1 /*
  2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/parallel/gcTaskManager.hpp"
 27 #include "gc/parallel/objectStartArray.inline.hpp"
 28 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
 29 #include "gc/parallel/psCardTable.hpp"
 30 #include "gc/parallel/psPromotionManager.inline.hpp"
 31 #include "gc/parallel/psScavenge.inline.hpp"
 32 #include "gc/parallel/psTasks.hpp"
 33 #include "gc/parallel/psYoungGen.hpp"
 34 #include "memory/iterator.inline.hpp"
 35 #include "oops/access.inline.hpp"
 36 #include "oops/oop.inline.hpp"
 37 #include "runtime/prefetch.inline.hpp"
 38 #include "utilities/align.hpp"
 39 
 40 // Checks an individual oop for missing precise marks. Mark
 41 // may be either dirty or newgen.
 42 class CheckForUnmarkedOops : public BasicOopIterateClosure {
 43  private:
 44   PSYoungGen*  _young_gen;
 45   PSCardTable* _card_table;
 46   HeapWord*    _unmarked_addr;
 47 
 48  protected:
 49   template <class T> void do_oop_work(T* p) {
 50     oop obj = RawAccess<>::oop_load(p);
 51     if (_young_gen->is_in_reserved(obj) &&
 52         !_card_table->addr_is_marked_imprecise(p)) {
 53       // Don't overwrite the first missing card mark
 54       if (_unmarked_addr == NULL) {
 55         _unmarked_addr = (HeapWord*)p;
 56       }
 57     }
 58   }
 59 
 60  public:
 61   CheckForUnmarkedOops(PSYoungGen* young_gen, PSCardTable* card_table) :
 62     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
 63 
 64   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
 65   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
 66 
 67   bool has_unmarked_oop() {
 68     return _unmarked_addr != NULL;
 69   }
 70 };
 71 
 72 // Checks all objects for the existence of some type of mark,
 73 // precise or imprecise, dirty or newgen.
 74 class CheckForUnmarkedObjects : public ObjectClosure {
 75  private:
 76   PSYoungGen*  _young_gen;
 77   PSCardTable* _card_table;
 78 
 79  public:
 80   CheckForUnmarkedObjects() {
 81     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 82     _young_gen = heap->young_gen();
 83     _card_table = heap->card_table();
 84   }
 85 
 86   // Card marks are not precise. The current system can leave us with
 87   // a mismatch of precise marks and beginning of object marks. This means
 88   // we test for missing precise marks first. If any are found, we don't
 89   // fail unless the object head is also unmarked.
 90   virtual void do_object(oop obj) {
 91     CheckForUnmarkedOops object_check(_young_gen, _card_table);
 92     obj->oop_iterate(&object_check);
 93     if (object_check.has_unmarked_oop()) {
 94       guarantee(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
 95     }
 96   }
 97 };
 98 
 99 // Checks for precise marking of oops as newgen.
100 class CheckForPreciseMarks : public BasicOopIterateClosure {
101  private:
102   PSYoungGen*  _young_gen;
103   PSCardTable* _card_table;
104 
105  protected:
106   template <class T> void do_oop_work(T* p) {
107     oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
108     if (_young_gen->is_in_reserved(obj)) {
109       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
110       _card_table->set_card_newgen(p);
111     }
112   }
113 
114  public:
115   CheckForPreciseMarks(PSYoungGen* young_gen, PSCardTable* card_table) :
116     _young_gen(young_gen), _card_table(card_table) { }
117 
118   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
119   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
120 };
121 
122 // We get passed the space_top value to prevent us from traversing into
123 // the old_gen promotion labs, which cannot be safely parsed.
124 
125 // Do not call this method if the space is empty.
126 // It is a waste to start tasks and get here only to
127 // do no work.  If this method needs to be called
128 // when the space is empty, fix the calculation of
129 // end_card to allow sp_top == sp->bottom().
