1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "code/compiledMethod.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "oops/klass.hpp"
  49 #include "oops/method.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "prims/forte.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/methodHandles.hpp"
  55 #include "prims/nativeLookup.hpp"
  56 #include "runtime/arguments.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/vframe.inline.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/hashtable.inline.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/xmlstream.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Runtime1.hpp"
  78 #endif
  79 
  80 // Shared stub locations
  81 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  82 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  83 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  84 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  87 address             SharedRuntime::_resolve_static_call_entry;
  88 
  89 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  90 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  93 
  94 #ifdef COMPILER2
  95 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  96 #endif // COMPILER2
  97 
  98 
  99 //----------------------------generate_stubs-----------------------------------
 100 void SharedRuntime::generate_stubs() {
 101   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 102   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 103   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 104   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 105   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 106   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 107   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 108 
 109 #if COMPILER2_OR_JVMCI
 110   // Vectors are generated only by C2 and JVMCI.
 111   bool support_wide = is_wide_vector(MaxVectorSize);
 112   if (support_wide) {
 113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 114   }
 115 #endif // COMPILER2_OR_JVMCI
 116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 118 
 119   generate_deopt_blob();
 120 
 121 #ifdef COMPILER2
 122   generate_uncommon_trap_blob();
 123 #endif // COMPILER2
 124 }
 125 
 126 #include <math.h>
 127 
 128 // Implementation of SharedRuntime
 129 
 130 #ifndef PRODUCT
 131 // For statistics
 132 int SharedRuntime::_ic_miss_ctr = 0;
 133 int SharedRuntime::_wrong_method_ctr = 0;
 134 int SharedRuntime::_resolve_static_ctr = 0;
 135 int SharedRuntime::_resolve_virtual_ctr = 0;
 136 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 137 int SharedRuntime::_implicit_null_throws = 0;
 138 int SharedRuntime::_implicit_div0_throws = 0;
 139 int SharedRuntime::_throw_null_ctr = 0;
 140 
 141 int SharedRuntime::_nof_normal_calls = 0;
 142 int SharedRuntime::_nof_optimized_calls = 0;
 143 int SharedRuntime::_nof_inlined_calls = 0;
 144 int SharedRuntime::_nof_megamorphic_calls = 0;
 145 int SharedRuntime::_nof_static_calls = 0;
 146 int SharedRuntime::_nof_inlined_static_calls = 0;
 147 int SharedRuntime::_nof_interface_calls = 0;
 148 int SharedRuntime::_nof_optimized_interface_calls = 0;
 149 int SharedRuntime::_nof_inlined_interface_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 151 int SharedRuntime::_nof_removable_exceptions = 0;
 152 
 153 int SharedRuntime::_new_instance_ctr=0;
 154 int SharedRuntime::_new_array_ctr=0;
 155 int SharedRuntime::_multi1_ctr=0;
 156 int SharedRuntime::_multi2_ctr=0;
 157 int SharedRuntime::_multi3_ctr=0;
 158 int SharedRuntime::_multi4_ctr=0;
 159 int SharedRuntime::_multi5_ctr=0;
 160 int SharedRuntime::_mon_enter_stub_ctr=0;
 161 int SharedRuntime::_mon_exit_stub_ctr=0;
 162 int SharedRuntime::_mon_enter_ctr=0;
 163 int SharedRuntime::_mon_exit_ctr=0;
 164 int SharedRuntime::_partial_subtype_ctr=0;
 165 int SharedRuntime::_jbyte_array_copy_ctr=0;
 166 int SharedRuntime::_jshort_array_copy_ctr=0;
 167 int SharedRuntime::_jint_array_copy_ctr=0;
 168 int SharedRuntime::_jlong_array_copy_ctr=0;
 169 int SharedRuntime::_oop_array_copy_ctr=0;
 170 int SharedRuntime::_checkcast_array_copy_ctr=0;
 171 int SharedRuntime::_unsafe_array_copy_ctr=0;
 172 int SharedRuntime::_generic_array_copy_ctr=0;
 173 int SharedRuntime::_slow_array_copy_ctr=0;
 174 int SharedRuntime::_find_handler_ctr=0;
 175 int SharedRuntime::_rethrow_ctr=0;
 176 
 177 int     SharedRuntime::_ICmiss_index                    = 0;
 178 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 179 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 180 
 181 
 182 void SharedRuntime::trace_ic_miss(address at) {
 183   for (int i = 0; i < _ICmiss_index; i++) {
 184     if (_ICmiss_at[i] == at) {
 185       _ICmiss_count[i]++;
 186       return;
 187     }
 188   }
 189   int index = _ICmiss_index++;
 190   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 191   _ICmiss_at[index] = at;
 192   _ICmiss_count[index] = 1;
 193 }
 194 
 195 void SharedRuntime::print_ic_miss_histogram() {
 196   if (ICMissHistogram) {
 197     tty->print_cr("IC Miss Histogram:");
 198     int tot_misses = 0;
 199     for (int i = 0; i < _ICmiss_index; i++) {
 200       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 201       tot_misses += _ICmiss_count[i];
 202     }
 203     tty->print_cr("Total IC misses: %7d", tot_misses);
 204   }
 205 }
 206 #endif // PRODUCT
 207 
 208 
 209 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 210   return x * y;
 211 JRT_END
 212 
 213 
 214 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 215   if (x == min_jlong && y == CONST64(-1)) {
 216     return x;
 217   } else {
 218     return x / y;
 219   }
 220 JRT_END
 221 
 222 
 223 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 224   if (x == min_jlong && y == CONST64(-1)) {
 225     return 0;
 226   } else {
 227     return x % y;
 228   }
 229 JRT_END
 230 
 231 
 232 const juint  float_sign_mask  = 0x7FFFFFFF;
 233 const juint  float_infinity   = 0x7F800000;
 234 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 235 const julong double_infinity  = CONST64(0x7FF0000000000000);
 236 
 237 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 238 #ifdef _WIN64
 239   // 64-bit Windows on amd64 returns the wrong values for
 240   // infinity operands.
 241   union { jfloat f; juint i; } xbits, ybits;
 242   xbits.f = x;
 243   ybits.f = y;
 244   // x Mod Infinity == x unless x is infinity
 245   if (((xbits.i & float_sign_mask) != float_infinity) &&
 246        ((ybits.i & float_sign_mask) == float_infinity) ) {
 247     return x;
 248   }
 249   return ((jfloat)fmod_winx64((double)x, (double)y));
 250 #else
 251   return ((jfloat)fmod((double)x,(double)y));
 252 #endif
 253 JRT_END
 254 
 255 
 256 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 257 #ifdef _WIN64
 258   union { jdouble d; julong l; } xbits, ybits;
 259   xbits.d = x;
 260   ybits.d = y;
 261   // x Mod Infinity == x unless x is infinity
 262   if (((xbits.l & double_sign_mask) != double_infinity) &&
 263        ((ybits.l & double_sign_mask) == double_infinity) ) {
 264     return x;
 265   }
 266   return ((jdouble)fmod_winx64((double)x, (double)y));
 267 #else
 268   return ((jdouble)fmod((double)x,(double)y));
 269 #endif
 270 JRT_END
 271 
 272 #ifdef __SOFTFP__
 273 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 274   return x + y;
 275 JRT_END
 276 
 277 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 278   return x - y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 282   return x * y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 286   return x / y;
 287 JRT_END
 288 
 289 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 290   return x + y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 294   return x - y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 298   return x * y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 302   return x / y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 306   return (jfloat)x;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 310   return (jdouble)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 318   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 322   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 326   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 330   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 331 JRT_END
 332 
 333 // Functions to return the opposite of the aeabi functions for nan.
 334 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 335   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 336 JRT_END
 337 
 338 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 343   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 351   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 359   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 // Intrinsics make gcc generate code for these.
 367 float  SharedRuntime::fneg(float f)   {
 368   return -f;
 369 }
 370 
 371 double SharedRuntime::dneg(double f)  {
 372   return -f;
 373 }
 374 
 375 #endif // __SOFTFP__
 376 
 377 #if defined(__SOFTFP__) || defined(E500V2)
 378 // Intrinsics make gcc generate code for these.
 379 double SharedRuntime::dabs(double f)  {
 380   return (f <= (double)0.0) ? (double)0.0 - f : f;
 381 }
 382 
 383 #endif
 384 
 385 #if defined(__SOFTFP__) || defined(PPC)
 386 double SharedRuntime::dsqrt(double f) {
 387   return sqrt(f);
 388 }
 389 #endif
 390 
 391 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 392   if (g_isnan(x))
 393     return 0;
 394   if (x >= (jfloat) max_jint)
 395     return max_jint;
 396   if (x <= (jfloat) min_jint)
 397     return min_jint;
 398   return (jint) x;
 399 JRT_END
 400 
 401 
 402 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 403   if (g_isnan(x))
 404     return 0;
 405   if (x >= (jfloat) max_jlong)
 406     return max_jlong;
 407   if (x <= (jfloat) min_jlong)
 408     return min_jlong;
 409   return (jlong) x;
 410 JRT_END
 411 
 412 
 413 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 414   if (g_isnan(x))
 415     return 0;
 416   if (x >= (jdouble) max_jint)
 417     return max_jint;
 418   if (x <= (jdouble) min_jint)
 419     return min_jint;
 420   return (jint) x;
 421 JRT_END
 422 
 423 
 424 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 425   if (g_isnan(x))
 426     return 0;
 427   if (x >= (jdouble) max_jlong)
 428     return max_jlong;
 429   if (x <= (jdouble) min_jlong)
 430     return min_jlong;
 431   return (jlong) x;
 432 JRT_END
 433 
 434 
 435 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 436   return (jfloat)x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 441   return (jfloat)x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 446   return (jdouble)x;
 447 JRT_END
 448 
 449 // Exception handling across interpreter/compiler boundaries
 450 //
 451 // exception_handler_for_return_address(...) returns the continuation address.
 452 // The continuation address is the entry point of the exception handler of the
 453 // previous frame depending on the return address.
 454 
 455 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 456   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 457   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 458 
 459   // Reset method handle flag.
 460   thread->set_is_method_handle_return(false);
 461 
 462 #if INCLUDE_JVMCI
 463   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 464   // and other exception handler continuations do not read it
 465   thread->set_exception_pc(NULL);
 466 #endif // INCLUDE_JVMCI
 467 
 468   // The fastest case first
 469   CodeBlob* blob = CodeCache::find_blob(return_address);
 470   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 471   if (nm != NULL) {
 472     // Set flag if return address is a method handle call site.
 473     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 474     // native nmethods don't have exception handlers
 475     assert(!nm->is_native_method(), "no exception handler");
 476     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 477     if (nm->is_deopt_pc(return_address)) {
 478       // If we come here because of a stack overflow, the stack may be
 479       // unguarded. Reguard the stack otherwise if we return to the
 480       // deopt blob and the stack bang causes a stack overflow we
 481       // crash.
