1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/gcBehaviours.hpp"
  70 #include "gc/shared/gcHeapSummary.hpp"
  71 #include "gc/shared/gcId.hpp"
  72 #include "gc/shared/gcLocker.hpp"
  73 #include "gc/shared/gcTimer.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/locationPrinter.inline.hpp"
  78 #include "gc/shared/oopStorageParState.hpp"
  79 #include "gc/shared/preservedMarks.inline.hpp"
  80 #include "gc/shared/suspendibleThreadSet.hpp"
  81 #include "gc/shared/referenceProcessor.inline.hpp"
  82 #include "gc/shared/taskqueue.inline.hpp"
  83 #include "gc/shared/weakProcessor.inline.hpp"
  84 #include "gc/shared/workerPolicy.hpp"
  85 #include "logging/log.hpp"
  86 #include "memory/allocation.hpp"
  87 #include "memory/iterator.hpp"
  88 #include "memory/resourceArea.hpp"
  89 #include "memory/universe.hpp"
  90 #include "oops/access.inline.hpp"
  91 #include "oops/compressedOops.inline.hpp"
  92 #include "oops/oop.inline.hpp"
  93 #include "runtime/atomic.hpp"
  94 #include "runtime/flags/flagSetting.hpp"
  95 #include "runtime/handles.inline.hpp"
  96 #include "runtime/init.hpp"
  97 #include "runtime/orderAccess.hpp"
  98 #include "runtime/threadSMR.hpp"
  99 #include "runtime/vmThread.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/bitMap.inline.hpp"
 102 #include "utilities/globalDefinitions.hpp"
 103 #include "utilities/stack.inline.hpp"
 104 
 105 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 106 
 107 // INVARIANTS/NOTES
 108 //
 109 // All allocation activity covered by the G1CollectedHeap interface is
 110 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 111 // and allocate_new_tlab, which are the "entry" points to the
 112 // allocation code from the rest of the JVM.  (Note that this does not
 113 // apply to TLAB allocation, which is not part of this interface: it
 114 // is done by clients of this interface.)
 115 
 116 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 117  private:
 118   size_t _num_dirtied;
 119   G1CollectedHeap* _g1h;
 120   G1CardTable* _g1_ct;
 121 
 122   HeapRegion* region_for_card(CardValue* card_ptr) const {
 123     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 124   }
 125 
 126   bool will_become_free(HeapRegion* hr) const {
 127     // A region will be freed by free_collection_set if the region is in the
 128     // collection set and has not had an evacuation failure.
 129     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 130   }
 131 
 132  public:
 133   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 134     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 135 
 136   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 137     HeapRegion* hr = region_for_card(card_ptr);
 138 
 139     // Should only dirty cards in regions that won't be freed.
 140     if (!will_become_free(hr)) {
 141       *card_ptr = G1CardTable::dirty_card_val();
 142       _num_dirtied++;
 143     }
 144   }
 145 
 146   size_t num_dirtied()   const { return _num_dirtied; }
 147 };
 148 
 149 
 150 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 151   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 152 }
 153 
 154 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 155   // The from card cache is not the memory that is actually committed. So we cannot
 156   // take advantage of the zero_filled parameter.
 157   reset_from_card_cache(start_idx, num_regions);
 158 }
 159 
 160 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 161   Ticks start = Ticks::now();
 162   workers()->run_task(task, workers()->active_workers());
 163   return Ticks::now() - start;
 164 }
 165 
 166 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 167                                              MemRegion mr) {
 168   return new HeapRegion(hrs_index, bot(), mr);
 169 }
 170 
 171 // Private methods.
 172 
 173 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 174                                         HeapRegionType type,
 175                                         bool do_expand,
 176                                         uint node_index) {
 177   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 178          "the only time we use this to allocate a humongous region is "
 179          "when we are allocating a single humongous region");
 180 
 181   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 182 
 183   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 184     // Currently, only attempts to allocate GC alloc regions set
 185     // do_expand to true. So, we should only reach here during a
 186     // safepoint. If this assumption changes we might have to
 187     // reconsider the use of _expand_heap_after_alloc_failure.
 188     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 189 
 190     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 191                               word_size * HeapWordSize);
 192 
 193     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 194            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 195            word_size * HeapWordSize);
 196     if (expand_single_region(node_index)) {
 197       // Given that expand_single_region() succeeded in expanding the heap, and we
 198       // always expand the heap by an amount aligned to the heap
 199       // region size, the free list should in theory not be empty.
 200       // In either case allocate_free_region() will check for NULL.
 201       res = _hrm->allocate_free_region(type, node_index);
 202     } else {
 203       _expand_heap_after_alloc_failure = false;
 204     }
 205   }
 206   return res;
 207 }
 208 
 209 HeapWord*
 210 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 211                                                            uint num_regions,
 212                                                            size_t word_size) {
 213   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 214   assert(is_humongous(word_size), "word_size should be humongous");
 215   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 216 
 217   // Index of last region in the series.
 218   uint last = first + num_regions - 1;
 219 
 220   // We need to initialize the region(s) we just discovered. This is
 221   // a bit tricky given that it can happen concurrently with
 222   // refinement threads refining cards on these regions and
 223   // potentially wanting to refine the BOT as they are scanning
 224   // those cards (this can happen shortly after a cleanup; see CR
 225   // 6991377). So we have to set up the region(s) carefully and in
 226   // a specific order.
 227 
 228   // The word size sum of all the regions we will allocate.
 229   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 230   assert(word_size <= word_size_sum, "sanity");
 231 
 232   // This will be the "starts humongous" region.
 233   HeapRegion* first_hr = region_at(first);
 234   // The header of the new object will be placed at the bottom of
 235   // the first region.
 236   HeapWord* new_obj = first_hr->bottom();
 237   // This will be the new top of the new object.
 238   HeapWord* obj_top = new_obj + word_size;
 239 
 240   // First, we need to zero the header of the space that we will be
 241   // allocating. When we update top further down, some refinement
 242   // threads might try to scan the region. By zeroing the header we
 243   // ensure that any thread that will try to scan the region will
 244   // come across the zero klass word and bail out.
 245   //
 246   // NOTE: It would not have been correct to have used
 247   // CollectedHeap::fill_with_object() and make the space look like
 248   // an int array. The thread that is doing the allocation will
 249   // later update the object header to a potentially different array
 250   // type and, for a very short period of time, the klass and length
 251   // fields will be inconsistent. This could cause a refinement
 252   // thread to calculate the object size incorrectly.
 253   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 254 
 255   // Next, pad out the unused tail of the last region with filler
 256   // objects, for improved usage accounting.
 257   // How many words we use for filler objects.
 258   size_t word_fill_size = word_size_sum - word_size;
 259 
 260   // How many words memory we "waste" which cannot hold a filler object.
 261   size_t words_not_fillable = 0;
 262 
 263   if (word_fill_size >= min_fill_size()) {
 264     fill_with_objects(obj_top, word_fill_size);
 265   } else if (word_fill_size > 0) {
 266     // We have space to fill, but we cannot fit an object there.
 267     words_not_fillable = word_fill_size;
 268     word_fill_size = 0;
 269   }
 270 
 271   // We will set up the first region as "starts humongous". This
 272   // will also update the BOT covering all the regions to reflect
 273   // that there is a single object that starts at the bottom of the
 274   // first region.
 275   first_hr->set_starts_humongous(obj_top, word_fill_size);
 276   _policy->remset_tracker()->update_at_allocate(first_hr);
 277   // Then, if there are any, we will set up the "continues
 278   // humongous" regions.
 279   HeapRegion* hr = NULL;
 280   for (uint i = first + 1; i <= last; ++i) {
 281     hr = region_at(i);
 282     hr->set_continues_humongous(first_hr);
 283     _policy->remset_tracker()->update_at_allocate(hr);
 284   }
 285 
 286   // Up to this point no concurrent thread would have been able to
 287   // do any scanning on any region in this series. All the top
 288   // fields still point to bottom, so the intersection between
 289   // [bottom,top] and [card_start,card_end] will be empty. Before we
 290   // update the top fields, we'll do a storestore to make sure that
 291   // no thread sees the update to top before the zeroing of the
 292   // object header and the BOT initialization.
 293   OrderAccess::storestore();
 294 
 295   // Now, we will update the top fields of the "continues humongous"
 296   // regions except the last one.
 297   for (uint i = first; i < last; ++i) {
 298     hr = region_at(i);
 299     hr->set_top(hr->end());
 300   }
 301 
 302   hr = region_at(last);
 303   // If we cannot fit a filler object, we must set top to the end
 304   // of the humongous object, otherwise we cannot iterate the heap
 305   // and the BOT will not be complete.
 306   hr->set_top(hr->end() - words_not_fillable);
 307 
 308   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 309          "obj_top should be in last region");
 310 
 311   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 312 
 313   assert(words_not_fillable == 0 ||
 314          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 315          "Miscalculation in humongous allocation");
 316 
 317   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 318 
 319   for (uint i = first; i <= last; ++i) {
 320     hr = region_at(i);
 321     _humongous_set.add(hr);
 322     _hr_printer.alloc(hr);
 323   }
 324 
 325   return new_obj;
 326 }
 327 
 328 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 329   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 330   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 331 }
 332 
 333 // If could fit into free regions w/o expansion, try.
 334 // Otherwise, if can expand, do so.
 335 // Otherwise, if using ex regions might help, try with ex given back.
 336 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 337   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 338 
 339   _verifier->verify_region_sets_optional();
 340 
 341   uint first = G1_NO_HRM_INDEX;
 342   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 343 
 344   if (obj_regions == 1) {
 345     // Only one region to allocate, try to use a fast path by directly allocating
 346     // from the free lists. Do not try to expand here, we will potentially do that
 347     // later.
 348     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 349     if (hr != NULL) {
 350       first = hr->hrm_index();
 351     }
 352   } else {
 353     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 354     // are lucky enough to find some.
 355     first = _hrm->find_contiguous_only_empty(obj_regions);
 356     if (first != G1_NO_HRM_INDEX) {
 357       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 358     }
 359   }
 360 
 361   if (first == G1_NO_HRM_INDEX) {
 362     // Policy: We could not find enough regions for the humongous object in the
 363     // free list. Look through the heap to find a mix of free and uncommitted regions.
 364     // If so, try expansion.
 365     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 366     if (first != G1_NO_HRM_INDEX) {
 367       // We found something. Make sure these regions are committed, i.e. expand
 368       // the heap. Alternatively we could do a defragmentation GC.
 369       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 370                                     word_size * HeapWordSize);
 371 
 372       _hrm->expand_at(first, obj_regions, workers());
 373       policy()->record_new_heap_size(num_regions());
 374 
 375 #ifdef ASSERT
 376       for (uint i = first; i < first + obj_regions; ++i) {
 377         HeapRegion* hr = region_at(i);
 378         assert(hr->is_free(), "sanity");
 379         assert(hr->is_empty(), "sanity");
 380         assert(is_on_master_free_list(hr), "sanity");
 381       }
 382 #endif
 383       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 384     } else {
 385       // Policy: Potentially trigger a defragmentation GC.
