1 /*
   2  * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.marlin;
  27 
  28 import static com.sun.marlin.OffHeapArray.SIZE_INT;
  29 import jdk.internal.misc.Unsafe;
  30 
  31 public final class Renderer implements MarlinRenderer, MarlinConst {
  32 
  33     static final boolean DISABLE_RENDER = false;
  34 
  35     private static final int ALL_BUT_LSB = 0xFFFFFFFE;
  36     private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
  37 
  38     private static final double POWER_2_TO_32 = 0x1.0p32;
  39 
  40     // use float to make tosubpix methods faster (no int to float conversion)
  41     static final float SUBPIXEL_SCALE_X = (float) SUBPIXEL_POSITIONS_X;
  42     static final float SUBPIXEL_SCALE_Y = (float) SUBPIXEL_POSITIONS_Y;
  43     static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
  44     static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
  45 
  46     // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
  47     static final int INITIAL_BUCKET_ARRAY
  48         = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
  49 
  50     // crossing capacity = edges count / 4 ~ 1024
  51     static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2;
  52 
  53     // common to all types of input path segments.
  54     // OFFSET as bytes
  55     // only integer values:
  56     public static final long OFF_CURX_OR  = 0;
  57     public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
  58     public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
  59     public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
  60     public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
  61     public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
  62 
  63     // size of one edge in bytes
  64     public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
  65 
  66     // curve break into lines
  67     // cubic error in subpixels to decrement step
  68     private static final float CUB_DEC_ERR_SUBPIX
  69         = 1.0f * (NORM_SUBPIXELS / 8.0f); // 1 pixel
  70     // cubic error in subpixels to increment step
  71     private static final float CUB_INC_ERR_SUBPIX
  72         = 0.4f * (NORM_SUBPIXELS / 8.0f); // 0.4 pixel
  73 
  74     // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
  75 
  76     // cubic bind length to decrement step
  77     public static final float CUB_DEC_BND
  78         = 8.0f * CUB_DEC_ERR_SUBPIX;
  79     // cubic bind length to increment step
  80     public static final float CUB_INC_BND
  81         = 8.0f * CUB_INC_ERR_SUBPIX;
  82 
  83     // cubic countlg
  84     public static final int CUB_COUNT_LG = 2;
  85     // cubic count = 2^countlg
  86     private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
  87     // cubic count^2 = 4^countlg
  88     private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
  89     // cubic count^3 = 8^countlg
  90     private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
  91     // cubic dt = 1 / count
  92     private static final float CUB_INV_COUNT = 1.0f / CUB_COUNT;
  93     // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
  94     private static final float CUB_INV_COUNT_2 = 1.0f / CUB_COUNT_2;
  95     // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
  96     private static final float CUB_INV_COUNT_3 = 1.0f / CUB_COUNT_3;
  97 
  98     // quad break into lines
  99     // quadratic error in subpixels
 100     private static final float QUAD_DEC_ERR_SUBPIX
 101         = 0.5f * (NORM_SUBPIXELS / 8.0f); // 0.5 pixel
 102 
 103     // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
 104 
 105     // quadratic bind length to decrement step
 106     public static final float QUAD_DEC_BND
 107         = 8.0f * QUAD_DEC_ERR_SUBPIX;
 108 
 109 //////////////////////////////////////////////////////////////////////////////
 110 //  SCAN LINE
 111 //////////////////////////////////////////////////////////////////////////////
 112     // crossings ie subpixel edge x coordinates
 113     private int[] crossings;
 114     // auxiliary storage for crossings (merge sort)
 115     private int[] aux_crossings;
 116 
 117     // indices into the segment pointer lists. They indicate the "active"
 118     // sublist in the segment lists (the portion of the list that contains
 119     // all the segments that cross the next scan line).
 120     private int edgeCount;
 121     private int[] edgePtrs;
 122     // auxiliary storage for edge pointers (merge sort)
 123     private int[] aux_edgePtrs;
 124 
 125     // max used for both edgePtrs and crossings (stats only)
 126     private int activeEdgeMaxUsed;
 127 
 128     // crossings ref (dirty)
 129     private final IntArrayCache.Reference crossings_ref;
 130     // edgePtrs ref (dirty)
 131     private final IntArrayCache.Reference edgePtrs_ref;
 132     // merge sort initial arrays (large enough to satisfy most usages) (1024)
 133     // aux_crossings ref (dirty)
 134     private final IntArrayCache.Reference aux_crossings_ref;
 135     // aux_edgePtrs ref (dirty)
 136     private final IntArrayCache.Reference aux_edgePtrs_ref;
 137 
 138 //////////////////////////////////////////////////////////////////////////////
 139 //  EDGE LIST
 140 //////////////////////////////////////////////////////////////////////////////
 141     private int edgeMinY = Integer.MAX_VALUE;
 142     private int edgeMaxY = Integer.MIN_VALUE;
 143     private float edgeMinX = Float.POSITIVE_INFINITY;
 144     private float edgeMaxX = Float.NEGATIVE_INFINITY;
 145 
 146     // edges [ints] stored in off-heap memory
 147     private final OffHeapArray edges;
 148 
 149     private int[] edgeBuckets;
 150     private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
 151     // used range for edgeBuckets / edgeBucketCounts
 152     private int buckets_minY;
 153     private int buckets_maxY;
 154 
 155     // edgeBuckets ref (clean)
 156     private final IntArrayCache.Reference edgeBuckets_ref;
 157     // edgeBucketCounts ref (clean)
 158     private final IntArrayCache.Reference edgeBucketCounts_ref;
 159 
 160     boolean useRLE = false;
 161 
 162     // Flattens using adaptive forward differencing. This only carries out
 163     // one iteration of the AFD loop. All it does is update AFD variables (i.e.
 164     // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
 165     private void quadBreakIntoLinesAndAdd(float x0, float y0,
 166                                           final Curve c,
 167                                           final float x2, final float y2)
 168     {
 169         int count = 1; // dt = 1 / count
 170 
 171         // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
 172         float maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
 173 
 174         final float _DEC_BND = QUAD_DEC_BND;
 175 
 176         while (maxDD >= _DEC_BND) {
 177             // divide step by half:
 178             maxDD /= 4.0f; // error divided by 2^2 = 4
 179 
 180             count <<= 1;
 181             if (DO_STATS) {
 182                 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
 183             }
 184         }
 185 
 186         int nL = 0; // line count
 187         if (count > 1) {
 188             final float icount = 1.0f / count; // dt
 189             final float icount2 = icount * icount; // dt^2
 190 
 191             final float ddx = c.dbx * icount2;
 192             final float ddy = c.dby * icount2;
 193             float dx = c.bx * icount2 + c.cx * icount;
 194             float dy = c.by * icount2 + c.cy * icount;
 195 
 196             float x1, y1;
 197 
 198             while (--count > 0) {
 199                 x1 = x0 + dx;
 200                 dx += ddx;
 201                 y1 = y0 + dy;
 202                 dy += ddy;
 203 
 204                 addLine(x0, y0, x1, y1);
 205 
 206                 if (DO_STATS) { nL++; }
 207                 x0 = x1;
 208                 y0 = y1;
 209             }
 210         }
 211         addLine(x0, y0, x2, y2);
 212 
 213         if (DO_STATS) {
 214             rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1);
 215         }
 216     }
 217 
 218     // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
 219     // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
 220     // numerical errors, and our callers already have the exact values.