 482       bool guard_pages_enabled = thread->stack_guards_enabled();
 483       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 484       if (thread->reserved_stack_activation() != thread->stack_base()) {
 485         thread->set_reserved_stack_activation(thread->stack_base());
 486       }
 487       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 488       return SharedRuntime::deopt_blob()->unpack_with_exception();
 489     } else {
 490       return nm->exception_begin();
 491     }
 492   }
 493 
 494   // Entry code
 495   if (StubRoutines::returns_to_call_stub(return_address)) {
 496     return StubRoutines::catch_exception_entry();
 497   }
 498   // Interpreted code
 499   if (Interpreter::contains(return_address)) {
 500     return Interpreter::rethrow_exception_entry();
 501   }
 502 
 503   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 504   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 505 
 506 #ifndef PRODUCT
 507   { ResourceMark rm;
 508     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 509     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 510     tty->print_cr("b) other problem");
 511   }
 512 #endif // PRODUCT
 513 
 514   ShouldNotReachHere();
 515   return NULL;
 516 }
 517 
 518 
 519 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 520   return raw_exception_handler_for_return_address(thread, return_address);
 521 JRT_END
 522 
 523 
 524 address SharedRuntime::get_poll_stub(address pc) {
 525   address stub;
 526   // Look up the code blob
 527   CodeBlob *cb = CodeCache::find_blob(pc);
 528 
 529   // Should be an nmethod
 530   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 531 
 532   // Look up the relocation information
 533   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 534     "safepoint polling: type must be poll");
 535 
 536 #ifdef ASSERT
 537   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 538     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 539     Disassembler::decode(cb);
 540     fatal("Only polling locations are used for safepoint");
 541   }
 542 #endif
 543 
 544   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 545   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 546   if (at_poll_return) {
 547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 548            "polling page return stub not created yet");
 549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 550   } else if (has_wide_vectors) {
 551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 552            "polling page vectors safepoint stub not created yet");
 553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 554   } else {
 555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 556            "polling page safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 558   }
 559   log_debug(safepoint)("... found polling page %s exception at pc = "
 560                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 561                        at_poll_return ? "return" : "loop",
 562                        (intptr_t)pc, (intptr_t)stub);
 563   return stub;
 564 }
 565 
 566 
 567 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 568   assert(caller.is_interpreted_frame(), "");
 569   int args_size = ArgumentSizeComputer(sig).size() + 1;
 570   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 571   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 572   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 573   return result;
 574 }
 575 
 576 
 577 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 578   if (JvmtiExport::can_post_on_exceptions()) {
 579     vframeStream vfst(thread, true);
 580     methodHandle method = methodHandle(thread, vfst.method());
 581     address bcp = method()->bcp_from(vfst.bci());
 582     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 583   }
 584   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 585 }
 586 
 587 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 588   Handle h_exception = Exceptions::new_exception(thread, name, message);
 589   throw_and_post_jvmti_exception(thread, h_exception);
 590 }
 591 
 592 // The interpreter code to call this tracing function is only
 593 // called/generated when UL is on for redefine, class and has the right level
 594 // and tags. Since obsolete methods are never compiled, we don't have
 595 // to modify the compilers to generate calls to this function.
 596 //
 597 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 598     JavaThread* thread, Method* method))
 599   if (method->is_obsolete()) {
 600     // We are calling an obsolete method, but this is not necessarily
 601     // an error. Our method could have been redefined just after we
 602     // fetched the Method* from the constant pool.
 603     ResourceMark rm;
 604     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 605   }
 606   return 0;
 607 JRT_END
 608 
 609 // ret_pc points into caller; we are returning caller's exception handler
 610 // for given exception
 611 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 612                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 613   assert(cm != NULL, "must exist");
 614   ResourceMark rm;
 615 
 616 #if INCLUDE_JVMCI
 617   if (cm->is_compiled_by_jvmci()) {
 618     // lookup exception handler for this pc
 619     int catch_pco = ret_pc - cm->code_begin();
 620     ExceptionHandlerTable table(cm);
 621     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 622     if (t != NULL) {
 623       return cm->code_begin() + t->pco();
 624     } else {
 625       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 626     }
 627   }
 628 #endif // INCLUDE_JVMCI
 629 
 630   nmethod* nm = cm->as_nmethod();
 631   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 632   // determine handler bci, if any
 633   EXCEPTION_MARK;
 634 
 635   int handler_bci = -1;
 636   int scope_depth = 0;
 637   if (!force_unwind) {
 638     int bci = sd->bci();
 639     bool recursive_exception = false;
 640     do {
 641       bool skip_scope_increment = false;
 642       // exception handler lookup
 643       Klass* ek = exception->klass();
 644       methodHandle mh(THREAD, sd->method());
 645       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 646       if (HAS_PENDING_EXCEPTION) {
 647         recursive_exception = true;
 648         // We threw an exception while trying to find the exception handler.
 649         // Transfer the new exception to the exception handle which will
 650         // be set into thread local storage, and do another lookup for an
 651         // exception handler for this exception, this time starting at the
 652         // BCI of the exception handler which caused the exception to be
 653         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 654         // argument to ensure that the correct exception is thrown (4870175).
 655         recursive_exception_occurred = true;
 656         exception = Handle(THREAD, PENDING_EXCEPTION);
 657         CLEAR_PENDING_EXCEPTION;
 658         if (handler_bci >= 0) {
 659           bci = handler_bci;
 660           handler_bci = -1;
 661           skip_scope_increment = true;
 662         }
 663       }
 664       else {
 665         recursive_exception = false;
 666       }
 667       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 668         sd = sd->sender();
 669         if (sd != NULL) {
 670           bci = sd->bci();
 671         }
 672         ++scope_depth;
 673       }
 674     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 675   }
 676 
 677   // found handling method => lookup exception handler
 678   int catch_pco = ret_pc - nm->code_begin();
 679 
 680   ExceptionHandlerTable table(nm);
 681   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 682   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 683     // Allow abbreviated catch tables.  The idea is to allow a method
 684     // to materialize its exceptions without committing to the exact
 685     // routing of exceptions.  In particular this is needed for adding
 686     // a synthetic handler to unlock monitors when inlining
 687     // synchronized methods since the unlock path isn't represented in
 688     // the bytecodes.
 689     t = table.entry_for(catch_pco, -1, 0);
 690   }
 691 
 692 #ifdef COMPILER1
 693   if (t == NULL && nm->is_compiled_by_c1()) {
 694     assert(nm->unwind_handler_begin() != NULL, "");
 695     return nm->unwind_handler_begin();
 696   }
 697 #endif
 698 
 699   if (t == NULL) {
 700     ttyLocker ttyl;
 701     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 702     tty->print_cr("   Exception:");
 703     exception->print();
 704     tty->cr();
 705     tty->print_cr(" Compiled exception table :");
 706     table.print();
 707     nm->print_code();
 708     guarantee(false, "missing exception handler");
 709     return NULL;
 710   }
 711 
 712   return nm->code_begin() + t->pco();
 713 }
 714 
 715 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 716   // These errors occur only at call sites
 717   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 718 JRT_END
 719 
 720 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 721   // These errors occur only at call sites
 722   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 723 JRT_END
 724 
 725 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 734   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 735   // cache sites (when the callee activation is not yet set up) so we are at a call site
 736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 737 JRT_END
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 740   throw_StackOverflowError_common(thread, false);
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 744   throw_StackOverflowError_common(thread, true);
 745 JRT_END
 746 
 747 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 748   // We avoid using the normal exception construction in this case because
 749   // it performs an upcall to Java, and we're already out of stack space.
 750   Thread* THREAD = thread;
 751   Klass* k = SystemDictionary::StackOverflowError_klass();
 752   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 753   if (delayed) {
 754     java_lang_Throwable::set_message(exception_oop,
 755                                      Universe::delayed_stack_overflow_error_message());
 756   }
 757   Handle exception (thread, exception_oop);
 758   if (StackTraceInThrowable) {
 759     java_lang_Throwable::fill_in_stack_trace(exception);
 760   }
 761   // Increment counter for hs_err file reporting
 762   Atomic::inc(&Exceptions::_stack_overflow_errors);
 763   throw_and_post_jvmti_exception(thread, exception);
 764 }
 765 
 766 #if INCLUDE_JVMCI
 767 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 768   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 769   thread->set_jvmci_implicit_exception_pc(pc);
 770   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 771   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 772 }
 773 #endif // INCLUDE_JVMCI
 774 
 775 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 776                                                            address pc,
 777                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 778 {
 779   address target_pc = NULL;
 780 
 781   if (Interpreter::contains(pc)) {
 782 #ifdef CC_INTERP
 783     // C++ interpreter doesn't throw implicit exceptions
 784     ShouldNotReachHere();
 785 #else
 786     switch (exception_kind) {
 787       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 788       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 789       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 790       default:                      ShouldNotReachHere();
 791     }
 792 #endif // !CC_INTERP
 793   } else {
 794     switch (exception_kind) {
 795       case STACK_OVERFLOW: {
 796         // Stack overflow only occurs upon frame setup; the callee is
 797         // going to be unwound. Dispatch to a shared runtime stub
 798         // which will cause the StackOverflowError to be fabricated
 799         // and processed.
 800         // Stack overflow should never occur during deoptimization:
 801         // the compiled method bangs the stack by as much as the
 802         // interpreter would need in case of a deoptimization. The
 803         // deoptimization blob and uncommon trap blob bang the stack
 804         // in a debug VM to verify the correctness of the compiled
 805         // method stack banging.
 806         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 807         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 808         return StubRoutines::throw_StackOverflowError_entry();
 809       }
 810 
 811       case IMPLICIT_NULL: {
 812         if (VtableStubs::contains(pc)) {
 813           // We haven't yet entered the callee frame. Fabricate an
 814           // exception and begin dispatching it in the caller. Since
 815           // the caller was at a call site, it's safe to destroy all
 816           // caller-saved registers, as these entry points do.
 817           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 818 
 819           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 820           if (vt_stub == NULL) return NULL;
 821 
 822           if (vt_stub->is_abstract_method_error(pc)) {
 823             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 824             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 825             // Instead of throwing the abstract method error here directly, we re-resolve
 826             // and will throw the AbstractMethodError during resolve. As a result, we'll
 827             // get a more detailed error message.
 828             return SharedRuntime::get_handle_wrong_method_stub();
 829           } else {
 830             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 831             // Assert that the signal comes from the expected location in stub code.
 832             assert(vt_stub->is_null_pointer_exception(pc),
 833                    "obtained signal from unexpected location in stub code");
 834             return StubRoutines::throw_NullPointerException_at_call_entry();
 835           }
 836         } else {
 837           CodeBlob* cb = CodeCache::find_blob(pc);
 838 
 839           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 840           if (cb == NULL) return NULL;
 841 
 842           // Exception happened in CodeCache. Must be either:
 843           // 1. Inline-cache check in C2I handler blob,
 844           // 2. Inline-cache check in nmethod, or
 845           // 3. Implicit null exception in nmethod
 846 
 847           if (!cb->is_compiled()) {
 848             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 849             if (!is_in_blob) {
 850               // Allow normal crash reporting to handle this
 851               return NULL;
 852             }
 853             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 854             // There is no handler here, so we will simply unwind.
 855             return StubRoutines::throw_NullPointerException_at_call_entry();
 856           }
 857 
 858           // Otherwise, it's a compiled method.  Consult its exception handlers.
 859           CompiledMethod* cm = (CompiledMethod*)cb;
 860           if (cm->inlinecache_check_contains(pc)) {
 861             // exception happened inside inline-cache check code
 862             // => the nmethod is not yet active (i.e., the frame
 863             // is not set up yet) => use return address pushed by
 864             // caller => don't push another return address
 865             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 866             return StubRoutines::throw_NullPointerException_at_call_entry();
 867           }
 868 
 869           if (cm->method()->is_method_handle_intrinsic()) {
 870             // exception happened inside MH dispatch code, similar to a vtable stub
 871             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 872             return StubRoutines::throw_NullPointerException_at_call_entry();
 873           }
 874 
 875 #ifndef PRODUCT
 876           _implicit_null_throws++;
 877 #endif
 878 #if INCLUDE_JVMCI
 879           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 880             // If there's no PcDesc then we'll die way down inside of
 881             // deopt instead of just getting normal error reporting,
 882             // so only go there if it will succeed.
 883             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 884           } else {
 885 #endif // INCLUDE_JVMCI
 886           assert (cm->is_nmethod(), "Expect nmethod");
 887           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 888 #if INCLUDE_JVMCI
 889           }
 890 #endif // INCLUDE_JVMCI
 891           // If there's an unexpected fault, target_pc might be NULL,
 892           // in which case we want to fall through into the normal
 893           // error handling code.
