< prev index next >

openjfx9/modules/javafx.graphics/src/main/java/com/sun/marlin/Stroker.java

Print this page

        

*** 21,44 **** * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ ! package sun.java2d.marlin; import java.util.Arrays; - import static java.lang.Math.ulp; - import static java.lang.Math.sqrt; - - import sun.awt.geom.PathConsumer2D; - import sun.java2d.marlin.Curve.BreakPtrIterator; // TODO: some of the arithmetic here is too verbose and prone to hard to // debug typos. We should consider making a small Point/Vector class that // has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such ! final class Stroker implements PathConsumer2D, MarlinConst { private static final int MOVE_TO = 0; private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad private static final int CLOSE = 2; --- 21,40 ---- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ ! package com.sun.marlin; import java.util.Arrays; + import com.sun.javafx.geom.PathConsumer2D; // TODO: some of the arithmetic here is too verbose and prone to hard to // debug typos. We should consider making a small Point/Vector class that // has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such ! public final class Stroker implements PathConsumer2D, MarlinConst { private static final int MOVE_TO = 0; private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad private static final int CLOSE = 2;
*** 110,122 **** private float smx, smy, cmx, cmy; private final PolyStack reverse; // This is where the curve to be processed is put. We give it ! // enough room to store 2 curves: one for the current subdivision, the ! // other for the rest of the curve. ! private final float[] middle = new float[2 * 8]; private final float[] lp = new float[8]; private final float[] rp = new float[8]; private final float[] subdivTs = new float[MAX_N_CURVES - 1]; // per-thread renderer context --- 106,117 ---- private float smx, smy, cmx, cmy; private final PolyStack reverse; // This is where the curve to be processed is put. We give it ! // enough room to store all curves. ! private final float[] middle = new float[MAX_N_CURVES * 8]; private final float[] lp = new float[8]; private final float[] rp = new float[8]; private final float[] subdivTs = new float[MAX_N_CURVES - 1]; // per-thread renderer context
*** 148,158 **** * <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or * <code>JOIN_BEVEL</code>. * @param miterLimit the desired miter limit * @return this instance */ ! Stroker init(PathConsumer2D pc2d, float lineWidth, int capStyle, int joinStyle, float miterLimit) { --- 143,153 ---- * <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or * <code>JOIN_BEVEL</code>. * @param miterLimit the desired miter limit * @return this instance */ ! public Stroker init(PathConsumer2D pc2d, float lineWidth, int capStyle, int joinStyle, float miterLimit) {
*** 199,209 **** float len = lx*lx + ly*ly; if (len == 0f) { m[0] = 0f; m[1] = 0f; } else { ! len = (float) sqrt(len); m[0] = (ly * w) / len; m[1] = -(lx * w) / len; } } --- 194,204 ---- float len = lx*lx + ly*ly; if (len == 0f) { m[0] = 0f; m[1] = 0f; } else { ! len = (float) Math.sqrt(len); m[0] = (ly * w) / len; m[1] = -(lx * w) / len; } }
*** 278,288 **** // perpendicular bisector goes through the origin). This scaling doesn't // have numerical problems because we know that lineWidth2 divided by // this normal's length is at least 0.5 and at most sqrt(2)/2 (because // we know the angle of the arc is > 90 degrees). float nx = my - omy, ny = omx - mx; ! float nlen = (float) sqrt(nx*nx + ny*ny); float scale = lineWidth2/nlen; float mmx = nx * scale, mmy = ny * scale; // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've // computed the wrong intersection so we get the other one. --- 273,283 ---- // perpendicular bisector goes through the origin). This scaling doesn't // have numerical problems because we know that lineWidth2 divided by // this normal's length is at least 0.5 and at most sqrt(2)/2 (because // we know the angle of the arc is > 90 degrees). float nx = my - omy, ny = omx - mx; ! float nlen = (float) Math.sqrt(nx*nx + ny*ny); float scale = lineWidth2/nlen; float mmx = nx * scale, mmy = ny * scale; // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've // computed the wrong intersection so we get the other one.