 221     // Another alternative would be to pass all the control points, and call
 222     // c.set here, but then too many numbers are passed around.
 223     private void curveBreakIntoLinesAndAdd(float x0, float y0,
 224                                            final Curve c,
 225                                            final float x3, final float y3)
 226     {
 227         int count           = CUB_COUNT;
 228         final float icount  = CUB_INV_COUNT;   // dt
 229         final float icount2 = CUB_INV_COUNT_2; // dt^2
 230         final float icount3 = CUB_INV_COUNT_3; // dt^3
 231 
 232         // the dx and dy refer to forward differencing variables, not the last
 233         // coefficients of the "points" polynomial
 234         float dddx, dddy, ddx, ddy, dx, dy;
 235         dddx = 2.0f * c.dax * icount3;
 236         dddy = 2.0f * c.day * icount3;
 237         ddx = dddx + c.dbx * icount2;
 238         ddy = dddy + c.dby * icount2;
 239         dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
 240         dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
 241 
 242         // we use x0, y0 to walk the line
 243         float x1 = x0, y1 = y0;
 244         int nL = 0; // line count
 245 
 246         final float _DEC_BND = CUB_DEC_BND;
 247         final float _INC_BND = CUB_INC_BND;
 248 
 249         while (count > 0) {
 250             // divide step by half:
 251             while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) {
 252                 dddx /= 8.0f;
 253                 dddy /= 8.0f;
 254                 ddx = ddx / 4.0f - dddx;
 255                 ddy = ddy / 4.0f - dddy;
 256                 dx = (dx - ddx) / 2.0f;
 257                 dy = (dy - ddy) / 2.0f;
 258 
 259                 count <<= 1;
 260                 if (DO_STATS) {
 261                     rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
 262                 }
 263             }
 264 
 265             // double step:
 266             // can only do this on even "count" values, because we must divide count by 2
 267             while (count % 2 == 0
 268                    && Math.abs(dx) + Math.abs(dy) <= _INC_BND)
 269             {
 270                 dx = 2.0f * dx + ddx;
 271                 dy = 2.0f * dy + ddy;
 272                 ddx = 4.0f * (ddx + dddx);
 273                 ddy = 4.0f * (ddy + dddy);
 274                 dddx *= 8.0f;
 275                 dddy *= 8.0f;
 276 
 277                 count >>= 1;
 278                 if (DO_STATS) {
 279                     rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
 280                 }
 281             }
 282             if (--count > 0) {
 283                 x1 += dx;
 284                 dx += ddx;
 285                 ddx += dddx;
 286                 y1 += dy;
 287                 dy += ddy;
 288                 ddy += dddy;
 289             } else {
 290                 x1 = x3;
 291                 y1 = y3;
 292             }
 293 
 294             addLine(x0, y0, x1, y1);
 295 
 296             if (DO_STATS) { nL++; }
 297             x0 = x1;
 298             y0 = y1;
 299         }
 300         if (DO_STATS) {
 301             rdrCtx.stats.stat_rdr_curveBreak.add(nL);
 302         }
 303     }
 304 
 305     private void addLine(float x1, float y1, float x2, float y2) {
 306         if (DO_MONITORS) {
 307             rdrCtx.stats.mon_rdr_addLine.start();
 308         }
 309         if (DO_STATS) {
 310             rdrCtx.stats.stat_rdr_addLine.add(1);
 311         }
 312         int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
 313         if (y2 < y1) {
 314             or = 0;
 315             float tmp = y2;
 316             y2 = y1;
 317             y1 = tmp;
 318             tmp = x2;
 319             x2 = x1;
 320             x1 = tmp;
 321         }
 322 
 323         // convert subpixel coordinates [float] into pixel positions [int]
 324 
 325         // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
 326         // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
 327         // ceil(y1) or ceil(y2)
 328         // upper integer (inclusive)
 329         final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
 330 
 331         // note: use boundsMaxY (last Y exclusive) to compute correct coverage
 332         // upper integer (exclusive)
 333         final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
 334 
 335         /* skip horizontal lines in pixel space and clip edges
 336            out of y range [boundsMinY; boundsMaxY] */
 337         if (firstCrossing >= lastCrossing) {
 338             if (DO_MONITORS) {
 339                 rdrCtx.stats.mon_rdr_addLine.stop();
 340             }
 341             if (DO_STATS) {
 342                 rdrCtx.stats.stat_rdr_addLine_skip.add(1);
 343             }
 344             return;
 345         }
 346 
 347         // edge min/max X/Y are in subpixel space (half-open interval):
 348         // note: Use integer crossings to ensure consistent range within
 349         // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
 350         if (firstCrossing < edgeMinY) {
 351             edgeMinY = firstCrossing;
 352         }
 353         if (lastCrossing > edgeMaxY) {
 354             edgeMaxY = lastCrossing;
 355         }
 356 
 357         // Use double-precision for improved accuracy:
 358         final double x1d   = x1;
 359         final double y1d   = y1;
 360         final double slope = (x1d - x2) / (y1d - y2);
 361 
 362         if (slope >= 0.0d) { // <==> x1 < x2
 363             if (x1 < edgeMinX) {
 364                 edgeMinX = x1;
 365             }
 366             if (x2 > edgeMaxX) {
 367                 edgeMaxX = x2;
 368             }
 369         } else {
 370             if (x2 < edgeMinX) {
 371                 edgeMinX = x2;
 372             }
 373             if (x1 > edgeMaxX) {
 374                 edgeMaxX = x1;
 375             }
 376         }
 377 
 378         // local variables for performance:
 379         final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
 380 
 381         final OffHeapArray _edges = edges;
 382 
 383         // get free pointer (ie length in bytes)
 384         final int edgePtr = _edges.used;
 385 
 386         // use substraction to avoid integer overflow:
 387         if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
 388             // suppose _edges.length > _SIZEOF_EDGE_BYTES
 389             // so doubling size is enough to add needed bytes
 390             // note: throw IOOB if neededSize > 2Gb:
 391             final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
 392                                         _edges.length,
 393                                         edgePtr + _SIZEOF_EDGE_BYTES);
 394 
 395             if (DO_STATS) {
 396                 rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
 397             }
 398             _edges.resize(edgeNewSize);
 399         }
 400 
 401 
 402         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 403         final long SIZE_INT = 4L;
 404         long addr   = _edges.address + edgePtr;
 405 
 406         // The x value must be bumped up to its position at the next HPC we will evaluate.
