1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/dictionary.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "gc_implementation/shared/markSweep.inline.hpp"
  31 #include "gc_interface/collectedHeap.inline.hpp"
  32 #include "memory/heapInspection.hpp"
  33 #include "memory/metadataFactory.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "oops/oop.inline2.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "trace/traceMacros.hpp"
  41 #include "utilities/stack.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  45 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  46 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 
  49 void Klass::set_name(Symbol* n) {
  50   _name = n;
  51   if (_name != NULL) _name->increment_refcount();
  52 }
  53 
  54 bool Klass::is_subclass_of(const Klass* k) const {
  55   // Run up the super chain and check
  56   if (this == k) return true;
  57 
  58   Klass* t = const_cast<Klass*>(this)->super();
  59 
  60   while (t != NULL) {
  61     if (t == k) return true;
  62     t = t->super();
  63   }
  64   return false;
  65 }
  66 
  67 bool Klass::search_secondary_supers(Klass* k) const {
  68   // Put some extra logic here out-of-line, before the search proper.
  69   // This cuts down the size of the inline method.
  70 
  71   // This is necessary, since I am never in my own secondary_super list.
  72   if (this == k)
  73     return true;
  74   // Scan the array-of-objects for a match
  75   int cnt = secondary_supers()->length();
  76   for (int i = 0; i < cnt; i++) {
  77     if (secondary_supers()->at(i) == k) {
  78       ((Klass*)this)->set_secondary_super_cache(k);
  79       return true;
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 // Return self, except for abstract classes with exactly 1
  86 // implementor.  Then return the 1 concrete implementation.
  87 Klass *Klass::up_cast_abstract() {
  88   Klass *r = this;
  89   while( r->is_abstract() ) {   // Receiver is abstract?
  90     Klass *s = r->subklass();   // Check for exactly 1 subklass
  91     if( !s || s->next_sibling() ) // Oops; wrong count; give up
  92       return this;              // Return 'this' as a no-progress flag
  93     r = s;                    // Loop till find concrete class
  94   }
  95   return r;                   // Return the 1 concrete class
  96 }
  97 
  98 // Find LCA in class hierarchy
  99 Klass *Klass::LCA( Klass *k2 ) {
 100   Klass *k1 = this;
 101   while( 1 ) {
 102     if( k1->is_subtype_of(k2) ) return k2;
 103     if( k2->is_subtype_of(k1) ) return k1;
 104     k1 = k1->super();
 105     k2 = k2->super();
 106   }
 107 }
 108 
 109 
 110 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 111   ResourceMark rm(THREAD);
 112   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 113             : vmSymbols::java_lang_InstantiationException(), external_name());
 114 }
 115 
 116 
 117 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 118   THROW(vmSymbols::java_lang_ArrayStoreException());
 119 }
 120 
 121 
 122 void Klass::initialize(TRAPS) {
 123   ShouldNotReachHere();
 124 }
 125 
 126 bool Klass::compute_is_subtype_of(Klass* k) {
 127   assert(k->is_klass(), "argument must be a class");
 128   return is_subclass_of(k);
 129 }
 130 
 131 
 132 Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature, bool ignore_overpass) const {
 133 #ifdef ASSERT
 134   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 135                 " Likely error: reflection method does not correctly"
 136                 " wrap return value in a mirror object.");
 137 #endif
 138   ShouldNotReachHere();
 139   return NULL;
 140 }
 141 
 142 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() {
 143   return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
 144                              MetaspaceObj::ClassType, CHECK_NULL);
 145 }
 146 
 147 Klass::Klass() {
 148   Klass* k = this;
 149 
 150   // Preinitialize supertype information.
 151   // A later call to initialize_supers() may update these settings:
 152   set_super(NULL);
 153   for (juint i = 0; i < Klass::primary_super_limit(); i++) {
 154     _primary_supers[i] = NULL;
 155   }
 156   set_secondary_supers(NULL);
 157   set_secondary_super_cache(NULL);
 158   _primary_supers[0] = k;
 159   set_super_check_offset(in_bytes(primary_supers_offset()));
 160 
 161   set_java_mirror(NULL);
 162   set_modifier_flags(0);
 163   set_layout_helper(Klass::_lh_neutral_value);
 164   set_name(NULL);
 165   AccessFlags af;
 166   af.set_flags(0);
 167   set_access_flags(af);
 168   set_subklass(NULL);
 169   set_next_sibling(NULL);
 170   set_next_link(NULL);
 171   TRACE_INIT_ID(this);
 172 
 173   set_prototype_header(markOopDesc::prototype());
 174   set_biased_lock_revocation_count(0);
 175   set_last_biased_lock_bulk_revocation_time(0);
 176 
 177   // The klass doesn't have any references at this point.