*** 316,327 **** // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that // define the bezier curve we're computing. // It is computed using the constraints that P1-P0 and P3-P2 are parallel // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|. ! float cv = (float) ((4.0 / 3.0) * sqrt(0.5 - cosext2) / ! (1.0 + sqrt(cosext2 + 0.5))); // if clockwise, we need to negate cv. if (rev) { // rev is equivalent to isCW(omx, omy, mx, my) cv = -cv; } final float x1 = cx + omx; --- 311,322 ---- // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that // define the bezier curve we're computing. // It is computed using the constraints that P1-P0 and P3-P2 are parallel // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|. ! float cv = (float) ((4.0 / 3.0) * Math.sqrt(0.5 - cosext2) / ! (1.0 + Math.sqrt(cosext2 + 0.5))); // if clockwise, we need to negate cv. if (rev) { // rev is equivalent to isCW(omx, omy, mx, my) cv = -cv; } final float x1 = cx + omx;
*** 346,376 **** emitCurveTo(cx - my - Cmx, cy + mx - Cmy, cx - mx - Cmy, cy - my + Cmx, cx - mx, cy - my); } ! // Put the intersection point of the lines (x0, y0) -> (x1, y1) ! // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]. ! // If the lines are parallel, it will put a non finite number in m. ! private static void computeIntersection(final float x0, final float y0, ! final float x1, final float y1, ! final float x0p, final float y0p, ! final float x1p, final float y1p, ! final float[] m, int off) { float x10 = x1 - x0; float y10 = y1 - y0; float x10p = x1p - x0p; float y10p = y1p - y0p; float den = x10*y10p - x10p*y10; float t = x10p*(y0-y0p) - y10p*(x0-x0p); t /= den; m[off++] = x0 + t*x10; m[off] = y0 + t*y10; } private void drawMiter(final float pdx, final float pdy, final float x0, final float y0, final float dx, final float dy, float omx, float omy, float mx, float my, boolean rev) --- 341,413 ---- emitCurveTo(cx - my - Cmx, cy + mx - Cmy, cx - mx - Cmy, cy - my + Cmx, cx - mx, cy - my); } ! // Return the intersection point of the lines (x0, y0) -> (x1, y1) ! // and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1] ! private static void computeMiter(final float x0, final float y0, ! final float x1, final float y1, ! final float x0p, final float y0p, ! final float x1p, final float y1p, ! final float[] m, int off) { float x10 = x1 - x0; float y10 = y1 - y0; float x10p = x1p - x0p; float y10p = y1p - y0p; + // if this is 0, the lines are parallel. If they go in the + // same direction, there is no intersection so m[off] and + // m[off+1] will contain infinity, so no miter will be drawn. + // If they go in the same direction that means that the start of the + // current segment and the end of the previous segment have the same + // tangent, in which case this method won't even be involved in + // miter drawing because it won't be called by drawMiter (because + // (mx == omx && my == omy) will be true, and drawMiter will return + // immediately). float den = x10*y10p - x10p*y10; float t = x10p*(y0-y0p) - y10p*(x0-x0p); t /= den; m[off++] = x0 + t*x10; m[off] = y0 + t*y10; } + // Return the intersection point of the lines (x0, y0) -> (x1, y1) + // and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1] + private static void safecomputeMiter(final float x0, final float y0, + final float x1, final float y1, + final float x0p, final float y0p, + final float x1p, final float y1p, + final float[] m, int off) + { + float x10 = x1 - x0; + float y10 = y1 - y0; + float x10p = x1p - x0p; + float y10p = y1p - y0p; + + // if this is 0, the lines are parallel. If they go in the + // same direction, there is no intersection so m[off] and + // m[off+1] will contain infinity, so no miter will be drawn. + // If they go in the same direction that means that the start of the + // current segment and the end of the previous segment have the same + // tangent, in which case this method won't even be involved in + // miter drawing because it won't be called by drawMiter (because + // (mx == omx && my == omy) will be true, and drawMiter will return + // immediately). + float den = x10*y10p - x10p*y10; + if (den == 0f) { + m[off++] = (x0 + x0p) / 2f; + m[off] = (y0 + y0p) / 2f; + return; + } + float t = x10p*(y0-y0p) - y10p*(x0-x0p); + t /= den; + m[off++] = x0 + t*x10; + m[off] = y0 + t*y10; + } + private void drawMiter(final float pdx, final float pdy, final float x0, final float y0, final float dx, final float dy, float omx, float omy, float mx, float my, boolean rev)
*** 387,399 **** omy = -omy; mx = -mx; my = -my; } ! computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy, ! (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, ! miter, 