130 
131 void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array,
132                                              MutableSpace* sp,
133                                              HeapWord* space_top,
134                                              PSPromotionManager* pm,
135                                              uint stripe_number,
136                                              uint stripe_total) {
137   int ssize = 128; // Naked constant!  Work unit = 64k.
138   int dirty_card_count = 0;
139 
140   // It is a waste to get here if empty.
141   assert(sp->bottom() < sp->top(), "Should not be called if empty");
142   oop* sp_top = (oop*)space_top;
143   jbyte* start_card = byte_for(sp->bottom());
144   jbyte* end_card   = byte_for(sp_top - 1) + 1;
145   oop* last_scanned = NULL; // Prevent scanning objects more than once
146   // The width of the stripe ssize*stripe_total must be
147   // consistent with the number of stripes so that the complete slice
148   // is covered.
149   size_t slice_width = ssize * stripe_total;
150   for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
151     jbyte* worker_start_card = slice + stripe_number * ssize;
152     if (worker_start_card >= end_card)
153       return; // We're done.
154 
155     jbyte* worker_end_card = worker_start_card + ssize;
156     if (worker_end_card > end_card)
157       worker_end_card = end_card;
158 
159     // We do not want to scan objects more than once. In order to accomplish
160     // this, we assert that any object with an object head inside our 'slice'
161     // belongs to us. We may need to extend the range of scanned cards if the
162     // last object continues into the next 'slice'.
163     //
164     // Note! ending cards are exclusive!
165     HeapWord* slice_start = addr_for(worker_start_card);
166     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
167 
168 #ifdef ASSERT
169     if (GCWorkerDelayMillis > 0) {
170       // Delay 1 worker so that it proceeds after all the work
171       // has been completed.
172       if (stripe_number < 2) {
173         os::sleep(Thread::current(), GCWorkerDelayMillis, false);
174       }
175     }
176 #endif
177 
178     // If there are not objects starting within the chunk, skip it.
179     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
180       continue;
181     }
182     // Update our beginning addr
183     HeapWord* first_object = start_array->object_start(slice_start);
184     debug_only(oop* first_object_within_slice = (oop*) first_object;)
185     if (first_object < slice_start) {
186       last_scanned = (oop*)(first_object + oop(first_object)->size());
187       debug_only(first_object_within_slice = last_scanned;)
188       worker_start_card = byte_for(last_scanned);
189     }
190 
191     // Update the ending addr
192     if (slice_end < (HeapWord*)sp_top) {
193       // The subtraction is important! An object may start precisely at slice_end.
194       HeapWord* last_object = start_array->object_start(slice_end - 1);
195       slice_end = last_object + oop(last_object)->size();
196       // worker_end_card is exclusive, so bump it one past the end of last_object's
197       // covered span.
198       worker_end_card = byte_for(slice_end) + 1;
199 
200       if (worker_end_card > end_card)
201         worker_end_card = end_card;
202     }
203 
204     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
205     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
206     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
207     // Note that worker_start_card >= worker_end_card is legal, and happens when
208     // an object spans an entire slice.
209     assert(worker_start_card <= end_card, "worker start card beyond end card");
210     assert(worker_end_card <= end_card, "worker end card beyond end card");
211 
212     jbyte* current_card = worker_start_card;
213     while (current_card < worker_end_card) {
214       // Find an unclean card.
215       while (current_card < worker_end_card && card_is_clean(*current_card)) {
216         current_card++;
217       }
218       jbyte* first_unclean_card = current_card;
219 
220       // Find the end of a run of contiguous unclean cards
221       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
222         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
223           current_card++;
224         }
225 
226         if (current_card < worker_end_card) {
227           // Some objects may be large enough to span several cards. If such
228           // an object has more than one dirty card, separated by a clean card,
229           // we will attempt to scan it twice. The test against "last_scanned"
230           // prevents the redundant object scan, but it does not prevent newly
231           // marked cards from being cleaned.