 894         }
 895 
 896         break; // fall through
 897       }
 898 
 899 
 900       case IMPLICIT_DIVIDE_BY_ZERO: {
 901         CompiledMethod* cm = CodeCache::find_compiled(pc);
 902         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 903 #ifndef PRODUCT
 904         _implicit_div0_throws++;
 905 #endif
 906 #if INCLUDE_JVMCI
 907         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 908           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 909         } else {
 910 #endif // INCLUDE_JVMCI
 911         target_pc = cm->continuation_for_implicit_exception(pc);
 912 #if INCLUDE_JVMCI
 913         }
 914 #endif // INCLUDE_JVMCI
 915         // If there's an unexpected fault, target_pc might be NULL,
 916         // in which case we want to fall through into the normal
 917         // error handling code.
 918         break; // fall through
 919       }
 920 
 921       default: ShouldNotReachHere();
 922     }
 923 
 924     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 925 
 926     if (exception_kind == IMPLICIT_NULL) {
 927 #ifndef PRODUCT
 928       // for AbortVMOnException flag
 929       Exceptions::debug_check_abort("java.lang.NullPointerException");
 930 #endif //PRODUCT
 931       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 932     } else {
 933 #ifndef PRODUCT
 934       // for AbortVMOnException flag
 935       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 936 #endif //PRODUCT
 937       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 938     }
 939     return target_pc;
 940   }
 941 
 942   ShouldNotReachHere();
 943   return NULL;
 944 }
 945 
 946 
 947 /**
 948  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 949  * installed in the native function entry of all native Java methods before
 950  * they get linked to their actual native methods.
 951  *
 952  * \note
 953  * This method actually never gets called!  The reason is because
 954  * the interpreter's native entries call NativeLookup::lookup() which
 955  * throws the exception when the lookup fails.  The exception is then
 956  * caught and forwarded on the return from NativeLookup::lookup() call
 957  * before the call to the native function.  This might change in the future.
 958  */
 959 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 960 {
 961   // We return a bad value here to make sure that the exception is
 962   // forwarded before we look at the return value.
 963   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 964 }
 965 JNI_END
 966 
 967 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 968   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 969 }
 970 
 971 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 972 #if INCLUDE_JVMCI
 973   if (!obj->klass()->has_finalizer()) {
 974     return;
 975   }
 976 #endif // INCLUDE_JVMCI
 977   assert(oopDesc::is_oop(obj), "must be a valid oop");
 978   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 979   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 980 JRT_END
 981 
 982 
 983 jlong SharedRuntime::get_java_tid(Thread* thread) {
 984   if (thread != NULL) {
 985     if (thread->is_Java_thread()) {
 986       oop obj = ((JavaThread*)thread)->threadObj();
 987       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 988     }
 989   }
 990   return 0;
 991 }
 992 
 993 /**
 994  * This function ought to be a void function, but cannot be because
 995  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 996  * 6254741.  Once that is fixed we can remove the dummy return value.
 997  */
 998 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 999   return dtrace_object_alloc_base(Thread::current(), o, size);
1000 }
1001 
1002 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1003   assert(DTraceAllocProbes, "wrong call");
1004   Klass* klass = o->klass();
1005   Symbol* name = klass->name();
1006   HOTSPOT_OBJECT_ALLOC(
1007                    get_java_tid(thread),
1008                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1009   return 0;
1010 }
1011 
1012 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1013     JavaThread* thread, Method* method))
1014   assert(DTraceMethodProbes, "wrong call");
1015   Symbol* kname = method->klass_name();
1016   Symbol* name = method->name();
1017   Symbol* sig = method->signature();
1018   HOTSPOT_METHOD_ENTRY(
1019       get_java_tid(thread),
1020       (char *) kname->bytes(), kname->utf8_length(),
1021       (char *) name->bytes(), name->utf8_length(),
1022       (char *) sig->bytes(), sig->utf8_length());
1023   return 0;
1024 JRT_END
1025 
1026 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1027     JavaThread* thread, Method* method))
1028   assert(DTraceMethodProbes, "wrong call");
1029   Symbol* kname = method->klass_name();
1030   Symbol* name = method->name();
1031   Symbol* sig = method->signature();
1032   HOTSPOT_METHOD_RETURN(
1033       get_java_tid(thread),
1034       (char *) kname->bytes(), kname->utf8_length(),
1035       (char *) name->bytes(), name->utf8_length(),
1036       (char *) sig->bytes(), sig->utf8_length());
1037   return 0;
1038 JRT_END
1039 
1040 
1041 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1042 // for a call current in progress, i.e., arguments has been pushed on stack
1043 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1044 // vtable updates, etc.  Caller frame must be compiled.
1045 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1046   ResourceMark rm(THREAD);
1047 
1048   // last java frame on stack (which includes native call frames)
1049   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1050 
1051   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1052 }
1053 
1054 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1055   CompiledMethod* caller = vfst.nm();
1056 
1057   nmethodLocker caller_lock(caller);
1058 
1059   address pc = vfst.frame_pc();
1060   { // Get call instruction under lock because another thread may be busy patching it.
1061     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1062     return caller->attached_method_before_pc(pc);
1063   }
1064   return NULL;
1065 }
1066 
1067 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1068 // for a call current in progress, i.e., arguments has been pushed on stack
1069 // but callee has not been invoked yet.  Caller frame must be compiled.
1070 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1071                                               vframeStream& vfst,
1072                                               Bytecodes::Code& bc,
1073                                               CallInfo& callinfo, TRAPS) {
1074   Handle receiver;
1075   Handle nullHandle;  //create a handy null handle for exception returns
1076 
1077   assert(!vfst.at_end(), "Java frame must exist");
1078 
1079   // Find caller and bci from vframe
1080   methodHandle caller(THREAD, vfst.method());
1081   int          bci   = vfst.bci();
1082 
1083   Bytecode_invoke bytecode(caller, bci);
1084   int bytecode_index = bytecode.index();
1085   bc = bytecode.invoke_code();
1086 
1087   methodHandle attached_method = extract_attached_method(vfst);
1088   if (attached_method.not_null()) {
1089     methodHandle callee = bytecode.static_target(CHECK_NH);
1090     vmIntrinsics::ID id = callee->intrinsic_id();
1091     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1092     // it attaches statically resolved method to the call site.
1093     if (MethodHandles::is_signature_polymorphic(id) &&
1094         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1095       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1096 
1097       // Adjust invocation mode according to the attached method.
1098       switch (bc) {
1099         case Bytecodes::_invokevirtual:
1100           if (attached_method->method_holder()->is_interface()) {
1101             bc = Bytecodes::_invokeinterface;
1102           }
1103           break;
1104         case Bytecodes::_invokeinterface:
1105           if (!attached_method->method_holder()->is_interface()) {
1106             bc = Bytecodes::_invokevirtual;
1107           }
1108           break;
1109         case Bytecodes::_invokehandle:
1110           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1111             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1112                                               : Bytecodes::_invokevirtual;
1113           }
1114           break;
1115         default:
1116           break;
1117       }
1118     }
1119   }
1120 
1121   assert(bc != Bytecodes::_illegal, "not initialized");
1122 
1123   bool has_receiver = bc != Bytecodes::_invokestatic &&
1124                       bc != Bytecodes::_invokedynamic &&
1125                       bc != Bytecodes::_invokehandle;
1126 
1127   // Find receiver for non-static call
1128   if (has_receiver) {
1129     // This register map must be update since we need to find the receiver for
1130     // compiled frames. The receiver might be in a register.
1131     RegisterMap reg_map2(thread);
1132     frame stubFrame   = thread->last_frame();
1133     // Caller-frame is a compiled frame
1134     frame callerFrame = stubFrame.sender(&reg_map2);
1135 
1136     if (attached_method.is_null()) {
1137       methodHandle callee = bytecode.static_target(CHECK_NH);
1138       if (callee.is_null()) {
1139         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1140       }
1141     }
1142 
1143     // Retrieve from a compiled argument list
1144     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1145 
1146     if (receiver.is_null()) {
1147       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1148     }
1149   }
1150 
1151   // Resolve method
1152   if (attached_method.not_null()) {
1153     // Parameterized by attached method.
1154     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1155   } else {
1156     // Parameterized by bytecode.
1157     constantPoolHandle constants(THREAD, caller->constants());
1158     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1159   }
1160 
1161 #ifdef ASSERT
1162   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1163   if (has_receiver) {
1164     assert(receiver.not_null(), "should have thrown exception");
1165     Klass* receiver_klass = receiver->klass();
1166     Klass* rk = NULL;
1167     if (attached_method.not_null()) {
1168       // In case there's resolved method attached, use its holder during the check.
1169       rk = attached_method->method_holder();
1170     } else {
1171       // Klass is already loaded.
1172       constantPoolHandle constants(THREAD, caller->constants());
1173       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1174     }
1175     Klass* static_receiver_klass = rk;
1176     methodHandle callee = callinfo.selected_method();
1177     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1178            "actual receiver must be subclass of static receiver klass");
1179     if (receiver_klass->is_instance_klass()) {
1180       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1181         tty->print_cr("ERROR: Klass not yet initialized!!");
1182         receiver_klass->print();
1183       }
1184       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1185     }
1186   }
1187 #endif
1188 
1189   return receiver;
1190 }
1191 
1192 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1193   ResourceMark rm(THREAD);
1194   // We need first to check if any Java activations (compiled, interpreted)
1195   // exist on the stack since last JavaCall.  If not, we need
1196   // to get the target method from the JavaCall wrapper.
1197   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1198   methodHandle callee_method;
1199   if (vfst.at_end()) {
1200     // No Java frames were found on stack since we did the JavaCall.
1201     // Hence the stack can only contain an entry_frame.  We need to
1202     // find the target method from the stub frame.
1203     RegisterMap reg_map(thread, false);
1204     frame fr = thread->last_frame();
1205     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1206     fr = fr.sender(&reg_map);
1207     assert(fr.is_entry_frame(), "must be");
1208     // fr is now pointing to the entry frame.
1209     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1210   } else {
1211     Bytecodes::Code bc;
1212     CallInfo callinfo;
1213     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1214     callee_method = callinfo.selected_method();
1215   }
1216   assert(callee_method()->is_method(), "must be");
1217   return callee_method;
1218 }
1219 
1220 // Resolves a call.
1221 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1222                                            bool is_virtual,
1223                                            bool is_optimized, TRAPS) {
1224   methodHandle callee_method;
1225   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1226   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1227     int retry_count = 0;
1228     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1229            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1230       // If has a pending exception then there is no need to re-try to
1231       // resolve this method.
1232       // If the method has been redefined, we need to try again.
1233       // Hack: we have no way to update the vtables of arrays, so don't
1234       // require that java.lang.Object has been updated.
1235 
1236       // It is very unlikely that method is redefined more than 100 times
1237       // in the middle of resolve. If it is looping here more than 100 times
1238       // means then there could be a bug here.
1239       guarantee((retry_count++ < 100),
1240                 "Could not resolve to latest version of redefined method");
1241       // method is redefined in the middle of resolve so re-try.
1242       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1243     }
1244   }
1245   return callee_method;
1246 }
1247 
1248 // Resolves a call.  The compilers generate code for calls that go here
1249 // and are patched with the real destination of the call.
1250 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1251                                            bool is_virtual,
1252                                            bool is_optimized, TRAPS) {
1253 
1254   ResourceMark rm(thread);
1255   RegisterMap cbl_map(thread, false);
1256   frame caller_frame = thread->last_frame().sender(&cbl_map);
1257 
1258   CodeBlob* caller_cb = caller_frame.cb();
1259   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1260   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1261 
1262   // make sure caller is not getting deoptimized
1263   // and removed before we are done with it.
