--- old/modules/javafx.graphics/src/main/java/com/sun/marlin/Dasher.java 2018-07-03 17:33:31.401273972 +0200 +++ new/modules/javafx.graphics/src/main/java/com/sun/marlin/Dasher.java 2018-07-03 17:33:31.333273973 +0200 @@ -27,6 +27,8 @@ import java.util.Arrays; import com.sun.javafx.geom.PathConsumer2D; +import com.sun.marlin.TransformingPathConsumer2D.CurveBasicMonotonizer; +import com.sun.marlin.TransformingPathConsumer2D.CurveClipSplitter; /** * The Dasher class takes a series of linear commands @@ -41,8 +43,9 @@ */ public final class Dasher implements PathConsumer2D, MarlinConst { - static final int REC_LIMIT = 4; - static final float ERR = 0.01f; + /* huge circle with radius ~ 2E9 only needs 12 subdivision levels */ + static final int REC_LIMIT = 16; + static final float CURVE_LEN_ERR = MarlinProperties.getCurveLengthError(); // 0.01 static final float MIN_T_INC = 1.0f / (1 << REC_LIMIT); // More than 24 bits of mantissa means we can no longer accurately @@ -64,8 +67,10 @@ private boolean dashOn; private float phase; - private float sx, sy; - private float x0, y0; + // The starting point of the path + private float sx0, sy0; + // the current point + private float cx0, cy0; // temporary storage for the current curve private final float[] curCurvepts; @@ -76,11 +81,34 @@ // flag to recycle dash array copy boolean recycleDashes; + // We don't emit the first dash right away. If we did, caps would be + // drawn on it, but we need joins to be drawn if there's a closePath() + // So, we store the path elements that make up the first dash in the + // buffer below. + private float[] firstSegmentsBuffer; // dynamic array + private int firstSegidx; + // dashes ref (dirty) final FloatArrayCache.Reference dashes_ref; // firstSegmentsBuffer ref (dirty) final FloatArrayCache.Reference firstSegmentsBuffer_ref; + // Bounds of the drawing region, at pixel precision. + private float[] clipRect; + + // the outcode of the current point + private int cOutCode = 0; + + private boolean subdivide = DO_CLIP_SUBDIVIDER; + + private final LengthIterator li = new LengthIterator(); + + private final CurveClipSplitter curveSplitter; + + private float cycleLen; + private boolean outside; + private float totalSkipLen; + /** * Constructs a Dasher. * @param rdrCtx per-thread renderer context @@ -96,6 +124,8 @@ // we need curCurvepts to be able to contain 2 curves because when // dashing curves, we need to subdivide it curCurvepts = new float[8 * 2]; + + this.curveSplitter = rdrCtx.curveClipSplitter; } /** @@ -122,6 +152,8 @@ for (int i = 0; i < dashLen; i++) { sum += dash[i]; } + this.cycleLen = sum; + float cycles = phase / sum; if (phase < 0.0f) { if (-cycles >= MAX_CYCLES) { @@ -170,6 +202,12 @@ this.recycleDashes = recycleDashes; + if (rdrCtx.doClip) { + this.clipRect = rdrCtx.clipRect; + } else { + this.clipRect = null; + this.cOutCode = 0; + } return this; // fluent API } @@ -207,33 +245,42 @@ @Override public void moveTo(final float x0, final float y0) { if (firstSegidx != 0) { - out.moveTo(sx, sy); + out.moveTo(sx0, sy0); emitFirstSegments(); } - needsMoveTo = true; + this.needsMoveTo = true; this.idx = startIdx; this.dashOn = this.startDashOn; this.phase = this.startPhase; - this.sx = x0; - this.sy = y0; - this.x0 = x0; - this.y0 = y0; + this.cx0 = x0; + this.cy0 = y0; + + // update starting point: + this.sx0 = x0; + this.sy0 = y0; this.starting = true; + + if (clipRect != null) { + final int outcode = Helpers.outcode(x0, y0, clipRect); + this.cOutCode = outcode; + this.outside = false; + this.totalSkipLen = 0.0f; + } } private void emitSeg(float[] buf, int off, int type) { switch (type) { + case 4: + out.lineTo(buf[off], buf[off + 1]); + return; case 8: - out.curveTo(buf[off+0], buf[off+1], - buf[off+2], buf[off+3], - buf[off+4], buf[off+5]); + out.curveTo(buf[off ], buf[off + 1], + buf[off + 2], buf[off + 3], + buf[off + 4], buf[off + 5]); return; case 6: - out.quadTo(buf[off+0], buf[off+1], - buf[off+2], buf[off+3]); - return; - case 4: - out.lineTo(buf[off], buf[off+1]); + out.quadTo(buf[off ], buf[off + 1], + buf[off + 2], buf[off + 3]); return; default: } @@ -249,12 +296,6 @@ } firstSegidx = 0; } - // We don't emit the first dash right away. If we did, caps would be - // drawn on it, but we need joins to be drawn if there's a closePath() - // So, we store the path elements that make up the first dash in the - // buffer below. - private float[] firstSegmentsBuffer; // dynamic array - private int firstSegidx; // precondition: pts must be in relative coordinates (relative to x0,y0) private void goTo(final float[] pts, final int off, final int type, @@ -270,7 +311,7 @@ } else { if (needsMoveTo) { needsMoveTo = false; - out.moveTo(x0, y0); + out.moveTo(cx0, cy0); } emitSeg(pts, off, type); } @@ -281,8 +322,8 @@ } needsMoveTo = true; } - this.x0 = x; - this.y0 = y; + this.cx0 = x; + this.cy0 = y; } private void goTo_starting(final float[] pts, final int off, final int type) { @@ -308,10 +349,56 @@ @Override public void lineTo(final float x1, final float y1) { - final float dx = x1 - x0; - final float dy = y1 - y0; + final int outcode0 = this.cOutCode; + + if (clipRect != null) { + final int outcode1 = Helpers.outcode(x1, y1, clipRect); + + // Should clip + final int orCode = (outcode0 | outcode1); + + if (orCode != 0) { + final int sideCode = outcode0 & outcode1; + + // basic rejection criteria: + if (sideCode == 0) { + // ovelap clip: + if (subdivide) { + // avoid reentrance + subdivide = false; + // subdivide curve => callback with subdivided parts: + boolean ret = curveSplitter.splitLine(cx0, cy0, x1, y1, + orCode, this); + // reentrance is done: + subdivide = true; + if (ret) { + return; + } + } + // already subdivided so render it + } else { + this.cOutCode = outcode1; + skipLineTo(x1, y1); + return; + } + } + + this.cOutCode = outcode1; + + if (this.outside) { + this.outside = false; + // Adjust current index, phase & dash: + skipLen(); + } + } + _lineTo(x1, y1); + } + + private void _lineTo(final float x1, final float y1) { + final float dx = x1 - cx0; + final float dy = y1 - cy0; - float len = dx*dx + dy*dy; + float len = dx * dx + dy * dy; if (len == 0.0f) { return; } @@ -330,8 +417,7 @@ boolean _dashOn = dashOn; float _phase = phase; - float leftInThisDashSegment; - float d, dashdx, dashdy, p; + float leftInThisDashSegment, d; while (true) { d = _dash[_idx]; @@ -352,24 +438,15 @@ _idx = (_idx + 1) % _dashLen; _dashOn = !_dashOn; } - - // Save local state: - idx = _idx; - dashOn = _dashOn; - phase = _phase; - return; + break; } - dashdx = d * cx; - dashdy = d * cy; - if (_phase == 0.0f) { - _curCurvepts[0] = x0 + dashdx; - _curCurvepts[1] = y0 + dashdy; + _curCurvepts[0] = cx0 + d * cx; + _curCurvepts[1] = cy0 + d * cy; } else { - p = leftInThisDashSegment / d; - _curCurvepts[0] = x0 + p * dashdx; - _curCurvepts[1] = y0 + p * dashdy; + _curCurvepts[0] = cx0 + leftInThisDashSegment * cx; + _curCurvepts[1] = cy0 + leftInThisDashSegment * cy; } goTo(_curCurvepts, 0, 4, _dashOn); @@ -380,19 +457,95 @@ _dashOn = !