232           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
233           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
234           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
235           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
236           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
237           if (ending_card_of_last_object > current_card) {
238             // This means the object spans the next complete card.
239             // We need to bump the current_card to ending_card_of_last_object
240             current_card = ending_card_of_last_object;
241           }
242         }
243       }
244       jbyte* following_clean_card = current_card;
245 
246       if (first_unclean_card < worker_end_card) {
247         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
248         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
249         // "p" should always be >= "last_scanned" because newly GC dirtied
250         // cards are no longer scanned again (see comment at end
251         // of loop on the increment of "current_card").  Test that
252         // hypothesis before removing this code.
253         // If this code is removed, deal with the first time through
254         // the loop when the last_scanned is the object starting in
255         // the previous slice.
256         assert((p >= last_scanned) ||
257                (last_scanned == first_object_within_slice),
258                "Should no longer be possible");
259         if (p < last_scanned) {
260           // Avoid scanning more than once; this can happen because
261           // newgen cards set by GC may a different set than the
262           // originally dirty set
263           p = last_scanned;
264         }
265         oop* to = (oop*)addr_for(following_clean_card);
266 
267         // Test slice_end first!
268         if ((HeapWord*)to > slice_end) {
269           to = (oop*)slice_end;
270         } else if (to > sp_top) {
271           to = sp_top;
272         }
273 
274         // we know which cards to scan, now clear them
275         if (first_unclean_card <= worker_start_card+1)
276           first_unclean_card = worker_start_card+1;
277         if (following_clean_card >= worker_end_card-1)
278           following_clean_card = worker_end_card-1;
279 
280         while (first_unclean_card < following_clean_card) {
281           *first_unclean_card++ = clean_card;
282         }
283 
284         const int interval = PrefetchScanIntervalInBytes;
285         // scan all objects in the range
286         if (interval != 0) {
287           while (p < to) {
288             Prefetch::write(p, interval);
289             oop m = oop(p);
290             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
291             pm->push_contents(m);
292             p += m->size();
293           }
294           pm->drain_stacks_cond_depth();
295         } else {
296           while (p < to) {
297             oop m = oop(p);
298             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
299             pm->push_contents(m);
300             p += m->size();
301           }
302           pm->drain_stacks_cond_depth();
303         }
304         last_scanned = p;
305       }
306       // "current_card" is still the "following_clean_card" or
307       // the current_card is >= the worker_end_card so the
308       // loop will not execute again.
309       assert((current_card == following_clean_card) ||
310              (current_card >= worker_end_card),
311         "current_card should only be incremented if it still equals "
312         "following_clean_card");
313       // Increment current_card so that it is not processed again.
314       // It may now be dirty because a old-to-young pointer was
315       // found on it an updated.  If it is now dirty, it cannot be
316       // be safely cleaned in the next iteration.
317       current_card++;
318     }
319   }
320 }
321 
322 // This should be called before a scavenge.
323 void PSCardTable::verify_all_young_refs_imprecise() {
324   CheckForUnmarkedObjects check;
325 
326   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
327   PSOldGen* old_gen = heap->old_gen();
328 
329   old_gen->object_iterate(&check);
330 }
331 
332 // This should be called immediately after a scavenge, before mutators resume.