 407         // "firstcrossing" is the (sub)pixel number where the next crossing occurs
 408         // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
 409         // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
 410         // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
 411         // y1 = trueY - 0.5
 412         // trueY = y1 + 0.5
 413         // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
 414         //                             = firstcrossing - y1
 415         // The x coordinate at that HPC is then:
 416         // x1_intercept = x1 + (firstcrossing - y1) * slope
 417         // The next VPC is then given by:
 418         // VPC index = ceil(x1_intercept - 0.5), or alternately
 419         // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
 420         // epsilon is hard to pin down in floating point, but easy in fixed point, so if
 421         // we convert to fixed point then these operations get easier:
 422         // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
 423         // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
 424         //                 = fixed_floor(x1_fixed + 2^31 - 1)
 425         //                 = fixed_floor(x1_fixed + 0x7FFFFFFF)
 426         // and error       = fixed_fract(x1_fixed + 0x7FFFFFFF)
 427         final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
 428 
 429         // inlined scalb(x1_intercept, 32):
 430         final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
 431                                      + 0x7FFFFFFFL;
 432         // curx:
 433         // last bit corresponds to the orientation
 434         _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
 435         addr += SIZE_INT;
 436         _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
 437         addr += SIZE_INT;
 438 
 439         // inlined scalb(slope, 32):
 440         final long slope_fixed = (long) (POWER_2_TO_32 * slope);
 441 
 442         // last bit set to 0 to keep orientation:
 443         _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
 444         addr += SIZE_INT;
 445         _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
 446         addr += SIZE_INT;
 447 
 448         final int[] _edgeBuckets      = edgeBuckets;
 449         final int[] _edgeBucketCounts = edgeBucketCounts;
 450 
 451         final int _boundsMinY = boundsMinY;
 452 
 453         // each bucket is a linked list. this method adds ptr to the
 454         // start of the "bucket"th linked list.
 455         final int bucketIdx = firstCrossing - _boundsMinY;
 456 
 457         // pointer from bucket
 458         _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
 459         addr += SIZE_INT;
 460         // y max (exclusive)
 461         _unsafe.putInt(addr,  lastCrossing);
 462 
 463         // Update buckets:
 464         // directly the edge struct "pointer"
 465         _edgeBuckets[bucketIdx]       = edgePtr;
 466         _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
 467         // last bit means edge end
 468         _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
 469 
 470         // update free pointer (ie length in bytes)
 471         _edges.used += _SIZEOF_EDGE_BYTES;
 472 
 473         if (DO_MONITORS) {
 474             rdrCtx.stats.mon_rdr_addLine.stop();
 475         }
 476     }
 477 
 478 // END EDGE LIST
 479 //////////////////////////////////////////////////////////////////////////////
 480 
 481     // Bounds of the drawing region, at subpixel precision.
 482     private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
 483 
 484     // Current winding rule
 485     private int windingRule;
 486 
 487     // Current drawing position, i.e., final point of last segment
 488     private float x0, y0;
 489 
 490     // Position of most recent 'moveTo' command
 491     private float sx0, sy0;
 492 
 493     // per-thread renderer context
 494     final RendererContext rdrCtx;
 495     // dirty curve
 496     private final Curve curve;
 497 
 498     // clean alpha array (zero filled)
 499     private int[] alphaLine;
 500 
 501     // alphaLine ref (clean)
 502     private final IntArrayCache.Reference alphaLine_ref;
 503 
 504     private boolean enableBlkFlags = false;
 505     private boolean prevUseBlkFlags = false;
 506 
 507     /* block flags (0|1) */
 508     private int[] blkFlags;
 509 
 510     // blkFlags ref (clean)
 511     private final IntArrayCache.Reference blkFlags_ref;
 512 
 513     Renderer(final RendererContext rdrCtx) {
 514         this.rdrCtx = rdrCtx;
 515 
 516         this.edges = rdrCtx.newOffHeapArray(INITIAL_EDGES_CAPACITY); // 96K
 517 
 518         this.curve = rdrCtx.curve;
 519 
 520         edgeBuckets_ref      = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
 521         edgeBucketCounts_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
 522 
 523         edgeBuckets      = edgeBuckets_ref.initial;
 524         edgeBucketCounts = edgeBucketCounts_ref.initial;
 525 
 526         // 2048 (pixelsize) pixel large
 527         alphaLine_ref = rdrCtx.newCleanIntArrayRef(INITIAL_AA_ARRAY); // 8K
 528         alphaLine     = alphaLine_ref.initial;
 529 
 530         crossings_ref     = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 531         aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 532         edgePtrs_ref      = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 533         aux_edgePtrs_ref  = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 534 
 535         crossings     = crossings_ref.initial;
 536         aux_crossings = aux_crossings_ref.initial;
 537         edgePtrs      = edgePtrs_ref.initial;
 538         aux_edgePtrs  = aux_edgePtrs_ref.initial;
 539 
 540         blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line
 541         blkFlags     = blkFlags_ref.initial;
 542     }
 543 
 544     public Renderer init(final int pix_boundsX, final int pix_boundsY,
 545                   final int pix_boundsWidth, final int pix_boundsHeight,
 546                   final int windingRule)
 547     {
 548         this.windingRule = windingRule;
 549 
 550         // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 551         this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
 552         this.boundsMaxX =
 553             (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
 554         this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
 555         this.boundsMaxY =
 556             (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
 557 
 558         if (DO_LOG_BOUNDS) {
 559             MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
 560                                 + boundsMaxX + "[ [" + boundsMinY + " ... "
 561                                 + boundsMaxY + "[");
 562         }
 563 
 564         // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
 565         // +1 for edgeBucketCounts
 566         final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
 567 
 568         if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
 569             if (DO_STATS) {
 570                 rdrCtx.stats.stat_array_renderer_edgeBuckets
 571                     .add(edgeBucketsLength);
 572                 rdrCtx.stats.stat_array_renderer_edgeBucketCounts
 573                     .add(edgeBucketsLength);
 574             }
 575             edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
 576             edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
 577         }
 578 
