1 /*
   2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.marlin;
  27 
  28 import static com.sun.marlin.OffHeapArray.SIZE_INT;
  29 import sun.misc.Unsafe;
  30 
  31 public final class DRenderer implements DMarlinRenderer, MarlinConst {
  32 
  33     static final boolean DISABLE_RENDER = false;
  34 
  35     private static final int ALL_BUT_LSB = 0xFFFFFFFE;
  36     private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
  37 
  38     private static final double POWER_2_TO_32 = 0x1.0p32d;
  39 
  40     // use double to make tosubpix methods faster (no int to double conversion)
  41     static final double SUBPIXEL_SCALE_X = SUBPIXEL_POSITIONS_X;
  42     static final double SUBPIXEL_SCALE_Y = SUBPIXEL_POSITIONS_Y;
  43     static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
  44     static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
  45 
  46     private static final double RDR_OFFSET_X = 0.5d / SUBPIXEL_SCALE_X;
  47     private static final double RDR_OFFSET_Y = 0.5d / SUBPIXEL_SCALE_Y;
  48 
  49     // common to all types of input path segments.
  50     // OFFSET as bytes
  51     // only integer values:
  52     public static final long OFF_CURX_OR  = 0;
  53     public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
  54     public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
  55     public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
  56     public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
  57     public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
  58 
  59     // size of one edge in bytes
  60     public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
  61 
  62     // curve break into lines
  63     // cubic error in subpixels to decrement step
  64     private static final double CUB_DEC_ERR_SUBPIX
  65         = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0d); // 1 pixel
  66     // cubic error in subpixels to increment step
  67     private static final double CUB_INC_ERR_SUBPIX
  68         = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0d); // 0.4 pixel
  69 
  70     // TestNonAARasterization (JDK-8170879): cubics
  71     // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
  72 
  73     // cubic bind length to decrement step
  74     public static final double CUB_DEC_BND
  75         = 8.0d * CUB_DEC_ERR_SUBPIX;
  76     // cubic bind length to increment step
  77     public static final double CUB_INC_BND
  78         = 8.0d * CUB_INC_ERR_SUBPIX;
  79 
  80     // cubic countlg
  81     public static final int CUB_COUNT_LG = 2;
  82     // cubic count = 2^countlg
  83     private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
  84     // cubic count^2 = 4^countlg
  85     private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
  86     // cubic count^3 = 8^countlg
  87     private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
  88     // cubic dt = 1 / count
  89     private static final double CUB_INV_COUNT = 1.0d / CUB_COUNT;
  90     // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
  91     private static final double CUB_INV_COUNT_2 = 1.0d / CUB_COUNT_2;
  92     // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
  93     private static final double CUB_INV_COUNT_3 = 1.0d / CUB_COUNT_3;
  94 
  95     // quad break into lines
  96     // quadratic error in subpixels
  97     private static final double QUAD_DEC_ERR_SUBPIX
  98         = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0d); // 0.5 pixel
  99 
 100     // TestNonAARasterization (JDK-8170879): quads
 101     // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
 102 
 103     // quadratic bind length to decrement step
 104     public static final double QUAD_DEC_BND
 105         = 8.0d * QUAD_DEC_ERR_SUBPIX;
 106 
 107 //////////////////////////////////////////////////////////////////////////////
 108 //  SCAN LINE
 109 //////////////////////////////////////////////////////////////////////////////
 110     // crossings ie subpixel edge x coordinates
 111     private int[] crossings;
 112     // auxiliary storage for crossings (merge sort)
 113     private int[] aux_crossings;
 114 
 115     // indices into the segment pointer lists. They indicate the "active"
 116     // sublist in the segment lists (the portion of the list that contains
 117     // all the segments that cross the next scan line).
 118     private int edgeCount;
 119     private int[] edgePtrs;
 120     // auxiliary storage for edge pointers (merge sort)
 121     private int[] aux_edgePtrs;
 122 
 123     // max used for both edgePtrs and crossings (stats only)
 124     private int activeEdgeMaxUsed;
 125 
 126     // crossings ref (dirty)
 127     private final IntArrayCache.Reference crossings_ref;
 128     // edgePtrs ref (dirty)
 129     private final IntArrayCache.Reference edgePtrs_ref;
 130     // merge sort initial arrays (large enough to satisfy most usages) (1024)
 131     // aux_crossings ref (dirty)
 132     private final IntArrayCache.Reference aux_crossings_ref;
 133     // aux_edgePtrs ref (dirty)
 134     private final IntArrayCache.Reference aux_edgePtrs_ref;
 135 
 136 //////////////////////////////////////////////////////////////////////////////
 137 //  EDGE LIST
 138 //////////////////////////////////////////////////////////////////////////////
 139     private int edgeMinY = Integer.MAX_VALUE;
 140     private int edgeMaxY = Integer.MIN_VALUE;
 141     private double edgeMinX = Double.POSITIVE_INFINITY;
 142     private double edgeMaxX = Double.NEGATIVE_INFINITY;
 143 
 144     // edges [ints] stored in off-heap memory
 145     private final OffHeapArray edges;
 146 
 147     private int[] edgeBuckets;
 148     private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
 149     // used range for edgeBuckets / edgeBucketCounts
 150     private int buckets_minY;
 151     private int buckets_maxY;
 152 
 153     // edgeBuckets ref (clean)
 154     private final IntArrayCache.Reference edgeBuckets_ref;
 155     // edgeBucketCounts ref (clean)
 156     private final IntArrayCache.Reference edgeBucketCounts_ref;
 157 
 158     boolean useRLE = false;
 159 
 160     // Flattens using adaptive forward differencing. This only carries out
 161     // one iteration of the AFD loop. All it does is update AFD variables (i.e.
 162     // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
 163     private void quadBreakIntoLinesAndAdd(double x0, double y0,
 164                                           final DCurve c,
 165                                           final double x2, final double y2)
 166     {
 167         int count = 1; // dt = 1 / count
 168 
 169         // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
 170         double maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
 171 
 172         final double _DEC_BND = QUAD_DEC_BND;
 173 
 174         while (maxDD >= _DEC_BND) {
 175             // divide step by half:
 176             maxDD /= 4.0d; // error divided by 2^2 = 4
 177 
 178             count <<= 1;
 179             if (DO_STATS) {
 180                 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
 181             }
 182         }
 183 
 184         int nL = 0; // line count
 185         if (count > 1) {
 186             final double icount = 1.0d / count; // dt
 187             final double icount2 = icount * icount; // dt^2
 188 
 189             final double ddx = c.dbx * icount2;
 190             final double ddy = c.dby * icount2;
 191             double dx = c.bx * icount2 + c.cx * icount;
 192             double dy = c.by * icount2 + c.cy * icount;
 193 
 194             double x1, y1;
 195 
 196             while (--count > 0) {
 197                 x1 = x0 + dx;
 198                 dx += ddx;
 199                 y1 = y0 + dy;
 200                 dy += ddy;
 201 
 202                 addLine(x0, y0, x1, y1);
 203 
 204                 if (DO_STATS) { nL++; }
 205                 x0 = x1;
 206                 y0 = y1;
 207             }
 208         }
 209         addLine(x0, y0, x2, y2);
 210 
 211         if (DO_STATS) {
 212             rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1);
 213         }
 214     }
 215 
 216     // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
 217     // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
 218     // numerical errors, and our callers already have the exact values.
