]);
             return;
         }
         // if these vectors are too small, normalize them, to avoid future
         // precision problems.
-        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
-            float len = (float) Math.sqrt(dxs*dxs + dys*dys);
+        if (Math.abs(dxs) < 0.1D && Math.abs(dys) < 0.1D) {
+            double len =  Math.sqrt(dxs*dxs + dys*dys);
             dxs /= len;
             dys /= len;
         }
-        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
-            float len = (float) Math.sqrt(dxf*dxf + dyf*dyf);
+        if (Math.abs(dxf) < 0.1D && Math.abs(dyf) < 0.1D) {
+            double len =  Math.sqrt(dxf*dxf + dyf*dyf);
             dxf /= len;
             dyf /= len;
         }
 
         computeOffset(dxs, dys, lineWidth2, offset0);
-        final float mx = offset0[0];
-        final float my = offset0[1];
+        final double mx = offset0[0];
+        final double my = offset0[1];
         drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);
 
         int nSplits = findSubdivPoints(curve, middle, subdivTs, type, lineWidth2);
 
         int kind = 0;
         BreakPtrIterator it = curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
         while(it.hasNext()) {
-            int curCurveOff = it.next();
+            int curDCurveOff = it.next();
 
             switch (type) {
             case 8:
-                kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
+                kind = computeOffsetCubic(middle, curDCurveOff, lp, rp);
                 break;
             case 6:
-                kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
+                kind = computeOffsetQuad(middle, curDCurveOff, lp, rp);
                 break;
             }
             emitLineTo(lp[0], lp[1]);
             switch(kind) {
             case 8:
-                emitCurveTo(lp[2], lp[3], lp[4], lp[5], lp[6], lp[7]);
-                emitCurveToRev(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5]);
+                emitDCurveTo(lp[2], lp[3], lp[4], lp[5], lp[6], lp[7]);
+                emitDCurveToRev(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5]);
                 break;
             case 6:
                 emitQuadTo(lp[2], lp[3], lp[4], lp[5]);
                 emitQuadToRev(rp[0], rp[1], rp[2], rp[3]);
                 break;

@@ -991,35 +991,35 @@
 ****************************** END WORKAROUND *******************************/
 
     // finds values of t where the curve in pts should be subdivided in order
     // to get good offset curves a distance of w away from the middle curve.
     // Stores the points in ts, and returns how many of them there were.
-    private static int findSubdivPoints(final Curve c, float[] pts, float[] ts,
-                                        final int type, final float w)
+    private static int findSubdivPoints(final DCurve c, double[] pts, double[] ts,
+                                        final int type, final double w)
     {
-        final float x12 = pts[2] - pts[0];
-        final float y12 = pts[3] - pts[1];
+        final double x12 = pts[2] - pts[0];
+        final double y12 = pts[3] - pts[1];
         // if the curve is already parallel to either axis we gain nothing
         // from rotating it.
-        if (y12 != 0f && x12 != 0f) {
+        if (y12 != 0D && x12 != 0D) {
             // we rotate it so that the first vector in the control polygon is
             // parallel to the x-axis. This will ensure that rotated quarter
             // circles won't be subdivided.
-            final float hypot = (float) Math.sqrt(x12 * x12 + y12 * y12);
-            final float cos = x12 / hypot;
-            final float sin = y12 / hypot;
-            final float x1 = cos * pts[0] + sin * pts[1];
-            final float y1 = cos * pts[1] - sin * pts[0];
-            final float x2 = cos * pts[2] + sin * pts[3];
-            final float y2 = cos * pts[3] - sin * pts[2];
-            final float x3 = cos * pts[4] + sin * pts[5];
-            final float y3 = cos * pts[5] - sin * pts[4];
+            final double hypot =  Math.sqrt(x12 * x12 + y12 * y12);
+            final double cos = x12 / hypot;
+            final double sin = y12 / hypot;
+            final double x1 = cos * pts[0] + sin * pts[1];
+            final double y1 = cos * pts[1] - sin * pts[0];
+            final double x2 = cos * pts[2] + sin * pts[3];
+            final double y2 = cos * pts[3] - sin * pts[2];
+            final double x3 = cos * pts[4] + sin * pts[5];
+            final double y3 = cos * pts[5] - sin * pts[4];
 
             switch(type) {
             case 8:
-                final float x4 = cos * pts[6] + sin * pts[7];
-                final float y4 = cos * pts[7] - sin * pts[6];
+                final double x4 = cos * pts[6] + sin * pts[7];
+                final double y4 = cos * pts[7] - sin * pts[6];
                 c.set(x1, y1, x2, y2, x3, y3, x4, y4);
                 break;
             case 6:
                 c.set(x1, y1, x2, y2, x3, y3);
                 break;