 579         edgeMinY = Integer.MAX_VALUE;
 580         edgeMaxY = Integer.MIN_VALUE;
 581         edgeMinX = Float.POSITIVE_INFINITY;
 582         edgeMaxX = Float.NEGATIVE_INFINITY;
 583 
 584         // reset used mark:
 585         edgeCount = 0;
 586         activeEdgeMaxUsed = 0;
 587         edges.used = 0;
 588 
 589         // reset bbox:
 590         bboxX0 = 0;
 591         bboxX1 = 0;
 592 
 593         return this; // fluent API
 594     }
 595 
 596     /**
 597      * Disposes this renderer and recycle it clean up before reusing this instance
 598      */
 599     public void dispose() {
 600         if (DO_STATS) {
 601             rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
 602             rdrCtx.stats.stat_rdr_edges.add(edges.used);
 603             rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 604             rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 605             rdrCtx.stats.totalOffHeap += edges.length;
 606         }
 607         // Return arrays:
 608         crossings = crossings_ref.putArray(crossings);
 609         aux_crossings = aux_crossings_ref.putArray(aux_crossings);
 610 
 611         edgePtrs = edgePtrs_ref.putArray(edgePtrs);
 612         aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
 613 
 614         alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
 615         blkFlags  = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
 616 
 617         if (edgeMinY != Integer.MAX_VALUE) {
 618             // if context is maked as DIRTY:
 619             if (rdrCtx.dirty) {
 620                 // may happen if an exception if thrown in the pipeline processing:
 621                 // clear completely buckets arrays:
 622                 buckets_minY = 0;
 623                 buckets_maxY = boundsMaxY - boundsMinY;
 624             }
 625             // clear only used part
 626             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
 627                                                                 buckets_maxY);
 628             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
 629                                                              buckets_minY,
 630                                                              buckets_maxY + 1);
 631         } else {
 632             // unused arrays
 633             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
 634             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
 635         }
 636 
 637         // At last: resize back off-heap edges to initial size
 638         if (edges.length != INITIAL_EDGES_CAPACITY) {
 639             // note: may throw OOME:
 640             edges.resize(INITIAL_EDGES_CAPACITY);
 641         }
 642         if (DO_CLEAN_DIRTY) {
 643             // Force zero-fill dirty arrays:
 644             edges.fill(BYTE_0);
 645         }
 646         if (DO_MONITORS) {
 647             rdrCtx.stats.mon_rdr_endRendering.stop();
 648         }
 649     }
 650 
 651     private static float tosubpixx(final float pix_x) {
 652         return SUBPIXEL_SCALE_X * pix_x;
 653     }
 654 
 655     private static float tosubpixy(final float pix_y) {
 656         // shift y by -0.5 for fast ceil(y - 0.5):
 657         return SUBPIXEL_SCALE_Y * pix_y - 0.5f;
 658     }
 659 
 660     @Override
 661     public void moveTo(float pix_x0, float pix_y0) {
 662         closePath();
 663         final float sx = tosubpixx(pix_x0);
 664         final float sy = tosubpixy(pix_y0);
 665         this.sx0 = sx;
 666         this.sy0 = sy;
 667         this.x0 = sx;
 668         this.y0 = sy;
 669     }
 670 
 671     @Override
 672     public void lineTo(float pix_x1, float pix_y1) {
 673         final float x1 = tosubpixx(pix_x1);
 674         final float y1 = tosubpixy(pix_y1);
 675         addLine(x0, y0, x1, y1);
 676         x0 = x1;
 677         y0 = y1;
 678     }
 679 
 680     @Override
 681     public void curveTo(float x1, float y1,
 682             float x2, float y2,
 683             float x3, float y3)
 684     {
 685         final float xe = tosubpixx(x3);
 686         final float ye = tosubpixy(y3);
 687         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
 688                           tosubpixx(x2), tosubpixy(y2), xe, ye);
 689         curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 690         x0 = xe;
 691         y0 = ye;
 692     }
 693 
 694     @Override
 695     public void quadTo(float x1, float y1, float x2, float y2) {
 696         final float xe = tosubpixx(x2);
 697         final float ye = tosubpixy(y2);
 698         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
 699         quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 700         x0 = xe;
 701         y0 = ye;
 702     }
 703 
 704     @Override
 705     public void closePath() {
 706         addLine(x0, y0, sx0, sy0);
 707         x0 = sx0;
 708         y0 = sy0;
 709     }
 710 
 711     @Override
 712     public void pathDone() {
 713         closePath();
 714 
 715         // call endRendering() to determine the boundaries:
 716         endRendering();
 717     }
 718 
 719     private void _endRendering(final int ymin, final int ymax,
 720                                final MarlinAlphaConsumer ac)
 721     {
 722         if (DISABLE_RENDER) {
 723             return;
 724         }
 725 
 726         // Get X bounds as true pixel boundaries to compute correct pixel coverage:
 727         final int bboxx0 = bbox_spminX;
 728         final int bboxx1 = bbox_spmaxX;
 729 
 730         final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
 731 
 732         // Useful when processing tile line by tile line
 733         final int[] _alpha = alphaLine;
 734 
 735         // local vars (performance):
 736         final OffHeapArray _edges = edges;
 737         final int[] _edgeBuckets = edgeBuckets;
 738         final int[] _edgeBucketCounts = edgeBucketCounts;
 739 
 740         int[] _crossings = this.crossings;
 741         int[] _edgePtrs  = this.edgePtrs;
 742 
 743         // merge sort auxiliary storage:
 744         int[] _aux_crossings = this.aux_crossings;
 745         int[] _aux_edgePtrs  = this.aux_edgePtrs;
 746 
 747         // copy constants:
 748         final long _OFF_ERROR    = OFF_ERROR;
 749         final long _OFF_BUMP_X   = OFF_BUMP_X;
 750         final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
 751 
 752         final long _OFF_NEXT     = OFF_NEXT;
 753         final long _OFF_YMAX     = OFF_YMAX;
 754 
 755         final int _ALL_BUT_LSB   = ALL_BUT_LSB;
 756         final int _ERR_STEP_MAX  = ERR_STEP_MAX;
 757 
 758         // unsafe I/O:
 759         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 760         final long    addr0  = _edges.address;
 761         long addr;
 762         final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
 763         final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
 764         final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
 765         final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
 766         final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
 767 
 768         final int _MIN_VALUE = Integer.MIN_VALUE;
 769         final int _MAX_VALUE = Integer.MAX_VALUE;
 770 
 771         // Now we iterate through the scanlines. We must tell emitRow the coord
 772         // of the first non-transparent pixel, so we must keep accumulators for
 773         // the first and last pixels of the section of the current pixel row
 774         // that we will emit.