1264   // CLEANUP - with lazy deopt shouldn't need this lock
1265   nmethodLocker caller_lock(caller_nm);
1266 
1267   // determine call info & receiver
1268   // note: a) receiver is NULL for static calls
1269   //       b) an exception is thrown if receiver is NULL for non-static calls
1270   CallInfo call_info;
1271   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1272   Handle receiver = find_callee_info(thread, invoke_code,
1273                                      call_info, CHECK_(methodHandle()));
1274   methodHandle callee_method = call_info.selected_method();
1275 
1276   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1277          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1278          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1279          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1280          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1281 
1282   assert(caller_nm->is_alive(), "It should be alive");
1283 
1284 #ifndef PRODUCT
1285   // tracing/debugging/statistics
1286   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1287                 (is_virtual) ? (&_resolve_virtual_ctr) :
1288                                (&_resolve_static_ctr);
1289   Atomic::inc(addr);
1290 
1291   if (TraceCallFixup) {
1292     ResourceMark rm(thread);
1293     tty->print("resolving %s%s (%s) call to",
1294       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1295       Bytecodes::name(invoke_code));
1296     callee_method->print_short_name(tty);
1297     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1298                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1299   }
1300 #endif
1301 
1302   // JSR 292 key invariant:
1303   // If the resolved method is a MethodHandle invoke target, the call
1304   // site must be a MethodHandle call site, because the lambda form might tail-call
1305   // leaving the stack in a state unknown to either caller or callee
1306   // TODO detune for now but we might need it again
1307 //  assert(!callee_method->is_compiled_lambda_form() ||
1308 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1309 
1310   // Compute entry points. This might require generation of C2I converter
1311   // frames, so we cannot be holding any locks here. Furthermore, the
1312   // computation of the entry points is independent of patching the call.  We
1313   // always return the entry-point, but we only patch the stub if the call has
1314   // not been deoptimized.  Return values: For a virtual call this is an
1315   // (cached_oop, destination address) pair. For a static call/optimized
1316   // virtual this is just a destination address.
1317 
1318   StaticCallInfo static_call_info;
1319   CompiledICInfo virtual_call_info;
1320 
1321   // Make sure the callee nmethod does not get deoptimized and removed before
1322   // we are done patching the code.
1323   CompiledMethod* callee = callee_method->code();
1324 
1325   if (callee != NULL) {
1326     assert(callee->is_compiled(), "must be nmethod for patching");
1327   }
1328 
1329   if (callee != NULL && !callee->is_in_use()) {
1330     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1331     callee = NULL;
1332   }
1333   nmethodLocker nl_callee(callee);
1334 #ifdef ASSERT
1335   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1336 #endif
1337 
1338   bool is_nmethod = caller_nm->is_nmethod();
1339 
1340   if (is_virtual) {
1341     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1342     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1343     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1344     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1345                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1346                      CHECK_(methodHandle()));
1347   } else {
1348     // static call
1349     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1350   }
1351 
1352   // grab lock, check for deoptimization and potentially patch caller
1353   {
1354     MutexLocker ml_patch(CompiledIC_lock);
1355 
1356     // Lock blocks for safepoint during which both nmethods can change state.
1357 
1358     // Now that we are ready to patch if the Method* was redefined then
1359     // don't update call site and let the caller retry.
1360     // Don't update call site if callee nmethod was unloaded or deoptimized.
1361     // Don't update call site if callee nmethod was replaced by an other nmethod
1362     // which may happen when multiply alive nmethod (tiered compilation)
1363     // will be supported.
1364     if (!callee_method->is_old() &&
1365         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1366 #ifdef ASSERT
1367       // We must not try to patch to jump to an already unloaded method.
1368       if (dest_entry_point != 0) {
1369         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1370         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1371                "should not call unloaded nmethod");
1372       }
1373 #endif
1374       if (is_virtual) {
1375         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1376         if (inline_cache->is_clean()) {
1377           inline_cache->set_to_monomorphic(virtual_call_info);
1378         }
1379       } else {
1380         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1381         if (ssc->is_clean()) ssc->set(static_call_info);
1382       }
1383     }
1384 
1385   } // unlock CompiledIC_lock
1386 
1387   return callee_method;
1388 }
1389 
1390 
1391 // Inline caches exist only in compiled code
1392 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1393 #ifdef ASSERT
1394   RegisterMap reg_map(thread, false);
1395   frame stub_frame = thread->last_frame();
1396   assert(stub_frame.is_runtime_frame(), "sanity check");
1397   frame caller_frame = stub_frame.sender(&reg_map);
1398   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1399 #endif /* ASSERT */
1400 
1401   methodHandle callee_method;
1402   JRT_BLOCK
1403     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1404     // Return Method* through TLS
1405     thread->set_vm_result_2(callee_method());
1406   JRT_BLOCK_END
1407   // return compiled code entry point after potential safepoints
1408   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1409   return callee_method->verified_code_entry();
1410 JRT_END
1411 
1412 
1413 // Handle call site that has been made non-entrant
1414 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1415   // 6243940 We might end up in here if the callee is deoptimized
1416   // as we race to call it.  We don't want to take a safepoint if
1417   // the caller was interpreted because the caller frame will look
1418   // interpreted to the stack walkers and arguments are now
1419   // "compiled" so it is much better to make this transition
1420   // invisible to the stack walking code. The i2c path will
1421   // place the callee method in the callee_target. It is stashed
1422   // there because if we try and find the callee by normal means a
1423   // safepoint is possible and have trouble gc'ing the compiled args.
1424   RegisterMap reg_map(thread, false);
1425   frame stub_frame = thread->last_frame();
1426   assert(stub_frame.is_runtime_frame(), "sanity check");
1427   frame caller_frame = stub_frame.sender(&reg_map);
1428 
1429   if (caller_frame.is_interpreted_frame() ||
1430       caller_frame.is_entry_frame()) {
1431     Method* callee = thread->callee_target();
1432     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1433     thread->set_vm_result_2(callee);
1434     thread->set_callee_target(NULL);
1435     return callee->get_c2i_entry();
1436   }
1437 
1438   // Must be compiled to compiled path which is safe to stackwalk
1439   methodHandle callee_method;
1440   JRT_BLOCK
1441     // Force resolving of caller (if we called from compiled frame)
1442     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1443     thread->set_vm_result_2(callee_method());
1444   JRT_BLOCK_END
1445   // return compiled code entry point after potential safepoints
1446   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1447   return callee_method->verified_code_entry();
1448 JRT_END
1449 
1450 // Handle abstract method call
1451 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1452   // Verbose error message for AbstractMethodError.
1453   // Get the called method from the invoke bytecode.
1454   vframeStream vfst(thread, true);
1455   assert(!vfst.at_end(), "Java frame must exist");
1456   methodHandle caller(vfst.method());
1457   Bytecode_invoke invoke(caller, vfst.bci());
1458   DEBUG_ONLY( invoke.verify(); )
1459 
1460   // Find the compiled caller frame.
1461   RegisterMap reg_map(thread);
1462   frame stubFrame = thread->last_frame();
1463   assert(stubFrame.is_runtime_frame(), "must be");
1464   frame callerFrame = stubFrame.sender(&reg_map);
1465   assert(callerFrame.is_compiled_frame(), "must be");
1466 
1467   // Install exception and return forward entry.
1468   address res = StubRoutines::throw_AbstractMethodError_entry();
1469   JRT_BLOCK
1470     methodHandle callee = invoke.static_target(thread);
1471     if (!callee.is_null()) {
1472       oop recv = callerFrame.retrieve_receiver(&reg_map);
1473       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1474       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1475       res = StubRoutines::forward_exception_entry();
1476     }
1477   JRT_BLOCK_END
1478   return res;
1479 JRT_END
1480 
1481 
1482 // resolve a static call and patch code
1483 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1484   methodHandle callee_method;
1485   JRT_BLOCK
1486     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1487     thread->set_vm_result_2(callee_method());
1488   JRT_BLOCK_END
1489   // return compiled code entry point after potential safepoints
1490   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1491   return callee_method->verified_code_entry();
1492 JRT_END
1493 
1494 
1495 // resolve virtual call and update inline cache to monomorphic
1496 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1497   methodHandle callee_method;
1498   JRT_BLOCK
1499     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1500     thread->set_vm_result_2(callee_method());
1501   JRT_BLOCK_END
1502   // return compiled code entry point after potential safepoints
1503   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1504   return callee_method->verified_code_entry();
1505 JRT_END
1506 
1507 
1508 // Resolve a virtual call that can be statically bound (e.g., always
1509 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1510 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1511   methodHandle callee_method;
1512   JRT_BLOCK
1513     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1514     thread->set_vm_result_2(callee_method());
1515   JRT_BLOCK_END
1516   // return compiled code entry point after potential safepoints
1517   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1518   return callee_method->verified_code_entry();
1519 JRT_END
1520 
1521 
1522 
1523 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1524   ResourceMark rm(thread);
1525   CallInfo call_info;
1526   Bytecodes::Code bc;
1527 
1528   // receiver is NULL for static calls. An exception is thrown for NULL
1529   // receivers for non-static calls
1530   Handle receiver = find_callee_info(thread, bc, call_info,
1531                                      CHECK_(methodHandle()));
1532   // Compiler1 can produce virtual call sites that can actually be statically bound
1533   // If we fell thru to below we would think that the site was going megamorphic
1534   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1535   // we'd try and do a vtable dispatch however methods that can be statically bound
1536   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1537   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1538   // plain ic_miss) and the site will be converted to an optimized virtual call site
1539   // never to miss again. I don't believe C2 will produce code like this but if it
1540   // did this would still be the correct thing to do for it too, hence no ifdef.
1541   //
1542   if (call_info.resolved_method()->can_be_statically_bound()) {
1543     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1544     if (TraceCallFixup) {
1545       RegisterMap reg_map(thread, false);
1546       frame caller_frame = thread->last_frame().sender(&reg_map);
1547       ResourceMark rm(thread);
1548       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1549       callee_method->print_short_name(tty);
1550       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1551       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1552     }
1553     return callee_method;
1554   }
1555 
1556   methodHandle callee_method = call_info.selected_method();
1557 
1558   bool should_be_mono = false;
1559 
1560 #ifndef PRODUCT
1561   Atomic::inc(&_ic_miss_ctr);
1562 
1563   // Statistics & Tracing
1564   if (TraceCallFixup) {
1565     ResourceMark rm(thread);
1566     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1567     callee_method->print_short_name(tty);
1568     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1569   }
1570 
1571   if (ICMissHistogram) {
1572     MutexLocker m(VMStatistic_lock);
1573     RegisterMap reg_map(thread, false);
1574     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1575     // produce statistics under the lock
1576     trace_ic_miss(f.pc());
1577   }
1578 #endif
1579 
1580   // install an event collector so that when a vtable stub is created the
1581   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1582   // event can't be posted when the stub is created as locks are held
1583   // - instead the event will be deferred until the event collector goes
1584   // out of scope.
1585   JvmtiDynamicCodeEventCollector event_collector;
1586 
1587   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1588   { MutexLocker ml_patch (CompiledIC_lock);
1589     RegisterMap reg_map(thread, false);
1590     frame caller_frame = thread->last_frame().sender(&reg_map);
1591     CodeBlob* cb = caller_frame.cb();
1592     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1593     if (cb->is_compiled()) {
1594       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1595       bool should_be_mono = false;
1596       if (inline_cache->is_optimized()) {
1597         if (TraceCallFixup) {
1598           ResourceMark rm(thread);
1599           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1600           callee_method->print_short_name(tty);
1601           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1602         }
1603         should_be_mono = true;
1604       } else if (inline_cache->is_icholder_call()) {
1605         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1606         if (ic_oop != NULL) {
1607 
1608           if (receiver()->klass() == ic_oop->holder_klass()) {
1609             // This isn't a real miss. We must have seen that compiled code
1610             // is now available and we want the call site converted to a
1611             // monomorphic compiled call site.