 219     // Another alternative would be to pass all the control points, and call
 220     // c.set here, but then too many numbers are passed around.
 221     private void curveBreakIntoLinesAndAdd(double x0, double y0,
 222                                            final DCurve c,
 223                                            final double x3, final double y3)
 224     {
 225         int count           = CUB_COUNT;
 226         final double icount  = CUB_INV_COUNT;   // dt
 227         final double icount2 = CUB_INV_COUNT_2; // dt^2
 228         final double icount3 = CUB_INV_COUNT_3; // dt^3
 229 
 230         // the dx and dy refer to forward differencing variables, not the last
 231         // coefficients of the "points" polynomial
 232         double dddx, dddy, ddx, ddy, dx, dy;
 233         dddx = 2.0d * c.dax * icount3;
 234         dddy = 2.0d * c.day * icount3;
 235         ddx = dddx + c.dbx * icount2;
 236         ddy = dddy + c.dby * icount2;
 237         dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
 238         dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
 239 
 240         // we use x0, y0 to walk the line
 241         double x1 = x0, y1 = y0;
 242         int nL = 0; // line count
 243 
 244         final double _DEC_BND = CUB_DEC_BND;
 245         final double _INC_BND = CUB_INC_BND;
 246 
 247         while (count > 0) {
 248             // divide step by half:
 249             while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) {
 250                 dddx /= 8.0d;
 251                 dddy /= 8.0d;
 252                 ddx = ddx / 4.0d - dddx;
 253                 ddy = ddy / 4.0d - dddy;
 254                 dx = (dx - ddx) / 2.0d;
 255                 dy = (dy - ddy) / 2.0d;
 256 
 257                 count <<= 1;
 258                 if (DO_STATS) {
 259                     rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
 260                 }
 261             }
 262 
 263             // double step:
 264             // can only do this on even "count" values, because we must divide count by 2
 265             while (count % 2 == 0
 266                    && Math.abs(dx) + Math.abs(dy) <= _INC_BND)
 267             {
 268                 dx = 2.0d * dx + ddx;
 269                 dy = 2.0d * dy + ddy;
 270                 ddx = 4.0d * (ddx + dddx);
 271                 ddy = 4.0d * (ddy + dddy);
 272                 dddx *= 8.0d;
 273                 dddy *= 8.0d;
 274 
 275                 count >>= 1;
 276                 if (DO_STATS) {
 277                     rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
 278                 }
 279             }
 280             if (--count > 0) {
 281                 x1 += dx;
 282                 dx += ddx;
 283                 ddx += dddx;
 284                 y1 += dy;
 285                 dy += ddy;
 286                 ddy += dddy;
 287             } else {
 288                 x1 = x3;
 289                 y1 = y3;
 290             }
 291 
 292             addLine(x0, y0, x1, y1);
 293 
 294             if (DO_STATS) { nL++; }
 295             x0 = x1;
 296             y0 = y1;
 297         }
 298         if (DO_STATS) {
 299             rdrCtx.stats.stat_rdr_curveBreak.add(nL);
 300         }
 301     }
 302 
 303     private void addLine(double x1, double y1, double x2, double y2) {
 304         if (DO_MONITORS) {
 305             rdrCtx.stats.mon_rdr_addLine.start();
 306         }
 307         if (DO_STATS) {
 308             rdrCtx.stats.stat_rdr_addLine.add(1);
 309         }
 310         int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
 311         if (y2 < y1) {
 312             or = 0;
 313             double tmp = y2;
 314             y2 = y1;
 315             y1 = tmp;
 316             tmp = x2;
 317             x2 = x1;
 318             x1 = tmp;
 319         }
 320 
 321         // convert subpixel coordinates [double] into pixel positions [int]
 322 
 323         // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
 324         // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
 325         // ceil(y1) or ceil(y2)
 326         // upper integer (inclusive)
 327         final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
 328 
 329         // note: use boundsMaxY (last Y exclusive) to compute correct coverage
 330         // upper integer (exclusive)
 331         final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
 332 
 333         /* skip horizontal lines in pixel space and clip edges
 334            out of y range [boundsMinY; boundsMaxY] */
 335         if (firstCrossing >= lastCrossing) {
 336             if (DO_MONITORS) {
 337                 rdrCtx.stats.mon_rdr_addLine.stop();
 338             }
 339             if (DO_STATS) {
 340                 rdrCtx.stats.stat_rdr_addLine_skip.add(1);
 341             }
 342             return;
 343         }
 344 
 345         // edge min/max X/Y are in subpixel space (half-open interval):
 346         // note: Use integer crossings to ensure consistent range within
 347         // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
 348         if (firstCrossing < edgeMinY) {
 349             edgeMinY = firstCrossing;
 350         }
 351         if (lastCrossing > edgeMaxY) {
 352             edgeMaxY = lastCrossing;
 353         }
 354 
 355         final double slope = (x1 - x2) / (y1 - y2);
 356 
 357         if (slope >= 0.0d) { // <==> x1 < x2
 358             if (x1 < edgeMinX) {
 359                 edgeMinX = x1;
 360             }
 361             if (x2 > edgeMaxX) {
 362                 edgeMaxX = x2;
 363             }
 364         } else {
 365             if (x2 < edgeMinX) {
 366                 edgeMinX = x2;
 367             }
 368             if (x1 > edgeMaxX) {
 369                 edgeMaxX = x1;
 370             }
 371         }
 372 
 373         // local variables for performance:
 374         final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
 375 
 376         final OffHeapArray _edges = edges;
 377 
 378         // get free pointer (ie length in bytes)
 379         final int edgePtr = _edges.used;
 380 
 381         // use substraction to avoid integer overflow:
 382         if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
 383             // suppose _edges.length > _SIZEOF_EDGE_BYTES
 384             // so doubling size is enough to add needed bytes
 385             // note: throw IOOB if neededSize > 2Gb:
 386             final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
 387                                         _edges.length,
 388                                         edgePtr + _SIZEOF_EDGE_BYTES);
 389 
 390             if (DO_STATS) {
 391                 rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
 392             }
 393             _edges.resize(edgeNewSize);
 394         }
 395 
 396 
 397         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 398         final long SIZE_INT = 4L;
 399         long addr   = _edges.address + edgePtr;
 400 
 401         // The x value must be bumped up to its position at the next HPC we will evaluate.