 775         // We also need to accumulate pix_bbox, but the iterator does it
 776         // for us. We will just get the values from it once this loop is done
 777         int minX = _MAX_VALUE;
 778         int maxX = _MIN_VALUE;
 779 
 780         int y = ymin;
 781         int bucket = y - boundsMinY;
 782 
 783         int numCrossings = this.edgeCount;
 784         int edgePtrsLen = _edgePtrs.length;
 785         int crossingsLen = _crossings.length;
 786         int _arrayMaxUsed = activeEdgeMaxUsed;
 787         int ptrLen = 0, newCount, ptrEnd;
 788 
 789         int bucketcount, i, j, ecur;
 790         int cross, lastCross;
 791         int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
 792         int pix_x, pix_xmaxm1, pix_xmax;
 793 
 794         int low, high, mid, prevNumCrossings;
 795         boolean useBinarySearch;
 796 
 797         final int[] _blkFlags = blkFlags;
 798         final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
 799         final int _BLK_SIZE = BLOCK_SIZE;
 800 
 801         final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
 802 
 803         // Use block flags if large pixel span and few crossings:
 804         // ie mean(distance between crossings) is high
 805         boolean useBlkFlags = this.prevUseBlkFlags;
 806 
 807         final int stroking = rdrCtx.stroking;
 808 
 809         int lastY = -1; // last emited row
 810 
 811 
 812         // Iteration on scanlines
 813         for (; y < ymax; y++, bucket++) {
 814             // --- from former ScanLineIterator.next()
 815             bucketcount = _edgeBucketCounts[bucket];
 816 
 817             // marker on previously sorted edges:
 818             prevNumCrossings = numCrossings;
 819 
 820             // bucketCount indicates new edge / edge end:
 821             if (bucketcount != 0) {
 822                 if (DO_STATS) {
 823                     rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings);
 824                 }
 825 
 826                 // last bit set to 1 means that edges ends
 827                 if ((bucketcount & 0x1) != 0) {
 828                     // eviction in active edge list
 829                     // cache edges[] address + offset
 830                     addr = addr0 + _OFF_YMAX;
 831 
 832                     for (i = 0, newCount = 0; i < numCrossings; i++) {
 833                         // get the pointer to the edge
 834                         ecur = _edgePtrs[i];
 835                         // random access so use unsafe:
 836                         if (_unsafe.getInt(addr + ecur) > y) {
 837                             _edgePtrs[newCount++] = ecur;
 838                         }
 839                     }
 840                     // update marker on sorted edges minus removed edges:
 841                     prevNumCrossings = numCrossings = newCount;
 842                 }
 843 
 844                 ptrLen = bucketcount >> 1; // number of new edge
 845 
 846                 if (ptrLen != 0) {
 847                     if (DO_STATS) {
 848                         rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
 849                         if (ptrLen > 10) {
 850                             rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
 851                         }
 852                     }
 853                     ptrEnd = numCrossings + ptrLen;
 854 
 855                     if (edgePtrsLen < ptrEnd) {
 856                         if (DO_STATS) {
 857                             rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
 858                         }
 859                         this.edgePtrs = _edgePtrs
 860                             = edgePtrs_ref.widenArray(_edgePtrs, numCrossings,
 861                                                       ptrEnd);
 862 
 863                         edgePtrsLen = _edgePtrs.length;
 864                         // Get larger auxiliary storage:
 865                         aux_edgePtrs_ref.putArray(_aux_edgePtrs);
 866 
 867                         // use ArrayCache.getNewSize() to use the same growing
 868                         // factor than widenArray():
 869                         if (DO_STATS) {
 870                             rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
 871                         }
 872                         this.aux_edgePtrs = _aux_edgePtrs
 873                             = aux_edgePtrs_ref.getArray(
 874                                 ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
 875                             );
 876                     }
 877 
 878                     // cache edges[] address + offset
 879                     addr = addr0 + _OFF_NEXT;
 880 
 881                     // add new edges to active edge list:
 882                     for (ecur = _edgeBuckets[bucket];
 883                          numCrossings < ptrEnd; numCrossings++)
 884                     {
 885                         // store the pointer to the edge
 886                         _edgePtrs[numCrossings] = ecur;
 887                         // random access so use unsafe:
 888                         ecur = _unsafe.getInt(addr + ecur);
 889                     }
 890 
 891                     if (crossingsLen < numCrossings) {
 892                         // Get larger array:
 893                         crossings_ref.putArray(_crossings);
 894 
 895                         if (DO_STATS) {
 896                             rdrCtx.stats.stat_array_renderer_crossings
 897                                 .add(numCrossings);
 898                         }
 899                         this.crossings = _crossings
 900                             = crossings_ref.getArray(numCrossings);
 901 
 902                         // Get larger auxiliary storage:
 903                         aux_crossings_ref.putArray(_aux_crossings);
 904 
 905                         if (DO_STATS) {
 906                             rdrCtx.stats.stat_array_renderer_aux_crossings
 907                                 .add(numCrossings);
 908                         }
 909                         this.aux_crossings = _aux_crossings
 910                             = aux_crossings_ref.getArray(numCrossings);
 911 
 912                         crossingsLen = _crossings.length;
 913                     }
 914                     if (DO_STATS) {
 915                         // update max used mark
 916                         if (numCrossings > _arrayMaxUsed) {
 917                             _arrayMaxUsed = numCrossings;
 918                         }
 919                     }
 920                 } // ptrLen != 0
 921             } // bucketCount != 0
 922 
 923 
 924             if (numCrossings != 0) {
 925                 /*
 926                  * thresholds to switch to optimized merge sort
 927                  * for newly added edges + final merge pass.
 928                  */
 929                 if ((ptrLen < 10) || (numCrossings < 40)) {
 930                     if (DO_STATS) {
 931                         rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
 932                         rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
 933                     }
 934 
 935                     /*
 936                      * threshold to use binary insertion sort instead of
 937                      * straight insertion sort (to reduce minimize comparisons).