 178   clear_modified_oops();
 179   clear_accumulated_modified_oops();
 180 }
 181 
 182 jint Klass::array_layout_helper(BasicType etype) {
 183   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 184   // Note that T_ARRAY is not allowed here.
 185   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 186   int  esize = type2aelembytes(etype);
 187   bool isobj = (etype == T_OBJECT);
 188   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 189   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 190 
 191   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 192   assert(layout_helper_is_array(lh), "correct kind");
 193   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 194   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 195   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 196   assert(layout_helper_element_type(lh) == etype, "correct decode");
 197   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 198 
 199   return lh;
 200 }
 201 
 202 bool Klass::can_be_primary_super_slow() const {
 203   if (super() == NULL)
 204     return true;
 205   else if (super()->super_depth() >= primary_super_limit()-1)
 206     return false;
 207   else
 208     return true;
 209 }
 210 
 211 void Klass::initialize_supers(Klass* k, TRAPS) {
 212   if (FastSuperclassLimit == 0) {
 213     // None of the other machinery matters.
 214     set_super(k);
 215     return;
 216   }
 217   if (k == NULL) {
 218     set_super(NULL);
 219     _primary_supers[0] = this;
 220     assert(super_depth() == 0, "Object must already be initialized properly");
 221   } else if (k != super() || k == SystemDictionary::Object_klass()) {
 222     assert(super() == NULL || super() == SystemDictionary::Object_klass(),
 223            "initialize this only once to a non-trivial value");
 224     set_super(k);
 225     Klass* sup = k;
 226     int sup_depth = sup->super_depth();
 227     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 228     if (!can_be_primary_super_slow())
 229       my_depth = primary_super_limit();
 230     for (juint i = 0; i < my_depth; i++) {
 231       _primary_supers[i] = sup->_primary_supers[i];
 232     }
 233     Klass* *super_check_cell;
 234     if (my_depth < primary_super_limit()) {
 235       _primary_supers[my_depth] = this;
 236       super_check_cell = &_primary_supers[my_depth];
 237     } else {
 238       // Overflow of the primary_supers array forces me to be secondary.
 239       super_check_cell = &_secondary_super_cache;
 240     }
 241     set_super_check_offset((address)super_check_cell - (address) this);
 242 
 243 #ifdef ASSERT
 244     {
 245       juint j = super_depth();
 246       assert(j == my_depth, "computed accessor gets right answer");
 247       Klass* t = this;
 248       while (!t->can_be_primary_super()) {
 249         t = t->super();
 250         j = t->super_depth();
 251       }
 252       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 253         assert(primary_super_of_depth(j1) == NULL, "super list padding");
 254       }
 255       while (t != NULL) {
 256         assert(primary_super_of_depth(j) == t, "super list initialization");
 257         t = t->super();
 258         --j;
 259       }
 260       assert(j == (juint)-1, "correct depth count");
 261     }
 262 #endif
 263   }
 264 
 265   if (secondary_supers() == NULL) {
 266     KlassHandle this_kh (THREAD, this);
 267 
 268     // Now compute the list of secondary supertypes.
 269     // Secondaries can occasionally be on the super chain,
 270     // if the inline "_primary_supers" array overflows.
 271     int extras = 0;
 272     Klass* p;
 273     for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 274       ++extras;
 275     }
 276 
 277     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 278 
 279     // Compute the "real" non-extra secondaries.
 280     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
 281     if (secondaries == NULL) {
 282       // secondary_supers set by compute_secondary_supers
 283       return;
 284     }
 285 
 286     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 287 
 288     for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
 289       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 290 
 291       // This happens frequently for very deeply nested arrays: the
 292       // primary superclass chain overflows into the secondary.  The
 293       // secondary list contains the element_klass's secondaries with
 294       // an extra array dimension added.  If the element_klass's
 295       // secondary list already contains some primary overflows, they
 296       // (with the extra level of array-ness) will collide with the
 297       // normal primary superclass overflows.
 298       for( i = 0; i < secondaries->length(); i++ ) {
 299         if( secondaries->at(i) == p )
 300           break;
 301       }
 302       if( i < secondaries->length() )
 303         continue;               // It's a dup, don't put it in
 304       primaries->push(p);
 305     }
 306     // Combine the two arrays into a metadata object to pack the array.
 307     // The primaries are added in the reverse order, then the secondaries.