@@ -1040,173 +1040,173 @@
             ret += c.infPoints(ts, ret);
         }
 
         // now we must subdivide at points where one of the offset curves will have
         // a cusp. This happens at ts where the radius of curvature is equal to w.
-        ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f);
+        ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001D);
 
-        ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);
-        Helpers.isort(ts, 0, ret);
+        ret = DHelpers.filterOutNotInAB(ts, 0, ret, 0.0001D, 0.9999D);
+        DHelpers.isort(ts, 0, ret);
         return ret;
     }
 
-    @Override public void curveTo(float x1, float y1,
-                                  float x2, float y2,
-                                  float x3, float y3)
+    @Override public void curveTo(double x1, double y1,
+                                  double x2, double y2,
+                                  double x3, double y3)
     {
-        final float[] mid = middle;
+        final double[] mid = middle;
 
         mid[0] = cx0; mid[1] = cy0;
         mid[2] = x1;  mid[3] = y1;
         mid[4] = x2;  mid[5] = y2;
         mid[6] = x3;  mid[7] = y3;
 
         // inlined version of somethingTo(8);
         // See the TODO on somethingTo
 
         // need these so we can update the state at the end of this method
-        final float xf = mid[6], yf = mid[7];
-        float dxs = mid[2] - mid[0];
-        float dys = mid[3] - mid[1];
-        float dxf = mid[6] - mid[4];
-        float dyf = mid[7] - mid[5];
+        final double xf = mid[6], yf = mid[7];
+        double dxs = mid[2] - mid[0];
+        double dys = mid[3] - mid[1];
+        double dxf = mid[6] - mid[4];
+        double dyf = mid[7] - mid[5];
 
-        boolean p1eqp2 = (dxs == 0f && dys == 0f);
-        boolean p3eqp4 = (dxf == 0f && dyf == 0f);
+        boolean p1eqp2 = (dxs == 0D && dys == 0D);
+        boolean p3eqp4 = (dxf == 0D && dyf == 0D);
         if (p1eqp2) {
             dxs = mid[4] - mid[0];
             dys = mid[5] - mid[1];
-            if (dxs == 0f && dys == 0f) {
+            if (dxs == 0D && dys == 0D) {
                 dxs = mid[6] - mid[0];
                 dys = mid[7] - mid[1];
             }
         }
         if (p3eqp4) {
             dxf = mid[6] - mid[2];
             dyf = mid[7] - mid[3];
-            if (dxf == 0f && dyf == 0f) {
+            if (dxf == 0D && dyf == 0D) {
                 dxf = mid[6] - mid[0];
                 dyf = mid[7] - mid[1];
             }
         }
-        if (dxs == 0f && dys == 0f) {
+        if (dxs == 0D && dys == 0D) {
             // this happens if the "curve" is just a point
             lineTo(mid[0], mid[1]);
             return;
         }
 
         // if these vectors are too small, normalize them, to avoid future
         // precision problems.
-        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
-            float len = (float) Math.sqrt(dxs*dxs + dys*dys);
+        if (Math.abs(dxs) < 0.1D && Math.abs(dys) < 0.1D) {
+            double len =  Math.sqrt(dxs*dxs + dys*dys);
             dxs /= len;
             dys /= len;
         }
-        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
-            float len = (float) Math.sqrt(dxf*dxf + dyf*dyf);
+        if (Math.abs(dxf) < 0.1D && Math.abs(dyf) < 0.1D) {
+            double len =  Math.sqrt(dxf*dxf + dyf*dyf);
             dxf /= len;
             dyf /= len;
         }
 
         computeOffset(dxs, dys, lineWidth2, offset0);
         drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
 
         final int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);
 
-        float prevT = 0f;
+        double prevT = 0D;
         for (int i = 0, off = 0; i < nSplits; i++, off += 6) {
-            final float t = subdivTs[i];
-            Helpers.subdivideCubicAt((t - prevT) / (1f - prevT),
+            final double t = subdivTs[i];
+            DHelpers.subdivideCubicAt((t - prevT) / (1D - prevT),
                                      mid, off, mid, off, mid, off + 6);
             prevT = t;
         }
 
-        final float[] l = lp;
-        final float[] r = rp;
+        final double[] l = lp;
+        final double[] r = rp;
 
         int kind = 0;
         for (int i = 0, off = 0; i <= nSplits; i++, off += 6) {
             kind = computeOffsetCubic(mid, off, l, r);
 
             emitLineTo(l[0], l[1]);
 
             switch(kind) {
             case 8:
-                emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
-                emitCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);
+                emitDCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
+                emitDCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);
                 break;
             case 4:
                 emitLineTo(l[2], l[3]);
                 emitLineToRev(r[0], r[1]);
                 break;
             default:
             }
             emitLineToRev(r[kind - 2], r[kind - 1]);
         }
 