0); final float miterX = miter[0]; final float miterY = miter[1]; float lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0); --- 424,436 ---- omy = -omy; mx = -mx; my = -my; } ! computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy, ! (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, ! miter, 0); final float miterX = miter[0]; final float miterY = miter[1]; float lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
*** 655,666 **** float dx1 = x2 - x1; float dy1 = y2 - y1; // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, // in which case ignore if p1 == p2 ! final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * ulp(y2)); ! final boolean p3eqp4 = within(x3,y3,x4,y4, 6f * ulp(y4)); if (p1eqp2 && p3eqp4) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } else if (p1eqp2) { dx1 = x3 - x1; --- 692,703 ---- float dx1 = x2 - x1; float dy1 = y2 - y1; // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, // in which case ignore if p1 == p2 ! final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * Math.ulp(y2)); ! final boolean p3eqp4 = within(x3,y3,x4,y4, 6f * Math.ulp(y4)); if (p1eqp2 && p3eqp4) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } else if (p1eqp2) { dx1 = x3 - x1;
*** 672,682 **** // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line float dotsq = (dx1 * dx4 + dy1 * dy4); dotsq *= dotsq; float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4; ! if (Helpers.within(dotsq, l1sq * l4sq, 4f * ulp(dotsq))) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } // What we're trying to do in this function is to approximate an ideal --- 709,719 ---- // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line float dotsq = (dx1 * dx4 + dy1 * dy4); dotsq *= dotsq; float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4; ! if (Helpers.within(dotsq, l1sq * l4sq, 4f * Math.ulp(dotsq))) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } // What we're trying to do in this function is to approximate an ideal
*** 782,791 **** --- 819,830 ---- rightOff[4] = x3p; rightOff[5] = y3p; rightOff[6] = x4p; rightOff[7] = y4p; return 8; } + // compute offset curves using bezier spline through t=0.5 (i.e. + // ComputedCurve(0.5) == IdealParallelCurve(0.5)) // return the kind of curve in the right and left arrays. private int computeOffsetQuad(float[] pts, final int off, float[] leftOff, float[] rightOff) { final float x1 = pts[off + 0], y1 = pts[off + 1];
*** 795,862 **** final float dx3 = x3 - x2; final float dy3 = y3 - y2; final float dx1 = x2 - x1; final float dy1 = y2 - y1; ! // this computes the offsets at t = 0, 1 computeOffset(dx1, dy1, lineWidth2, offset0); computeOffset(dx3, dy3, lineWidth2, offset1); ! leftOff[0] = x1 + offset0[0]; leftOff[1] = y1 + offset0[1]; ! leftOff[4] = x3 + offset1[0]; leftOff[5] = y3 + offset1[1]; ! rightOff[0] = x1 - offset0[0]; rightOff[1] = y1 - offset0[1]; ! rightOff[4] = x3 - offset1[0]; rightOff[5] = y3 - offset1[1]; ! ! float x1p = leftOff[0]; // start ! float y1p = leftOff[1]; // point ! float x3p = leftOff[4]; // end ! float y3p = leftOff[5]; // point ! ! // Corner cases: ! // 1. If the two control vectors are parallel, we'll end up with NaN's ! // in leftOff (and rightOff in the body of the if below), so we'll ! // do getLineOffsets, which is right. ! // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0) ! // or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1) ! // or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that ! // computeIntersection will put NaN's in leftOff and right off, and ! // we will do getLineOffsets, which is right. ! computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2); ! float cx = leftOff[2]; ! float cy = leftOff[3]; ! ! if (!(isFinite(cx) && isFinite(cy))) { ! // maybe the right path is not degenerate. ! x1p = rightOff[0]; ! y1p = rightOff[1]; ! x3p = rightOff[4]; ! y3p = rightOff[5]; ! computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2); ! cx = rightOff[2]; ! cy = rightOff[3]; ! if (!