_dashOn; _phase = 0.0f; } + // Save local state: + idx = _idx; + dashOn = _dashOn; + phase = _phase; } - // shared instance in Dasher - private final LengthIterator li = new LengthIterator(); + private void skipLineTo(final float x1, final float y1) { + final float dx = x1 - cx0; + final float dy = y1 - cy0; + + float len = dx * dx + dy * dy; + if (len != 0.0f) { + len = (float)Math.sqrt(len); + } + + // Accumulate skipped length: + this.outside = true; + this.totalSkipLen += len; + + // Fix initial move: + this.needsMoveTo = true; + this.starting = false; + + this.cx0 = x1; + this.cy0 = y1; + } + + public void skipLen() { + float len = this.totalSkipLen; + this.totalSkipLen = 0.0f; + + final float[] _dash = dash; + final int _dashLen = this.dashLen; + + int _idx = idx; + boolean _dashOn = dashOn; + float _phase = phase; + + // -2 to ensure having 2 iterations of the post-loop + // to compensate the remaining phase + final long fullcycles = (long)Math.floor(len / cycleLen) - 2L; + + if (fullcycles > 0L) { + len -= cycleLen * fullcycles; + + final long iterations = fullcycles * _dashLen; + _idx = (int) (iterations + _idx) % _dashLen; + _dashOn = (iterations + (_dashOn ? 1L : 0L) & 1L) == 1L; + } + + float leftInThisDashSegment, d; + + while (true) { + d = _dash[_idx]; + leftInThisDashSegment = d - _phase; + + if (len <= leftInThisDashSegment) { + // Advance phase within current dash segment + _phase += len; + + // TODO: compare float values using epsilon: + if (len == leftInThisDashSegment) { + _phase = 0.0f; + _idx = (_idx + 1) % _dashLen; + _dashOn = !_dashOn; + } + break; + } + + len -= leftInThisDashSegment; + // Advance to next dash segment + _idx = (_idx + 1) % _dashLen; + _dashOn = !_dashOn; + _phase = 0.0f; + } + // Save local state: + idx = _idx; + dashOn = _dashOn; + phase = _phase; + } // preconditions: curCurvepts must be an array of length at least 2 * type, // that contains the curve we want to dash in the first type elements private void somethingTo(final int type) { - if (pointCurve(curCurvepts, type)) { + final float[] _curCurvepts = curCurvepts; + if (pointCurve(_curCurvepts, type)) { return; } final LengthIterator _li = li; - final float[] _curCurvepts = curCurvepts; final float[] _dash = dash; final int _dashLen = this.dashLen; @@ -404,17 +557,16 @@ // initially the current curve is at curCurvepts[0...type] int curCurveoff = 0; - float lastSplitT = 0.0f; + float prevT = 0.0f; float t; float leftInThisDashSegment = _dash[_idx] - _phase; while ((t = _li.next(leftInThisDashSegment)) < 1.0f) { if (t != 0.0f) { - Helpers.subdivideAt((t - lastSplitT) / (1.0f - lastSplitT), + Helpers.subdivideAt((t - prevT) / (1.0f - prevT), _curCurvepts, curCurveoff, - _curCurvepts, 0, - _curCurvepts, type, type); - lastSplitT = t; + _curCurvepts, 0, type); + prevT = t; goTo(_curCurvepts, 2, type, _dashOn); curCurveoff = type; } @@ -442,7 +594,29 @@ _li.reset(); } - private static boolean pointCurve(float[] curve, int type) { + private void skipSomethingTo(final int type) { + final float[] _curCurvepts = curCurvepts; + if (pointCurve(_curCurvepts, type)) { + return; + } + final LengthIterator _li = li; + + _li.initializeIterationOnCurve(_curCurvepts, type); + + // In contrary to somethingTo(), + // just estimate properly the curve length: + final float len = _li.totalLength(); + + // Accumulate