 386     }
 387   }
 388 
 389   HeapWord* result = NULL;
 390   if (first != G1_NO_HRM_INDEX) {
 391     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 392     assert(result != NULL, "it should always return a valid result");
 393 
 394     // A successful humongous object allocation changes the used space
 395     // information of the old generation so we need to recalculate the
 396     // sizes and update the jstat counters here.
 397     g1mm()->update_sizes();
 398   }
 399 
 400   _verifier->verify_region_sets_optional();
 401 
 402   return result;
 403 }
 404 
 405 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 406                                              size_t requested_size,
 407                                              size_t* actual_size) {
 408   assert_heap_not_locked_and_not_at_safepoint();
 409   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 410 
 411   return attempt_allocation(min_size, requested_size, actual_size);
 412 }
 413 
 414 HeapWord*
 415 G1CollectedHeap::mem_allocate(size_t word_size,
 416                               bool*  gc_overhead_limit_was_exceeded) {
 417   assert_heap_not_locked_and_not_at_safepoint();
 418 
 419   if (is_humongous(word_size)) {
 420     return attempt_allocation_humongous(word_size);
 421   }
 422   size_t dummy = 0;
 423   return attempt_allocation(word_size, word_size, &dummy);
 424 }
 425 
 426 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 427   ResourceMark rm; // For retrieving the thread names in log messages.
 428 
 429   // Make sure you read the note in attempt_allocation_humongous().
 430 
 431   assert_heap_not_locked_and_not_at_safepoint();
 432   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 433          "be called for humongous allocation requests");
 434 
 435   // We should only get here after the first-level allocation attempt
 436   // (attempt_allocation()) failed to allocate.
 437 
 438   // We will loop until a) we manage to successfully perform the
 439   // allocation or b) we successfully schedule a collection which
 440   // fails to perform the allocation. b) is the only case when we'll
 441   // return NULL.
 442   HeapWord* result = NULL;
 443   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 444     bool should_try_gc;
 445     uint gc_count_before;
 446 
 447     {
 448       MutexLocker x(Heap_lock);
 449       result = _allocator->attempt_allocation_locked(word_size);
 450       if (result != NULL) {
 451         return result;
 452       }
 453 
 454       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 455       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 456       // waiting because the GCLocker is active to not wait too long.
 457       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 458         // No need for an ergo message here, can_expand_young_list() does this when
 459         // it returns true.
 460         result = _allocator->attempt_allocation_force(word_size);
 461         if (result != NULL) {
 462           return result;
 463         }
 464       }
 465       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 466       // the GCLocker initiated GC has been performed and then retry. This includes
 467       // the case when the GC Locker is not active but has not been performed.
 468       should_try_gc = !GCLocker::needs_gc();
 469       // Read the GC count while still holding the Heap_lock.
 470       gc_count_before = total_collections();
 471     }
 472 
 473     if (should_try_gc) {
 474       bool succeeded;
 475       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 476                                    GCCause::_g1_inc_collection_pause);
 477       if (result != NULL) {
 478         assert(succeeded, "only way to get back a non-NULL result");
 479         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 480                              Thread::current()->name(), p2i(result));
 481         return result;
 482       }
 483 
 484       if (succeeded) {
 485         // We successfully scheduled a collection which failed to allocate. No
 486         // point in trying to allocate further. We'll just return NULL.
 487         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 488                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 489         return NULL;
 490       }
 491       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 492                            Thread::current()->name(), word_size);
 493     } else {
 494       // Failed to schedule a collection.
 495       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 496         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 497                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 498         return NULL;
 499       }
 500       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 501       // The GCLocker is either active or the GCLocker initiated
 502       // GC has not yet been performed. Stall until it is and
 503       // then retry the allocation.
 504       GCLocker::stall_until_clear();
 505       gclocker_retry_count += 1;
 506     }
 507 
 508     // We can reach here if we were unsuccessful in scheduling a
 509     // collection (because another thread beat us to it) or if we were
 510     // stalled due to the GC locker. In either can we should retry the
 511     // allocation attempt in case another thread successfully
 512     // performed a collection and reclaimed enough space. We do the
 513     // first attempt (without holding the Heap_lock) here and the
 514     // follow-on attempt will be at the start of the next loop
 515     // iteration (after taking the Heap_lock).
 516     size_t dummy = 0;
 517     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 518     if (result != NULL) {
 519       return result;
 520     }
 521 
 522     // Give a warning if we seem to be looping forever.
 523     if ((QueuedAllocationWarningCount > 0) &&
 524         (try_count % QueuedAllocationWarningCount == 0)) {
 525       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 526                              Thread::current()->name(), try_count, word_size);
 527     }
 528   }
 529 
 530   ShouldNotReachHere();
 531   return NULL;
 532 }
 533 
 534 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 535   assert_at_safepoint_on_vm_thread();
 536   if (_archive_allocator == NULL) {
 537     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 538   }
 539 }
 540 
 541 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 542   // Allocations in archive regions cannot be of a size that would be considered
 543   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 544   // may be different at archive-restore time.
 545   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 546 }
 547 
 548 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 549   assert_at_safepoint_on_vm_thread();
 550   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 551   if (is_archive_alloc_too_large(word_size)) {
 552     return NULL;
 553   }
 554   return _archive_allocator->archive_mem_allocate(word_size);
 555 }
 556 
 557 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 558                                               size_t end_alignment_in_bytes) {
 559   assert_at_safepoint_on_vm_thread();
 560   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 561 
 562   // Call complete_archive to do the real work, filling in the MemRegion
 563   // array with the archive regions.
 564   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 565   delete _archive_allocator;
 566   _archive_allocator = NULL;
 567 }
 568 
 569 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 570   assert(ranges != NULL, "MemRegion array NULL");
 571   assert(count != 0, "No MemRegions provided");
 572   MemRegion reserved = _hrm->reserved();
 573   for (size_t i = 0; i < count; i++) {
 574     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 575       return false;
 576     }
 577   }
 578   return true;
 579 }
 580 
 581 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 582                                             size_t count,
 583                                             bool open) {
 584   assert(!is_init_completed(), "Expect to be called at JVM init time");
 585   assert(ranges != NULL, "MemRegion array NULL");
 586   assert(count != 0, "No MemRegions provided");
 587   MutexLocker x(Heap_lock);
 588 
 589   MemRegion reserved = _hrm->reserved();
 590   HeapWord* prev_last_addr = NULL;
 591   HeapRegion* prev_last_region = NULL;
 592 
 593   // Temporarily disable pretouching of heap pages. This interface is used
 594   // when mmap'ing archived heap data in, so pre-touching is wasted.
 595   FlagSetting fs(AlwaysPreTouch, false);
 596 
 597   // Enable archive object checking used by G1MarkSweep. We have to let it know
 598   // about each archive range, so that objects in those ranges aren't marked.
 599   G1ArchiveAllocator::enable_archive_object_check();
 600 
 601   // For each specified MemRegion range, allocate the corresponding G1
 602   // regions and mark them as archive regions. We expect the ranges
 603   // in ascending starting address order, without overlap.
 604   for (size_t i = 0; i < count; i++) {
 605     MemRegion curr_range = ranges[i];
 606     HeapWord* start_address = curr_range.start();
 607     size_t word_size = curr_range.word_size();
 608     HeapWord* last_address = curr_range.last();
 609     size_t commits = 0;
 610 
 611     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 612               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 613               p2i(start_address), p2i(last_address));
 614     guarantee(start_address > prev_last_addr,
 615               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 616               p2i(start_address), p2i(prev_last_addr));
 617     prev_last_addr = last_address;
 618 
 619     // Check for ranges that start in the same G1 region in which the previous
 620     // range ended, and adjust the start address so we don't try to allocate
 621     // the same region again. If the current range is entirely within that
 622     // region, skip it, just adjusting the recorded top.
 623     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 624     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 625       start_address = start_region->end();
 626       if (start_address > last_address) {
 627         increase_used(word_size * HeapWordSize);
 628         start_region->set_top(last_address + 1);
 629         continue;
 630       }
 631       start_region->set_top(start_address);
 632       curr_range = MemRegion(start_address, last_address + 1);
 633       start_region = _hrm->addr_to_region(start_address);
 634     }
 635 
 636     // Perform the actual region allocation, exiting if it fails.
 637     // Then note how much new space we have allocated.
 638     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 639       return false;
 640     }
 641     increase_used(word_size * HeapWordSize);
 642     if (commits != 0) {
 643       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 644                                 HeapRegion::GrainWords * HeapWordSize * commits);
 645 
 646     }
 647 
 648     // Mark each G1 region touched by the range as archive, add it to
 649     // the old set, and set top.
 650     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 651     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 652     prev_last_region = last_region;
 653 
 654     while (curr_region != NULL) {
 655       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 656              "Region already in use (index %u)", curr_region->hrm_index());
 657       if (open) {
 658         curr_region->set_open_archive();
 659       } else {
 660         curr_region->set_closed_archive();
 661       }
 662       _hr_printer.alloc(curr_region);
 663       _archive_set.add(curr_region);
 664       HeapWord* top;
 665       HeapRegion* next_region;
 666       if (curr_region != last_region) {
 667         top = curr_region->end();
 668         next_region = _hrm->next_region_in_heap(curr_region);
 669       } else {
 670         top = last_address + 1;
 671         next_region = NULL;
 672       }
 673       curr_region->set_top(top);
 674       curr_region = next_region;
 675     }
 676 
 677     // Notify mark-sweep of the archive
 678     G1ArchiveAllocator::set_range_archive(curr_range, open);
 679   }
 680   return true;
 681 }
 682 
 683 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 684   assert(!is_init_completed(), "Expect to be called at JVM init time");
 685   assert(ranges != NULL, "MemRegion array NULL");
 686   assert(count != 0, "No MemRegions provided");
 687   MemRegion reserved = _hrm->reserved();
 688   HeapWord *prev_last_addr = NULL;
 689   HeapRegion* prev_last_region = NULL;
 690 
 691   // For each MemRegion, create filler objects, if needed, in the G1 regions
 692   // that contain the address range. The address range actually within the
 693   // MemRegion will not be modified. That is assumed to have been initialized
 694   // elsewhere, probably via an mmap of archived heap data.
 695   MutexLocker x(Heap_lock);
 696   for (size_t i = 0; i < count; i++) {
 697     HeapWord* start_address = ranges[i].start();
 698     HeapWord* last_address = ranges[i].last();
 699 
 700     assert(reserved.contains(start_address) && reserved.contains(last_address),
 701            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 702            p2i(start_address), p2i(last_address));
 703     assert(start_address > prev_last_addr,
 704            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 705            p2i(start_address), p2i(prev_last_addr));
 706 
 707     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 708     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 709     HeapWord* bottom_address = start_region->bottom();
 710 
 711     // Check for a range beginning in the same region in which the
 712     // previous one ended.
 713     if (start_region == prev_last_region) {
 714       bottom_address = prev_last_addr + 1;
 715     }
 716 
 717     // Verify that the regions were all marked as archive regions by
 718     // alloc_archive_regions.