 402         // "firstcrossing" is the (sub)pixel number where the next crossing occurs
 403         // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
 404         // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
 405         // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
 406         // y1 = trueY - 0.5
 407         // trueY = y1 + 0.5
 408         // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
 409         //                             = firstcrossing - y1
 410         // The x coordinate at that HPC is then:
 411         // x1_intercept = x1 + (firstcrossing - y1) * slope
 412         // The next VPC is then given by:
 413         // VPC index = ceil(x1_intercept - 0.5), or alternately
 414         // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
 415         // epsilon is hard to pin down in floating point, but easy in fixed point, so if
 416         // we convert to fixed point then these operations get easier:
 417         // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
 418         // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
 419         //                 = fixed_floor(x1_fixed + 2^31 - 1)
 420         //                 = fixed_floor(x1_fixed + 0x7FFFFFFF)
 421         // and error       = fixed_fract(x1_fixed + 0x7FFFFFFF)
 422         final double x1_intercept = x1 + (firstCrossing - y1) * slope;
 423 
 424         // inlined scalb(x1_intercept, 32):
 425         final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
 426                                      + 0x7FFFFFFFL;
 427         // curx:
 428         // last bit corresponds to the orientation
 429         _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
 430         addr += SIZE_INT;
 431         _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
 432         addr += SIZE_INT;
 433 
 434         // inlined scalb(slope, 32):
 435         final long slope_fixed = (long) (POWER_2_TO_32 * slope);
 436 
 437         // last bit set to 0 to keep orientation:
 438         _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
 439         addr += SIZE_INT;
 440         _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
 441         addr += SIZE_INT;
 442 
 443         final int[] _edgeBuckets      = edgeBuckets;
 444         final int[] _edgeBucketCounts = edgeBucketCounts;
 445 
 446         final int _boundsMinY = boundsMinY;
 447 
 448         // each bucket is a linked list. this method adds ptr to the
 449         // start of the "bucket"th linked list.
 450         final int bucketIdx = firstCrossing - _boundsMinY;
 451 
 452         // pointer from bucket
 453         _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
 454         addr += SIZE_INT;
 455         // y max (exclusive)
 456         _unsafe.putInt(addr,  lastCrossing);
 457 
 458         // Update buckets:
 459         // directly the edge struct "pointer"
 460         _edgeBuckets[bucketIdx]       = edgePtr;
 461         _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
 462         // last bit means edge end
 463         _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
 464 
 465         // update free pointer (ie length in bytes)
 466         _edges.used += _SIZEOF_EDGE_BYTES;
 467 
 468         if (DO_MONITORS) {
 469             rdrCtx.stats.mon_rdr_addLine.stop();
 470         }
 471     }
 472 
 473 // END EDGE LIST
 474 //////////////////////////////////////////////////////////////////////////////
 475 
 476     // Bounds of the drawing region, at subpixel precision.
 477     private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
 478 
 479     // Current winding rule
 480     private int windingRule;
 481 
 482     // Current drawing position, i.e., final point of last segment
 483     private double x0, y0;
 484 
 485     // Position of most recent 'moveTo' command
 486     private double sx0, sy0;
 487 
 488     // per-thread renderer context
 489     final DRendererContext rdrCtx;
 490     // dirty curve
 491     private final DCurve curve;
 492 
 493     // clean alpha array (zero filled)
 494     private int[] alphaLine;
 495 
 496     // alphaLine ref (clean)
 497     private final IntArrayCache.Reference alphaLine_ref;
 498 
 499     private boolean enableBlkFlags = false;
 500     private boolean prevUseBlkFlags = false;
 501 
 502     /* block flags (0|1) */
 503     private int[] blkFlags;
 504 
 505     // blkFlags ref (clean)
 506     private final IntArrayCache.Reference blkFlags_ref;
 507 
 508     DRenderer(final DRendererContext rdrCtx) {
 509         this.rdrCtx = rdrCtx;
 510         this.curve = rdrCtx.curve;
 511 
 512         this.edges = rdrCtx.rdrMem.edges;
 513 
 514         edgeBuckets_ref      = rdrCtx.rdrMem.edgeBuckets_ref;
 515         edgeBucketCounts_ref = rdrCtx.rdrMem.edgeBucketCounts_ref;
 516 
 517         edgeBuckets      = edgeBuckets_ref.initial;
 518         edgeBucketCounts = edgeBucketCounts_ref.initial;
 519 
 520         alphaLine_ref = rdrCtx.rdrMem.alphaLine_ref;
 521         alphaLine     = alphaLine_ref.initial;
 522 
 523         crossings_ref     = rdrCtx.rdrMem.crossings_ref;
 524         aux_crossings_ref = rdrCtx.rdrMem.aux_crossings_ref;
 525         edgePtrs_ref      = rdrCtx.rdrMem.edgePtrs_ref;
 526         aux_edgePtrs_ref  = rdrCtx.rdrMem.aux_edgePtrs_ref;
 527 
 528         crossings     = crossings_ref.initial;
 529         aux_crossings = aux_crossings_ref.initial;
 530         edgePtrs      = edgePtrs_ref.initial;
 531         aux_edgePtrs  = aux_edgePtrs_ref.initial;
 532 
 533         blkFlags_ref = rdrCtx.rdrMem.blkFlags_ref;
 534         blkFlags     = blkFlags_ref.initial;
 535     }
 536 
 537     public DRenderer init(final int pix_boundsX, final int pix_boundsY,
 538                   final int pix_boundsWidth, final int pix_boundsHeight,
 539                   final int windingRule)
 540     {
 541         this.windingRule = windingRule;
 542 
 543         // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 544         this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
 545         this.boundsMaxX =
 546             (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
 547         this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
 548         this.boundsMaxY =
 549             (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
 550 
 551         if (DO_LOG_BOUNDS) {
 552             MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
 553                                 + boundsMaxX + "[ [" + boundsMinY + " ... "
 554                                 + boundsMaxY + "[");
 555         }
 556 
 557         // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
 558         // +1 for edgeBucketCounts
 559         final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
 560 
 561         if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
 562             if (DO_STATS) {
 563                 rdrCtx.stats.stat_array_renderer_edgeBuckets
 564                     .add(edgeBucketsLength);
 565                 rdrCtx.stats.stat_array_renderer_edgeBucketCounts
 566                     .add(edgeBucketsLength);
 567             }
 568             edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
 569             edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
 570         }
 571 
 572         edgeMinY = Integer.MAX_VALUE;
 573         edgeMaxY = Integer.MIN_VALUE;
 574         edgeMinX = Double.POSITIVE_INFINITY;
 575         edgeMaxX = Double.NEGATIVE_INFINITY;
 576 
 577         // reset used mark:
 578         edgeCount = 0;
 579         activeEdgeMaxUsed = 0;