skipped length: + this.outside = true; + this.totalSkipLen += len; + + // Fix initial move: + this.needsMoveTo = true; + this.starting = false; + } + + private static boolean pointCurve(final float[] curve, final int type) { for (int i = 2; i < type; i++) { if (curve[i] != curve[i-2]) { return false; @@ -465,15 +639,14 @@ // tree; however, the trees we are interested in have the property that // every non leaf node has exactly 2 children static final class LengthIterator { - private enum Side {LEFT, RIGHT} // Holds the curves at various levels of the recursion. The root // (i.e. the original curve) is at recCurveStack[0] (but then it // gets subdivided, the left half is put at 1, so most of the time // only the right half of the original curve is at 0) private final float[][] recCurveStack; // dirty - // sides[i] indicates whether the node at level i+1 in the path from + // sidesRight[i] indicates whether the node at level i+1 in the path from // the root to the current leaf is a left or right child of its parent. - private final Side[] sides; // dirty + private final boolean[] sidesRight; // dirty private int curveType; // lastT and nextT delimit the current leaf. private float nextT; @@ -494,7 +667,7 @@ LengthIterator() { this.recCurveStack = new float[REC_LIMIT + 1][8]; - this.sides = new Side[REC_LIMIT]; + this.sidesRight = new boolean[REC_LIMIT]; // if any methods are called without first initializing this object // on a curve, we want it to fail ASAP. this.nextT = Float.MAX_VALUE; @@ -516,7 +689,7 @@ for (int i = recLimit; i >= 0; i--) { Arrays.fill(recCurveStack[i], 0.0f); } - Arrays.fill(sides, Side.LEFT); + Arrays.fill(sidesRight, false); Arrays.fill(curLeafCtrlPolyLengths, 0.0f); Arrays.fill(nextRoots, 0.0f); Arrays.fill(flatLeafCoefCache, 0.0f); @@ -524,7 +697,7 @@ } } - void initializeIterationOnCurve(float[] pts, int type) { + void initializeIterationOnCurve(final float[] pts, final int type) { // optimize arraycopy (8 values faster than 6 = type): System.arraycopy(pts, 0, recCurveStack[0], 0, 8); this.curveType = type; @@ -536,11 +709,11 @@ goLeft(); // initializes nextT and lenAtNextT properly this.lenAtLastSplit = 0.0f; if (recLevel > 0) { - this.sides[0] = Side.LEFT; + this.sidesRight[0] = false; this.done = false; } else { // the root of the tree is a leaf so we're done. - this.sides[0] = Side.RIGHT; + this.sidesRight[0] = true; this.done = true; } this.lastSegLen = 0.0f; @@ -549,7 +722,7 @@ // 0 == false, 1 == true, -1 == invalid cached value. private int cachedHaveLowAcceleration = -1; - private boolean haveLowAcceleration(float err) { + private boolean haveLowAcceleration(final float err) { if (cachedHaveLowAcceleration == -1) { final float len1 = curLeafCtrlPolyLengths[0]; final float len2 = curLeafCtrlPolyLengths[1]; @@ -638,7 +811,7 @@ // we use cubicRootsInAB here, because we want only roots in 0, 1, // and our quadratic root finder doesn't filter, so it's just a // matter of convenience. - int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0f, 1.0f); + final int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0f, 1.0f); if (n == 1 && !Float.isNaN(nextRoots[0])) { t = nextRoots[0]; } @@ -659,6 +832,16 @@ return t; } + float totalLength() { + while (!done) { + goToNextLeaf(); + } + // reset LengthIterator: + reset(); + + return lenAtNextT; + } + float lastSegLen() { return lastSegLen; } @@ -668,11 +851,11 @@ private void goToNextLeaf() { // We must go to