1612             // We can't assert for callee_method->code() != NULL because it
1613             // could have been deoptimized in the meantime
1614             if (TraceCallFixup) {
1615               ResourceMark rm(thread);
1616               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1617               callee_method->print_short_name(tty);
1618               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1619             }
1620             should_be_mono = true;
1621           }
1622         }
1623       }
1624 
1625       if (should_be_mono) {
1626 
1627         // We have a path that was monomorphic but was going interpreted
1628         // and now we have (or had) a compiled entry. We correct the IC
1629         // by using a new icBuffer.
1630         CompiledICInfo info;
1631         Klass* receiver_klass = receiver()->klass();
1632         inline_cache->compute_monomorphic_entry(callee_method,
1633                                                 receiver_klass,
1634                                                 inline_cache->is_optimized(),
1635                                                 false, caller_nm->is_nmethod(),
1636                                                 info, CHECK_(methodHandle()));
1637         inline_cache->set_to_monomorphic(info);
1638       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1639         // Potential change to megamorphic
1640         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1641         if (!successful) {
1642           inline_cache->set_to_clean();
1643         }
1644       } else {
1645         // Either clean or megamorphic
1646       }
1647     } else {
1648       fatal("Unimplemented");
1649     }
1650   } // Release CompiledIC_lock
1651 
1652   return callee_method;
1653 }
1654 
1655 //
1656 // Resets a call-site in compiled code so it will get resolved again.
1657 // This routines handles both virtual call sites, optimized virtual call
1658 // sites, and static call sites. Typically used to change a call sites
1659 // destination from compiled to interpreted.
1660 //
1661 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1662   ResourceMark rm(thread);
1663   RegisterMap reg_map(thread, false);
1664   frame stub_frame = thread->last_frame();
1665   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1666   frame caller = stub_frame.sender(&reg_map);
1667 
1668   // Do nothing if the frame isn't a live compiled frame.
1669   // nmethod could be deoptimized by the time we get here
1670   // so no update to the caller is needed.
1671 
1672   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1673 
1674     address pc = caller.pc();
1675 
1676     // Check for static or virtual call
1677     bool is_static_call = false;
1678     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1679 
1680     // Default call_addr is the location of the "basic" call.
1681     // Determine the address of the call we a reresolving. With
1682     // Inline Caches we will always find a recognizable call.
1683     // With Inline Caches disabled we may or may not find a
1684     // recognizable call. We will always find a call for static
1685     // calls and for optimized virtual calls. For vanilla virtual
1686     // calls it depends on the state of the UseInlineCaches switch.
1687     //
1688     // With Inline Caches disabled we can get here for a virtual call
1689     // for two reasons:
1690     //   1 - calling an abstract method. The vtable for abstract methods
1691     //       will run us thru handle_wrong_method and we will eventually
1692     //       end up in the interpreter to throw the ame.
1693     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1694     //       call and between the time we fetch the entry address and
1695     //       we jump to it the target gets deoptimized. Similar to 1
1696     //       we will wind up in the interprter (thru a c2i with c2).
1697     //
1698     address call_addr = NULL;
1699     {
1700       // Get call instruction under lock because another thread may be
1701       // busy patching it.
1702       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1703       // Location of call instruction
1704       call_addr = caller_nm->call_instruction_address(pc);
1705     }
1706     // Make sure nmethod doesn't get deoptimized and removed until
1707     // this is done with it.
1708     // CLEANUP - with lazy deopt shouldn't need this lock
1709     nmethodLocker nmlock(caller_nm);
1710 
1711     if (call_addr != NULL) {
1712       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1713       int ret = iter.next(); // Get item
1714       if (ret) {
1715         assert(iter.addr() == call_addr, "must find call");
1716         if (iter.type() == relocInfo::static_call_type) {
1717           is_static_call = true;
1718         } else {
1719           assert(iter.type() == relocInfo::virtual_call_type ||
1720                  iter.type() == relocInfo::opt_virtual_call_type
1721                 , "unexpected relocInfo. type");
1722         }
1723       } else {
1724         assert(!UseInlineCaches, "relocation info. must exist for this address");
1725       }
1726 
1727       // Cleaning the inline cache will force a new resolve. This is more robust
1728       // than directly setting it to the new destination, since resolving of calls
1729       // is always done through the same code path. (experience shows that it
1730       // leads to very hard to track down bugs, if an inline cache gets updated
1731       // to a wrong method). It should not be performance critical, since the
1732       // resolve is only done once.
1733 
1734       bool is_nmethod = caller_nm->is_nmethod();
1735       MutexLocker ml(CompiledIC_lock);
1736       if (is_static_call) {
1737         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1738         ssc->set_to_clean();
1739       } else {
1740         // compiled, dispatched call (which used to call an interpreted method)
1741         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1742         inline_cache->set_to_clean();
1743       }
1744     }
1745   }
1746 
1747   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1748 
1749 
1750 #ifndef PRODUCT
1751   Atomic::inc(&_wrong_method_ctr);
1752 
1753   if (TraceCallFixup) {
1754     ResourceMark rm(thread);
1755     tty->print("handle_wrong_method reresolving call to");
1756     callee_method->print_short_name(tty);
1757     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1758   }
1759 #endif
1760 
1761   return callee_method;
1762 }
1763 
1764 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1765   // The faulting unsafe accesses should be changed to throw the error
1766   // synchronously instead. Meanwhile the faulting instruction will be
1767   // skipped over (effectively turning it into a no-op) and an
1768   // asynchronous exception will be raised which the thread will
1769   // handle at a later point. If the instruction is a load it will
1770   // return garbage.
1771 
1772   // Request an async exception.
1773   thread->set_pending_unsafe_access_error();
1774 
1775   // Return address of next instruction to execute.
1776   return next_pc;
1777 }
1778 
1779 #ifdef ASSERT
1780 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1781                                                                 const BasicType* sig_bt,
1782                                                                 const VMRegPair* regs) {
1783   ResourceMark rm;
1784   const int total_args_passed = method->size_of_parameters();
1785   const VMRegPair*    regs_with_member_name = regs;
1786         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1787 
1788   const int member_arg_pos = total_args_passed - 1;
1789   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1790   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1791 
1792   const bool is_outgoing = method->is_method_handle_intrinsic();
1793   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1794 
1795   for (int i = 0; i < member_arg_pos; i++) {
1796     VMReg a =    regs_with_member_name[i].first();
1797     VMReg b = regs_without_member_name[i].first();
1798     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1799   }
1800   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1801 }
1802 #endif
1803 
1804 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1805   if (destination != entry_point) {
1806     CodeBlob* callee = CodeCache::find_blob(destination);
1807     // callee == cb seems weird. It means calling interpreter thru stub.
1808     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1809       // static call or optimized virtual
1810       if (TraceCallFixup) {
1811         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1812         moop->print_short_name(tty);
1813         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1814       }
1815       return true;
1816     } else {
1817       if (TraceCallFixup) {
1818         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1819         moop->print_short_name(tty);
1820         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1821       }
1822       // assert is too strong could also be resolve destinations.
1823       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1824     }
1825   } else {
1826     if (TraceCallFixup) {
1827       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1828       moop->print_short_name(tty);
1829       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1830     }
1831   }
1832   return false;
1833 }
1834 
1835 // ---------------------------------------------------------------------------
1836 // We are calling the interpreter via a c2i. Normally this would mean that
1837 // we were called by a compiled method. However we could have lost a race
1838 // where we went int -> i2c -> c2i and so the caller could in fact be
1839 // interpreted. If the caller is compiled we attempt to patch the caller
1840 // so he no longer calls into the interpreter.
1841 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1842   Method* moop(method);
1843 
1844   address entry_point = moop->from_compiled_entry_no_trampoline();
1845 
1846   // It's possible that deoptimization can occur at a call site which hasn't
1847   // been resolved yet, in which case this function will be called from
1848   // an nmethod that has been patched for deopt and we can ignore the
1849   // request for a fixup.
1850   // Also it is possible that we lost a race in that from_compiled_entry
1851   // is now back to the i2c in that case we don't need to patch and if
1852   // we did we'd leap into space because the callsite needs to use
1853   // "to interpreter" stub in order to load up the Method*. Don't
1854   // ask me how I know this...
1855 
1856   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1857   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1858     return;
1859   }
1860 
1861   // The check above makes sure this is a nmethod.
1862   CompiledMethod* nm = cb->as_compiled_method_or_null();
1863   assert(nm, "must be");
1864 
1865   // Get the return PC for the passed caller PC.
1866   address return_pc = caller_pc + frame::pc_return_offset;
1867 
1868   // There is a benign race here. We could be attempting to patch to a compiled
1869   // entry point at the same time the callee is being deoptimized. If that is
1870   // the case then entry_point may in fact point to a c2i and we'd patch the
1871   // call site with the same old data. clear_code will set code() to NULL
1872   // at the end of it. If we happen to see that NULL then we can skip trying
1873   // to patch. If we hit the window where the callee has a c2i in the
1874   // from_compiled_entry and the NULL isn't present yet then we lose the race
1875   // and patch the code with the same old data. Asi es la vida.
1876 
1877   if (moop->code() == NULL) return;
1878 
1879   if (nm->is_in_use()) {
1880 
1881     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1882     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1883     if (NativeCall::is_call_before(return_pc)) {
1884       ResourceMark mark;
1885       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1886       //
1887       // bug 6281185. We might get here after resolving a call site to a vanilla
1888       // virtual call. Because the resolvee uses the verified entry it may then
1889       // see compiled code and attempt to patch the site by calling us. This would
1890       // then incorrectly convert the call site to optimized and its downhill from
1891       // there. If you're lucky you'll get the assert in the bugid, if not you've
1892       // just made a call site that could be megamorphic into a monomorphic site
1893       // for the rest of its life! Just another racing bug in the life of
1894       // fixup_callers_callsite ...
1895       //
1896       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1897       iter.next();
1898       assert(iter.has_current(), "must have a reloc at java call site");
1899       relocInfo::relocType typ = iter.reloc()->type();
1900       if (typ != relocInfo::static_call_type &&
1901            typ != relocInfo::opt_virtual_call_type &&
1902            typ != relocInfo::static_stub_type) {
1903         return;
1904       }
1905       address destination = call->destination();
1906       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1907         call->set_destination_mt_safe(entry_point);
1908       }
1909     }
1910   }
1911 IRT_END
1912 
1913 
1914 // same as JVM_Arraycopy, but called directly from compiled code
1915 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1916                                                 oopDesc* dest, jint dest_pos,
1917                                                 jint length,
1918                                                 JavaThread* thread)) {
1919 #ifndef PRODUCT
1920   _slow_array_copy_ctr++;
1921 #endif
1922   // Check if we have null pointers
1923   if (src == NULL || dest == NULL) {
1924     THROW(vmSymbols::java_lang_NullPointerException());
1925   }
1926   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1927   // even though the copy_array API also performs dynamic checks to ensure
1928   // that src and dest are truly arrays (and are conformable).
1929   // The copy_array mechanism is awkward and could be removed, but
1930   // the compilers don't call this function except as a last resort,
1931   // so it probably doesn't matter.
1932   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1933                                         (arrayOopDesc*)dest, dest_pos,
1934                                         length, thread);
1935 }
1936 JRT_END
1937 
1938 // The caller of generate_class_cast_message() (or one of its callers)
1939 // must use a ResourceMark in order to correctly free the result.
1940 char* SharedRuntime::generate_class_cast_message(
1941     JavaThread* thread, Klass* caster_klass) {
1942 
1943   // Get target class name from the checkcast instruction
1944   vframeStream vfst(thread, true);
1945   assert(!vfst.at_end(), "Java frame must exist");
1946   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1947   constantPoolHandle cpool(thread, vfst.method()->constants());
1948   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1949   Symbol* target_klass_name = NULL;
1950   if (target_klass == NULL) {
1951     // This klass should be resolved, but just in case, get the name in the klass slot.