 719     HeapRegion* curr_region = start_region;
 720     while (curr_region != NULL) {
 721       guarantee(curr_region->is_archive(),
 722                 "Expected archive region at index %u", curr_region->hrm_index());
 723       if (curr_region != last_region) {
 724         curr_region = _hrm->next_region_in_heap(curr_region);
 725       } else {
 726         curr_region = NULL;
 727       }
 728     }
 729 
 730     prev_last_addr = last_address;
 731     prev_last_region = last_region;
 732 
 733     // Fill the memory below the allocated range with dummy object(s),
 734     // if the region bottom does not match the range start, or if the previous
 735     // range ended within the same G1 region, and there is a gap.
 736     if (start_address != bottom_address) {
 737       size_t fill_size = pointer_delta(start_address, bottom_address);
 738       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 739       increase_used(fill_size * HeapWordSize);
 740     }
 741   }
 742 }
 743 
 744 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 745                                                      size_t desired_word_size,
 746                                                      size_t* actual_word_size) {
 747   assert_heap_not_locked_and_not_at_safepoint();
 748   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 749          "be called for humongous allocation requests");
 750 
 751   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 752 
 753   if (result == NULL) {
 754     *actual_word_size = desired_word_size;
 755     result = attempt_allocation_slow(desired_word_size);
 756   }
 757 
 758   assert_heap_not_locked();
 759   if (result != NULL) {
 760     assert(*actual_word_size != 0, "Actual size must have been set here");
 761     dirty_young_block(result, *actual_word_size);
 762   } else {
 763     *actual_word_size = 0;
 764   }
 765 
 766   return result;
 767 }
 768 
 769 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 770   assert(!is_init_completed(), "Expect to be called at JVM init time");
 771   assert(ranges != NULL, "MemRegion array NULL");
 772   assert(count != 0, "No MemRegions provided");
 773   MemRegion reserved = _hrm->reserved();
 774   HeapWord* prev_last_addr = NULL;
 775   HeapRegion* prev_last_region = NULL;
 776   size_t size_used = 0;
 777   size_t uncommitted_regions = 0;
 778 
 779   // For each Memregion, free the G1 regions that constitute it, and
 780   // notify mark-sweep that the range is no longer to be considered 'archive.'
 781   MutexLocker x(Heap_lock);
 782   for (size_t i = 0; i < count; i++) {
 783     HeapWord* start_address = ranges[i].start();
 784     HeapWord* last_address = ranges[i].last();
 785 
 786     assert(reserved.contains(start_address) && reserved.contains(last_address),
 787            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 788            p2i(start_address), p2i(last_address));
 789     assert(start_address > prev_last_addr,
 790            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 791            p2i(start_address), p2i(prev_last_addr));
 792     size_used += ranges[i].byte_size();
 793     prev_last_addr = last_address;
 794 
 795     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 796     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 797 
 798     // Check for ranges that start in the same G1 region in which the previous
 799     // range ended, and adjust the start address so we don't try to free
 800     // the same region again. If the current range is entirely within that
 801     // region, skip it.
 802     if (start_region == prev_last_region) {
 803       start_address = start_region->end();
 804       if (start_address > last_address) {
 805         continue;
 806       }
 807       start_region = _hrm->addr_to_region(start_address);
 808     }
 809     prev_last_region = last_region;
 810 
 811     // After verifying that each region was marked as an archive region by
 812     // alloc_archive_regions, set it free and empty and uncommit it.
 813     HeapRegion* curr_region = start_region;
 814     while (curr_region != NULL) {
 815       guarantee(curr_region->is_archive(),
 816                 "Expected archive region at index %u", curr_region->hrm_index());
 817       uint curr_index = curr_region->hrm_index();
 818       _archive_set.remove(curr_region);
 819       curr_region->set_free();
 820       curr_region->set_top(curr_region->bottom());
 821       if (curr_region != last_region) {
 822         curr_region = _hrm->next_region_in_heap(curr_region);
 823       } else {
 824         curr_region = NULL;
 825       }
 826       _hrm->shrink_at(curr_index, 1);
 827       uncommitted_regions++;
 828     }
 829 
 830     // Notify mark-sweep that this is no longer an archive range.
 831     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 832   }
 833 
 834   if (uncommitted_regions != 0) {
 835     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 836                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 837   }
 838   decrease_used(size_used);
 839 }
 840 
 841 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 842   assert(obj != NULL, "archived obj is NULL");
 843   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 844 
 845   // Loading an archived object makes it strongly reachable. If it is
 846   // loaded during concurrent marking, it must be enqueued to the SATB
 847   // queue, shading the previously white object gray.
 848   G1BarrierSet::enqueue(obj);
 849 
 850   return obj;
 851 }
 852 
 853 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 854   ResourceMark rm; // For retrieving the thread names in log messages.
 855 
 856   // The structure of this method has a lot of similarities to
 857   // attempt_allocation_slow(). The reason these two were not merged
 858   // into a single one is that such a method would require several "if
 859   // allocation is not humongous do this, otherwise do that"
 860   // conditional paths which would obscure its flow. In fact, an early
 861   // version of this code did use a unified method which was harder to
 862   // follow and, as a result, it had subtle bugs that were hard to
 863   // track down. So keeping these two methods separate allows each to
 864   // be more readable. It will be good to keep these two in sync as
 865   // much as possible.
 866 
 867   assert_heap_not_locked_and_not_at_safepoint();
 868   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 869          "should only be called for humongous allocations");
 870 
 871   // Humongous objects can exhaust the heap quickly, so we should check if we
 872   // need to start a marking cycle at each humongous object allocation. We do
 873   // the check before we do the actual allocation. The reason for doing it
 874   // before the allocation is that we avoid having to keep track of the newly
 875   // allocated memory while we do a GC.
 876   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 877                                            word_size)) {
 878     collect(GCCause::_g1_humongous_allocation);
 879   }
 880 
 881   // We will loop until a) we manage to successfully perform the
 882   // allocation or b) we successfully schedule a collection which
 883   // fails to perform the allocation. b) is the only case when we'll
 884   // return NULL.
 885   HeapWord* result = NULL;
 886   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 887     bool should_try_gc;
 888     uint gc_count_before;
 889 
 890 
 891     {
 892       MutexLocker x(Heap_lock);
 893 
 894       // Given that humongous objects are not allocated in young
 895       // regions, we'll first try to do the allocation without doing a
 896       // collection hoping that there's enough space in the heap.
 897       result = humongous_obj_allocate(word_size);
 898       if (result != NULL) {
 899         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 900         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 901         return result;
 902       }
 903 
 904       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 905       // the GCLocker initiated GC has been performed and then retry. This includes
 906       // the case when the GC Locker is not active but has not been performed.
 907       should_try_gc = !GCLocker::needs_gc();
 908       // Read the GC count while still holding the Heap_lock.
 909       gc_count_before = total_collections();
 910     }
 911 
 912     if (should_try_gc) {
 913       bool succeeded;
 914       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 915                                    GCCause::_g1_humongous_allocation);
 916       if (result != NULL) {
 917         assert(succeeded, "only way to get back a non-NULL result");
 918         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 919                              Thread::current()->name(), p2i(result));
 920         return result;
 921       }
 922 
 923       if (succeeded) {
 924         // We successfully scheduled a collection which failed to allocate. No
 925         // point in trying to allocate further. We'll just return NULL.
 926         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 927                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 928         return NULL;
 929       }
 930       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 931                            Thread::current()->name(), word_size);
 932     } else {
 933       // Failed to schedule a collection.
 934       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 935         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 936                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 937         return NULL;
 938       }
 939       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 940       // The GCLocker is either active or the GCLocker initiated
 941       // GC has not yet been performed. Stall until it is and
 942       // then retry the allocation.
 943       GCLocker::stall_until_clear();
 944       gclocker_retry_count += 1;
 945     }
 946 
 947 
 948     // We can reach here if we were unsuccessful in scheduling a
 949     // collection (because another thread beat us to it) or if we were
 950     // stalled due to the GC locker. In either can we should retry the
 951     // allocation attempt in case another thread successfully
 952     // performed a collection and reclaimed enough space.
 953     // Humongous object allocation always needs a lock, so we wait for the retry
 954     // in the next iteration of the loop, unlike for the regular iteration case.
 955     // Give a warning if we seem to be looping forever.
 956 
 957     if ((QueuedAllocationWarningCount > 0) &&
 958         (try_count % QueuedAllocationWarningCount == 0)) {
 959       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 960                              Thread::current()->name(), try_count, word_size);
 961     }
 962   }
 963 
 964   ShouldNotReachHere();
 965   return NULL;
 966 }
 967 
 968 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 969                                                            bool expect_null_mutator_alloc_region) {
 970   assert_at_safepoint_on_vm_thread();
 971   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 972          "the current alloc region was unexpectedly found to be non-NULL");
 973 
 974   if (!is_humongous(word_size)) {
 975     return _allocator->attempt_allocation_locked(word_size);
 976   } else {
 977     HeapWord* result = humongous_obj_allocate(word_size);
 978     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 979       collector_state()->set_initiate_conc_mark_if_possible(true);
 980     }
 981     return result;
 982   }
 983 
 984   ShouldNotReachHere();
 985 }
 986 
 987 class PostCompactionPrinterClosure: public HeapRegionClosure {
 988 private:
 989   G1HRPrinter* _hr_printer;
 990 public:
 991   bool do_heap_region(HeapRegion* hr) {
 992     assert(!hr->is_young(), "not expecting to find young regions");
 993     _hr_printer->post_compaction(hr);
 994     return false;
 995   }
 996 
 997   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 998     : _hr_printer(hr_printer) { }
 999 };
1000 
1001 void G1CollectedHeap::print_hrm_post_compaction() {
1002   if (_hr_printer.is_active()) {
1003     PostCompactionPrinterClosure cl(hr_printer());
1004     heap_region_iterate(&cl);
1005   }
1006 }
1007 
1008 void G1CollectedHeap::abort_concurrent_cycle() {
1009   // If we start the compaction before the CM threads finish
1010   // scanning the root regions we might trip them over as we'll
1011   // be moving objects / updating references. So let's wait until
1012   // they are done. By telling them to abort, they should complete
1013   // early.
1014   _cm->root_regions()->abort();
1015   _cm->root_regions()->wait_until_scan_finished();
1016 
1017   // Disable discovery and empty the discovered lists
1018   // for the CM ref processor.
1019   _ref_processor_cm->disable_discovery();
1020   _ref_processor_cm->abandon_partial_discovery();
1021   _ref_processor_cm->verify_no_references_recorded();
1022 
1023   // Abandon current iterations of concurrent marking and concurrent
1024   // refinement, if any are in progress.
1025   concurrent_mark()->concurrent_cycle_abort();
1026 }
1027 
1028 void G1CollectedHeap::prepare_heap_for_full_collection() {
1029   // Make sure we'll choose a new allocation region afterwards.
1030   _allocator->release_mutator_alloc_regions();
1031   _allocator->abandon_gc_alloc_regions();
1032 
1033   // We may have added regions to the current incremental collection
1034   // set between the last GC or pause and now. We need to clear the
1035   // incremental collection set and then start rebuilding it afresh
1036   // after this full GC.