 580         edges.used = 0;
 581 
 582         // reset bbox:
 583         bboxX0 = 0;
 584         bboxX1 = 0;
 585 
 586         return this; // fluent API
 587     }
 588 
 589     /**
 590      * Disposes this renderer and recycle it clean up before reusing this instance
 591      */
 592     public void dispose() {
 593         if (DO_STATS) {
 594             rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
 595             rdrCtx.stats.stat_rdr_edges.add(edges.used);
 596             rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 597             rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 598             rdrCtx.stats.totalOffHeap += edges.length;
 599         }
 600         // Return arrays:
 601         crossings = crossings_ref.putArray(crossings);
 602         aux_crossings = aux_crossings_ref.putArray(aux_crossings);
 603 
 604         edgePtrs = edgePtrs_ref.putArray(edgePtrs);
 605         aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
 606 
 607         alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
 608         blkFlags  = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
 609 
 610         if (edgeMinY != Integer.MAX_VALUE) {
 611             // if context is maked as DIRTY:
 612             if (rdrCtx.dirty) {
 613                 // may happen if an exception if thrown in the pipeline processing:
 614                 // clear completely buckets arrays:
 615                 buckets_minY = 0;
 616                 buckets_maxY = boundsMaxY - boundsMinY;
 617             }
 618             // clear only used part
 619             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
 620                                                                 buckets_maxY);
 621             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
 622                                                              buckets_minY,
 623                                                              buckets_maxY + 1);
 624         } else {
 625             // unused arrays
 626             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
 627             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
 628         }
 629 
 630         // At last: resize back off-heap edges to initial size
 631         if (edges.length != INITIAL_EDGES_CAPACITY) {
 632             // note: may throw OOME:
 633             edges.resize(INITIAL_EDGES_CAPACITY);
 634         }
 635         if (DO_CLEAN_DIRTY) {
 636             // Force zero-fill dirty arrays:
 637             edges.fill(BYTE_0);
 638         }
 639         if (DO_MONITORS) {
 640             rdrCtx.stats.mon_rdr_endRendering.stop();
 641         }
 642     }
 643 
 644     private static double tosubpixx(final double pix_x) {
 645         return SUBPIXEL_SCALE_X * pix_x;
 646     }
 647 
 648     private static double tosubpixy(final double pix_y) {
 649         // shift y by -0.5 for fast ceil(y - 0.5):
 650         return SUBPIXEL_SCALE_Y * pix_y - 0.5d;
 651     }
 652 
 653     @Override
 654     public void moveTo(final double pix_x0, final double pix_y0) {
 655         closePath();
 656         final double sx = tosubpixx(pix_x0);
 657         final double sy = tosubpixy(pix_y0);
 658         this.sx0 = sx;
 659         this.sy0 = sy;
 660         this.x0 = sx;
 661         this.y0 = sy;
 662     }
 663 
 664     @Override
 665     public void lineTo(final double pix_x1, final double pix_y1) {
 666         final double x1 = tosubpixx(pix_x1);
 667         final double y1 = tosubpixy(pix_y1);
 668         addLine(x0, y0, x1, y1);
 669         x0 = x1;
 670         y0 = y1;
 671     }
 672 
 673     @Override
 674     public void curveTo(final double pix_x1, final double pix_y1,
 675                         final double pix_x2, final double pix_y2,
 676                         final double pix_x3, final double pix_y3)
 677     {
 678         final double xe = tosubpixx(pix_x3);
 679         final double ye = tosubpixy(pix_y3);
 680         curve.set(x0, y0, tosubpixx(pix_x1), tosubpixy(pix_y1),
 681                   tosubpixx(pix_x2), tosubpixy(pix_y2), xe, ye);
 682         curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 683         x0 = xe;
 684         y0 = ye;
 685     }
 686 
 687     @Override
 688     public void quadTo(final double pix_x1, final double pix_y1,
 689                        final double pix_x2, final double pix_y2)
 690     {
 691         final double xe = tosubpixx(pix_x2);
 692         final double ye = tosubpixy(pix_y2);
 693         curve.set(x0, y0, tosubpixx(pix_x1), tosubpixy(pix_y1), xe, ye);
 694         quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 695         x0 = xe;
 696         y0 = ye;
 697     }
 698 
 699     @Override
 700     public void closePath() {
 701         if (x0 != sx0 || y0 != sy0) {
 702             addLine(x0, y0, sx0, sy0);
 703             x0 = sx0;
 704             y0 = sy0;
 705         }
 706     }
 707 
 708     @Override
 709     public void pathDone() {
 710         closePath();
 711 
 712         // call endRendering() to determine the boundaries:
 713         endRendering();
 714     }
 715 
 716     private void _endRendering(final int ymin, final int ymax,
 717                                final MarlinAlphaConsumer ac)
 718     {
 719         if (DISABLE_RENDER) {
 720             return;
 721         }
 722 
 723         // Get X bounds as true pixel boundaries to compute correct pixel coverage:
 724         final int bboxx0 = bbox_spminX;
 725         final int bboxx1 = bbox_spmaxX;
 726 
 727         final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
 728 
 729         // Useful when processing tile line by tile line
 730         final int[] _alpha = alphaLine;
 731 
 732         // local vars (performance):
 733         final OffHeapArray _edges = edges;
 734         final int[] _edgeBuckets = edgeBuckets;
 735         final int[] _edgeBucketCounts = edgeBucketCounts;
 736 
 737         int[] _crossings = this.crossings;
 738         int[] _edgePtrs  = this.edgePtrs;
 739 
 740         // merge sort auxiliary storage:
 741         int[] _aux_crossings = this.aux_crossings;
 742         int[] _aux_edgePtrs  = this.aux_edgePtrs;
 743 
 744         // copy constants:
 745         final long _OFF_ERROR    = OFF_ERROR;
 746         final long _OFF_BUMP_X   = OFF_BUMP_X;
 747         final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
 748 
 749         final long _OFF_NEXT     = OFF_NEXT;
 750         final long _OFF_YMAX     = OFF_YMAX;
 751 
 752         final int _ALL_BUT_LSB   = ALL_BUT_LSB;
 753         final int _ERR_STEP_MAX  = ERR_STEP_MAX;
 754 
 755         // unsafe I/O:
 756         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 757         final long    addr0  = _edges.address;
 758         long addr;
 759         final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
 760         final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
 761         final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
 762         final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
 763         final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
 764 
 765         final int _MIN_VALUE = Integer.MIN_VALUE;
 766         final int _MAX_VALUE = Integer.MAX_VALUE;
 767 
 768         // Now we iterate through the scanlines. We must tell emitRow the coord
 769         // of the first non-transparent pixel, so we must keep accumulators for
 770         // the first and last pixels of the section of the current pixel row
 771         // that we will emit.