 308     int new_length = primaries->length() + secondaries->length();
 309     Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
 310                                        class_loader_data(), new_length, CHECK);
 311     int fill_p = primaries->length();
 312     for (int j = 0; j < fill_p; j++) {
 313       s2->at_put(j, primaries->pop());  // add primaries in reverse order.
 314     }
 315     for( int j = 0; j < secondaries->length(); j++ ) {
 316       s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 317     }
 318 
 319   #ifdef ASSERT
 320       // We must not copy any NULL placeholders left over from bootstrap.
 321     for (int j = 0; j < s2->length(); j++) {
 322       assert(s2->at(j) != NULL, "correct bootstrapping order");
 323     }
 324   #endif
 325 
 326     this_kh->set_secondary_supers(s2);
 327   }
 328 }
 329 
 330 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
 331   assert(num_extra_slots == 0, "override for complex klasses");
 332   set_secondary_supers(Universe::the_empty_klass_array());
 333   return NULL;
 334 }
 335 
 336 
 337 InstanceKlass* Klass::superklass() const {
 338   assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
 339   return _super == NULL ? NULL : InstanceKlass::cast(_super);
 340 }
 341 
 342 void Klass::set_subklass(Klass* s) {
 343   assert(s != this, "sanity check");
 344   _subklass = s;
 345 }
 346 
 347 void Klass::set_next_sibling(Klass* s) {
 348   assert(s != this, "sanity check");
 349   _next_sibling = s;
 350 }
 351 
 352 void Klass::append_to_sibling_list() {
 353   debug_only(verify();)
 354   // add ourselves to superklass' subklass list
 355   InstanceKlass* super = superklass();
 356   if (super == NULL) return;        // special case: class Object
 357   assert((!super->is_interface()    // interfaces cannot be supers
 358           && (super->superklass() == NULL || !is_interface())),
 359          "an interface can only be a subklass of Object");
 360   Klass* prev_first_subklass = super->subklass();
 361   if (prev_first_subklass != NULL) {
 362     // set our sibling to be the superklass' previous first subklass
 363     set_next_sibling(prev_first_subklass);
 364   }
 365   // make ourselves the superklass' first subklass
 366   super->set_subklass(this);
 367   debug_only(verify();)
 368 }
 369 
 370 bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
 371 #ifdef ASSERT
 372   // The class is alive iff the class loader is alive.
 373   oop loader = class_loader();
 374   bool loader_alive = (loader == NULL) || is_alive->do_object_b(loader);
 375 #endif // ASSERT
 376 
 377   // The class is alive if it's mirror is alive (which should be marked if the
 378   // loader is alive) unless it's an anoymous class.
 379   bool mirror_alive = is_alive->do_object_b(java_mirror());
 380   assert(!mirror_alive || loader_alive, "loader must be alive if the mirror is"
 381                         " but not the other way around with anonymous classes");
 382   return mirror_alive;
 383 }
 384 
 385 void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
 386   if (!ClassUnloading) {
 387     return;
 388   }
 389 
 390   Klass* root = SystemDictionary::Object_klass();
 391   Stack<Klass*, mtGC> stack;
 392 
 393   stack.push(root);
 394   while (!stack.is_empty()) {
 395     Klass* current = stack.pop();
 396 
 397     assert(current->is_loader_alive(is_alive), "just checking, this should be live");
 398 
 399     // Find and set the first alive subklass
 400     Klass* sub = current->subklass();
 401     while (sub != NULL && !sub->is_loader_alive(is_alive)) {
 402 #ifndef PRODUCT
 403       if (TraceClassUnloading && WizardMode) {
 404         ResourceMark rm;
 405         tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
 406       }
 407 #endif
 408       sub = sub->next_sibling();
 409     }
 410     current->set_subklass(sub);
 411     if (sub != NULL) {
 412       stack.push(sub);
 413     }
 414 
 415     // Find and set the first alive sibling
 416     Klass* sibling = current->next_sibling();
 417     while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
 418       if (TraceClassUnloading && WizardMode) {
 419         ResourceMark rm;
 420         tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
 421       }
 422       sibling = sibling->next_sibling();
 423     }
 424     current->set_next_sibling(sibling);
 425     if (sibling != NULL) {
 426       stack.push(sibling);
 427     }
 428 
 429     // Clean the implementors list and method data.
 430     if (current->oop_is_instance()) {
 431       InstanceKlass* ik = InstanceKlass::cast(current);
 432       ik->clean_implementors_list(is_alive);
 433       ik->clean_method_data(is_alive);
 434     }
 435   }
 436 }
 437 
 438 void Klass::klass_update_barrier_set(oop v) {
 439   record_modified_oops();
 440 }
 441 
 442 void Klass::klass_update_barrier_set_pre(void* p, oop v) {
 443   // This barrier used by G1, where it's used remember the old oop values,
 444   // so that we don't forget any objects that were live at the snapshot at
 445   // the beginning. This function is only used when we write oops into
 446   // Klasses. Since the Klasses are used as roots in G1, we don't have to
 447   // do anything here.