the first ancestor node that has an unvisited // right child. + final boolean[] _sides = sidesRight; int _recLevel = recLevel; - final Side[] _sides = sides; - _recLevel--; - while(_sides[_recLevel] == Side.RIGHT) { + + while(_sides[_recLevel]) { if (_recLevel == 0) { recLevel = 0; done = true; @@ -681,19 +864,17 @@ _recLevel--; } - _sides[_recLevel] = Side.RIGHT; + _sides[_recLevel] = true; // optimize arraycopy (8 values faster than 6 = type): - System.arraycopy(recCurveStack[_recLevel], 0, - recCurveStack[_recLevel+1], 0, 8); - _recLevel++; - + System.arraycopy(recCurveStack[_recLevel++], 0, + recCurveStack[_recLevel], 0, 8); recLevel = _recLevel; goLeft(); } // go to the leftmost node from the current node. Return its length. private void goLeft() { - float len = onLeaf(); + final float len = onLeaf(); if (len >= 0.0f) { lastT = nextT; lenAtLastT = lenAtNextT; @@ -703,10 +884,11 @@ flatLeafCoefCache[2] = -1.0f; cachedHaveLowAcceleration = -1; } else { - Helpers.subdivide(recCurveStack[recLevel], 0, - recCurveStack[recLevel+1], 0, - recCurveStack[recLevel], 0, curveType); - sides[recLevel] = Side.LEFT; + Helpers.subdivide(recCurveStack[recLevel], + recCurveStack[recLevel + 1], + recCurveStack[recLevel], curveType); + + sidesRight[recLevel] = false; recLevel++; goLeft(); } @@ -721,7 +903,7 @@ float x0 = curve[0], y0 = curve[1]; for (int i = 2; i < _curveType; i += 2) { - final float x1 = curve[i], y1 = curve[i+1]; + final float x1 = curve[i], y1 = curve[i + 1]; final float len = Helpers.linelen(x0, y0, x1, y1); polyLen += len; curLeafCtrlPolyLengths[(i >> 1) - 1] = len; @@ -729,10 +911,9 @@ y0 = y1; } - final float lineLen = Helpers.linelen(curve[0], curve[1], - curve[_curveType-2], - curve[_curveType-1]); - if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { + final float lineLen = Helpers.linelen(curve[0], curve[1], x0, y0); + + if ((polyLen - lineLen) < CURVE_LEN_ERR || recLevel == REC_LIMIT) { return (polyLen + lineLen) / 2.0f; } return -1.0f; @@ -744,41 +925,190 @@ final float x2, final float y2, final float x3, final float y3) { + final int outcode0 = this.cOutCode; + + if (clipRect != null) { + final int outcode1 = Helpers.outcode(x1, y1, clipRect); + final int outcode2 = Helpers.outcode(x2, y2, clipRect); + final int outcode3 = Helpers.outcode(x3, y3, clipRect); + + // Should clip + final int orCode = (outcode0 | outcode1 | outcode2 | outcode3); + if (orCode != 0) { + final int sideCode = outcode0 & outcode1 & outcode2 & outcode3; + + // basic rejection criteria: + if (sideCode == 0) { + // ovelap clip: + if (subdivide) { + // avoid reentrance + subdivide = false; + // subdivide curve => callback with subdivided parts: + boolean ret = curveSplitter.splitCurve(cx0, cy0, x1, y1, x2, y2, x3, y3, + orCode, this); + // reentrance is done: + subdivide = true; + if (ret) { + return; + } + } + // already subdivided so render it + } else { + this.cOutCode = outcode3; + skipCurveTo(x1, y1, x2, y2, x3, y3); + return; + } + } + + this.cOutCode = outcode3; + + if (this.outside) { + this.outside = false; + // Adjust current index, phase & dash: + skipLen(); + } + } + _curveTo(x1, y1, x2, y2, x3, y3); + } + + private void _curveTo(final float x1, final float y1, + final float x2, final float y2, + final float x3, final float y3) + { final float[] _curCurvepts = curCurvepts; - _curCurvepts[0] = x0; _curCurvepts[1] = y0; - _curCurvepts[2] = x1; _curCurvepts[3] = y1; - _curCurvepts[4] = x2; _curCurvepts[5] = y2; - _curCurvepts[6] = x3; _curCurvepts[7] = y3; - somethingTo(8); + + // monotonize