 772         // We also need to accumulate pix_bbox, but the iterator does it
 773         // for us. We will just get the values from it once this loop is done
 774         int minX = _MAX_VALUE;
 775         int maxX = _MIN_VALUE;
 776 
 777         int y = ymin;
 778         int bucket = y - boundsMinY;
 779 
 780         int numCrossings = this.edgeCount;
 781         int edgePtrsLen = _edgePtrs.length;
 782         int crossingsLen = _crossings.length;
 783         int _arrayMaxUsed = activeEdgeMaxUsed;
 784         int ptrLen = 0, newCount, ptrEnd;
 785 
 786         int bucketcount, i, j, ecur;
 787         int cross, lastCross;
 788         int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
 789         int pix_x, pix_xmaxm1, pix_xmax;
 790 
 791         int low, high, mid, prevNumCrossings;
 792         boolean useBinarySearch;
 793 
 794         final int[] _blkFlags = blkFlags;
 795         final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
 796         final int _BLK_SIZE = BLOCK_SIZE;
 797 
 798         final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
 799 
 800         // Use block flags if large pixel span and few crossings:
 801         // ie mean(distance between crossings) is high
 802         boolean useBlkFlags = this.prevUseBlkFlags;
 803 
 804         final int stroking = rdrCtx.stroking;
 805 
 806         int lastY = -1; // last emited row
 807 
 808 
 809         // Iteration on scanlines
 810         for (; y < ymax; y++, bucket++) {
 811             // --- from former ScanLineIterator.next()
 812             bucketcount = _edgeBucketCounts[bucket];
 813 
 814             // marker on previously sorted edges:
 815             prevNumCrossings = numCrossings;
 816 
 817             // bucketCount indicates new edge / edge end:
 818             if (bucketcount != 0) {
 819                 if (DO_STATS) {
 820                     rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings);
 821                 }
 822 
 823                 // last bit set to 1 means that edges ends
 824                 if ((bucketcount & 0x1) != 0) {
 825                     // eviction in active edge list
 826                     // cache edges[] address + offset
 827                     addr = addr0 + _OFF_YMAX;
 828 
 829                     for (i = 0, newCount = 0; i < numCrossings; i++) {
 830                         // get the pointer to the edge
 831                         ecur = _edgePtrs[i];
 832                         // random access so use unsafe:
 833                         if (_unsafe.getInt(addr + ecur) > y) {
 834                             _edgePtrs[newCount++] = ecur;
 835                         }
 836                     }
 837                     // update marker on sorted edges minus removed edges:
 838                     prevNumCrossings = numCrossings = newCount;
 839                 }
 840 
 841                 ptrLen = bucketcount >> 1; // number of new edge
 842 
 843                 if (ptrLen != 0) {
 844                     if (DO_STATS) {
 845                         rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
 846                         if (ptrLen > 10) {
 847                             rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
 848                         }
 849                     }
 850                     ptrEnd = numCrossings + ptrLen;
 851 
 852                     if (edgePtrsLen < ptrEnd) {
 853                         if (DO_STATS) {
 854                             rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
 855                         }
 856                         this.edgePtrs = _edgePtrs
 857                             = edgePtrs_ref.widenArray(_edgePtrs, numCrossings,
 858                                                       ptrEnd);
 859 
 860                         edgePtrsLen = _edgePtrs.length;
 861                         // Get larger auxiliary storage:
 862                         aux_edgePtrs_ref.putArray(_aux_edgePtrs);
 863 
 864                         // use ArrayCache.getNewSize() to use the same growing
 865                         // factor than widenArray():
 866                         if (DO_STATS) {
 867                             rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
 868                         }
 869                         this.aux_edgePtrs = _aux_edgePtrs
 870                             = aux_edgePtrs_ref.getArray(
 871                                 ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
 872                             );
 873                     }
 874 
 875                     // cache edges[] address + offset
 876                     addr = addr0 + _OFF_NEXT;
 877 
 878                     // add new edges to active edge list:
 879                     for (ecur = _edgeBuckets[bucket];
 880                          numCrossings < ptrEnd; numCrossings++)
 881                     {
 882                         // store the pointer to the edge
 883                         _edgePtrs[numCrossings] = ecur;
 884                         // random access so use unsafe:
 885                         ecur = _unsafe.getInt(addr + ecur);
 886                     }
 887 
 888                     if (crossingsLen < numCrossings) {
 889                         // Get larger array:
 890                         crossings_ref.putArray(_crossings);
 891 
 892                         if (DO_STATS) {
 893                             rdrCtx.stats.stat_array_renderer_crossings
 894                                 .add(numCrossings);
 895                         }
 896                         this.crossings = _crossings
 897                             = crossings_ref.getArray(numCrossings);
 898 
 899                         // Get larger auxiliary storage:
 900                         aux_crossings_ref.putArray(_aux_crossings);
 901 
 902                         if (DO_STATS) {
 903                             rdrCtx.stats.stat_array_renderer_aux_crossings
 904                                 .add(numCrossings);
 905                         }
 906                         this.aux_crossings = _aux_crossings
 907                             = aux_crossings_ref.getArray(numCrossings);
 908 
 909                         crossingsLen = _crossings.length;
 910                     }
 911                     if (DO_STATS) {
 912                         // update max used mark
 913                         if (numCrossings > _arrayMaxUsed) {
 914                             _arrayMaxUsed = numCrossings;
 915                         }
 916                     }
 917                 } // ptrLen != 0
 918             } // bucketCount != 0
 919 
 920 
 921             if (numCrossings != 0) {
 922                 /*
 923                  * thresholds to switch to optimized merge sort
 924                  * for newly added edges + final merge pass.
 925                  */
 926                 if ((ptrLen < 10) || (numCrossings < 40)) {
 927                     if (DO_STATS) {
 928                         rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
 929                         rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
 930                     }
 931 
 932                     /*
 933                      * threshold to use binary insertion sort instead of
 934                      * straight insertion sort (to reduce minimize comparisons).