-        this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;
-        this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;
+        this.cmx = (l[kind - 2] - r[kind - 2]) / 2D;
+        this.cmy = (l[kind - 1] - r[kind - 1]) / 2D;
         this.cdx = dxf;
         this.cdy = dyf;
         this.cx0 = xf;
         this.cy0 = yf;
         this.prev = DRAWING_OP_TO;
     }
 
-    @Override public void quadTo(float x1, float y1, float x2, float y2) {
-        final float[] mid = middle;
+    @Override public void quadTo(double x1, double y1, double x2, double y2) {
+        final double[] mid = middle;
 
         mid[0] = cx0; mid[1] = cy0;
         mid[2] = x1;  mid[3] = y1;
         mid[4] = x2;  mid[5] = y2;
 
         // inlined version of somethingTo(8);
         // See the TODO on somethingTo
 
         // need these so we can update the state at the end of this method
-        final float xf = mid[4], yf = mid[5];
-        float dxs = mid[2] - mid[0];
-        float dys = mid[3] - mid[1];
-        float dxf = mid[4] - mid[2];
-        float dyf = mid[5] - mid[3];
-        if ((dxs == 0f && dys == 0f) || (dxf == 0f && dyf == 0f)) {
+        final double xf = mid[4], yf = mid[5];
+        double dxs = mid[2] - mid[0];
+        double dys = mid[3] - mid[1];
+        double dxf = mid[4] - mid[2];
+        double dyf = mid[5] - mid[3];
+        if ((dxs == 0D && dys == 0D) || (dxf == 0D && dyf == 0D)) {
             dxs = dxf = mid[4] - mid[0];
             dys = dyf = mid[5] - mid[1];
         }
-        if (dxs == 0f && dys == 0f) {
+        if (dxs == 0D && dys == 0D) {
             // this happens if the "curve" is just a point
             lineTo(mid[0], mid[1]);
             return;
         }
         // if these vectors are too small, normalize them, to avoid future
         // precision problems.
-        if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
-            float len = (float) Math.sqrt(dxs*dxs + dys*dys);
+        if (Math.abs(dxs) < 0.1D && Math.abs(dys) < 0.1D) {
+            double len =  Math.sqrt(dxs*dxs + dys*dys);
             dxs /= len;
             dys /= len;
         }
-        if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
-            float len = (float) Math.sqrt(dxf*dxf + dyf*dyf);
+        if (Math.abs(dxf) < 0.1D && Math.abs(dyf) < 0.1D) {
+            double len =  Math.sqrt(dxf*dxf + dyf*dyf);
             dxf /= len;
             dyf /= len;
         }
 
         computeOffset(dxs, dys, lineWidth2, offset0);
         drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
 
         int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2);
 
-        float prevt = 0f;
+        double prevt = 0D;
         for (int i = 0, off = 0; i < nSplits; i++, off += 4) {
-            final float t = subdivTs[i];
-            Helpers.subdivideQuadAt((t - prevt) / (1f - prevt),
+            final double t = subdivTs[i];
+            DHelpers.subdivideQuadAt((t - prevt) / (1D - prevt),
                                     mid, off, mid, off, mid, off + 4);
             prevt = t;
         }
 
-        final float[] l = lp;
-        final float[] r = rp;
+        final double[] l = lp;
+        final double[] r = rp;
 
         int kind = 0;
         for (int i = 0, off = 0; i <= nSplits; i++, off += 4) {
             kind = computeOffsetQuad(mid, off, l, r);
 

@@ -1224,12 +1224,12 @@
             default:
             }
             emitLineToRev(r[kind - 2], r[kind - 1]);
         }
 
-        this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;
-        this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;
+        this.cmx = (l[kind - 2] - r[kind - 2]) / 2D;
+        this.cmy = (l[kind - 1] - r[kind - 1]) / 2D;
         this.cdx = dxf;
         this.cdy = dyf;
         this.cx0 = xf;
         this.cy0 = yf;
         this.prev = DRAWING_OP_TO;

@@ -1246,20 +1246,20 @@
         private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1;
 
         // types capacity = edges count (4096)
         private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT;
 
-        float[] curves;
+        double[] curves;
         int end;
         byte[] curveTypes;
-        int numCurves;
+        int numDCurves;
 
         // per-thread renderer context
-        final RendererContext rdrCtx;
+        final DRendererContext rdrCtx;
 
         // curves ref (dirty)
-        final FloatArrayCache.Reference curves_ref;
+        final DoubleArrayCache.Reference curves_ref;
         // curveTypes ref (dirty)
         final ByteArrayCache.Reference curveTypes_ref;
 
         // used marks (stats only)
         int curveTypesUseMark;