1037   abandon_collection_set(collection_set());
1038 
1039   tear_down_region_sets(false /* free_list_only */);
1040 
1041   hrm()->prepare_for_full_collection_start();
1042 }
1043 
1044 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1045   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1046   assert_used_and_recalculate_used_equal(this);
1047   _verifier->verify_region_sets_optional();
1048   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1049   _verifier->check_bitmaps("Full GC Start");
1050 }
1051 
1052 void G1CollectedHeap::prepare_heap_for_mutators() {
1053   hrm()->prepare_for_full_collection_end();
1054 
1055   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1056   ClassLoaderDataGraph::purge();
1057   MetaspaceUtils::verify_metrics();
1058 
1059   // Prepare heap for normal collections.
1060   assert(num_free_regions() == 0, "we should not have added any free regions");
1061   rebuild_region_sets(false /* free_list_only */);
1062   abort_refinement();
1063   resize_heap_if_necessary();
1064 
1065   // Rebuild the strong code root lists for each region
1066   rebuild_strong_code_roots();
1067 
1068   // Purge code root memory
1069   purge_code_root_memory();
1070 
1071   // Start a new incremental collection set for the next pause
1072   start_new_collection_set();
1073 
1074   _allocator->init_mutator_alloc_regions();
1075 
1076   // Post collection state updates.
1077   MetaspaceGC::compute_new_size();
1078 }
1079 
1080 void G1CollectedHeap::abort_refinement() {
1081   if (_hot_card_cache->use_cache()) {
1082     _hot_card_cache->reset_hot_cache();
1083   }
1084 
1085   // Discard all remembered set updates.
1086   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1087   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1088          "DCQS should be empty");
1089 }
1090 
1091 void G1CollectedHeap::verify_after_full_collection() {
1092   _hrm->verify_optional();
1093   _verifier->verify_region_sets_optional();
1094   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1095   // Clear the previous marking bitmap, if needed for bitmap verification.
1096   // Note we cannot do this when we clear the next marking bitmap in
1097   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1098   // objects marked during a full GC against the previous bitmap.
1099   // But we need to clear it before calling check_bitmaps below since
1100   // the full GC has compacted objects and updated TAMS but not updated
1101   // the prev bitmap.
1102   if (G1VerifyBitmaps) {
1103     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1104     _cm->clear_prev_bitmap(workers());
1105   }
1106   // This call implicitly verifies that the next bitmap is clear after Full GC.
1107   _verifier->check_bitmaps("Full GC End");
1108 
1109   // At this point there should be no regions in the
1110   // entire heap tagged as young.
1111   assert(check_young_list_empty(), "young list should be empty at this point");
1112 
1113   // Note: since we've just done a full GC, concurrent
1114   // marking is no longer active. Therefore we need not
1115   // re-enable reference discovery for the CM ref processor.
1116   // That will be done at the start of the next marking cycle.
1117   // We also know that the STW processor should no longer
1118   // discover any new references.
1119   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1120   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1121   _ref_processor_stw->verify_no_references_recorded();
1122   _ref_processor_cm->verify_no_references_recorded();
1123 }
1124 
1125 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1126   // Post collection logging.
1127   // We should do this after we potentially resize the heap so
1128   // that all the COMMIT / UNCOMMIT events are generated before
1129   // the compaction events.
1130   print_hrm_post_compaction();
1131   heap_transition->print();
1132   print_heap_after_gc();
1133   print_heap_regions();
1134 #ifdef TRACESPINNING
1135   ParallelTaskTerminator::print_termination_counts();
1136 #endif
1137 }
1138 
1139 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1140                                          bool clear_all_soft_refs) {
1141   assert_at_safepoint_on_vm_thread();
1142 
1143   if (GCLocker::check_active_before_gc()) {
1144     // Full GC was not completed.
1145     return false;
1146   }
1147 
1148   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1149       soft_ref_policy()->should_clear_all_soft_refs();
1150 
1151   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1152   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1153 
1154   collector.prepare_collection();
1155   collector.collect();
1156   collector.complete_collection();
1157 
1158   // Full collection was successfully completed.
1159   return true;
1160 }
1161 
1162 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1163   // Currently, there is no facility in the do_full_collection(bool) API to notify
1164   // the caller that the collection did not succeed (e.g., because it was locked
1165   // out by the GC locker). So, right now, we'll ignore the return value.
1166   bool dummy = do_full_collection(true,                /* explicit_gc */
1167                                   clear_all_soft_refs);
1168 }
1169 
1170 void G1CollectedHeap::resize_heap_if_necessary() {
1171   assert_at_safepoint_on_vm_thread();
1172 
1173   // Capacity, free and used after the GC counted as full regions to
1174   // include the waste in the following calculations.
1175   const size_t capacity_after_gc = capacity();
1176   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1177 
1178   // This is enforced in arguments.cpp.
1179   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1180          "otherwise the code below doesn't make sense");
1181 
1182   size_t minimum_desired_capacity = _heap_sizing_policy->target_heap_capacity(used_after_gc, MinHeapFreeRatio);
1183   size_t maximum_desired_capacity = _heap_sizing_policy->target_heap_capacity(used_after_gc, MinHeapFreeRatio);
1184 
1185   // This assert only makes sense here, before we adjust them
1186   // with respect to the min and max heap size.
1187   assert(minimum_desired_capacity <= maximum_desired_capacity,
1188          "minimum_desired_capacity = " SIZE_FORMAT ", "
1189          "maximum_desired_capacity = " SIZE_FORMAT,
1190          minimum_desired_capacity, maximum_desired_capacity);
1191 
1192   // Should not be greater than the heap max size. No need to adjust
1193   // it with respect to the heap min size as it's a lower bound (i.e.,
1194   // we'll try to make the capacity larger than it, not smaller).
1195   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1196   // Should not be less than the heap min size. No need to adjust it
1197   // with respect to the heap max size as it's an upper bound (i.e.,
1198   // we'll try to make the capacity smaller than it, not greater).
1199   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1200 
1201   if (capacity_after_gc < minimum_desired_capacity) {
1202     // Don't expand unless it's significant
1203     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1204 
1205     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1206                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1207                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1208                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1209 
1210     expand(expand_bytes, _workers);
1211 
1212     // No expansion, now see if we want to shrink
1213   } else if (capacity_after_gc > maximum_desired_capacity) {
1214     // Capacity too large, compute shrinking size
1215     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1216 
1217     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1218                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1219                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1220                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1221 
1222     shrink(shrink_bytes);
1223   }
1224 }
1225 
1226 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1227                                                             bool do_gc,
1228                                                             bool clear_all_soft_refs,
1229                                                             bool expect_null_mutator_alloc_region,
1230                                                             bool* gc_succeeded) {
1231   *gc_succeeded = true;
1232   // Let's attempt the allocation first.
1233   HeapWord* result =
1234     attempt_allocation_at_safepoint(word_size,
1235                                     expect_null_mutator_alloc_region);
1236   if (result != NULL) {
1237     return result;
1238   }
1239 
1240   // In a G1 heap, we're supposed to keep allocation from failing by
1241   // incremental pauses.  Therefore, at least for now, we'll favor
1242   // expansion over collection.  (This might change in the future if we can
1243   // do something smarter than full collection to satisfy a failed alloc.)
1244   result = expand_and_allocate(word_size);
1245   if (result != NULL) {
1246     return result;
1247   }
1248 
1249   if (do_gc) {
1250     // Expansion didn't work, we'll try to do a Full GC.
1251     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1252                                        clear_all_soft_refs);
1253   }
1254 
1255   return NULL;
1256 }
1257 
1258 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1259                                                      bool* succeeded) {
1260   assert_at_safepoint_on_vm_thread();
1261 
1262   // Attempts to allocate followed by Full GC.
1263   HeapWord* result =
1264     satisfy_failed_allocation_helper(word_size,
1265                                      true,  /* do_gc */
1266                                      false, /* clear_all_soft_refs */
1267                                      false, /* expect_null_mutator_alloc_region */
1268                                      succeeded);
1269 
1270   if (result != NULL || !*succeeded) {
1271     return result;
1272   }
1273 
1274   // Attempts to allocate followed by Full GC that will collect all soft references.
1275   result = satisfy_failed_allocation_helper(word_size,
1276                                             true, /* do_gc */
1277                                             true, /* clear_all_soft_refs */
1278                                             true, /* expect_null_mutator_alloc_region */
1279                                             succeeded);
1280 
1281   if (result != NULL || !*succeeded) {
1282     return result;
1283   }
1284 
1285   // Attempts to allocate, no GC
1286   result = satisfy_failed_allocation_helper(word_size,
1287                                             false, /* do_gc */
1288                                             false, /* clear_all_soft_refs */
1289                                             true,  /* expect_null_mutator_alloc_region */
1290                                             succeeded);
1291 
1292   if (result != NULL) {
1293     return result;
1294   }
1295 
1296   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1297          "Flag should have been handled and cleared prior to this point");
1298 
1299   // What else?  We might try synchronous finalization later.  If the total
1300   // space available is large enough for the allocation, then a more
1301   // complete compaction phase than we've tried so far might be
1302   // appropriate.
1303   return NULL;
1304 }
1305 
1306 // Attempting to expand the heap sufficiently
1307 // to support an allocation of the given "word_size".  If
1308 // successful, perform the allocation and return the address of the
1309 // allocated block, or else "NULL".
1310 
1311 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1312   assert_at_safepoint_on_vm_thread();
1313 
1314   _verifier->verify_region_sets_optional();
1315 
1316   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1317   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1318                             word_size * HeapWordSize);
1319 
1320 
1321   if (expand(expand_bytes, _workers)) {
1322     _hrm->verify_optional();
1323     _verifier->verify_region_sets_optional();
1324     return attempt_allocation_at_safepoint(word_size,
1325                                            false /* expect_null_mutator_alloc_region */);
1326   }
1327   return NULL;
1328 }
1329 
1330 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1331   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1332   aligned_expand_bytes = align_up(aligned_expand_bytes,
1333                                        HeapRegion::GrainBytes);
1334 
1335   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1336                             expand_bytes, aligned_expand_bytes);
1337 
1338   if (is_maximal_no_gc()) {
1339     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1340     return false;
1341   }
1342 
1343   double expand_heap_start_time_sec = os::elapsedTime();
1344   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1345   assert(regions_to_expand > 0, "Must expand by at least one region");
1346 
1347   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1348   if (expand_time_ms != NULL) {
1349     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1350   }
1351 
1352   if (expanded_by > 0) {
1353     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1354     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1355     policy()->record_new_heap_size(num_regions());
1356   } else {
1357     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1358 
1359     // The expansion of the virtual storage space was unsuccessful.
1360     // Let's see if it was because we ran out of swap.
1361     if (G1ExitOnExpansionFailure &&
1362         _hrm->available() >= regions_to_expand) {
1363       // We had head room...