1952     target_klass_name = cpool->klass_name_at(cc.index());
1953   }
1954   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1955 }
1956 
1957 
1958 // The caller of generate_class_cast_message() (or one of its callers)
1959 // must use a ResourceMark in order to correctly free the result.
1960 char* SharedRuntime::generate_class_cast_message(
1961     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1962   const char* caster_name = caster_klass->external_name();
1963 
1964   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1965   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
1966                                                    target_klass->external_name(); 
1967 
1968   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1969 
1970   const char* caster_klass_description = "";
1971   const char* target_klass_description = "";
1972   const char* klass_separator = "";
1973   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
1974     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1975   } else {
1976     caster_klass_description = caster_klass->class_in_module_of_loader();
1977     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
1978     klass_separator = (target_klass != NULL) ? "; " : "";
1979   }
1980  
1981   // add 3 for parenthesis and preceeding space 
1982   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1983 
1984   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1985   if (message == NULL) {
1986     // Shouldn't happen, but don't cause even more problems if it does
1987     message = const_cast<char*>(caster_klass->external_name());
1988   } else {
1989     jio_snprintf(message,
1990                  msglen,
1991                  "class %s cannot be cast to class %s (%s%s%s)",
1992                  caster_name,
1993                  target_name,
1994                  caster_klass_description,
1995                  klass_separator,
1996                  target_klass_description
1997                  );
1998   }
1999   return message;
2000 }
2001 
2002 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2003   (void) JavaThread::current()->reguard_stack();
2004 JRT_END
2005 
2006 
2007 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2008 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2009   if (!SafepointSynchronize::is_synchronizing()) {
2010     // Only try quick_enter() if we're not trying to reach a safepoint
2011     // so that the calling thread reaches the safepoint more quickly.
2012     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2013   }
2014   // NO_ASYNC required because an async exception on the state transition destructor
2015   // would leave you with the lock held and it would never be released.
2016   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2017   // and the model is that an exception implies the method failed.
2018   JRT_BLOCK_NO_ASYNC
2019   oop obj(_obj);
2020   if (PrintBiasedLockingStatistics) {
2021     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2022   }
2023   Handle h_obj(THREAD, obj);
2024   if (UseBiasedLocking) {
2025     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2026     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2027   } else {
2028     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2029   }
2030   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2031   JRT_BLOCK_END
2032 JRT_END
2033 
2034 // Handles the uncommon cases of monitor unlocking in compiled code
2035 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2036    oop obj(_obj);
2037   assert(JavaThread::current() == THREAD, "invariant");
2038   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2039   // testing was unable to ever fire the assert that guarded it so I have removed it.
2040   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2041 #undef MIGHT_HAVE_PENDING
2042 #ifdef MIGHT_HAVE_PENDING
2043   // Save and restore any pending_exception around the exception mark.
2044   // While the slow_exit must not throw an exception, we could come into
2045   // this routine with one set.
2046   oop pending_excep = NULL;
2047   const char* pending_file;
2048   int pending_line;
2049   if (HAS_PENDING_EXCEPTION) {
2050     pending_excep = PENDING_EXCEPTION;
2051     pending_file  = THREAD->exception_file();
2052     pending_line  = THREAD->exception_line();
2053     CLEAR_PENDING_EXCEPTION;
2054   }
2055 #endif /* MIGHT_HAVE_PENDING */
2056 
2057   {
2058     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2059     EXCEPTION_MARK;
2060     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2061   }
2062 
2063 #ifdef MIGHT_HAVE_PENDING
2064   if (pending_excep != NULL) {
2065     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2066   }
2067 #endif /* MIGHT_HAVE_PENDING */
2068 JRT_END
2069 
2070 #ifndef PRODUCT
2071 
2072 void SharedRuntime::print_statistics() {
2073   ttyLocker ttyl;
2074   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2075 
2076   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2077 
2078   SharedRuntime::print_ic_miss_histogram();
2079 
2080   if (CountRemovableExceptions) {
2081     if (_nof_removable_exceptions > 0) {
2082       Unimplemented(); // this counter is not yet incremented
2083       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2084     }
2085   }
2086 
2087   // Dump the JRT_ENTRY counters
2088   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2089   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2090   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2091   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2092   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2093   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2094   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2095 
2096   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2097   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2098   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2099   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2100   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2101 
2102   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2103   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2104   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2105   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2106   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2107   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2108   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2109   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2110   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2111   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2112   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2113   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2114   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2115   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2116   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2117   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2118 
2119   AdapterHandlerLibrary::print_statistics();
2120 
2121   if (xtty != NULL)  xtty->tail("statistics");
2122 }
2123 
2124 inline double percent(int x, int y) {
2125   return 100.0 * x / MAX2(y, 1);
2126 }
2127 
2128 class MethodArityHistogram {
2129  public:
2130   enum { MAX_ARITY = 256 };
2131  private:
2132   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2133   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2134   static int _max_arity;                      // max. arity seen
2135   static int _max_size;                       // max. arg size seen
2136 
2137   static void add_method_to_histogram(nmethod* nm) {
2138     Method* m = nm->method();
2139     ArgumentCount args(m->signature());
2140     int arity   = args.size() + (m->is_static() ? 0 : 1);
2141     int argsize = m->size_of_parameters();
2142     arity   = MIN2(arity, MAX_ARITY-1);
2143     argsize = MIN2(argsize, MAX_ARITY-1);
2144     int count = nm->method()->compiled_invocation_count();
2145     _arity_histogram[arity]  += count;
2146     _size_histogram[argsize] += count;
2147     _max_arity = MAX2(_max_arity, arity);
2148     _max_size  = MAX2(_max_size, argsize);
2149   }
2150 
2151   void print_histogram_helper(int n, int* histo, const char* name) {
2152     const int N = MIN2(5, n);
2153     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2154     double sum = 0;
2155     double weighted_sum = 0;
2156     int i;
2157     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2158     double rest = sum;
2159     double percent = sum / 100;
2160     for (i = 0; i <= N; i++) {
2161       rest -= histo[i];
2162       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2163     }
2164     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2165     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2166   }
2167 
2168   void print_histogram() {
2169     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2170     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2171     tty->print_cr("\nSame for parameter size (in words):");
2172     print_histogram_helper(_max_size, _size_histogram, "size");
2173     tty->cr();
2174   }
2175 
2176  public:
2177   MethodArityHistogram() {
2178     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2179     _max_arity = _max_size = 0;
2180     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2181     CodeCache::nmethods_do(add_method_to_histogram);
2182     print_histogram();
2183   }
2184 };
2185 
2186 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2187 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2188 int MethodArityHistogram::_max_arity;
2189 int MethodArityHistogram::_max_size;
2190 
2191 void SharedRuntime::print_call_statistics(int comp_total) {
2192   tty->print_cr("Calls from compiled code:");
2193   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2194   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2195   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2196   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2197   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2198   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2199   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2200   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2201   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2202   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2203   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2204   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2205   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2206   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2207   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2208   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2209   tty->cr();
2210   tty->print_cr("Note 1: counter updates are not MT-safe.");
2211   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2212   tty->print_cr("        %% in nested categories are relative to their category");
2213   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2214   tty->cr();
2215 
2216   MethodArityHistogram h;
2217 }
2218 #endif
2219 
2220 
2221 // A simple wrapper class around the calling convention information
2222 // that allows sharing of adapters for the same calling convention.
2223 class AdapterFingerPrint : public CHeapObj<mtCode> {
2224  private:
2225   enum {
2226     _basic_type_bits = 4,
2227     _basic_type_mask = right_n_bits(_basic_type_bits),
2228     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2229     _compact_int_count = 3
2230   };
2231   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2232   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2233 
2234   union {
2235     int  _compact[_compact_int_count];
2236     int* _fingerprint;
2237   } _value;
2238   int _length; // A negative length indicates the fingerprint is in the compact form,
2239                // Otherwise _value._fingerprint is the array.
2240 
2241   // Remap BasicTypes that are handled equivalently by the adapters.
2242   // These are correct for the current system but someday it might be
2243   // necessary to make this mapping platform dependent.
2244   static int adapter_encoding(BasicType in) {
2245     switch (in) {
2246       case T_BOOLEAN:
2247       case T_BYTE:
2248       case T_SHORT:
2249       case T_CHAR:
2250         // There are all promoted to T_INT in the calling convention
2251         return T_INT;
2252 
2253       case T_OBJECT:
2254       case T_ARRAY:
2255         // In other words, we assume that any register good enough for
2256         // an int or long is good enough for a managed pointer.
2257 #ifdef _LP64
2258         return T_LONG;
2259 #else
2260         return T_INT;
2261 #endif
2262 
2263       case T_INT:
2264       case T_LONG:
2265       case T_FLOAT:
2266       case T_DOUBLE:
2267       case T_VOID:
2268         return in;
2269 
2270       default:
2271         ShouldNotReachHere();
2272         return T_CONFLICT;
2273     }
2274   }
2275 
2276  public:
2277   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2278     // The fingerprint is based on the BasicType signature encoded
2279     // into an array of ints with eight entries per int.
2280     int* ptr;
2281     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2282     if (len <= _compact_int_count) {
2283       assert(_compact_int_count == 3, "else change next line");
2284       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2285       // Storing the signature encoded as signed chars hits about 98%
2286       // of the time.