(isFinite(cx) && isFinite(cy))) { ! // both are degenerate. This curve is a line. ! getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); ! return 4; ! } ! // {left,right}Off[0,1,4,5] are already set to the correct values. ! leftOff[2] = 2f * x2 - cx; ! leftOff[3] = 2f * y2 - cy; ! return 6; ! } ! // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2)) ! // == 2*(x2, y2) - (left_x2, left_y2) ! rightOff[2] = 2f * x2 - cx; ! rightOff[3] = 2f * y2 - cy; return 6; } - private static boolean isFinite(float x) { - return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY); - } - // If this class is compiled with ecj, then Hotspot crashes when OSR // compiling this function. See bugs 7004570 and 6675699 // TODO: until those are fixed, we should work around that by // manually inlining this into curveTo and quadTo. /******************************* WORKAROUND ********************************** --- 834,891 ---- final float dx3 = x3 - x2; final float dy3 = y3 - y2; final float dx1 = x2 - x1; final float dy1 = y2 - y1; ! // if p1=p2 or p3=p4 it means that the derivative at the endpoint ! // vanishes, which creates problems with computeOffset. Usually ! // this happens when this stroker object is trying to winden ! // a curve with a cusp. What happens is that curveTo splits ! // the input curve at the cusp, and passes it to this function. ! // because of inaccuracies in the splitting, we consider points ! // equal if they're very close to each other. ! ! // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, ! // in which case ignore. ! final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * Math.ulp(y2)); ! final boolean p2eqp3 = within(x2,y2,x3,y3, 6f * Math.ulp(y3)); ! if (p1eqp2 || p2eqp3) { ! getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); ! return 4; ! } ! ! // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line ! float dotsq = (dx1 * dx3 + dy1 * dy3); ! dotsq *= dotsq; ! float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3; ! if (Helpers.within(dotsq, l1sq * l3sq, 4f * Math.ulp(dotsq))) { ! getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); ! return 4; ! } ! ! // this computes the offsets at t=0, 0.5, 1, using the property that ! // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to ! // the (dx/dt, dy/dt) vectors at the endpoints. computeOffset(dx1, dy1, lineWidth2, offset0); computeOffset(dx3, dy3, lineWidth2, offset1); ! float x1p = x1 + offset0[0]; // start ! float y1p = y1 + offset0[1]; // point ! float x3p = x3 + offset1[0]; // end ! float y3p = y3 + offset1[1]; // point ! safecomputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2); ! leftOff[0] = x1p; leftOff[1] = y1p; ! leftOff[4] = x3p; leftOff[5] = y3p; ! x1p = x1 - offset0[0]; y1p = y1 - offset0[1]; ! x3p = x3 - offset1[0]; y3p = y3 - offset1[1]; ! safecomputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2); ! rightOff[0] = x1p; rightOff[1] = y1p; ! rightOff[4] = x3p; rightOff[5] = y3p; return 6; } // If this class is compiled with ecj, then Hotspot crashes when OSR // compiling this function. See bugs 7004570 and 6675699 // TODO: until those are fixed, we should work around that by // manually inlining this into curveTo and quadTo. /******************************* WORKAROUND **********************************
*** 973,983 **** // from rotating it. if (y12 != 0f && x12 != 0f) { // we rotate it so that the first vector in the control polygon is // parallel to the x-axis. This will ensure that rotated quarter // circles won't be subdivided. ! final float hypot = (float) sqrt(x12 * x12 + y12 * y12); final float cos = x12 / hypot; final float sin = y12 / hypot; final float x1 = cos * pts[0] + sin * pts[1]; final float y1 = cos * pts[1] - sin * pts[0]; final float x2 = cos * pts[2] + sin * pts[3]; --- 1002,1012 ---- // from rotating it. if (y12 != 0f && x12 != 0f) { // we rotate it so that the first vector in the control polygon is // parallel to the x-axis. This will ensure that rotated quarter // circles won't be subdivided. ! final float hypot = (float) Math.sqrt(x12 * x12 + y12 * y12); final float cos = x12 / hypot; final float sin = y12 / hypot; final float x1 = cos * pts[0] + sin * pts[1]; final float y1 = cos * pts[1] - sin * pts[0]; final float x2 = cos * pts[2] + sin * pts[3];
*** 1066,1099 **** } // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } computeOffset(dxs, dys, lineWidth2, offset0); drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]); ! int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2); final float[] l = lp; final float[] r = rp; int kind = 0; ! BreakPtrIterator it = curve.breakPtsAtTs(mid, 8, subdivTs, nSplits); ! while(it.hasNext()) { ! int curCurveOff = it.next(); - kind = computeOffsetCubic(mid, curCurveOff, l, r); emitLineTo(l[0], l[1]); switch(kind) { case 8: emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]); --- 1095,1134 ---- } // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) Math.sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) Math.sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } computeOffset(dxs, dys, lineWidth2, offset0); drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]); ! final int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2); ! ! float prevT = 0f; ! for (int i = 0, off = 0; i < nSplits; i++, off += 6) { ! final