333 void PSCardTable::verify_all_young_refs_precise() {
334   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
335   PSOldGen* old_gen = heap->old_gen();
336 
337   CheckForPreciseMarks check(heap->young_gen(), this);
338 
339   old_gen->oop_iterate(&check);
340 
341   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
342 }
343 
344 void PSCardTable::verify_all_young_refs_precise_helper(MemRegion mr) {
345   jbyte* bot = byte_for(mr.start());
346   jbyte* top = byte_for(mr.end());
347   while (bot <= top) {
348     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
349     if (*bot == verify_card)
350       *bot = youngergen_card;
351     bot++;
352   }
353 }
354 
355 bool PSCardTable::addr_is_marked_imprecise(void *addr) {
356   jbyte* p = byte_for(addr);
357   jbyte val = *p;
358 
359   if (card_is_dirty(val))
360     return true;
361 
362   if (card_is_newgen(val))
363     return true;
364 
365   if (card_is_clean(val))
366     return false;
367 
368   assert(false, "Found unhandled card mark type");
369 
370   return false;
371 }
372 
373 // Also includes verify_card
374 bool PSCardTable::addr_is_marked_precise(void *addr) {
375   jbyte* p = byte_for(addr);
376   jbyte val = *p;
377 
378   if (card_is_newgen(val))
379     return true;
380 
381   if (card_is_verify(val))
382     return true;
383 
384   if (card_is_clean(val))
385     return false;
386 
387   if (card_is_dirty(val))
388     return false;
389 
390   assert(false, "Found unhandled card mark type");
391 
392   return false;
393 }
394 
395 // Assumes that only the base or the end changes.  This allows indentification
396 // of the region that is being resized.  The
397 // CardTable::resize_covered_region() is used for the normal case
398 // where the covered regions are growing or shrinking at the high end.
399 // The method resize_covered_region_by_end() is analogous to
400 // CardTable::resize_covered_region() but
401 // for regions that grow or shrink at the low end.
402 void PSCardTable::resize_covered_region(MemRegion new_region) {
403   for (int i = 0; i < _cur_covered_regions; i++) {
404     if (_covered[i].start() == new_region.start()) {
405       // Found a covered region with the same start as the
406       // new region.  The region is growing or shrinking
407       // from the start of the region.
408       resize_covered_region_by_start(new_region);
409       return;
410     }
411     if (_covered[i].start() > new_region.start()) {
412       break;
413     }
414   }
415 
416   int changed_region = -1;
417   for (int j = 0; j < _cur_covered_regions; j++) {
418     if (_covered[j].end() == new_region.end()) {
419       changed_region = j;
420       // This is a case where the covered region is growing or shrinking
421       // at the start of the region.
422       assert(changed_region != -1, "Don't expect to add a covered region");
423       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
424         "The sizes should be different here");
425       resize_covered_region_by_end(changed_region, new_region);
426       return;
427     }
428   }
429   // This should only be a new covered region (where no existing
430   // covered region matches at the start or the end).
431   assert(_cur_covered_regions < _max_covered_regions,
432     "An existing region should have been found");
433   resize_covered_region_by_start(new_region);
434 }
435 
436 void PSCardTable::resize_covered_region_by_start(MemRegion new_region) {
437   CardTable::resize_covered_region(new_region);
438   debug_only(verify_guard();)
439 }
440 
441 void PSCardTable::resize_covered_region_by_end(int changed_region,
442                                                MemRegion new_region) {
443   assert(SafepointSynchronize::is_at_safepoint(),
444     "Only expect an expansion at the low end at a GC");
445   debug_only(verify_guard();)
446 #ifdef ASSERT
447   for (int k = 0; k < _cur_covered_regions; k++) {
448     if (_covered[k].end() == new_region.end()) {
449       assert(changed_region == k, "Changed region is incorrect");
450       break;
451     }
452   }
453 #endif
454 
455   // Commit new or uncommit old pages, if necessary.