2287       _length = -len;
2288       ptr = _value._compact;
2289     } else {
2290       _length = len;
2291       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2292       ptr = _value._fingerprint;
2293     }
2294 
2295     // Now pack the BasicTypes with 8 per int
2296     int sig_index = 0;
2297     for (int index = 0; index < len; index++) {
2298       int value = 0;
2299       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2300         int bt = ((sig_index < total_args_passed)
2301                   ? adapter_encoding(sig_bt[sig_index++])
2302                   : 0);
2303         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2304         value = (value << _basic_type_bits) | bt;
2305       }
2306       ptr[index] = value;
2307     }
2308   }
2309 
2310   ~AdapterFingerPrint() {
2311     if (_length > 0) {
2312       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2313     }
2314   }
2315 
2316   int value(int index) {
2317     if (_length < 0) {
2318       return _value._compact[index];
2319     }
2320     return _value._fingerprint[index];
2321   }
2322   int length() {
2323     if (_length < 0) return -_length;
2324     return _length;
2325   }
2326 
2327   bool is_compact() {
2328     return _length <= 0;
2329   }
2330 
2331   unsigned int compute_hash() {
2332     int hash = 0;
2333     for (int i = 0; i < length(); i++) {
2334       int v = value(i);
2335       hash = (hash << 8) ^ v ^ (hash >> 5);
2336     }
2337     return (unsigned int)hash;
2338   }
2339 
2340   const char* as_string() {
2341     stringStream st;
2342     st.print("0x");
2343     for (int i = 0; i < length(); i++) {
2344       st.print("%08x", value(i));
2345     }
2346     return st.as_string();
2347   }
2348 
2349   bool equals(AdapterFingerPrint* other) {
2350     if (other->_length != _length) {
2351       return false;
2352     }
2353     if (_length < 0) {
2354       assert(_compact_int_count == 3, "else change next line");
2355       return _value._compact[0] == other->_value._compact[0] &&
2356              _value._compact[1] == other->_value._compact[1] &&
2357              _value._compact[2] == other->_value._compact[2];
2358     } else {
2359       for (int i = 0; i < _length; i++) {
2360         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2361           return false;
2362         }
2363       }
2364     }
2365     return true;
2366   }
2367 };
2368 
2369 
2370 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2371 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2372   friend class AdapterHandlerTableIterator;
2373 
2374  private:
2375 
2376 #ifndef PRODUCT
2377   static int _lookups; // number of calls to lookup
2378   static int _buckets; // number of buckets checked
2379   static int _equals;  // number of buckets checked with matching hash
2380   static int _hits;    // number of successful lookups
2381   static int _compact; // number of equals calls with compact signature
2382 #endif
2383 
2384   AdapterHandlerEntry* bucket(int i) {
2385     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2386   }
2387 
2388  public:
2389   AdapterHandlerTable()
2390     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2391 
2392   // Create a new entry suitable for insertion in the table
2393   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2394     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2395     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2396     if (DumpSharedSpaces) {
2397       ((CDSAdapterHandlerEntry*)entry)->init();
2398     }
2399     return entry;
2400   }
2401 
2402   // Insert an entry into the table
2403   void add(AdapterHandlerEntry* entry) {
2404     int index = hash_to_index(entry->hash());
2405     add_entry(index, entry);
2406   }
2407 
2408   void free_entry(AdapterHandlerEntry* entry) {
2409     entry->deallocate();
2410     BasicHashtable<mtCode>::free_entry(entry);
2411   }
2412 
2413   // Find a entry with the same fingerprint if it exists
2414   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2415     NOT_PRODUCT(_lookups++);
2416     AdapterFingerPrint fp(total_args_passed, sig_bt);
2417     unsigned int hash = fp.compute_hash();
2418     int index = hash_to_index(hash);
2419     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2420       NOT_PRODUCT(_buckets++);
2421       if (e->hash() == hash) {
2422         NOT_PRODUCT(_equals++);
2423         if (fp.equals(e->fingerprint())) {
2424 #ifndef PRODUCT
2425           if (fp.is_compact()) _compact++;
2426           _hits++;
2427 #endif
2428           return e;
2429         }
2430       }
2431     }
2432     return NULL;
2433   }
2434 
2435 #ifndef PRODUCT
2436   void print_statistics() {
2437     ResourceMark rm;
2438     int longest = 0;
2439     int empty = 0;
2440     int total = 0;
2441     int nonempty = 0;
2442     for (int index = 0; index < table_size(); index++) {
2443       int count = 0;
2444       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2445         count++;
2446       }
2447       if (count != 0) nonempty++;
2448       if (count == 0) empty++;
2449       if (count > longest) longest = count;
2450       total += count;
2451     }
2452     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2453                   empty, longest, total, total / (double)nonempty);
2454     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2455                   _lookups, _buckets, _equals, _hits, _compact);
2456   }
2457 #endif
2458 };
2459 
2460 
2461 #ifndef PRODUCT
2462 
2463 int AdapterHandlerTable::_lookups;
2464 int AdapterHandlerTable::_buckets;
2465 int AdapterHandlerTable::_equals;
2466 int AdapterHandlerTable::_hits;
2467 int AdapterHandlerTable::_compact;
2468 
2469 #endif
2470 
2471 class AdapterHandlerTableIterator : public StackObj {
2472  private:
2473   AdapterHandlerTable* _table;
2474   int _index;
2475   AdapterHandlerEntry* _current;
2476 
2477   void scan() {
2478     while (_index < _table->table_size()) {
2479       AdapterHandlerEntry* a = _table->bucket(_index);
2480       _index++;
2481       if (a != NULL) {
2482         _current = a;
2483         return;
2484       }
2485     }
2486   }
2487 
2488  public:
2489   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2490     scan();
2491   }
2492   bool has_next() {
2493     return _current != NULL;
2494   }
2495   AdapterHandlerEntry* next() {
2496     if (_current != NULL) {
2497       AdapterHandlerEntry* result = _current;
2498       _current = _current->next();
2499       if (_current == NULL) scan();
2500       return result;
2501     } else {
2502       return NULL;
2503     }
2504   }
2505 };
2506 
2507 
2508 // ---------------------------------------------------------------------------
2509 // Implementation of AdapterHandlerLibrary
2510 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2511 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2512 const int AdapterHandlerLibrary_size = 16*K;
2513 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2514 
2515 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2516   // Should be called only when AdapterHandlerLibrary_lock is active.
2517   if (_buffer == NULL) // Initialize lazily
2518       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2519   return _buffer;
2520 }
2521 
2522 extern "C" void unexpected_adapter_call() {
2523   ShouldNotCallThis();
2524 }
2525 
2526 void AdapterHandlerLibrary::initialize() {
2527   if (_adapters != NULL) return;
2528   _adapters = new AdapterHandlerTable();
2529 
2530   // Create a special handler for abstract methods.  Abstract methods
2531   // are never compiled so an i2c entry is somewhat meaningless, but
2532   // throw AbstractMethodError just in case.
2533   // Pass wrong_method_abstract for the c2i transitions to return
2534   // AbstractMethodError for invalid invocations.
2535   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2536   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2537                                                               StubRoutines::throw_AbstractMethodError_entry(),
2538                                                               wrong_method_abstract, wrong_method_abstract);
2539 }
2540 
2541 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2542                                                       address i2c_entry,
2543                                                       address c2i_entry,
2544                                                       address c2i_unverified_entry) {
2545   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2546 }
2547 
2548 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2549   AdapterHandlerEntry* entry = get_adapter0(method);
2550   if (method->is_shared()) {
2551     // See comments around Method::link_method()
2552     MutexLocker mu(AdapterHandlerLibrary_lock);
2553     if (method->adapter() == NULL) {
2554       method->update_adapter_trampoline(entry);
2555     }
2556     address trampoline = method->from_compiled_entry();
2557     if (*(int*)trampoline == 0) {
2558       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2559       MacroAssembler _masm(&buffer);
2560       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2561       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2562 
2563       if (PrintInterpreter) {
2564         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2565       }
2566     }
2567   }
2568 
2569   return entry;
2570 }
2571 
2572 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2573   // Use customized signature handler.  Need to lock around updates to
2574   // the AdapterHandlerTable (it is not safe for concurrent readers
2575   // and a single writer: this could be fixed if it becomes a
2576   // problem).
2577 
2578   ResourceMark rm;
2579 
2580   NOT_PRODUCT(int insts_size);
2581   AdapterBlob* new_adapter = NULL;
2582   AdapterHandlerEntry* entry = NULL;
2583   AdapterFingerPrint* fingerprint = NULL;
2584   {
2585     MutexLocker mu(AdapterHandlerLibrary_lock);
2586     // make sure data structure is initialized
2587     initialize();
2588 
2589     if (method->is_abstract()) {
2590       return _abstract_method_handler;
2591     }
2592 
2593     // Fill in the signature array, for the calling-convention call.
2594     int total_args_passed = method->size_of_parameters(); // All args on stack
2595 
2596     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2597     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2598     int i = 0;
2599     if (!method->is_static())  // Pass in receiver first
2600       sig_bt[i++] = T_OBJECT;
2601     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2602       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2603       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2604         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2605     }
2606     assert(i == total_args_passed, "");
2607 
2608     // Lookup method signature's fingerprint
2609     entry = _adapters->lookup(total_args_passed, sig_bt);
2610 
2611 #ifdef ASSERT
2612     AdapterHandlerEntry* shared_entry = NULL;
2613     // Start adapter sharing verification only after the VM is booted.
2614     if (VerifyAdapterSharing && (entry != NULL)) {
2615       shared_entry = entry;
2616       entry = NULL;
2617     }
2618 #endif
2619 
2620     if (entry != NULL) {
2621       return entry;
2622     }
2623 
2624     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2625     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2626 
2627     // Make a C heap allocated version of the fingerprint to store in the adapter
2628     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2629 
2630     // StubRoutines::code2() is initialized after this function can be called. As a result,
2631     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2632     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2633     // stub that ensure that an I2C stub is called from an interpreter frame.
2634     bool contains_all_checks = StubRoutines::code2() != NULL;
2635 
2636     // Create I2C & C2I handlers
2637     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2638     if (buf != NULL) {
2639       CodeBuffer buffer(buf);
2640       short buffer_locs[20];
2641       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2642                                              sizeof(buffer_locs)/sizeof(relocInfo));
2643 
2644       MacroAssembler _masm(&buffer);
2645       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2646                                                      total_args_passed,
2647                                                      comp_args_on_stack,
2648                                                      sig_bt,
2649                                                      regs,
2650                                                      fingerprint);
2651 #ifdef ASSERT
2652       if (VerifyAdapterSharing) {
2653         if (shared_entry != NULL) {
2654           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2655           // Release the one just created and return the original
2656           _adapters->free_entry(entry);
2657           return shared_entry;
2658         } else  {
2659           entry->save_code(buf->code_begin(), buffer.insts_size());
2660         }
2661       }
2662 #endif
2663 
2664       new_adapter = AdapterBlob::create(&buffer);
2665       NOT_PRODUCT(insts_size = buffer.insts_size());
2666     }
2667     if (new_adapter == NULL) {
2668       // CodeCache is full, disable compilation
2669       // Ought to log this but compile log is only per compile thread
2670       // and we're some non descript Java thread.
2671       return NULL; // Out of CodeCache space
2672     }
2673     entry->relocate(new_adapter->content_begin());
2674 #ifndef PRODUCT
2675     // debugging suppport
2676     if (PrintAdapterHandlers || PrintStubCode) {
2677       ttyLocker ttyl;
2678       entry->print_adapter_on(tty);
2679       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2680                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2681                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2682       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2683       if (Verbose || PrintStubCode) {
2684         address first_pc = entry->base_address();
2685         if (first_pc != NULL) {
2686           Disassembler::decode(first_pc, first_pc + insts_size);
2687           tty->cr();
2688         }
2689       }
2690     }
2691 #endif
2692     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2693     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2694     if (contains_all_checks || !VerifyAdapterCalls) {
2695       _adapters->add(entry);
2696     }
2697   }
2698   // Outside of the lock
2699   if (new_adapter != NULL) {
2700     char blob_id[256];
2701     jio_snprintf(blob_id,
2702                  sizeof(blob_id),
2703                  "%s(%s)@" PTR_FORMAT,
2704                  new_adapter->name(),
2705                  fingerprint->as_string(),
2706                  new_adapter->content_begin());
2707     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2708 
2709     if (JvmtiExport::should_post_dynamic_code_generated()) {
2710       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2711     }
2712   }
2713   return entry;
2714 }
2715 
2716 address AdapterHandlerEntry::base_address() {
2717   address base = _i2c_entry;
2718   if (base == NULL)  base = _c2i_entry;
2719   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2720   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2721   return base;
2722 }
2723 
2724 void AdapterHandlerEntry::relocate(address new_base) {
2725   address old_base = base_address();
2726   assert(old_base != NULL, "");
2727   ptrdiff_t delta = new_base - old_base;
2728   if (_i2c_entry != NULL)
2729     _i2c_entry += delta;
2730   if (_c2i_entry != NULL)
2731     _c2i_entry += delta;
2732   if (_c2i_unverified_entry != NULL)
2733     _c2i_unverified_entry += delta;
2734   assert(base_address() == new_base, "");
2735 }
2736 
2737 
2738 void AdapterHandlerEntry::deallocate() {
2739   delete _fingerprint;
2740 #ifdef ASSERT
2741   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2742 #endif
2743 }
2744 
2745 
2746 #ifdef ASSERT
2747 // Capture the code before relocation so that it can be compared
2748 // against other versions.  If the code is captured after relocation
2749 // then relative instructions won't be equivalent.
2750 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2751   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2752   _saved_code_length = length;
2753   memcpy(_saved_code, buffer, length);
2754 }
2755 
2756 
2757 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2758   if (length != _saved_code_length) {
2759     return false;
2760   }
2761 
2762   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2763 }
2764 #endif
2765 
2766 
2767 /**
2768  * Create a native wrapper for this native method.  The wrapper converts the
2769  * Java-compiled calling convention to the native convention, handles
2770  * arguments, and transitions to native.  On return from the native we transition
2771  * back to java blocking if a safepoint is in progress.