 938                      */
 939                     useBinarySearch = (numCrossings >= 20);
 940 
 941                     // if small enough:
 942                     lastCross = _MIN_VALUE;
 943 
 944                     for (i = 0; i < numCrossings; i++) {
 945                         // get the pointer to the edge
 946                         ecur = _edgePtrs[i];
 947 
 948                         /* convert subpixel coordinates into pixel
 949                             positions for coming scanline */
 950                         /* note: it is faster to always update edges even
 951                            if it is removed from AEL for coming or last scanline */
 952 
 953                         // random access so use unsafe:
 954                         addr = addr0 + ecur; // ecur + OFF_F_CURX
 955 
 956                         // get current crossing:
 957                         curx = _unsafe.getInt(addr);
 958 
 959                         // update crossing with orientation at last bit:
 960                         cross = curx;
 961 
 962                         // Increment x using DDA (fixed point):
 963                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
 964 
 965                         // Increment error:
 966                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
 967                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
 968 
 969                         // Manual carry handling:
 970                         // keep sign and carry bit only and ignore last bit (preserve orientation):
 971                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
 972                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
 973 
 974                         if (DO_STATS) {
 975                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
 976                         }
 977 
 978                         // insertion sort of crossings:
 979                         if (cross < lastCross) {
 980                             if (DO_STATS) {
 981                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
 982                             }
 983 
 984                             /* use binary search for newly added edges
 985                                in crossings if arrays are large enough */
 986                             if (useBinarySearch && (i >= prevNumCrossings)) {
 987                                 if (DO_STATS) {
 988                                     rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
 989                                 }
 990                                 low = 0;
 991                                 high = i - 1;
 992 
 993                                 do {
 994                                     // note: use signed shift (not >>>) for performance
 995                                     // as indices are small enough to exceed Integer.MAX_VALUE
 996                                     mid = (low + high) >> 1;
 997 
 998                                     if (_crossings[mid] < cross) {
 999                                         low = mid + 1;
1000                                     } else {
1001                                         high = mid - 1;
1002                                     }
1003                                 } while (low <= high);
1004 
1005                                 for (j = i - 1; j >= low; j--) {
1006                                     _crossings[j + 1] = _crossings[j];
1007                                     _edgePtrs [j + 1] = _edgePtrs[j];
1008                                 }
1009                                 _crossings[low] = cross;
1010                                 _edgePtrs [low] = ecur;
1011 
1012                             } else {
1013                                 j = i - 1;
1014                                 _crossings[i] = _crossings[j];
1015                                 _edgePtrs[i] = _edgePtrs[j];
1016 
1017                                 while ((--j >= 0) && (_crossings[j] > cross)) {
1018                                     _crossings[j + 1] = _crossings[j];
1019                                     _edgePtrs [j + 1] = _edgePtrs[j];
1020                                 }
1021                                 _crossings[j + 1] = cross;
1022                                 _edgePtrs [j + 1] = ecur;
1023                             }
1024 
1025                         } else {
1026                             _crossings[i] = lastCross = cross;
1027                         }
1028                     }
1029                 } else {
1030                     if (DO_STATS) {
1031                         rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1032                         rdrCtx.stats.hist_rdr_crossings_ratio
1033                             .add((1000 * ptrLen) / numCrossings);
1034                         rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1035                         rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1036                     }
1037 
1038                     // Copy sorted data in auxiliary arrays
1039                     // and perform insertion sort on almost sorted data
1040                     // (ie i < prevNumCrossings):
1041 
1042                     lastCross = _MIN_VALUE;
1043 
1044                     for (i = 0; i < numCrossings; i++) {
1045                         // get the pointer to the edge
1046                         ecur = _edgePtrs[i];
1047 
1048                         /* convert subpixel coordinates into pixel
1049                             positions for coming scanline */
1050                         /* note: it is faster to always update edges even
1051                            if it is removed from AEL for coming or last scanline */
1052 
1053                         // random access so use unsafe:
1054                         addr = addr0 + ecur; // ecur + OFF_F_CURX
1055 
1056                         // get current crossing:
1057                         curx = _unsafe.getInt(addr);
1058 
1059                         // update crossing with orientation at last bit:
1060                         cross = curx;
1061 
1062                         // Increment x using DDA (fixed point):
1063                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1064 
1065                         // Increment error:
1066                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
1067                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1068 
1069                         // Manual carry handling:
1070                         // keep sign and carry bit only and ignore last bit (preserve orientation):
1071                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1072                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1073 
1074                         if (DO_STATS) {
1075                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
1076                         }
1077 
1078                         if (i >= prevNumCrossings) {
1079                             // simply store crossing as edgePtrs is in-place:
1080                             // will be copied and sorted efficiently by mergesort later:
1081                             _crossings[i]     = cross;
1082 
1083                         } else if (cross < lastCross) {
1084                             if (DO_STATS) {
1085                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
1086                             }
1087 
1088                             // (straight) insertion sort of crossings:
1089                             j = i - 1;
1090                             _aux_crossings[i] = _aux_crossings[j];
1091                             _aux_edgePtrs[i] = _aux_edgePtrs[j];
1092 
1093                             while ((--j >= 0) && (_aux_crossings[j] > cross)) {
1094                                 _aux_crossings[j + 1] = _aux_crossings[j];
1095                                 _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
1096                             }
1097                             _aux_crossings[j + 1] = cross;
1098                             _aux_edgePtrs [j + 1] = ecur;
1099 
1100                         } else {
1101                             // auxiliary storage:
1102                             _aux_crossings[i] = lastCross = cross;
1103                             _aux_edgePtrs [i] = ecur;
1104                         }
1105                     }
1106 
1107                     // use Mergesort using auxiliary arrays (sort only right part)
1108                     MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
1109                                               _aux_crossings, _aux_edgePtrs,
1110                                               numCrossings,   prevNumCrossings);
1111                 }
1112 
1113                 // reset ptrLen
1114                 ptrLen = 0;
1115                 // --- from former ScanLineIterator.next()
1116 
1117 
1118                 /* note: bboxx0 and bboxx1 must be pixel boundaries
1119                    to have correct coverage computation */
1120 
1121                 // right shift on crossings to get the x-coordinate:
1122                 curxo = _crossings[0];
1123                 x0    = curxo >> 1;
1124                 if (x0 < minX) {
1125                     minX = x0; // subpixel coordinate
1126                 }
1127 
1128                 x1 = _crossings[numCrossings - 1] >> 1;
1129                 if (x1 > maxX) {
1130                     maxX = x1; // subpixel coordinate
1131                 }
1132 
1133 
1134                 // compute pixel coverages
1135                 prev = curx = x0;
1136                 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1137                 // last bit contains orientation (0 or 1)
1138                 crorientation = ((curxo & 0x1) << 1) - 1;
1139 
1140                 if (windingRuleEvenOdd) {
1141                     sum = crorientation;
1142 
1143                     // Even Odd winding rule: take care of mask ie sum(orientations)
1144                     for (i = 1; i < numCrossings; i++) {
1145                         curxo = _crossings[i];
1146                         curx  =  curxo >> 1;
1147                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1148                         // last bit contains orientation (0 or 1)
1149                         crorientation = ((curxo & 0x1) << 1) - 1;
1150 
1151                         if ((sum & 0x1) != 0) {
1152                             // TODO: perform line clipping on left-right sides
1153                             // to avoid such bound checks:
1154                             x0 = (prev > bboxx0) ? prev : bboxx0;
1155 
1156                             if (curx < bboxx1) {
1157                                 x1 = curx;
1158                             } else {
1159                                 x1 = bboxx1;
1160                                 // skip right side (fast exit loop):
1161                                 i = numCrossings;
1162                             }
1163 
1164                             if (x0 < x1) {
1165                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1166                                 x1 -= bboxx0; // in the alpha array.