 935                      */
 936                     useBinarySearch = (numCrossings >= 20);
 937 
 938                     // if small enough:
 939                     lastCross = _MIN_VALUE;
 940 
 941                     for (i = 0; i < numCrossings; i++) {
 942                         // get the pointer to the edge
 943                         ecur = _edgePtrs[i];
 944 
 945                         /* convert subpixel coordinates into pixel
 946                             positions for coming scanline */
 947                         /* note: it is faster to always update edges even
 948                            if it is removed from AEL for coming or last scanline */
 949 
 950                         // random access so use unsafe:
 951                         addr = addr0 + ecur; // ecur + OFF_F_CURX
 952 
 953                         // get current crossing:
 954                         curx = _unsafe.getInt(addr);
 955 
 956                         // update crossing with orientation at last bit:
 957                         cross = curx;
 958 
 959                         // Increment x using DDA (fixed point):
 960                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
 961 
 962                         // Increment error:
 963                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
 964                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
 965 
 966                         // Manual carry handling:
 967                         // keep sign and carry bit only and ignore last bit (preserve orientation):
 968                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
 969                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
 970 
 971                         if (DO_STATS) {
 972                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
 973                         }
 974 
 975                         // insertion sort of crossings:
 976                         if (cross < lastCross) {
 977                             if (DO_STATS) {
 978                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
 979                             }
 980 
 981                             /* use binary search for newly added edges
 982                                in crossings if arrays are large enough */
 983                             if (useBinarySearch && (i >= prevNumCrossings)) {
 984                                 if (DO_STATS) {
 985                                     rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
 986                                 }
 987                                 low = 0;
 988                                 high = i - 1;
 989 
 990                                 do {
 991                                     // note: use signed shift (not >>>) for performance
 992                                     // as indices are small enough to exceed Integer.MAX_VALUE
 993                                     mid = (low + high) >> 1;
 994 
 995                                     if (_crossings[mid] < cross) {
 996                                         low = mid + 1;
 997                                     } else {
 998                                         high = mid - 1;
 999                                     }
1000                                 } while (low <= high);
1001 
1002                                 for (j = i - 1; j >= low; j--) {
1003                                     _crossings[j + 1] = _crossings[j];
1004                                     _edgePtrs [j + 1] = _edgePtrs[j];
1005                                 }
1006                                 _crossings[low] = cross;
1007                                 _edgePtrs [low] = ecur;
1008 
1009                             } else {
1010                                 j = i - 1;
1011                                 _crossings[i] = _crossings[j];
1012                                 _edgePtrs[i] = _edgePtrs[j];
1013 
1014                                 while ((--j >= 0) && (_crossings[j] > cross)) {
1015                                     _crossings[j + 1] = _crossings[j];
1016                                     _edgePtrs [j + 1] = _edgePtrs[j];
1017                                 }
1018                                 _crossings[j + 1] = cross;
1019                                 _edgePtrs [j + 1] = ecur;
1020                             }
1021 
1022                         } else {
1023                             _crossings[i] = lastCross = cross;
1024                         }
1025                     }
1026                 } else {
1027                     if (DO_STATS) {
1028                         rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1029                         rdrCtx.stats.hist_rdr_crossings_ratio
1030                             .add((1000 * ptrLen) / numCrossings);
1031                         rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1032                         rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1033                     }
1034 
1035                     // Copy sorted data in auxiliary arrays
1036                     // and perform insertion sort on almost sorted data
1037                     // (ie i < prevNumCrossings):
1038 
1039                     lastCross = _MIN_VALUE;
1040 
1041                     for (i = 0; i < numCrossings; i++) {
1042                         // get the pointer to the edge
1043                         ecur = _edgePtrs[i];
1044 
1045                         /* convert subpixel coordinates into pixel
1046                             positions for coming scanline */
1047                         /* note: it is faster to always update edges even
1048                            if it is removed from AEL for coming or last scanline */
1049 
1050                         // random access so use unsafe:
1051                         addr = addr0 + ecur; // ecur + OFF_F_CURX
1052 
1053                         // get current crossing:
1054                         curx = _unsafe.getInt(addr);
1055 
1056                         // update crossing with orientation at last bit:
1057                         cross = curx;
1058 
1059                         // Increment x using DDA (fixed point):
1060                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1061 
1062                         // Increment error:
1063                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
1064                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1065 
1066                         // Manual carry handling:
1067                         // keep sign and carry bit only and ignore last bit (preserve orientation):
1068                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1069                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1070 
1071                         if (DO_STATS) {
1072                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
1073                         }
1074 
1075                         if (i >= prevNumCrossings) {
1076                             // simply store crossing as edgePtrs is in-place:
1077                             // will be copied and sorted efficiently by mergesort later:
1078                             _crossings[i]     = cross;
1079 
1080                         } else if (cross < lastCross) {
1081                             if (DO_STATS) {
1082                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
1083                             }
1084 
1085                             // (straight) insertion sort of crossings:
1086                             j = i - 1;
1087                             _aux_crossings[i] = _aux_crossings[j];
1088                             _aux_edgePtrs[i] = _aux_edgePtrs[j];
1089 
1090                             while ((--j >= 0) && (_aux_crossings[j] > cross)) {
1091                                 _aux_crossings[j + 1] = _aux_crossings[j];
1092                                 _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
1093                             }
1094                             _aux_crossings[j + 1] = cross;
1095                             _aux_edgePtrs [j + 1] = ecur;
1096 
1097                         } else {
1098                             // auxiliary storage:
1099                             _aux_crossings[i] = lastCross = cross;
1100                             _aux_edgePtrs [i] = ecur;
1101                         }
1102                     }
1103 
1104                     // use Mergesort using auxiliary arrays (sort only right part)
1105                     MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
1106                                               _aux_crossings, _aux_edgePtrs,
1107                                               numCrossings,   prevNumCrossings);
1108                 }
1109 
1110                 // reset ptrLen
1111                 ptrLen = 0;
1112                 // --- from former ScanLineIterator.next()
1113 
1114 
1115                 /* note: bboxx0 and bboxx1 must be pixel boundaries
1116                    to have correct coverage computation */
1117 
1118                 // right shift on crossings to get the x-coordinate:
1119                 curxo = _crossings[0];
1120                 x0    = curxo >> 1;
1121                 if (x0 < minX) {
1122                     minX = x0; // subpixel coordinate
1123                 }
1124 
1125                 x1 = _crossings[numCrossings - 1] >> 1;
1126                 if (x1 > maxX) {
1127                     maxX = x1; // subpixel coordinate
1128                 }
1129 
1130 
1131                 // compute pixel coverages
1132                 prev = curx = x0;
1133                 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1134                 // last bit contains orientation (0 or 1)
1135                 crorientation = ((curxo & 0x1) << 1) - 1;
1136 
1137                 if (windingRuleEvenOdd) {
1138                     sum = crorientation;
1139 
1140                     // Even Odd winding rule: take care of mask ie sum(orientations)
1141                     for (i = 1; i < numCrossings; i++) {
1142                         curxo = _crossings[i];
1143                         curx  =  curxo >> 1;
1144                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1145                         // last bit contains orientation (0 or 1)
1146                         crorientation = ((curxo & 0x1) << 1) - 1;
1147 
1148                         if ((sum & 0x1) != 0) {
1149                             // TODO: perform line clipping on left-right sides
1150                             // to avoid such bound checks:
1151                             x0 = (prev > bboxx0) ? prev : bboxx0;
1152 
1153                             if (curx < bboxx1) {
1154                                 x1 = curx;
1155                             } else {
1156                                 x1 = bboxx1;
1157                                 // skip right side (fast exit loop):
1158                                 i = numCrossings;
1159                             }
1160 
1161                             if (x0 < x1) {
1162                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1163                                 x1 -= bboxx0; // in the alpha array.