 448 }
 449 
 450 void Klass::klass_oop_store(oop* p, oop v) {
 451   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 452   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 453 
 454   // do the store
 455   if (always_do_update_barrier) {
 456     klass_oop_store((volatile oop*)p, v);
 457   } else {
 458     klass_update_barrier_set_pre((void*)p, v);
 459     *p = v;
 460     klass_update_barrier_set(v);
 461   }
 462 }
 463 
 464 void Klass::klass_oop_store(volatile oop* p, oop v) {
 465   assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
 466   assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
 467 
 468   klass_update_barrier_set_pre((void*)p, v);
 469   OrderAccess::release_store_ptr(p, v);
 470   klass_update_barrier_set(v);
 471 }
 472 
 473 void Klass::oops_do(OopClosure* cl) {
 474   cl->do_oop(&_java_mirror);
 475 }
 476 
 477 void Klass::remove_unshareable_info() {
 478   if (!DumpSharedSpaces) {
 479     // Clean up after OOM during class loading
 480     if (class_loader_data() != NULL) {
 481       class_loader_data()->remove_class(this);
 482     }
 483   }
 484   set_subklass(NULL);
 485   set_next_sibling(NULL);
 486   // Clear the java mirror
 487   set_java_mirror(NULL);
 488   set_next_link(NULL);
 489 
 490   // Null out class_loader_data because we don't share that yet.
 491   set_class_loader_data(NULL);
 492 }
 493 
 494 void Klass::restore_unshareable_info(TRAPS) {
 495   ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
 496   // Restore class_loader_data to the null class loader data
 497   set_class_loader_data(loader_data);
 498 
 499   // Add to null class loader list first before creating the mirror
 500   // (same order as class file parsing)
 501   loader_data->add_class(this);
 502 
 503   // Recreate the class mirror.  The protection_domain is always null for
 504   // boot loader, for now.
 505   java_lang_Class::create_mirror(this, Handle(NULL), CHECK);
 506 }
 507 
 508 Klass* Klass::array_klass_or_null(int rank) {
 509   EXCEPTION_MARK;
 510   // No exception can be thrown by array_klass_impl when called with or_null == true.
 511   // (In anycase, the execption mark will fail if it do so)
 512   return array_klass_impl(true, rank, THREAD);
 513 }
 514 
 515 
 516 Klass* Klass::array_klass_or_null() {
 517   EXCEPTION_MARK;
 518   // No exception can be thrown by array_klass_impl when called with or_null == true.
 519   // (In anycase, the execption mark will fail if it do so)
 520   return array_klass_impl(true, THREAD);
 521 }
 522 
 523 
 524 Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
 525   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 526   return NULL;
 527 }
 528 
 529 
 530 Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
 531   fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
 532   return NULL;
 533 }
 534 
 535 oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
 536 
 537 const char* Klass::external_name() const {
 538   if (oop_is_instance()) {
 539     InstanceKlass* ik = (InstanceKlass*) this;
 540     if (ik->is_anonymous()) {
 541       assert(EnableInvokeDynamic, "");
 542       intptr_t hash = 0;
 543       if (ik->java_mirror() != NULL) {
 544         // java_mirror might not be created yet, return 0 as hash.
 545         hash = ik->java_mirror()->identity_hash();
 546       }
 547       char     hash_buf[40];
 548       sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
 549       size_t   hash_len = strlen(hash_buf);
 550 
 551       size_t result_len = name()->utf8_length();
 552       char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
 553       name()->as_klass_external_name(result, (int) result_len + 1);
 554       assert(strlen(result) == result_len, "");
 555       strcpy(result + result_len, hash_buf);
 556       assert(strlen(result) == result_len + hash_len, "");
 557       return result;
 558     }
 559   }
 560   if (name() == NULL)  return "<unknown>";
 561   return name()->as_klass_external_name();
 562 }
 563 
 564 
 565 const char* Klass::signature_name() const {
 566   if (name() == NULL)  return "<unknown>";
 567   return name()->as_C_string();
 568 }
 569 
 570 // Unless overridden, modifier_flags is 0.
 571 jint Klass::compute_modifier_flags(TRAPS) const {
 572   return 0;
 573 }
 574 
 575 int Klass::atomic_incr_biased_lock_revocation_count() {
 576   return (int) Atomic::add(1, &_biased_lock_revocation_count);
 577 }
 578 
 579 // Unless overridden, jvmti_class_status has no flags set.