@@ -1267,19 +1267,19 @@
 
         /**
          * Constructor
          * @param rdrCtx per-thread renderer context
          */
-        PolyStack(final RendererContext rdrCtx) {
+        PolyStack(final DRendererContext rdrCtx) {
             this.rdrCtx = rdrCtx;
 
-            curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 32K
+            curves_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_CURVES_COUNT); // 32K
             curves     = curves_ref.initial;
 
             curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K
             curveTypes     = curveTypes_ref.initial;
-            numCurves = 0;
+            numDCurves = 0;
             end = 0;
 
             if (DO_STATS) {
                 curveTypesUseMark = 0;
                 curvesUseMark = 0;

@@ -1290,11 +1290,11 @@
          * Disposes this PolyStack:
          * clean up before reusing this instance
          */
         void dispose() {
             end = 0;
-            numCurves = 0;
+            numDCurves = 0;
 
             if (DO_STATS) {
                 rdrCtx.stats.stat_rdr_poly_stack_types.add(curveTypesUseMark);
                 rdrCtx.stats.stat_rdr_poly_stack_curves.add(curvesUseMark);
                 rdrCtx.stats.hist_rdr_poly_stack_curves.add(curvesUseMark);

@@ -1317,67 +1317,67 @@
                     rdrCtx.stats.stat_array_stroker_polystack_curves
                         .add(end + n);
                 }
                 curves = curves_ref.widenArray(curves, end, end + n);
             }
-            if (curveTypes.length <= numCurves) {
+            if (curveTypes.length <= numDCurves) {
                 if (DO_STATS) {
                     rdrCtx.stats.stat_array_stroker_polystack_curveTypes
-                        .add(numCurves + 1);
+                        .add(numDCurves + 1);
                 }
                 curveTypes = curveTypes_ref.widenArray(curveTypes,
-                                                       numCurves,
-                                                       numCurves + 1);
+                                                       numDCurves,
+                                                       numDCurves + 1);
             }
         }
 
-        void pushCubic(float x0, float y0,
-                       float x1, float y1,
-                       float x2, float y2)
+        void pushCubic(double x0, double y0,
+                       double x1, double y1,
+                       double x2, double y2)
         {
             ensureSpace(6);
-            curveTypes[numCurves++] = TYPE_CUBICTO;
+            curveTypes[numDCurves++] = TYPE_CUBICTO;
             // we reverse the coordinate order to make popping easier
-            final float[] _curves = curves;
+            final double[] _curves = curves;
             int e = end;
             _curves[e++] = x2;    _curves[e++] = y2;
             _curves[e++] = x1;    _curves[e++] = y1;
             _curves[e++] = x0;    _curves[e++] = y0;
             end = e;
         }
 
-        void pushQuad(float x0, float y0,
-                      float x1, float y1)
+        void pushQuad(double x0, double y0,
+                      double x1, double y1)
         {
             ensureSpace(4);
-            curveTypes[numCurves++] = TYPE_QUADTO;
-            final float[] _curves = curves;
+            curveTypes[numDCurves++] = TYPE_QUADTO;
+            final double[] _curves = curves;
             int e = end;
             _curves[e++] = x1;    _curves[e++] = y1;
             _curves[e++] = x0;    _curves[e++] = y0;
             end = e;
         }
 
-        void pushLine(float x, float y) {
+        void pushLine(double x, double y) {
             ensureSpace(2);
-            curveTypes[numCurves++] = TYPE_LINETO;
+            curveTypes[numDCurves++] = TYPE_LINETO;
             curves[end++] = x;    curves[end++] = y;
         }
 
-        void popAll(PathConsumer2D io) {
+        void popAll(DPathConsumer2D io) {
             if (DO_STATS) {
                 // update used marks:
-                if (numCurves > curveTypesUseMark) {
-                    curveTypesUseMark = numCurves;
+                if (numDCurves > curveTypesUseMark) {
+                    curveTypesUseMark = numDCurves;
                 }
                 if (end > curvesUseMark) {
                     curvesUseMark = end;
                 }
             }
             final byte[]  _curveTypes = curveTypes;
-            final float[] _curves = curves;
-            int nc = numCurves;
+            final double[] _curves = curves;
+            int nc = numDCurves;
             int e  = end;
 
             while (nc != 0) {
                 switch(_curveTypes[--nc]) {
                 case TYPE_LINETO:

@@ -1396,18 +1396,18 @@
                                _curves[e+4], _curves[e+5]);
                     continue;
                 default:
                 }
             }
-            numCurves = 0;
+            numDCurves = 0;
             end = 0;
         }
 
         @Override
         public String toString() {
             String ret = "";
-            int nc = numCurves;
+            int nc = numDCurves;
             int last = end;
             int len;
             while (nc != 0) {
                 switch(curveTypes[--nc]) {
                 case TYPE_LINETO:
< prev index next >