1364       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1365     }
1366   }
1367   return regions_to_expand > 0;
1368 }
1369 
1370 bool G1CollectedHeap::expand_single_region(uint node_index) {
1371   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1372 
1373   if (expanded_by == 0) {
1374     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1375     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1376     return false;
1377   }
1378 
1379   policy()->record_new_heap_size(num_regions());
1380   return true;
1381 }
1382 
1383 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1384   size_t aligned_shrink_bytes =
1385     ReservedSpace::page_align_size_down(shrink_bytes);
1386   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1387                                          HeapRegion::GrainBytes);
1388   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1389 
1390   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1391   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1392 
1393   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1394                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1395   if (num_regions_removed > 0) {
1396     policy()->record_new_heap_size(num_regions());
1397   } else {
1398     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1399   }
1400 }
1401 
1402 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1403   _verifier->verify_region_sets_optional();
1404 
1405   // We should only reach here at the end of a Full GC or during Remark which
1406   // means we should not not be holding to any GC alloc regions. The method
1407   // below will make sure of that and do any remaining clean up.
1408   _allocator->abandon_gc_alloc_regions();
1409 
1410   // Instead of tearing down / rebuilding the free lists here, we
1411   // could instead use the remove_all_pending() method on free_list to
1412   // remove only the ones that we need to remove.
1413   tear_down_region_sets(true /* free_list_only */);
1414   shrink_helper(shrink_bytes);
1415   rebuild_region_sets(true /* free_list_only */);
1416 
1417   _hrm->verify_optional();
1418   _verifier->verify_region_sets_optional();
1419 }
1420 
1421 class OldRegionSetChecker : public HeapRegionSetChecker {
1422 public:
1423   void check_mt_safety() {
1424     // Master Old Set MT safety protocol:
1425     // (a) If we're at a safepoint, operations on the master old set
1426     // should be invoked:
1427     // - by the VM thread (which will serialize them), or
1428     // - by the GC workers while holding the FreeList_lock, if we're
1429     //   at a safepoint for an evacuation pause (this lock is taken
1430     //   anyway when an GC alloc region is retired so that a new one
1431     //   is allocated from the free list), or
1432     // - by the GC workers while holding the OldSets_lock, if we're at a
1433     //   safepoint for a cleanup pause.
1434     // (b) If we're not at a safepoint, operations on the master old set
1435     // should be invoked while holding the Heap_lock.
1436 
1437     if (SafepointSynchronize::is_at_safepoint()) {
1438       guarantee(Thread::current()->is_VM_thread() ||
1439                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1440                 "master old set MT safety protocol at a safepoint");
1441     } else {
1442       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1443     }
1444   }
1445   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1446   const char* get_description() { return "Old Regions"; }
1447 };
1448 
1449 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1450 public:
1451   void check_mt_safety() {
1452     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1453               "May only change archive regions during initialization or safepoint.");
1454   }
1455   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1456   const char* get_description() { return "Archive Regions"; }
1457 };
1458 
1459 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1460 public:
1461   void check_mt_safety() {
1462     // Humongous Set MT safety protocol:
1463     // (a) If we're at a safepoint, operations on the master humongous
1464     // set should be invoked by either the VM thread (which will
1465     // serialize them) or by the GC workers while holding the
1466     // OldSets_lock.
1467     // (b) If we're not at a safepoint, operations on the master
1468     // humongous set should be invoked while holding the Heap_lock.
1469 
1470     if (SafepointSynchronize::is_at_safepoint()) {
1471       guarantee(Thread::current()->is_VM_thread() ||
1472                 OldSets_lock->owned_by_self(),
1473                 "master humongous set MT safety protocol at a safepoint");
1474     } else {
1475       guarantee(Heap_lock->owned_by_self(),
1476                 "master humongous set MT safety protocol outside a safepoint");
1477     }
1478   }
1479   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1480   const char* get_description() { return "Humongous Regions"; }
1481 };
1482 
1483 G1CollectedHeap::G1CollectedHeap() :
1484   CollectedHeap(),
1485   _young_gen_sampling_thread(NULL),
1486   _workers(NULL),
1487   _card_table(NULL),
1488   _soft_ref_policy(),
1489   _old_set("Old Region Set", new OldRegionSetChecker()),
1490   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1491   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1492   _bot(NULL),
1493   _listener(),
1494   _numa(G1NUMA::create()),
1495   _hrm(NULL),
1496   _allocator(NULL),
1497   _verifier(NULL),
1498   _summary_bytes_used(0),
1499   _bytes_used_during_gc(0),
1500   _archive_allocator(NULL),
1501   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1502   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1503   _expand_heap_after_alloc_failure(true),
1504   _g1mm(NULL),
1505   _humongous_reclaim_candidates(),
1506   _has_humongous_reclaim_candidates(false),
1507   _hr_printer(),
1508   _collector_state(),
1509   _old_marking_cycles_started(0),
1510   _old_marking_cycles_completed(0),
1511   _eden(),
1512   _survivor(),
1513   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1514   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1515   _policy(G1Policy::create_policy(_gc_timer_stw)),
1516   _heap_sizing_policy(NULL),
1517   _collection_set(this, _policy),
1518   _hot_card_cache(NULL),
1519   _rem_set(NULL),
1520   _cm(NULL),
1521   _cm_thread(NULL),
1522   _cr(NULL),
1523   _task_queues(NULL),
1524   _evacuation_failed(false),
1525   _evacuation_failed_info_array(NULL),
1526   _preserved_marks_set(true /* in_c_heap */),
1527 #ifndef PRODUCT
1528   _evacuation_failure_alot_for_current_gc(false),
1529   _evacuation_failure_alot_gc_number(0),
1530   _evacuation_failure_alot_count(0),
1531 #endif
1532   _ref_processor_stw(NULL),
1533   _is_alive_closure_stw(this),
1534   _is_subject_to_discovery_stw(this),
1535   _ref_processor_cm(NULL),
1536   _is_alive_closure_cm(this),
1537   _is_subject_to_discovery_cm(this),
1538   _region_attr() {
1539 
1540   _verifier = new G1HeapVerifier(this);
1541 
1542   _allocator = new G1Allocator(this);
1543 
1544   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1545 
1546   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1547 
1548   // Override the default _filler_array_max_size so that no humongous filler
1549   // objects are created.
1550   _filler_array_max_size = _humongous_object_threshold_in_words;
1551 
1552   uint n_queues = ParallelGCThreads;
1553   _task_queues = new RefToScanQueueSet(n_queues);
1554 
1555   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1556 
1557   for (uint i = 0; i < n_queues; i++) {
1558     RefToScanQueue* q = new RefToScanQueue();
1559     q->initialize();
1560     _task_queues->register_queue(i, q);
1561     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1562   }
1563 
1564   // Initialize the G1EvacuationFailureALot counters and flags.
1565   NOT_PRODUCT(reset_evacuation_should_fail();)
1566   _gc_tracer_stw->initialize();
1567 
1568   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1569 }
1570 
1571 static size_t actual_reserved_page_size(ReservedSpace rs) {
1572   size_t page_size = os::vm_page_size();
1573   if (UseLargePages) {
1574     // There are two ways to manage large page memory.
1575     // 1. OS supports committing large page memory.
1576     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1577     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1578     //    we reserved memory without large page.
1579     if (os::can_commit_large_page_memory() || rs.special()) {
1580       // An alignment at ReservedSpace comes from preferred page size or
1581       // heap alignment, and if the alignment came from heap alignment, it could be
1582       // larger than large pages size. So need to cap with the large page size.
1583       page_size = MIN2(rs.alignment(), os::large_page_size());
1584     }
1585   }
1586 
1587   return page_size;
1588 }
1589 
1590 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1591                                                                  size_t size,
1592                                                                  size_t translation_factor) {
1593   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1594   // Allocate a new reserved space, preferring to use large pages.
1595   ReservedSpace rs(size, preferred_page_size);
1596   size_t page_size = actual_reserved_page_size(rs);
1597   G1RegionToSpaceMapper* result  =
1598     G1RegionToSpaceMapper::create_mapper(rs,
1599                                          size,
1600                                          page_size,
1601                                          HeapRegion::GrainBytes,
1602                                          translation_factor,
1603                                          mtGC);
1604 
1605   os::trace_page_sizes_for_requested_size(description,
1606                                           size,
1607                                           preferred_page_size,
1608                                           page_size,
1609                                           rs.base(),
1610                                           rs.size());
1611 
1612   return result;
1613 }
1614 
1615 jint G1CollectedHeap::initialize_concurrent_refinement() {
1616   jint ecode = JNI_OK;
1617   _cr = G1ConcurrentRefine::create(&ecode);
1618   return ecode;
1619 }
1620 
1621 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1622   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1623   if (_young_gen_sampling_thread->osthread() == NULL) {
1624     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1625     return JNI_ENOMEM;
1626   }
1627   return JNI_OK;
1628 }
1629 
1630 jint G1CollectedHeap::initialize() {
1631 
1632   // Necessary to satisfy locking discipline assertions.
1633 
1634   MutexLocker x(Heap_lock);
1635 
1636   // While there are no constraints in the GC code that HeapWordSize
1637   // be any particular value, there are multiple other areas in the
1638   // system which believe this to be true (e.g. oop->object_size in some
1639   // cases incorrectly returns the size in wordSize units rather than
1640   // HeapWordSize).
1641   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1642 
1643   size_t init_byte_size = InitialHeapSize;
1644   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1645 
1646   // Ensure that the sizes are properly aligned.
1647   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1648   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1649   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1650 
1651   // Reserve the maximum.
1652 
1653   // When compressed oops are enabled, the preferred heap base
1654   // is calculated by subtracting the requested size from the
1655   // 32Gb boundary and using the result as the base address for
1656   // heap reservation. If the requested size is not aligned to
1657   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1658   // into the ReservedHeapSpace constructor) then the actual
1659   // base of the reserved heap may end up differing from the
1660   // address that was requested (i.e. the preferred heap base).
1661   // If this happens then we could end up using a non-optimal
1662   // compressed oops mode.
1663 
1664   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1665                                                      HeapAlignment);
1666 
1667   initialize_reserved_region(heap_rs);
1668 
1669   // Create the barrier set for the entire reserved region.
1670   G1CardTable* ct = new G1CardTable(heap_rs.region());
1671   ct->initialize();
1672   G1BarrierSet* bs = new G1BarrierSet(ct);
1673   bs->initialize();
1674   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1675   BarrierSet::set_barrier_set(bs);
1676   _card_table = ct;
1677 
1678   {
1679     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1680     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1681     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1682   }
1683 
1684   // Create the hot card cache.
1685   _hot_card_cache = new G1HotCardCache(this);
1686 
1687   // Carve out the G1 part of the heap.
1688   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1689   size_t page_size = actual_reserved_page_size(heap_rs);
1690   G1RegionToSpaceMapper* heap_storage =
1691     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1692                                               g1_rs.size(),
1693                                               page_size,
1694                                               HeapRegion::GrainBytes,
1695                                               1,
1696                                               mtJavaHeap);
1697   if(heap_storage == NULL) {
1698     vm_shutdown_during_initialization("Could not initialize G1 heap");
1699     return JNI_ERR;
1700   }
1701 
1702   os::trace_page_sizes("Heap",
1703                        MinHeapSize,
1704                        reserved_byte_size,
1705                        page_size,
1706                        heap_rs.base(),
1707                        heap_rs.size());
1708   heap_storage->set_mapping_changed_listener(&_listener);
1709 
1710   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1711   G1RegionToSpaceMapper* bot_storage =
1712     create_aux_memory_mapper("Block Offset Table",
1713                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1714                              G1BlockOffsetTable::heap_map_factor());
1715 
1716   G1RegionToSpaceMapper* cardtable_storage =
1717     create_aux_memory_mapper("Card Table",
1718                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1719                              G1CardTable::heap_map_factor());
1720 
1721   G1RegionToSpaceMapper* card_counts_storage =
1722     create_aux_memory_mapper("Card Counts Table",
1723                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1724                              G1CardCounts::heap_map_factor());
1725 
1726   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1727   G1RegionToSpaceMapper* prev_bitmap_storage =
1728     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1729   G1RegionToSpaceMapper* next_bitmap_storage =
1730     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1731 
1732   _hrm = HeapRegionManager::create_manager(this);
1733 
1734   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1735   _card_table->initialize(cardtable_storage);
1736 
1737   // Do later initialization work for concurrent refinement.