2772  */
2773 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2774   ResourceMark rm;
2775   nmethod* nm = NULL;
2776 
2777   assert(method->is_native(), "must be native");
2778   assert(method->is_method_handle_intrinsic() ||
2779          method->has_native_function(), "must have something valid to call!");
2780 
2781   {
2782     // Perform the work while holding the lock, but perform any printing outside the lock
2783     MutexLocker mu(AdapterHandlerLibrary_lock);
2784     // See if somebody beat us to it
2785     if (method->code() != NULL) {
2786       return;
2787     }
2788 
2789     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2790     assert(compile_id > 0, "Must generate native wrapper");
2791 
2792 
2793     ResourceMark rm;
2794     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2795     if (buf != NULL) {
2796       CodeBuffer buffer(buf);
2797       double locs_buf[20];
2798       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2799       MacroAssembler _masm(&buffer);
2800 
2801       // Fill in the signature array, for the calling-convention call.
2802       const int total_args_passed = method->size_of_parameters();
2803 
2804       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2805       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2806       int i=0;
2807       if (!method->is_static())  // Pass in receiver first
2808         sig_bt[i++] = T_OBJECT;
2809       SignatureStream ss(method->signature());
2810       for (; !ss.at_return_type(); ss.next()) {
2811         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2812         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2813           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2814       }
2815       assert(i == total_args_passed, "");
2816       BasicType ret_type = ss.type();
2817 
2818       // Now get the compiled-Java layout as input (or output) arguments.
2819       // NOTE: Stubs for compiled entry points of method handle intrinsics
2820       // are just trampolines so the argument registers must be outgoing ones.
2821       const bool is_outgoing = method->is_method_handle_intrinsic();
2822       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2823 
2824       // Generate the compiled-to-native wrapper code
2825       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2826 
2827       if (nm != NULL) {
2828         method->set_code(method, nm);
2829 
2830         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2831         if (directive->PrintAssemblyOption) {
2832           nm->print_code();
2833         }
2834         DirectivesStack::release(directive);
2835       }
2836     }
2837   } // Unlock AdapterHandlerLibrary_lock
2838 
2839 
2840   // Install the generated code.
2841   if (nm != NULL) {
2842     const char *msg = method->is_static() ? "(static)" : "";
2843     CompileTask::print_ul(nm, msg);
2844     if (PrintCompilation) {
2845       ttyLocker ttyl;
2846       CompileTask::print(tty, nm, msg);
2847     }
2848     nm->post_compiled_method_load_event();
2849   }
2850 }
2851 
2852 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2853   assert(thread == JavaThread::current(), "must be");
2854   // The code is about to enter a JNI lazy critical native method and
2855   // _needs_gc is true, so if this thread is already in a critical
2856   // section then just return, otherwise this thread should block
2857   // until needs_gc has been cleared.
2858   if (thread->in_critical()) {
2859     return;
2860   }
2861   // Lock and unlock a critical section to give the system a chance to block
2862   GCLocker::lock_critical(thread);
2863   GCLocker::unlock_critical(thread);
2864 JRT_END
2865 
2866 // -------------------------------------------------------------------------
2867 // Java-Java calling convention
2868 // (what you use when Java calls Java)
2869 
2870 //------------------------------name_for_receiver----------------------------------
2871 // For a given signature, return the VMReg for parameter 0.
2872 VMReg SharedRuntime::name_for_receiver() {
2873   VMRegPair regs;
2874   BasicType sig_bt = T_OBJECT;
2875   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2876   // Return argument 0 register.  In the LP64 build pointers
2877   // take 2 registers, but the VM wants only the 'main' name.
2878   return regs.first();
2879 }
2880 
2881 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2882   // This method is returning a data structure allocating as a
2883   // ResourceObject, so do not put any ResourceMarks in here.
2884   char *s = sig->as_C_string();
2885   int len = (int)strlen(s);
2886   s++; len--;                   // Skip opening paren
2887 
2888   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2889   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2890   int cnt = 0;
2891   if (has_receiver) {
2892     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2893   }
2894 
2895   while (*s != ')') {          // Find closing right paren
2896     switch (*s++) {            // Switch on signature character
2897     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2898     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2899     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2900     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2901     case 'I': sig_bt[cnt++] = T_INT;     break;
2902     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2903     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2904     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2905     case 'V': sig_bt[cnt++] = T_VOID;    break;
2906     case 'L':                   // Oop
2907       while (*s++ != ';');   // Skip signature
2908       sig_bt[cnt++] = T_OBJECT;
2909       break;
2910     case '[': {                 // Array
2911       do {                      // Skip optional size
2912         while (*s >= '0' && *s <= '9') s++;
2913       } while (*s++ == '[');   // Nested arrays?
2914       // Skip element type
2915       if (s[-1] == 'L')
2916         while (*s++ != ';'); // Skip signature
2917       sig_bt[cnt++] = T_ARRAY;
2918       break;
2919     }
2920     default : ShouldNotReachHere();
2921     }
2922   }
2923 
2924   if (has_appendix) {
2925     sig_bt[cnt++] = T_OBJECT;
2926   }
2927 
2928   assert(cnt < 256, "grow table size");
2929 
2930   int comp_args_on_stack;
2931   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2932 
2933   // the calling convention doesn't count out_preserve_stack_slots so
2934   // we must add that in to get "true" stack offsets.
2935 
2936   if (comp_args_on_stack) {
2937     for (int i = 0; i < cnt; i++) {
2938       VMReg reg1 = regs[i].first();
2939       if (reg1->is_stack()) {
2940         // Yuck
2941         reg1 = reg1->bias(out_preserve_stack_slots());
2942       }
2943       VMReg reg2 = regs[i].second();
2944       if (reg2->is_stack()) {
2945         // Yuck
2946         reg2 = reg2->bias(out_preserve_stack_slots());
2947       }
2948       regs[i].set_pair(reg2, reg1);
2949     }
2950   }
2951 
2952   // results
2953   *arg_size = cnt;
2954   return regs;
2955 }
2956 
2957 // OSR Migration Code
2958 //
2959 // This code is used convert interpreter frames into compiled frames.  It is
2960 // called from very start of a compiled OSR nmethod.  A temp array is
2961 // allocated to hold the interesting bits of the interpreter frame.  All
2962 // active locks are inflated to allow them to move.  The displaced headers and
2963 // active interpreter locals are copied into the temp buffer.  Then we return
2964 // back to the compiled code.  The compiled code then pops the current
2965 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2966 // copies the interpreter locals and displaced headers where it wants.
2967 // Finally it calls back to free the temp buffer.
2968 //
2969 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2970 
2971 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2972 
2973   //
2974   // This code is dependent on the memory layout of the interpreter local
2975   // array and the monitors. On all of our platforms the layout is identical
2976   // so this code is shared. If some platform lays the their arrays out
2977   // differently then this code could move to platform specific code or
2978   // the code here could be modified to copy items one at a time using
2979   // frame accessor methods and be platform independent.
2980 
2981   frame fr = thread->last_frame();
2982   assert(fr.is_interpreted_frame(), "");
2983   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2984 
2985   // Figure out how many monitors are active.
2986   int active_monitor_count = 0;
2987   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2988        kptr < fr.interpreter_frame_monitor_begin();
2989        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2990     if (kptr->obj() != NULL) active_monitor_count++;
2991   }
2992 
2993   // QQQ we could place number of active monitors in the array so that compiled code
2994   // could double check it.
2995 
2996   Method* moop = fr.interpreter_frame_method();
2997   int max_locals = moop->max_locals();
2998   // Allocate temp buffer, 1 word per local & 2 per active monitor
2999   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3000   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3001 
3002   // Copy the locals.  Order is preserved so that loading of longs works.
3003   // Since there's no GC I can copy the oops blindly.
3004   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3005   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3006                        (HeapWord*)&buf[0],
3007                        max_locals);
3008 
3009   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3010   int i = max_locals;
3011   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3012        kptr2 < fr.interpreter_frame_monitor_begin();
3013        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3014     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3015       BasicLock *lock = kptr2->lock();
3016       // Inflate so the displaced header becomes position-independent
3017       if (lock->displaced_header()->is_unlocked())
3018         ObjectSynchronizer::inflate_helper(kptr2->obj());
3019       // Now the displaced header is free to move
3020       buf[i++] = (intptr_t)lock->displaced_header();
3021       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3022     }
3023   }
3024   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3025 
3026   return buf;
3027 JRT_END
3028 
3029 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3030   FREE_C_HEAP_ARRAY(intptr_t, buf);
3031 JRT_END
3032 
3033 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3034   AdapterHandlerTableIterator iter(_adapters);
3035   while (iter.has_next()) {
3036     AdapterHandlerEntry* a = iter.next();
3037     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3038   }
3039   return false;
3040 }
3041 
3042 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3043   AdapterHandlerTableIterator iter(_adapters);
3044   while (iter.has_next()) {
3045     AdapterHandlerEntry* a = iter.next();
3046     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3047       st->print("Adapter for signature: ");
3048       a->print_adapter_on(tty);
3049       return;
3050     }
3051   }
3052   assert(false, "Should have found handler");
3053 }
3054 
3055 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3056   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3057                p2i(this), fingerprint()->as_string(),
3058                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3059 
3060 }
3061 
3062 #if INCLUDE_CDS
3063 
3064 void CDSAdapterHandlerEntry::init() {
3065   assert(DumpSharedSpaces, "used during dump time only");
3066   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3067   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3068 };
3069 
3070 #endif // INCLUDE_CDS
3071 
3072 
3073 #ifndef PRODUCT
3074 
3075 void AdapterHandlerLibrary::print_statistics() {
3076   _adapters->print_statistics();
3077 }
3078 
3079 #endif /* PRODUCT */
3080 
3081 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3082   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3083   if (thread->stack_reserved_zone_disabled()) {
3084   thread->enable_stack_reserved_zone();
3085   }
3086   thread->set_reserved_stack_activation(thread->stack_base());
3087 JRT_END
3088 
3089 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3090   ResourceMark rm(thread);
3091   frame activation;
3092   CompiledMethod* nm = NULL;
3093   int count = 1;
3094 
3095   assert(fr.is_java_frame(), "Must start on Java frame");
3096 
3097   while (true) {
3098     Method* method = NULL;
3099     bool found = false;
3100     if (fr.is_interpreted_frame()) {
3101       method = fr.interpreter_frame_method();
3102       if (method != NULL && method->has_reserved_stack_access()) {
3103         found = true;
3104       }
3105     } else {
3106       CodeBlob* cb = fr.cb();
3107       if (cb != NULL && cb->is_compiled()) {
3108         nm = cb->as_compiled_method();
3109         method = nm->method();
3110         // scope_desc_near() must be used, instead of scope_desc_at() because on
3111         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3112         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3113           method = sd->method();
3114           if (method != NULL && method->has_reserved_stack_access()) {
3115             found = true;
3116       }
3117     }
3118       }
3119     }
3120     if (found) {
3121       activation = fr;
3122       warning("Potentially dangerous stack overflow in "
3123               "ReservedStackAccess annotated method %s [%d]",
3124               method->name_and_sig_as_C_string(), count++);
3125       EventReservedStackActivation event;
3126       if (event.should_commit()) {
3127         event.set_method(method);
3128         event.commit();
3129       }
3130     }
3131     if (fr.is_first_java_frame()) {
3132       break;
3133     } else {
3134       fr = fr.java_sender();
3135     }
3136   }
3137   return activation;
3138 }
3139 
3140 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3141   // After any safepoint, just before going back to compiled code,
3142   // we inform the GC that we will be doing initializing writes to
3143   // this object in the future without emitting card-marks, so
3144   // GC may take any compensating steps.
3145 
3146   oop new_obj = thread->vm_result();
3147   if (new_obj == NULL) return;
3148 
3149   BarrierSet *bs = BarrierSet::barrier_set();
3150   bs->on_slowpath_allocation_exit(thread, new_obj);
3151 }