1164 
1165                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1166                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1167 
1168                                 if (pix_x == pix_xmaxm1) {
1169                                     // Start and end in same pixel
1170                                     tmp = (x1 - x0); // number of subpixels
1171                                     _alpha[pix_x    ] += tmp;
1172                                     _alpha[pix_x + 1] -= tmp;
1173 
1174                                     if (useBlkFlags) {
1175                                         // flag used blocks:
1176                                         // note: block processing handles extra pixel:
1177                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1178                                     }
1179                                 } else {
1180                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1181                                     _alpha[pix_x    ]
1182                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1183                                     _alpha[pix_x + 1]
1184                                         += tmp;
1185 
1186                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1187 
1188                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1189                                     _alpha[pix_xmax    ]
1190                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1191                                     _alpha[pix_xmax + 1]
1192                                         -= tmp;
1193 
1194                                     if (useBlkFlags) {
1195                                         // flag used blocks:
1196                                         // note: block processing handles extra pixel:
1197                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1198                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1199                                     }
1200                                 }
1201                             }
1202                         }
1203 
1204                         sum += crorientation;
1205                         prev = curx;
1206                     }
1207                 } else {
1208                     // Non-zero winding rule: optimize that case (default)
1209                     // and avoid processing intermediate crossings
1210                     for (i = 1, sum = 0;; i++) {
1211                         sum += crorientation;
1212 
1213                         if (sum != 0) {
1214                             // prev = min(curx)
1215                             if (prev > curx) {
1216                                 prev = curx;
1217                             }
1218                         } else {
1219                             // TODO: perform line clipping on left-right sides
1220                             // to avoid such bound checks:
1221                             x0 = (prev > bboxx0) ? prev : bboxx0;
1222 
1223                             if (curx < bboxx1) {
1224                                 x1 = curx;
1225                             } else {
1226                                 x1 = bboxx1;
1227                                 // skip right side (fast exit loop):
1228                                 i = numCrossings;
1229                             }
1230 
1231                             if (x0 < x1) {
1232                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1233                                 x1 -= bboxx0; // in the alpha array.
1234 
1235                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1236                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1237 
1238                                 if (pix_x == pix_xmaxm1) {
1239                                     // Start and end in same pixel
1240                                     tmp = (x1 - x0); // number of subpixels
1241                                     _alpha[pix_x    ] += tmp;
1242                                     _alpha[pix_x + 1] -= tmp;
1243 
1244                                     if (useBlkFlags) {
1245                                         // flag used blocks:
1246                                         // note: block processing handles extra pixel:
1247                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1248                                     }
1249                                 } else {
1250                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1251                                     _alpha[pix_x    ]
1252                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1253                                     _alpha[pix_x + 1]
1254                                         += tmp;
1255 
1256                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1257 
1258                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1259                                     _alpha[pix_xmax    ]
1260                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1261                                     _alpha[pix_xmax + 1]
1262                                         -= tmp;
1263 
1264                                     if (useBlkFlags) {
1265                                         // flag used blocks:
1266                                         // note: block processing handles extra pixel:
1267                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1268                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1269                                     }
1270                                 }
1271                             }
1272                             prev = _MAX_VALUE;
1273                         }
1274 
1275                         if (i == numCrossings) {
1276                             break;
1277                         }
1278 
1279                         curxo = _crossings[i];
1280                         curx  =  curxo >> 1;
1281                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1282                         // last bit contains orientation (0 or 1)
1283                         crorientation = ((curxo & 0x1) << 1) - 1;
1284                     }
1285                 }
1286             } // numCrossings > 0
1287 
1288             // even if this last row had no crossings, alpha will be zeroed
1289             // from the last emitRow call. But this doesn't matter because
1290             // maxX < minX, so no row will be emitted to the AlphaConsumer.
1291             if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1292                 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1293 
1294                 // convert subpixel to pixel coordinate within boundaries:
1295                 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1296                 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1297 
1298                 if (maxX >= minX) {
1299                     // note: alpha array will be zeroed by copyAARow()
1300                     // +1 because alpha [pix_minX; pix_maxX[
1301                     // fix range [x0; x1[
1302                     // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1303                     // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
1304                     // (normally so never cleared below)
1305                     copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags, ac);
1306 
1307                     // speculative for next pixel row (scanline coherence):
1308                     if (_enableBlkFlagsHeuristics) {
1309                         // Use block flags if large pixel span and few crossings:
1310                         // ie mean(distance between crossings) is larger than
1311                         // 1 block size;
1312 
1313                         // fast check width:
1314                         maxX -= minX;
1315 
1316                         // if stroking: numCrossings /= 2
1317                         // => shift numCrossings by 1
1318                         // condition = (width / (numCrossings - 1)) > blockSize
1319                         useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1320                             (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1321 
1322                         if (DO_STATS) {
1323                             tmp = FloatMath.max(1,
1324                                     ((numCrossings >> stroking) - 1));
1325                             rdrCtx.stats.hist_tile_generator_encoding_dist
1326                                 .add(maxX / tmp);