456   if (resize_commit_uncommit(changed_region, new_region)) {
457     // Set the new start of the committed region
458     resize_update_committed_table(changed_region, new_region);
459   }
460 
461   // Update card table entries
462   resize_update_card_table_entries(changed_region, new_region);
463 
464   // Update the covered region
465   resize_update_covered_table(changed_region, new_region);
466 
467   int ind = changed_region;
468   log_trace(gc, barrier)("CardTable::resize_covered_region: ");
469   log_trace(gc, barrier)("    _covered[%d].start(): " INTPTR_FORMAT "  _covered[%d].last(): " INTPTR_FORMAT,
470                 ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
471   log_trace(gc, barrier)("    _committed[%d].start(): " INTPTR_FORMAT "  _committed[%d].last(): " INTPTR_FORMAT,
472                 ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
473   log_trace(gc, barrier)("    byte_for(start): " INTPTR_FORMAT "  byte_for(last): " INTPTR_FORMAT,
474                 p2i(byte_for(_covered[ind].start())),  p2i(byte_for(_covered[ind].last())));
475   log_trace(gc, barrier)("    addr_for(start): " INTPTR_FORMAT "  addr_for(last): " INTPTR_FORMAT,
476                 p2i(addr_for((jbyte*) _committed[ind].start())), p2i(addr_for((jbyte*) _committed[ind].last())));
477 
478   debug_only(verify_guard();)
479 }
480 
481 bool PSCardTable::resize_commit_uncommit(int changed_region,
482                                          MemRegion new_region) {
483   bool result = false;
484   // Commit new or uncommit old pages, if necessary.
485   MemRegion cur_committed = _committed[changed_region];
486   assert(_covered[changed_region].end() == new_region.end(),
487     "The ends of the regions are expected to match");
488   // Extend the start of this _committed region to
489   // to cover the start of any previous _committed region.
490   // This forms overlapping regions, but never interior regions.
491   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
492   if (min_prev_start < cur_committed.start()) {
493     // Only really need to set start of "cur_committed" to
494     // the new start (min_prev_start) but assertion checking code
495     // below use cur_committed.end() so make it correct.
496     MemRegion new_committed =
497         MemRegion(min_prev_start, cur_committed.end());
498     cur_committed = new_committed;
499   }
500 #ifdef ASSERT
501   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
502   assert(cur_committed.start() == align_up(cur_committed.start(), os::vm_page_size()),
503          "Starts should have proper alignment");
504 #endif
505 
506   jbyte* new_start = byte_for(new_region.start());
507   // Round down because this is for the start address
508   HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
509   // The guard page is always committed and should not be committed over.
510   // This method is used in cases where the generation is growing toward
511   // lower addresses but the guard region is still at the end of the
512   // card table.  That still makes sense when looking for writes
513   // off the end of the card table.
514   if (new_start_aligned < cur_committed.start()) {
515     // Expand the committed region
516     //
517     // Case A
518     //                                          |+ guard +|
519     //                          |+ cur committed +++++++++|
520     //                  |+ new committed +++++++++++++++++|
521     //
522     // Case B
523     //                                          |+ guard +|
524     //                        |+ cur committed +|
525     //                  |+ new committed +++++++|
526     //
527     // These are not expected because the calculation of the
528     // cur committed region and the new committed region
529     // share the same end for the covered region.
530     // Case C
531     //                                          |+ guard +|
532     //                        |+ cur committed +|
533     //                  |+ new committed +++++++++++++++++|
534     // Case D
535     //                                          |+ guard +|
536     //                        |+ cur committed +++++++++++|
537     //                  |+ new committed +++++++|
538 
539     HeapWord* new_end_for_commit =
540       MIN2(cur_committed.end(), _guard_region.start());
541     if(new_start_aligned < new_end_for_commit) {
542       MemRegion new_committed =
543         MemRegion(new_start_aligned, new_end_for_commit);
544       os::commit_memory_or_exit((char*)new_committed.start(),
545                                 new_committed.byte_size(), !ExecMem,
546                                 "card table expansion");
547     }
548     result = true;
549   } else if (new_start_aligned > cur_committed.start()) {
550     // Shrink the committed region
551 #if 0 // uncommitting space is currently unsafe because of the interactions
552       // of growing and shrinking regions.  One region A can uncommit space
553       // that it owns but which is being used by another region B (maybe).
554       // Region B has not committed the space because it was already
555       // committed by region A.
556     MemRegion uncommit_region = committed_unique_to_self(changed_region,
557       MemRegion(cur_committed.start(), new_start_aligned));
558     if (!uncommit_region.is_empty()) {
559       if (!os::uncommit_memory((char*)uncommit_region.start(),
560                                uncommit_region.byte_size())) {
561         // If the uncommit fails, ignore it.  Let the
562         // committed table resizing go even though the committed
563         // table will over state the committed space.