1167 
1168                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1169                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1170 
1171                                 if (pix_x == pix_xmaxm1) {
1172                                     // Start and end in same pixel
1173                                     tmp = (x1 - x0); // number of subpixels
1174                                     _alpha[pix_x    ] += tmp;
1175                                     _alpha[pix_x + 1] -= tmp;
1176 
1177                                     if (useBlkFlags) {
1178                                         // flag used blocks:
1179                                         // note: block processing handles extra pixel:
1180                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1181                                     }
1182                                 } else {
1183                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1184                                     _alpha[pix_x    ]
1185                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1186                                     _alpha[pix_x + 1]
1187                                         += tmp;
1188 
1189                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1190 
1191                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1192                                     _alpha[pix_xmax    ]
1193                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1194                                     _alpha[pix_xmax + 1]
1195                                         -= tmp;
1196 
1197                                     if (useBlkFlags) {
1198                                         // flag used blocks:
1199                                         // note: block processing handles extra pixel:
1200                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1201                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1202                                     }
1203                                 }
1204                             }
1205                         }
1206 
1207                         sum += crorientation;
1208                         prev = curx;
1209                     }
1210                 } else {
1211                     // Non-zero winding rule: optimize that case (default)
1212                     // and avoid processing intermediate crossings
1213                     for (i = 1, sum = 0;; i++) {
1214                         sum += crorientation;
1215 
1216                         if (sum != 0) {
1217                             // prev = min(curx)
1218                             if (prev > curx) {
1219                                 prev = curx;
1220                             }
1221                         } else {
1222                             // TODO: perform line clipping on left-right sides
1223                             // to avoid such bound checks:
1224                             x0 = (prev > bboxx0) ? prev : bboxx0;
1225 
1226                             if (curx < bboxx1) {
1227                                 x1 = curx;
1228                             } else {
1229                                 x1 = bboxx1;
1230                                 // skip right side (fast exit loop):
1231                                 i = numCrossings;
1232                             }
1233 
1234                             if (x0 < x1) {
1235                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1236                                 x1 -= bboxx0; // in the alpha array.
1237 
1238                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1239                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1240 
1241                                 if (pix_x == pix_xmaxm1) {
1242                                     // Start and end in same pixel
1243                                     tmp = (x1 - x0); // number of subpixels
1244                                     _alpha[pix_x    ] += tmp;
1245                                     _alpha[pix_x + 1] -= tmp;
1246 
1247                                     if (useBlkFlags) {
1248                                         // flag used blocks:
1249                                         // note: block processing handles extra pixel:
1250                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1251                                     }
1252                                 } else {
1253                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1254                                     _alpha[pix_x    ]
1255                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1256                                     _alpha[pix_x + 1]
1257                                         += tmp;
1258 
1259                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1260 
1261                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1262                                     _alpha[pix_xmax    ]
1263                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1264                                     _alpha[pix_xmax + 1]
1265                                         -= tmp;
1266 
1267                                     if (useBlkFlags) {
1268                                         // flag used blocks:
1269                                         // note: block processing handles extra pixel:
1270                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1271                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1272                                     }
1273                                 }
1274                             }
1275                             prev = _MAX_VALUE;
1276                         }
1277 
1278                         if (i == numCrossings) {
1279                             break;
1280                         }
1281 
1282                         curxo = _crossings[i];
1283                         curx  =  curxo >> 1;
1284                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1285                         // last bit contains orientation (0 or 1)
1286                         crorientation = ((curxo & 0x1) << 1) - 1;
1287                     }
1288                 }
1289             } // numCrossings > 0
1290 
1291             // even if this last row had no crossings, alpha will be zeroed
1292             // from the last emitRow call. But this doesn't matter because
1293             // maxX < minX, so no row will be emitted to the AlphaConsumer.