float t = subdivTs[i]; ! Helpers.subdivideCubicAt((t - prevT) / (1f - prevT), ! mid, off, mid, off, mid, off + 6); ! prevT = t; ! } final float[] l = lp; final float[] r = rp; int kind = 0; ! for (int i = 0, off = 0; i <= nSplits; i++, off += 6) { ! kind = computeOffsetCubic(mid, off, l, r); emitLineTo(l[0], l[1]); switch(kind) { case 8: emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
*** 1143,1176 **** return; } // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } computeOffset(dxs, dys, lineWidth2, offset0); drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]); int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2); final float[] l = lp; final float[] r = rp; int kind = 0; ! BreakPtrIterator it = curve.breakPtsAtTs(mid, 6, subdivTs, nSplits); ! while(it.hasNext()) { ! int curCurveOff = it.next(); - kind = computeOffsetQuad(mid, curCurveOff, l, r); emitLineTo(l[0], l[1]); switch(kind) { case 6: emitQuadTo(l[2], l[3], l[4], l[5]); --- 1178,1217 ---- return; } // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) Math.sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) Math.sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } computeOffset(dxs, dys, lineWidth2, offset0); drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]); int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2); + float prevt = 0f; + for (int i = 0, off = 0; i < nSplits; i++, off += 4) { + final float t = subdivTs[i]; + Helpers.subdivideQuadAt((t - prevt) / (1f - prevt), + mid, off, mid, off, mid, off + 4); + prevt = t; + } + final float[] l = lp; final float[] r = rp; int kind = 0; ! for (int i = 0, off = 0; i <= nSplits; i++, off += 4) { ! kind = computeOffsetQuad(mid, off, l, r); emitLineTo(l[0], l[1]); switch(kind) { case 6: emitQuadTo(l[2], l[3], l[4], l[5]);
*** 1192,1217 **** this.cx0 = xf; this.cy0 = yf; this.prev = DRAWING_OP_TO; } - @Override public long getNativeConsumer() { - throw new InternalError("Stroker doesn't use a native consumer"); - } - // a stack of polynomial curves where each curve shares endpoints with // adjacent ones. static final class PolyStack { private static final byte TYPE_LINETO = (byte) 0; private static final byte TYPE_QUADTO = (byte) 1; private static final byte TYPE_CUBICTO = (byte) 2; ! // curves capacity = edges count (4096) = half edges x 2 (coords) ! private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT; ! // types capacity = half edges count (2048) ! private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT >> 1; float[] curves; int end; byte[] curveTypes; int numCurves; --- 1233,1254 ---- this.cx0 = xf; this.cy0 = yf; this.prev = DRAWING_OP_TO; } // a stack of polynomial curves where each curve shares endpoints with // adjacent ones. static final class PolyStack { private static final byte TYPE_LINETO = (byte) 0; private static final byte TYPE_QUADTO = (byte) 1; private static final byte TYPE_CUBICTO = (byte) 2; ! // curves capacity = edges count (8192) = edges x 2 (coords) ! private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1; ! // types capacity = edges count (4096) ! private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT; float[] curves; int end; byte[] curveTypes; int numCurves;
*** 1233,1246 **** * @param rdrCtx per-thread renderer context */ PolyStack(final RendererContext rdrCtx) { this.rdrCtx = rdrCtx; ! curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 16K curves = curves_ref.initial; ! curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 2K curveTypes = curveTypes_ref.initial; numCurves = 0; end = 0; if (DO_STATS) { --- 1270,1283 ---- * @param rdrCtx per-thread renderer context */ PolyStack(final RendererContext rdrCtx) { this.rdrCtx = rdrCtx; ! curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 32K curves = curves_ref.initial; ! curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K curveTypes = curveTypes_ref.initial; numCurves = 0; end = 0; if (DO_STATS) {
*** 1367,1377 **** @Override public String toString() { String ret = ""; int nc = numCurves; ! int e = end; int len; while (nc != 0) { switch(curveTypes[--nc]) { case TYPE_LINETO: len = 2; --- 1404,1414 ---- @Override public String toString() { String ret = ""; int nc = numCurves; ! int last = end; int len; while (nc != 0) { switch(curveTypes[--nc]) { case TYPE_LINETO: len = 2;
*** 1386,1397 **** ret += "cubic: "; break; default: len = 0; } ! e -= len; ! ret += Arrays.toString(Arrays.copyOfRange(curves, e, e+len)) + "\n"; } return ret; } } --- 1423,1434 ---- ret += "cubic: "; break; default: len = 0; } ! last -= len; ! ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len)) + "\n"; } return ret; } }
< prev index next >