1327                         }
1328                     }
1329                 } else {
1330                     ac.clearAlphas(lastY);
1331                 }
1332                 minX = _MAX_VALUE;
1333                 maxX = _MIN_VALUE;
1334             }
1335         } // scan line iterator
1336 
1337         // Emit final row
1338         y--;
1339         y >>= _SUBPIXEL_LG_POSITIONS_Y;
1340 
1341         // convert subpixel to pixel coordinate within boundaries:
1342         minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1343         maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1344 
1345         if (maxX >= minX) {
1346             // note: alpha array will be zeroed by copyAARow()
1347             // +1 because alpha [pix_minX; pix_maxX[
1348             // fix range [x0; x1[
1349             // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1350             // inclusive: alpha[bboxx1] ignored then cleared and
1351             // alpha[bboxx1+1] == 0 (normally so never cleared after)
1352             copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags, ac);
1353         } else if (y != lastY) {
1354             ac.clearAlphas(y);
1355         }
1356 
1357         // update member:
1358         edgeCount = numCrossings;
1359         prevUseBlkFlags = useBlkFlags;
1360 
1361         if (DO_STATS) {
1362             // update max used mark
1363             activeEdgeMaxUsed = _arrayMaxUsed;
1364         }
1365     }
1366 
1367     void endRendering() {
1368         if (DO_MONITORS) {
1369             rdrCtx.stats.mon_rdr_endRendering.start();
1370         }
1371         if (edgeMinY == Integer.MAX_VALUE) {
1372             return; // undefined edges bounds
1373         }
1374 
1375         // bounds as half-open intervals
1376         final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5d), boundsMinX);
1377         final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5d), boundsMaxX);
1378 
1379         // edge Min/Max Y are already rounded to subpixels within bounds:
1380         final int spminY = edgeMinY;
1381         final int spmaxY = edgeMaxY;
1382 
1383         buckets_minY = spminY - boundsMinY;
1384         buckets_maxY = spmaxY - boundsMinY;
1385 
1386         if (DO_LOG_BOUNDS) {
1387             MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1388                                 + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
1389             MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1390                                 + "[ [" + spminY + " ... " + spmaxY + "[");
1391         }
1392 
1393         // test clipping for shapes out of bounds
1394         if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
1395             return;
1396         }
1397 
1398         // half open intervals
1399         // inclusive:
1400         final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1401         // exclusive:
1402         final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1403         // inclusive:
1404         final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1405         // exclusive:
1406         final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1407 
1408         // store BBox to answer ptg.getBBox():
1409         initConsumer(pminX, pminY, pmaxX, pmaxY);
1410 
1411         // Heuristics for using block flags:
1412         if (ENABLE_BLOCK_FLAGS) {
1413             enableBlkFlags = this.useRLE;
1414             prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1415 
1416             if (enableBlkFlags) {
1417                 // ensure blockFlags array is large enough:
1418                 // note: +2 to ensure enough space left at end
1419                 final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
1420                 if (blkLen > INITIAL_ARRAY) {
1421                     blkFlags = blkFlags_ref.getArray(blkLen);
1422                 }
1423             }
1424         }
1425 
1426         // memorize the rendering bounding box:
1427         /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1428            to have correct coverage computation */
1429         // inclusive:
1430         bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1431         // exclusive:
1432         bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1433         // inclusive:
1434         bbox_spminY = spminY;
1435         // exclusive:
1436         bbox_spmaxY = spmaxY;
1437 
1438         if (DO_LOG_BOUNDS) {
1439             MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1440                                 + "[ [" + pminY + " ... " + pmaxY + "[");
1441             MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1442                                 + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1443                                 + bbox_spmaxY + "[");
1444         }
1445 
1446         // Prepare alpha line:
1447         // add 2 to better deal with the last pixel in a pixel row.
1448         final int width = (pmaxX - pminX) + 2;
1449 
1450         // Useful when processing tile line by tile line
1451         if (width > INITIAL_AA_ARRAY) {
1452             if (DO_STATS) {
1453                 rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1454             }
1455             alphaLine = alphaLine_ref.getArray(width);
1456         }
1457     }
1458 
1459     void initConsumer(int minx, int miny, int maxx, int maxy)
1460     {
1461         // assert maxy >= miny && maxx >= minx;
1462         bboxX0 = minx;
1463         bboxX1 = maxx;
1464         bboxY0 = miny;
1465         bboxY1 = maxy;
1466 
1467         final int width = (maxx - minx);
1468 
1469         if (FORCE_NO_RLE) {
1470             useRLE = false;
1471         } else if (FORCE_RLE) {
1472             useRLE = true;
1473         } else {
1474             // heuristics: use both bbox area and complexity
1475             // ie number of primitives:
1476 
1477             // fast check min width:
1478             useRLE = (width > RLE_MIN_WIDTH);
1479         }
1480     }
1481 
1482     private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
1483 
1484     public void produceAlphas(final MarlinAlphaConsumer ac) {
1485         ac.setMaxAlpha(MAX_AA_ALPHA);
1486 
1487         if (enableBlkFlags && !ac.supportBlockFlags()) {
1488             // consumer does not support block flag optimization:
1489             enableBlkFlags = false;
1490             prevUseBlkFlags = false;
1491         }
1492 
1493         if (DO_MONITORS) {
1494             rdrCtx.stats.mon_rdr_endRendering_Y.start();
1495         }
1496 
1497         // Process all scan lines:
1498         _endRendering(bbox_spminY, bbox_spmaxY, ac);
1499 
1500         if (DO_MONITORS) {
1501             rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1502         }
1503     }
1504 
1505     void copyAARow(final int[] alphaRow,
1506                    final int pix_y, final int pix_from, final int pix_to,
1507                    final boolean useBlockFlags,
1508                    final MarlinAlphaConsumer ac)
1509     {
1510         if (DO_MONITORS) {
1511             rdrCtx.stats.mon_rdr_copyAARow.start();
1512         }
1513         if (DO_STATS) {
1514             rdrCtx.stats.stat_cache_rowAA.add(pix_to - pix_from);
1515         }
1516 
1517         if (useBlockFlags) {
1518             if (DO_STATS) {
1519                 rdrCtx.stats.hist_tile_generator_encoding.add(1);
1520             }
1521             ac.setAndClearRelativeAlphas(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1522         } else {
1523             if (DO_STATS) {
1524                 rdrCtx.stats.hist_tile_generator_encoding.add(0);
1525             }
1526             ac.setAndClearRelativeAlphas(alphaRow, pix_y, pix_from, pix_to);
1527         }
1528         if (DO_MONITORS) {
1529             rdrCtx.stats.mon_rdr_copyAARow.stop();
1530         }
1531     }
1532 
1533     // output pixel bounding box:
1534     int bboxX0, bboxX1, bboxY0, bboxY1;
1535 
1536     @Override
1537     public int getOutpixMinX() {
1538         return bboxX0;
1539     }
1540 
1541     @Override
1542     public int getOutpixMaxX() {
1543         return bboxX1;
1544     }
1545 
1546     @Override
1547     public int getOutpixMinY() {
1548         return bboxY0;
1549     }
1550 
1551     @Override
1552     public int getOutpixMaxY() {
1553         return bboxY1;
1554     }
1555 
1556     @Override
1557     public double getOffsetX() {
1558         return RDR_OFFSET_X;
1559     }
1560 
1561     @Override
1562     public double getOffsetY() {
1563         return RDR_OFFSET_Y;
1564     }
1565 }