1294             if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1295                 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1296 
1297                 // convert subpixel to pixel coordinate within boundaries:
1298                 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1299                 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1300 
1301                 if (maxX >= minX) {
1302                     // note: alpha array will be zeroed by copyAARow()
1303                     // +1 because alpha [pix_minX; pix_maxX[
1304                     // fix range [x0; x1[
1305                     // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1306                     // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
1307                     // (normally so never cleared below)
1308                     copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags, ac);
1309 
1310                     // speculative for next pixel row (scanline coherence):
1311                     if (_enableBlkFlagsHeuristics) {
1312                         // Use block flags if large pixel span and few crossings:
1313                         // ie mean(distance between crossings) is larger than
1314                         // 1 block size;
1315 
1316                         // fast check width:
1317                         maxX -= minX;
1318 
1319                         // if stroking: numCrossings /= 2
1320                         // => shift numCrossings by 1
1321                         // condition = (width / (numCrossings - 1)) > blockSize
1322                         useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1323                             (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1324 
1325                         if (DO_STATS) {
1326                             tmp = FloatMath.max(1,
1327                                     ((numCrossings >> stroking) - 1));
1328                             rdrCtx.stats.hist_tile_generator_encoding_dist
1329                                 .add(maxX / tmp);
1330                         }
1331                     }
1332                 } else {
1333                     ac.clearAlphas(lastY);
1334                 }
1335                 minX = _MAX_VALUE;
1336                 maxX = _MIN_VALUE;
1337             }
1338         } // scan line iterator
1339 
1340         // Emit final row
1341         y--;
1342         y >>= _SUBPIXEL_LG_POSITIONS_Y;
1343 
1344         // convert subpixel to pixel coordinate within boundaries:
1345         minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1346         maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1347 
1348         if (maxX >= minX) {
1349             // note: alpha array will be zeroed by copyAARow()
1350             // +1 because alpha [pix_minX; pix_maxX[
1351             // fix range [x0; x1[
1352             // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1353             // inclusive: alpha[bboxx1] ignored then cleared and
1354             // alpha[bboxx1+1] == 0 (normally so never cleared after)
1355             copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags, ac);
1356         } else if (y != lastY) {
1357             ac.clearAlphas(y);
1358         }
1359 
1360         // update member:
1361         edgeCount = numCrossings;
1362         prevUseBlkFlags = useBlkFlags;
1363 
1364         if (DO_STATS) {
1365             // update max used mark
1366             activeEdgeMaxUsed = _arrayMaxUsed;
1367         }
1368     }
1369 
1370     void endRendering() {
1371         if (DO_MONITORS) {
1372             rdrCtx.stats.mon_rdr_endRendering.start();
1373         }
1374         if (edgeMinY == Integer.MAX_VALUE) {
1375             return; // undefined edges bounds
1376         }
1377 
1378         // bounds as half-open intervals
1379         final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
1380         final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX);
1381 
1382         // edge Min/Max Y are already rounded to subpixels within bounds:
1383         final int spminY = edgeMinY;
1384         final int spmaxY = edgeMaxY;
1385 
1386         buckets_minY = spminY - boundsMinY;
1387         buckets_maxY = spmaxY - boundsMinY;
1388 
1389         if (DO_LOG_BOUNDS) {
1390             MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1391                                 + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
1392             MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1393                                 + "[ [" + spminY + " ... " + spmaxY + "[");
1394         }
1395 
1396         // test clipping for shapes out of bounds
1397         if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
1398             return;
1399         }
1400 
1401         // half open intervals
1402         // inclusive:
1403         final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1404         // exclusive:
1405         final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1406         // inclusive:
1407         final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1408         // exclusive:
1409         final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1410 
1411         // store BBox to answer ptg.getBBox():
1412         initConsumer(pminX, pminY, pmaxX, pmaxY);
1413 
1414         // Heuristics for using block flags:
1415         if (ENABLE_BLOCK_FLAGS) {
1416             enableBlkFlags = this.useRLE;
1417             prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1418 
1419             if (enableBlkFlags) {
1420                 // ensure blockFlags array is large enough:
1421                 // note: +2 to ensure enough space left at end
1422                 final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
1423                 if (blkLen > INITIAL_ARRAY) {
1424                     blkFlags = blkFlags_ref.getArray(blkLen);
1425                 }
1426             }
1427         }
1428 
1429         // memorize the rendering bounding box:
1430         /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1431            to have correct coverage computation */
1432         // inclusive:
1433         bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1434         // exclusive:
1435         bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1436         // inclusive:
1437         bbox_spminY = spminY;
1438         // exclusive:
1439         bbox_spmaxY = spmaxY;
1440 
1441         if (DO_LOG_BOUNDS) {
1442             MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1443                                 + "[ [" + pminY + " ... " + pmaxY + "[");
1444             MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1445                                 + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1446                                 + bbox_spmaxY + "[");
1447         }
1448 
1449         // Prepare alpha line:
1450         // add 2 to better deal with the last pixel in a pixel row.
1451         final int width = (pmaxX - pminX) + 2;
1452 
1453         // Useful when processing tile line by tile line
1454         if (width > INITIAL_AA_ARRAY) {
1455             if (DO_STATS) {
1456                 rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1457             }
1458             alphaLine = alphaLine_ref.getArray(width);
1459         }
1460     }
1461 
1462     void initConsumer(int minx, int miny, int maxx, int maxy)
1463     {
1464         // assert maxy >= miny && maxx >= minx;
1465         bboxX0 = minx;
1466         bboxX1 = maxx;
1467         bboxY0 = miny;
1468         bboxY1 = maxy;
1469 
1470         final int width = (maxx - minx);
1471 
1472         if (FORCE_NO_RLE) {
1473             useRLE = false;
1474         } else if (FORCE_RLE) {
1475             useRLE = true;
1476         } else {
1477             // heuristics: use both bbox area and complexity
1478             // ie number of primitives:
1479 
1480             // fast check min width:
1481             if (width <= RLE_MIN_WIDTH) {
1482                 useRLE = false;
1483             } else {
1484                 useRLE = true;
1485             }
1486         }
1487     }
1488 
1489     private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
1490 
1491     public void produceAlphas(final MarlinAlphaConsumer ac) {
1492         ac.setMaxAlpha(MAX_AA_ALPHA);
1493 
1494         if (enableBlkFlags && !ac.supportBlockFlags()) {
1495             // consumer does not support block flag optimization:
1496             enableBlkFlags = false;
1497             prevUseBlkFlags = false;
1498         }
1499 
1500         if (DO_MONITORS) {
1501             rdrCtx.stats.mon_rdr_endRendering_Y.start();
1502         }
1503 
1504         // Process all scan lines:
1505         _endRendering(bbox_spminY, bbox_spmaxY, ac);
1506 
1507         if (DO_MONITORS) {
1508             rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1509         }
1510     }
1511 
1512     void copyAARow(final int[] alphaRow,
1513                    final int pix_y, final int pix_from, final int pix_to,
1514                    final boolean useBlockFlags,
1515                    final MarlinAlphaConsumer ac)
1516     {
1517         if (DO_MONITORS) {
1518             rdrCtx.stats.mon_rdr_copyAARow.start();
1519         }
1520         if (DO_STATS) {
1521             rdrCtx.stats.stat_cache_rowAA.add(pix_to - pix_from);
1522         }
1523 
1524         if (useBlockFlags) {
1525             if (DO_STATS) {
1526                 rdrCtx.stats.hist_tile_generator_encoding.add(1);
1527             }
1528             ac.setAndClearRelativeAlphas(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1529         } else {
1530             if (DO_STATS) {
1531                 rdrCtx.stats.hist_tile_generator_encoding.add(0);
1532             }
1533             ac.setAndClearRelativeAlphas(alphaRow, pix_y, pix_from, pix_to);
1534         }
1535         if (DO_MONITORS) {
1536             rdrCtx.stats.mon_rdr_copyAARow.stop();
1537         }
1538     }
1539 
1540     // output pixel bounding box:
1541     int bboxX0, bboxX1, bboxY0, bboxY1;
1542 
1543     @Override
1544     public int getOutpixMinX() {
1545         return bboxX0;
1546     }
1547 
1548     @Override
1549     public int getOutpixMaxX() {
1550         return bboxX1;
1551     }
1552 
1553     @Override
1554     public int getOutpixMinY() {
1555         return bboxY0;
1556     }
1557 
1558     @Override
1559     public int getOutpixMaxY() {
1560         return bboxY1;
1561     }
1562 }