curve: + final CurveBasicMonotonizer monotonizer + = rdrCtx.monotonizer.curve(cx0, cy0, x1, y1, x2, y2, x3, y3); + + final int nSplits = monotonizer.nbSplits; + final float[] mid = monotonizer.middle; + + for (int i = 0, off = 0; i <= nSplits; i++, off += 6) { + // optimize arraycopy (8 values faster than 6 = type): + System.arraycopy(mid, off, _curCurvepts, 0, 8); + + somethingTo(8); + } + } + + private void skipCurveTo(final float x1, final float y1, + final float x2, final float y2, + final float x3, final float y3) + { + final float[] _curCurvepts = curCurvepts; + _curCurvepts[0] = cx0; _curCurvepts[1] = cy0; + _curCurvepts[2] = x1; _curCurvepts[3] = y1; + _curCurvepts[4] = x2; _curCurvepts[5] = y2; + _curCurvepts[6] = x3; _curCurvepts[7] = y3; + + skipSomethingTo(8); + + this.cx0 = x3; + this.cy0 = y3; } @Override public void quadTo(final float x1, final float y1, final float x2, final float y2) { + final int outcode0 = this.cOutCode; + + if (clipRect != null) { + final int outcode1 = Helpers.outcode(x1, y1, clipRect); + final int outcode2 = Helpers.outcode(x2, y2, clipRect); + + // Should clip + final int orCode = (outcode0 | outcode1 | outcode2); + if (orCode != 0) { + final int sideCode = outcode0 & outcode1 & outcode2; + + // basic rejection criteria: + if (sideCode == 0) { + // ovelap clip: + if (subdivide) { + // avoid reentrance + subdivide = false; + // subdivide curve => call lineTo() with subdivided curves: + boolean ret = curveSplitter.splitQuad(cx0, cy0, x1, y1, + x2, y2, orCode, this); + // reentrance is done: + subdivide = true; + if (ret) { + return; + } + } + // already subdivided so render it + } else { + this.cOutCode = outcode2; + skipQuadTo(x1, y1, x2, y2); + return; + } + } + + this.cOutCode = outcode2; + + if (this.outside) { + this.outside = false; + // Adjust current index, phase & dash: + skipLen(); + } + } + _quadTo(x1, y1, x2, y2); + } + + private void _quadTo(final float x1, final float y1, + final float x2, final float y2) + { final float[] _curCurvepts = curCurvepts; - _curCurvepts[0] = x0; _curCurvepts[1] = y0; - _curCurvepts[2] = x1; _curCurvepts[3] = y1; - _curCurvepts[4] = x2; _curCurvepts[5] = y2; - somethingTo(6); + + // monotonize quad: + final CurveBasicMonotonizer monotonizer + = rdrCtx.monotonizer.quad(cx0, cy0, x1, y1, x2, y2); + + final int nSplits = monotonizer.nbSplits; + final float[] mid = monotonizer.middle; + + for (int i = 0, off = 0; i <= nSplits; i++, off += 4) { + // optimize arraycopy (8 values faster than 6 = type): + System.arraycopy(mid, off, _curCurvepts, 0, 8); + + somethingTo(6); + } + } + + private void skipQuadTo(final float x1, final float y1, + final float x2, final float y2) + { + final float[] _curCurvepts = curCurvepts; + _curCurvepts[0] = cx0; _curCurvepts[1] = cy0; + _curCurvepts[2] = x1; _curCurvepts[3] = y1; + _curCurvepts[4] = x2; _curCurvepts[5] = y2; + + skipSomethingTo(6); + + this.cx0 = x2; + this.cy0 = y2; } @Override public void closePath() { - lineTo(sx, sy); + if (cx0 != sx0 || cy0 != sy0) { + lineTo(sx0, sy0); + } if (firstSegidx != 0) { if (!dashOn || needsMoveTo) { - out.moveTo(sx, sy); + out.moveTo(sx0, sy0); } emitFirstSegments(); } - moveTo(sx, sy); + moveTo(sx0, sy0); } @Override public void pathDone() { if (firstSegidx != 0) { - out.moveTo(sx, sy); + out.moveTo(sx0, sy0); emitFirstSegments(); } out.pathDone();