1738   _hot_card_cache->initialize(card_counts_storage);
1739 
1740   // 6843694 - ensure that the maximum region index can fit
1741   // in the remembered set structures.
1742   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1743   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1744 
1745   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1746   // start within the first card.
1747   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1748   // Also create a G1 rem set.
1749   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1750   _rem_set->initialize(max_reserved_capacity(), max_regions());
1751 
1752   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1753   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1754   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1755             "too many cards per region");
1756 
1757   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1758 
1759   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1760 
1761   {
1762     HeapWord* start = _hrm->reserved().start();
1763     HeapWord* end = _hrm->reserved().end();
1764     size_t granularity = HeapRegion::GrainBytes;
1765 
1766     _region_attr.initialize(start, end, granularity);
1767     _humongous_reclaim_candidates.initialize(start, end, granularity);
1768   }
1769 
1770   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1771                           true /* are_GC_task_threads */,
1772                           false /* are_ConcurrentGC_threads */);
1773   if (_workers == NULL) {
1774     return JNI_ENOMEM;
1775   }
1776   _workers->initialize_workers();
1777 
1778   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1779 
1780   // Create the G1ConcurrentMark data structure and thread.
1781   // (Must do this late, so that "max_regions" is defined.)
1782   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1783   if (_cm == NULL || !_cm->completed_initialization()) {
1784     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1785     return JNI_ENOMEM;
1786   }
1787   _cm_thread = _cm->cm_thread();
1788 
1789   // Now expand into the initial heap size.
1790   if (!expand(init_byte_size, _workers)) {
1791     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1792     return JNI_ENOMEM;
1793   }
1794 
1795   // Perform any initialization actions delegated to the policy.
1796   policy()->init(this, &_collection_set);
1797 
1798   jint ecode = initialize_concurrent_refinement();
1799   if (ecode != JNI_OK) {
1800     return ecode;
1801   }
1802 
1803   ecode = initialize_young_gen_sampling_thread();
1804   if (ecode != JNI_OK) {
1805     return ecode;
1806   }
1807 
1808   {
1809     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1810     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1811     dcqs.set_max_cards(concurrent_refine()->red_zone());
1812   }
1813 
1814   // Here we allocate the dummy HeapRegion that is required by the
1815   // G1AllocRegion class.
1816   HeapRegion* dummy_region = _hrm->get_dummy_region();
1817 
1818   // We'll re-use the same region whether the alloc region will
1819   // require BOT updates or not and, if it doesn't, then a non-young
1820   // region will complain that it cannot support allocations without
1821   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1822   dummy_region->set_eden();
1823   // Make sure it's full.
1824   dummy_region->set_top(dummy_region->end());
1825   G1AllocRegion::setup(this, dummy_region);
1826 
1827   _allocator->init_mutator_alloc_regions();
1828 
1829   // Do create of the monitoring and management support so that
1830   // values in the heap have been properly initialized.
1831   _g1mm = new G1MonitoringSupport(this);
1832 
1833   G1StringDedup::initialize();
1834 
1835   _preserved_marks_set.init(ParallelGCThreads);
1836 
1837   _collection_set.initialize(max_regions());
1838 
1839   return JNI_OK;
1840 }
1841 
1842 void G1CollectedHeap::stop() {
1843   // Stop all concurrent threads. We do this to make sure these threads
1844   // do not continue to execute and access resources (e.g. logging)
1845   // that are destroyed during shutdown.
1846   _cr->stop();
1847   _young_gen_sampling_thread->stop();
1848   _cm_thread->stop();
1849   if (G1StringDedup::is_enabled()) {
1850     G1StringDedup::stop();
1851   }
1852 }
1853 
1854 void G1CollectedHeap::safepoint_synchronize_begin() {
1855   SuspendibleThreadSet::synchronize();
1856 }
1857 
1858 void G1CollectedHeap::safepoint_synchronize_end() {
1859   SuspendibleThreadSet::desynchronize();
1860 }
1861 
1862 void G1CollectedHeap::post_initialize() {
1863   CollectedHeap::post_initialize();
1864   ref_processing_init();
1865 }
1866 
1867 void G1CollectedHeap::ref_processing_init() {
1868   // Reference processing in G1 currently works as follows:
1869   //
1870   // * There are two reference processor instances. One is
1871   //   used to record and process discovered references
1872   //   during concurrent marking; the other is used to
1873   //   record and process references during STW pauses
1874   //   (both full and incremental).
1875   // * Both ref processors need to 'span' the entire heap as
1876   //   the regions in the collection set may be dotted around.
1877   //
1878   // * For the concurrent marking ref processor:
1879   //   * Reference discovery is enabled at initial marking.
1880   //   * Reference discovery is disabled and the discovered
1881   //     references processed etc during remarking.
1882   //   * Reference discovery is MT (see below).
1883   //   * Reference discovery requires a barrier (see below).
1884   //   * Reference processing may or may not be MT
1885   //     (depending on the value of ParallelRefProcEnabled
1886   //     and ParallelGCThreads).
1887   //   * A full GC disables reference discovery by the CM
1888   //     ref processor and abandons any entries on it's
1889   //     discovered lists.
1890   //
1891   // * For the STW processor:
1892   //   * Non MT discovery is enabled at the start of a full GC.
1893   //   * Processing and enqueueing during a full GC is non-MT.
1894   //   * During a full GC, references are processed after marking.
1895   //
1896   //   * Discovery (may or may not be MT) is enabled at the start
1897   //     of an incremental evacuation pause.
1898   //   * References are processed near the end of a STW evacuation pause.
1899   //   * For both types of GC:
1900   //     * Discovery is atomic - i.e. not concurrent.
1901   //     * Reference discovery will not need a barrier.
1902 
1903   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1904 
1905   // Concurrent Mark ref processor
1906   _ref_processor_cm =
1907     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1908                            mt_processing,                                  // mt processing
1909                            ParallelGCThreads,                              // degree of mt processing
1910                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1911                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1912                            false,                                          // Reference discovery is not atomic
1913                            &_is_alive_closure_cm,                          // is alive closure
1914                            true);                                          // allow changes to number of processing threads
1915 
1916   // STW ref processor
1917   _ref_processor_stw =
1918     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1919                            mt_processing,                        // mt processing
1920                            ParallelGCThreads,                    // degree of mt processing
1921                            (ParallelGCThreads > 1),              // mt discovery
1922                            ParallelGCThreads,                    // degree of mt discovery
1923                            true,                                 // Reference discovery is atomic
1924                            &_is_alive_closure_stw,               // is alive closure
1925                            true);                                // allow changes to number of processing threads
1926 }
1927 
1928 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1929   return &_soft_ref_policy;
1930 }
1931 
1932 size_t G1CollectedHeap::capacity() const {
1933   return _hrm->length() * HeapRegion::GrainBytes;
1934 }
1935 
1936 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1937   return _hrm->total_free_bytes();
1938 }
1939 
1940 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1941   _hot_card_cache->drain(cl, worker_id);
1942 }
1943 
1944 // Computes the sum of the storage used by the various regions.
1945 size_t G1CollectedHeap::used() const {
1946   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1947   if (_archive_allocator != NULL) {
1948     result += _archive_allocator->used();
1949   }
1950   return result;
1951 }
1952 
1953 size_t G1CollectedHeap::used_unlocked() const {
1954   return _summary_bytes_used;
1955 }
1956 
1957 class SumUsedClosure: public HeapRegionClosure {
1958   size_t _used;
1959 public:
1960   SumUsedClosure() : _used(0) {}
1961   bool do_heap_region(HeapRegion* r) {
1962     _used += r->used();
1963     return false;
1964   }
1965   size_t result() { return _used; }
1966 };
1967 
1968 size_t G1CollectedHeap::recalculate_used() const {
1969   SumUsedClosure blk;
1970   heap_region_iterate(&blk);
1971   return blk.result();
1972 }
1973 
1974 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1975   switch (cause) {
1976     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1977     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1978     case GCCause::_wb_conc_mark:                        return true;
1979     default :                                           return false;
1980   }
1981 }
1982 
1983 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1984   switch (cause) {
1985     case GCCause::_g1_humongous_allocation: return true;
1986     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1987     default:                                return is_user_requested_concurrent_full_gc(cause);
1988   }
1989 }
1990 
1991 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1992   if (policy()->force_upgrade_to_full()) {
1993     return true;
1994   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1995     return false;
1996   } else if (has_regions_left_for_allocation()) {
1997     return false;
1998   } else {
1999     return true;
2000   }
2001 }
2002 
2003 #ifndef PRODUCT
2004 void G1CollectedHeap::allocate_dummy_regions() {
2005   // Let's fill up most of the region
2006   size_t word_size = HeapRegion::GrainWords - 1024;
2007   // And as a result the region we'll allocate will be humongous.
2008   guarantee(is_humongous(word_size), "sanity");
2009 
2010   // _filler_array_max_size is set to humongous object threshold
2011   // but temporarily change it to use CollectedHeap::fill_with_object().
2012   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2013 
2014   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2015     // Let's use the existing mechanism for the allocation
2016     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2017     if (dummy_obj != NULL) {
2018       MemRegion mr(dummy_obj, word_size);
2019       CollectedHeap::fill_with_object(mr);
2020     } else {
2021       // If we can't allocate once, we probably cannot allocate
2022       // again. Let's get out of the loop.
2023       break;
2024     }
2025   }
2026 }
2027 #endif // !PRODUCT
2028 
2029 void G1CollectedHeap::increment_old_marking_cycles_started() {
2030   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2031          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2032          "Wrong marking cycle count (started: %d, completed: %d)",
2033          _old_marking_cycles_started, _old_marking_cycles_completed);
2034 
2035   _old_marking_cycles_started++;
2036 }
2037 
2038 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2039   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2040 
2041   // We assume that if concurrent == true, then the caller is a
2042   // concurrent thread that was joined the Suspendible Thread
2043   // Set. If there's ever a cheap way to check this, we should add an
2044   // assert here.
2045 
2046   // Given that this method is called at the end of a Full GC or of a
2047   // concurrent cycle, and those can be nested (i.e., a Full GC can
2048   // interrupt a concurrent cycle), the number of full collections
2049   // completed should be either one (in the case where there was no
2050   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2051   // behind the number of full collections started.
2052 
2053   // This is the case for the inner caller, i.e. a Full GC.