564       }
565     }
566 #else
567     assert(!result, "Should be false with current workaround");
568 #endif
569   }
570   assert(_committed[changed_region].end() == cur_committed.end(),
571     "end should not change");
572   return result;
573 }
574 
575 void PSCardTable::resize_update_committed_table(int changed_region,
576                                                 MemRegion new_region) {
577 
578   jbyte* new_start = byte_for(new_region.start());
579   // Set the new start of the committed region
580   HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
581   MemRegion new_committed = MemRegion(new_start_aligned,
582                                       _committed[changed_region].end());
583   _committed[changed_region] = new_committed;
584   _committed[changed_region].set_start(new_start_aligned);
585 }
586 
587 void PSCardTable::resize_update_card_table_entries(int changed_region,
588                                                    MemRegion new_region) {
589   debug_only(verify_guard();)
590   MemRegion original_covered = _covered[changed_region];
591   // Initialize the card entries.  Only consider the
592   // region covered by the card table (_whole_heap)
593   jbyte* entry;
594   if (new_region.start() < _whole_heap.start()) {
595     entry = byte_for(_whole_heap.start());
596   } else {
597     entry = byte_for(new_region.start());
598   }
599   jbyte* end = byte_for(original_covered.start());
600   // If _whole_heap starts at the original covered regions start,
601   // this loop will not execute.
602   while (entry < end) { *entry++ = clean_card; }
603 }
604 
605 void PSCardTable::resize_update_covered_table(int changed_region,
606                                               MemRegion new_region) {
607   // Update the covered region
608   _covered[changed_region].set_start(new_region.start());
609   _covered[changed_region].set_word_size(new_region.word_size());
610 
611   // reorder regions.  There should only be at most 1 out
612   // of order.
613   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
614     if (_covered[i].start() < _covered[i-1].start()) {
615         MemRegion covered_mr = _covered[i-1];
616         _covered[i-1] = _covered[i];
617         _covered[i] = covered_mr;
618         MemRegion committed_mr = _committed[i-1];
619       _committed[i-1] = _committed[i];
620       _committed[i] = committed_mr;
621       break;
622     }
623   }
624 #ifdef ASSERT
625   for (int m = 0; m < _cur_covered_regions-1; m++) {
626     assert(_covered[m].start() <= _covered[m+1].start(),
627       "Covered regions out of order");
628     assert(_committed[m].start() <= _committed[m+1].start(),
629       "Committed regions out of order");
630   }
631 #endif
632 }
633 
634 // Returns the start of any committed region that is lower than
635 // the target committed region (index ind) and that intersects the
636 // target region.  If none, return start of target region.
637 //
638 //      -------------
639 //      |           |
640 //      -------------
641 //              ------------
642 //              | target   |
643 //              ------------
644 //                               -------------
645 //                               |           |
646 //                               -------------
647 //      ^ returns this
648 //
649 //      -------------
650 //      |           |
651 //      -------------
652 //                      ------------
653 //                      | target   |
654 //                      ------------
655 //                               -------------
656 //                               |           |
657 //                               -------------
658 //                      ^ returns this
659 
660 HeapWord* PSCardTable::lowest_prev_committed_start(int ind) const {
661   assert(_cur_covered_regions >= 0, "Expecting at least on region");
662   HeapWord* min_start = _committed[ind].start();
663   for (int j = 0; j < ind; j++) {
664     HeapWord* this_start = _committed[j].start();
665     if ((this_start < min_start) &&
666         !(_committed[j].intersection(_committed[ind])).is_empty()) {
667        min_start = this_start;
668     }
669   }
670   return min_start;
671 }
672 
673 bool PSCardTable::is_in_young(oop obj) const {
674   return ParallelScavengeHeap::heap()->is_in_young(obj);
675 }