 580 jint Klass::jvmti_class_status() const {
 581   return 0;
 582 }
 583 
 584 
 585 // Printing
 586 
 587 void Klass::print_on(outputStream* st) const {
 588   ResourceMark rm;
 589   // print title
 590   st->print("%s", internal_name());
 591   print_address_on(st);
 592   st->cr();
 593 }
 594 
 595 void Klass::oop_print_on(oop obj, outputStream* st) {
 596   ResourceMark rm;
 597   // print title
 598   st->print_cr("%s ", internal_name());
 599   obj->print_address_on(st);
 600 
 601   if (WizardMode) {
 602      // print header
 603      obj->mark()->print_on(st);
 604   }
 605 
 606   // print class
 607   st->print(" - klass: ");
 608   obj->klass()->print_value_on(st);
 609   st->cr();
 610 }
 611 
 612 void Klass::oop_print_value_on(oop obj, outputStream* st) {
 613   // print title
 614   ResourceMark rm;              // Cannot print in debug mode without this
 615   st->print("%s", internal_name());
 616   obj->print_address_on(st);
 617 }
 618 
 619 #if INCLUDE_SERVICES
 620 // Size Statistics
 621 void Klass::collect_statistics(KlassSizeStats *sz) const {
 622   sz->_klass_bytes = sz->count(this);
 623   sz->_mirror_bytes = sz->count(java_mirror());
 624   sz->_secondary_supers_bytes = sz->count_array(secondary_supers());
 625 
 626   sz->_ro_bytes += sz->_secondary_supers_bytes;
 627   sz->_rw_bytes += sz->_klass_bytes + sz->_mirror_bytes;
 628 }
 629 #endif // INCLUDE_SERVICES
 630 
 631 // Verification
 632 
 633 void Klass::verify_on(outputStream* st) {
 634 
 635   // This can be expensive, but it is worth checking that this klass is actually
 636   // in the CLD graph but not in production.
 637   assert(ClassLoaderDataGraph::contains((address)this), "Should be");
 638 
 639   guarantee(this->is_klass(),"should be klass");
 640 
 641   if (super() != NULL) {
 642     guarantee(super()->is_klass(), "should be klass");
 643   }
 644   if (secondary_super_cache() != NULL) {
 645     Klass* ko = secondary_super_cache();
 646     guarantee(ko->is_klass(), "should be klass");
 647   }
 648   for ( uint i = 0; i < primary_super_limit(); i++ ) {
 649     Klass* ko = _primary_supers[i];
 650     if (ko != NULL) {
 651       guarantee(ko->is_klass(), "should be klass");
 652     }
 653   }
 654 
 655   if (java_mirror() != NULL) {
 656     guarantee(java_mirror()->is_oop(), "should be instance");
 657   }
 658 }
 659 
 660 void Klass::oop_verify_on(oop obj, outputStream* st) {
 661   guarantee(obj->is_oop(),  "should be oop");
 662   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
 663 }
 664 
 665 #ifndef PRODUCT
 666 
 667 bool Klass::verify_vtable_index(int i) {
 668   if (oop_is_instance()) {
 669     int limit = ((InstanceKlass*)this)->vtable_length()/vtableEntry::size();
 670     assert(i >= 0 && i < limit, err_msg("index %d out of bounds %d", i, limit));
 671   } else {
 672     assert(oop_is_array(), "Must be");
 673     int limit = ((ArrayKlass*)this)->vtable_length()/vtableEntry::size();
 674     assert(i >= 0 && i < limit, err_msg("index %d out of bounds %d", i, limit));
 675   }
 676   return true;
 677 }
 678 
 679 bool Klass::verify_itable_index(int i) {
 680   assert(oop_is_instance(), "");
 681   int method_count = klassItable::method_count_for_interface(this);
 682   assert(i >= 0 && i < method_count, "index out of bounds");
 683   return true;
 684 }
 685 
 686 #endif
 687 
 688 /////////////// Unit tests ///////////////
 689 
 690 #ifndef PRODUCT
 691 
 692 class TestKlass {
 693  public:
 694   static void test_oop_is_instanceClassLoader() {
 695     assert(SystemDictionary::ClassLoader_klass()->oop_is_instanceClassLoader(), "assert");
 696     assert(!SystemDictionary::String_klass()->oop_is_instanceClassLoader(), "assert");
 697   }
 698 };
 699 
 700 void TestKlass_test() {
 701   TestKlass::test_oop_is_instanceClassLoader();
 702 }
 703 
 704 #endif