2054   assert(concurrent ||
2055          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2056          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2057          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2058          "is inconsistent with _old_marking_cycles_completed = %u",
2059          _old_marking_cycles_started, _old_marking_cycles_completed);
2060 
2061   // This is the case for the outer caller, i.e. the concurrent cycle.
2062   assert(!concurrent ||
2063          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2064          "for outer caller (concurrent cycle): "
2065          "_old_marking_cycles_started = %u "
2066          "is inconsistent with _old_marking_cycles_completed = %u",
2067          _old_marking_cycles_started, _old_marking_cycles_completed);
2068 
2069   _old_marking_cycles_completed += 1;
2070 
2071   // We need to clear the "in_progress" flag in the CM thread before
2072   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2073   // is set) so that if a waiter requests another System.gc() it doesn't
2074   // incorrectly see that a marking cycle is still in progress.
2075   if (concurrent) {
2076     _cm_thread->set_idle();
2077   }
2078 
2079   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2080   // for a full GC to finish that their wait is over.
2081   ml.notify_all();
2082 }
2083 
2084 void G1CollectedHeap::collect(GCCause::Cause cause) {
2085   try_collect(cause);
2086 }
2087 
2088 // Return true if (x < y) with allowance for wraparound.
2089 static bool gc_counter_less_than(uint x, uint y) {
2090   return (x - y) > (UINT_MAX/2);
2091 }
2092 
2093 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2094 // Macro so msg printing is format-checked.
2095 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2096   do {                                                                  \
2097     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2098     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2099       ResourceMark rm; /* For thread name. */                           \
2100       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2101       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2102                                        Thread::current()->name(),       \
2103                                        GCCause::to_string(cause));      \
2104       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2105     }                                                                   \
2106   } while (0)
2107 
2108 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2109   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2110 
2111 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2112                                                uint gc_counter,
2113                                                uint old_marking_started_before) {
2114   assert_heap_not_locked();
2115   assert(should_do_concurrent_full_gc(cause),
2116          "Non-concurrent cause %s", GCCause::to_string(cause));
2117 
2118   for (uint i = 1; true; ++i) {
2119     // Try to schedule an initial-mark evacuation pause that will
2120     // start a concurrent cycle.
2121     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2122     VM_G1TryInitiateConcMark op(gc_counter,
2123                                 cause,
2124                                 policy()->max_pause_time_ms());
2125     VMThread::execute(&op);
2126 
2127     // Request is trivially finished.
2128     if (cause == GCCause::_g1_periodic_collection) {
2129       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2130       return op.gc_succeeded();
2131     }
2132 
2133     // If VMOp skipped initiating concurrent marking cycle because
2134     // we're terminating, then we're done.
2135     if (op.terminating()) {
2136       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2137       return false;
2138     }
2139 
2140     // Lock to get consistent set of values.
2141     uint old_marking_started_after;
2142     uint old_marking_completed_after;
2143     {
2144       MutexLocker ml(Heap_lock);
2145       // Update gc_counter for retrying VMOp if needed. Captured here to be
2146       // consistent with the values we use below for termination tests.  If
2147       // a retry is needed after a possible wait, and another collection
2148       // occurs in the meantime, it will cause our retry to be skipped and
2149       // we'll recheck for termination with updated conditions from that
2150       // more recent collection.  That's what we want, rather than having
2151       // our retry possibly perform an unnecessary collection.
2152       gc_counter = total_collections();
2153       old_marking_started_after = _old_marking_cycles_started;
2154       old_marking_completed_after = _old_marking_cycles_completed;
2155     }
2156 
2157     if (!GCCause::is_user_requested_gc(cause)) {
2158       // For an "automatic" (not user-requested) collection, we just need to
2159       // ensure that progress is made.
2160       //
2161       // Request is finished if any of
2162       // (1) the VMOp successfully performed a GC,
2163       // (2) a concurrent cycle was already in progress,
2164       // (3) a new cycle was started (by this thread or some other), or
2165       // (4) a Full GC was performed.
2166       // Cases (3) and (4) are detected together by a change to
2167       // _old_marking_cycles_started.
2168       //
2169       // Note that (1) does not imply (3).  If we're still in the mixed
2170       // phase of an earlier concurrent collection, the request to make the
2171       // collection an initial-mark won't be honored.  If we don't check for
2172       // both conditions we'll spin doing back-to-back collections.
2173       if (op.gc_succeeded() ||
2174           op.cycle_already_in_progress() ||
2175           (old_marking_started_before != old_marking_started_after)) {
2176         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2177         return true;
2178       }
2179     } else {                    // User-requested GC.
2180       // For a user-requested collection, we want to ensure that a complete
2181       // full collection has been performed before returning, but without
2182       // waiting for more than needed.
2183 
2184       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2185       // new cycle was started.  That's good, because it's not clear what we
2186       // should do otherwise.  Trying again just does back to back GCs.
2187       // Can't wait for someone else to start a cycle.  And returning fails
2188       // to meet the goal of ensuring a full collection was performed.
2189       assert(!op.gc_succeeded() ||
2190              (old_marking_started_before != old_marking_started_after),
2191              "invariant: succeeded %s, started before %u, started after %u",
2192              BOOL_TO_STR(op.gc_succeeded()),
2193              old_marking_started_before, old_marking_started_after);
2194 
2195       // Request is finished if a full collection (concurrent or stw)
2196       // was started after this request and has completed, e.g.
2197       // started_before < completed_after.
2198       if (gc_counter_less_than(old_marking_started_before,
2199                                old_marking_completed_after)) {
2200         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2201         return true;
2202       }
2203 
2204       if (old_marking_started_after != old_marking_completed_after) {
2205         // If there is an in-progress cycle (possibly started by us), then
2206         // wait for that cycle to complete, e.g.
2207         // while completed_now < started_after.
2208         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2209         MonitorLocker ml(G1OldGCCount_lock);
2210         while (gc_counter_less_than(_old_marking_cycles_completed,
2211                                     old_marking_started_after)) {
2212           ml.wait();
2213         }
2214         // Request is finished if the collection we just waited for was
2215         // started after this request.
2216         if (old_marking_started_before != old_marking_started_after) {
2217           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2218           return true;
2219         }
2220       }
2221 
2222       // If VMOp was successful then it started a new cycle that the above
2223       // wait &etc should have recognized as finishing this request.  This
2224       // differs from a non-user-request, where gc_succeeded does not imply
2225       // a new cycle was started.
2226       assert(!op.gc_succeeded(), "invariant");
2227 
2228       // If VMOp failed because a cycle was already in progress, it is now
2229       // complete.  But it didn't finish this user-requested GC, so try
2230       // again.
2231       if (op.cycle_already_in_progress()) {
2232         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2233         continue;
2234       }
2235     }
2236 
2237     // Collection failed and should be retried.
2238     assert(op.transient_failure(), "invariant");
2239 
2240     // If GCLocker is active, wait until clear before retrying.
2241     if (GCLocker::is_active_and_needs_gc()) {
2242       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2243       GCLocker::stall_until_clear();
2244     }
2245 
2246     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2247   }
2248 }
2249 
2250 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2251   assert_heap_not_locked();
2252 
2253   // Lock to get consistent set of values.
2254   uint gc_count_before;
2255   uint full_gc_count_before;
2256   uint old_marking_started_before;
2257   {
2258     MutexLocker ml(Heap_lock);
2259     gc_count_before = total_collections();
2260     full_gc_count_before = total_full_collections();
2261     old_marking_started_before = _old_marking_cycles_started;
2262   }
2263 
2264   if (should_do_concurrent_full_gc(cause)) {
2265     return try_collect_concurrently(cause,
2266                                     gc_count_before,
2267                                     old_marking_started_before);
2268   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2269     // Indicate failure to be consistent with VMOp failure due to
2270     // another collection slipping in after our gc_count but before
2271     // our request is processed.
2272     return false;
2273   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2274              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2275 
2276     // Schedule a standard evacuation pause. We're setting word_size
2277     // to 0 which means that we are not requesting a post-GC allocation.
2278     VM_G1CollectForAllocation op(0,     /* word_size */
2279                                  gc_count_before,
2280                                  cause,
2281                                  policy()->max_pause_time_ms());
2282     VMThread::execute(&op);
2283     return op.gc_succeeded();
2284   } else {
2285     // Schedule a Full GC.
2286     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2287     VMThread::execute(&op);
2288     return op.gc_succeeded();
2289   }
2290 }
2291 
2292 bool G1CollectedHeap::is_in(const void* p) const {
2293   if (_hrm->reserved().contains(p)) {
2294     // Given that we know that p is in the reserved space,
2295     // heap_region_containing() should successfully
2296     // return the containing region.
2297     HeapRegion* hr = heap_region_containing(p);
2298     return hr->is_in(p);
2299   } else {
2300     return false;
2301   }
2302 }
2303 
2304 #ifdef ASSERT
2305 bool G1CollectedHeap::is_in_exact(const void* p) const {
2306   bool contains = reserved_region().contains(p);
2307   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2308   if (contains && available) {
2309     return true;
2310   } else {
2311     return false;
2312   }
2313 }
2314 #endif
2315 
2316 // Iteration functions.
2317 
2318 // Iterates an ObjectClosure over all objects within a HeapRegion.
2319 
2320 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2321   ObjectClosure* _cl;
2322 public:
2323   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2324   bool do_heap_region(HeapRegion* r) {
2325     if (!r->is_continues_humongous()) {
2326       r->object_iterate(_cl);
2327     }
2328     return false;
2329   }
2330 };
2331 
2332 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2333   IterateObjectClosureRegionClosure blk(cl);
2334   heap_region_iterate(&blk);
2335 }
2336 
2337 void G1CollectedHeap::keep_alive(oop obj) {
2338   G1BarrierSet::enqueue(obj);
2339 }
2340 
2341 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2342   _hrm->iterate(cl);
2343 }
2344 
2345 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2346                                                                  HeapRegionClaimer *hrclaimer,
2347                                                                  uint worker_id) const {
2348   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2349 }
2350 
2351 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2352                                                          HeapRegionClaimer *hrclaimer) const {
2353   _hrm->par_iterate(cl, hrclaimer, 0);
2354 }
2355 
2356 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2357   _collection_set.iterate(cl);
2358 }
2359 
2360 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2361   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2362 }
2363 
2364 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2365   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2366 }
2367 
2368 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2369   HeapRegion* hr = heap_region_containing(addr);
2370   return hr->block_start(addr);
2371 }
2372 
2373 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2374   HeapRegion* hr = heap_region_containing(addr);
2375   return hr->block_is_obj(addr);
2376 }
2377 
2378 bool G1CollectedHeap::supports_tlab_allocation() const {
2379   return true;
2380 }
2381 
2382 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2383   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2384 }
2385 
2386 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2387   return _eden.length() * HeapRegion::GrainBytes;
2388 }
2389 
2390 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2391 // must be equal to the humongous object limit.
2392 size_t G1CollectedHeap::max_tlab_size() const {
2393   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2394 }
2395 
2396 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2397   return _allocator->unsafe_max_tlab_alloc();
2398 }
2399 
2400 size_t G1CollectedHeap::max_capacity() const {
2401   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2402 }
2403 
2404 size_t G1CollectedHeap::max_reserved_capacity() const {
2405   return _hrm->max_length() * HeapRegion::GrainBytes;
2406 }
2407 
2408 size_t G1CollectedHeap::soft_max_capacity() const {
2409   return clamp(align_up(SoftMaxHeapSize, HeapAlignment), MinHeapSize, max_capacity());
2410 }
2411 
2412 jlong G1CollectedHeap::millis_since_last_gc() {
2413   // See the notes in GenCollectedHeap::millis_since_last_gc()
2414   // for more information about the implementation.
2415   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2416                   _policy->collection_pause_end_millis();
2417   if (ret_val < 0) {
2418     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2419       ". returning zero instead.", ret_val);
2420     return 0;
2421   }
2422   return ret_val;
2423 }
2424 
2425 void G1CollectedHeap::deduplicate_string(oop str) {
2426   assert(java_lang_String::is_instance(str), "invariant");
2427 
2428   if (G1StringDedup::is_enabled()) {
2429     G1StringDedup::deduplicate(str);
2430   }
2431 }
2432 
2433 void G1CollectedHeap::prepare_for_verify() {
2434   _verifier->prepare_for_verify();
2435 }
2436 
2437 void G1CollectedHeap::verify(VerifyOption vo) {
2438   _verifier->verify(vo);
2439 }
2440 
2441 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2442   return true;
2443 }
2444 
2445 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2446   return _cm_thread->request_concurrent_phase(phase);
2447 }
2448 
2449 bool G1CollectedHeap::is_heterogeneous_heap() const {
2450   return G1Arguments::is_heterogeneous_heap();
2451 }
2452 
2453 class PrintRegionClosure: public HeapRegionClosure {
2454   outputStream* _st;
2455 public:
2456   PrintRegionClosure(outputStream* st) : _st(st) {}
2457   bool do_heap_region(HeapRegion* r) {
2458     r->print_on(_st);
2459     return false;
2460   }
2461 };
2462 
2463 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2464                                        const HeapRegion* hr,
2465                                        const VerifyOption vo) const {
2466   switch (vo) {
2467   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2468   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2469   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2470   default:                            ShouldNotReachHere();
2471   }
2472   return false; // keep some compilers happy
2473 }
2474 
2475 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2476                                        const VerifyOption vo) const {
2477   switch (vo) {
2478   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2479   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2480   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2481   default:                            ShouldNotReachHere();
2482   }
2483   return false; // keep some compilers happy
2484 }
2485 
2486 void G1CollectedHeap::print_heap_regions() const {
2487   LogTarget(Trace, gc, heap, region) lt;
2488   if (lt.is_enabled()) {
2489     LogStream ls(lt);
2490     print_regions_on(&ls);
2491   }
2492 }
2493 
2494 void G1CollectedHeap::print_on(outputStream* st) const {
2495   st->print(" %-20s", "garbage-first heap");
2496   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2497             capacity()/K, used_unlocked()/K);
2498   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2499             p2i(_hrm->reserved().start()),
2500             p2i(_hrm->reserved().end()));
2501   st->cr();
2502   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2503   uint young_regions = young_regions_count();
2504   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2505             (size_t) young_regions * HeapRegion::GrainBytes / K);
2506   uint survivor_regions = survivor_regions_count();
2507   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2508             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2509   st->cr();
2510   if (_numa->is_enabled()) {
2511     uint num_nodes = _numa->num_active_nodes();
2512     st->print("  remaining free region(s) on each NUMA node: ");
2513     const int* node_ids = _numa->node_ids();
2514     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2515       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2516     }
2517     st->cr();
2518   }
2519   MetaspaceUtils::print_on(st);
2520 }
2521 
2522 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2523   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2524                "HS=humongous(starts), HC=humongous(continues), "
2525                "CS=collection set, F=free, "
2526                "OA=open archive, CA=closed archive, "
2527                "TAMS=top-at-mark-start (previous, next)");
2528   PrintRegionClosure blk(st);
2529   heap_region_iterate(&blk);
2530 }
2531 
2532 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2533   print_on(st);
2534 
2535   // Print the per-region information.
2536   print_regions_on(st);
2537 }
2538 
2539 void G1CollectedHeap::print_on_error(outputStream* st) const {
2540   this->CollectedHeap::print_on_error(st);
2541 
2542   if (_cm != NULL) {
2543     st->cr();
2544     _cm->print_on_error(st);
2545   }
2546 }
2547 
2548 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2549   workers()->print_worker_threads_on(st);
2550   _cm_thread->print_on(st);
2551   st->cr();
2552   _cm->print_worker_threads_on(st);
2553   _cr->print_threads_on(st);
2554   _young_gen_sampling_thread->print_on(st);
2555   if (G1StringDedup::is_enabled()) {
2556     G1StringDedup::print_worker_threads_on(st);
2557   }
2558 }
2559 
2560 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2561   workers()->threads_do(tc);
2562   tc->do_thread(_cm_thread);
2563   _cm->threads_do(tc);
2564   _cr->threads_do(tc);
2565   tc->do_thread(_young_gen_sampling_thread);
2566   if (G1StringDedup::is_enabled()) {
2567     G1StringDedup::threads_do(tc);
2568   }
2569 }
2570 
2571 void G1CollectedHeap::print_tracing_info() const {
2572   rem_set()->print_summary_info();
2573   concurrent_mark()->print_summary_info();
2574 }
2575 
2576 #ifndef PRODUCT
2577 // Helpful for debugging RSet issues.
2578 
2579 class PrintRSetsClosure : public HeapRegionClosure {
2580 private:
2581   const char* _msg;
2582   size_t _occupied_sum;
2583 
2584 public:
2585   bool do_heap_region(HeapRegion* r) {
2586     HeapRegionRemSet* hrrs = r->rem_set();
2587     size_t occupied = hrrs->occupied();
2588     _occupied_sum += occupied;
2589 
2590     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2591     if (occupied == 0) {
2592       tty->print_cr("  RSet is empty");
2593     } else {
2594       hrrs->print();
2595     }
2596     tty->print_cr("----------");
2597     return false;
2598   }
2599 
2600   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2601     tty->cr();
2602     tty->print_cr("========================================");
2603     tty->print_cr("%s", msg);
2604     tty->cr();
2605   }
2606 
2607   ~PrintRSetsClosure() {
2608     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2609     tty->print_cr("========================================");
2610     tty->cr();
2611   }
2612 };
2613 
2614 void G1CollectedHeap::print_cset_rsets() {
2615   PrintRSetsClosure cl("Printing CSet RSets");
2616   collection_set_iterate_all(&cl);
2617 }
2618 
2619 void G1CollectedHeap::print_all_rsets() {
2620   PrintRSetsClosure cl("Printing All RSets");;
2621   heap_region_iterate(&cl);
2622 }
2623 #endif // PRODUCT
2624 
2625 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2626   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2627 }
2628 
2629 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2630 
2631   size_t eden_used_bytes = _eden.used_bytes();
2632   size_t survivor_used_bytes = _survivor.used_bytes();
2633   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2634 
2635   size_t eden_capacity_bytes =
2636     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2637 
2638   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2639   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2640                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2641 }
2642 
2643 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2644   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2645                        stats->unused(), stats->used(), stats->region_end_waste(),
2646                        stats->regions_filled(), stats->direct_allocated(),
2647                        stats->failure_used(), stats->failure_waste());
2648 }
2649 
2650 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2651   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2652   gc_tracer->report_gc_heap_summary(when, heap_summary);
2653 
2654   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2655   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2656 }
2657 
2658 G1CollectedHeap* G1CollectedHeap::heap() {
2659   CollectedHeap* heap = Universe::heap();
2660   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2661   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2662   return (G1CollectedHeap*)heap;
2663 }
2664 
2665 void G1CollectedHeap::gc_prologue(bool full) {
2666   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2667 
2668   // This summary needs to be printed before incrementing total collections.
2669   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2670 
2671   // Update common counters.
2672   increment_total_collections(full /* full gc */);
2673   if (full || collector_state()->in_initial_mark_gc()) {
2674     increment_old_marking_cycles_started();
2675   }
2676 
2677   // Fill TLAB's and such
2678   double start = os::elapsedTime();
2679   ensure_parsability(true);
2680   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2681 }
2682 
2683 void G1CollectedHeap::gc_epilogue(bool full) {
2684   // Update common counters.
2685   if (full) {
2686     // Update the number of full collections that have been completed.
2687     increment_old_marking_cycles_completed(false /* concurrent */);
2688   }
2689 
2690   // We are at the end of the GC. Total collections has already been increased.
2691   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2692 
2693   // FIXME: what is this about?
2694   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2695   // is set.
2696 #if COMPILER2_OR_JVMCI
2697   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2698 #endif
2699 
2700   double start = os::elapsedTime();
2701   resize_all_tlabs();
2702   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2703 
2704   MemoryService::track_memory_usage();
2705   // We have just completed a GC. Update the soft reference
2706   // policy with the new heap occupancy
2707   Universe::update_heap_info_at_gc();
2708 
2709   // Print NUMA statistics.
2710   _numa->print_statistics();
2711 }
2712 
2713 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2714   LogTarget(Trace, gc, heap, verify) lt;
2715 
2716   if (lt.is_enabled()) {
2717     LogStream ls(lt);
2718     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2719     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2720     heap_region_iterate(&cl);
2721   }
2722 }
2723 
2724 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2725                                                uint gc_count_before,
2726                                                bool* succeeded,
2727                                                GCCause::Cause gc_cause) {
2728   assert_heap_not_locked_and_not_at_safepoint();
2729   VM_G1CollectForAllocation op(word_size,
2730                                gc_count_before,
2731                                gc_cause,
2732                                policy()->max_pause_time_ms());
2733   VMThread::execute(&op);
2734 
2735   HeapWord* result = op.result();
2736   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2737   assert(result == NULL || ret_succeeded,
2738          "the result should be NULL if the VM did not succeed");
2739   *succeeded = ret_succeeded;
2740 
2741   assert_heap_not_locked();
2742   return result;
2743 }
2744 
2745 void G1CollectedHeap::do_concurrent_mark() {
2746   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2747   if (!_cm_thread->in_progress()) {
2748     _cm_thread->set_started();
2749     CGC_lock->notify();
2750   }
2751 }
2752 
2753 size_t G1CollectedHeap::pending_card_num() {
2754   struct CountCardsClosure : public ThreadClosure {
2755     size_t _cards;
2756     CountCardsClosure() : _cards(0) {}
2757     virtual void do_thread(Thread* t) {
2758       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2759     }
2760   } count_from_threads;
2761   Threads::threads_do(&count_from_threads);
2762 
2763   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2764   dcqs.verify_num_cards();
2765 
2766   return dcqs.num_cards() + count_from_threads._cards;
2767 }
2768 
2769 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2770   // We don't nominate objects with many remembered set entries, on
2771   // the assumption that such objects are likely still live.
2772   HeapRegionRemSet* rem_set = r->rem_set();
2773 
2774   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2775          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2776          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2777 }
2778 
2779 #ifndef PRODUCT
2780 void G1CollectedHeap::verify_region_attr_remset_update() {
2781   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2782   public:
2783     virtual bool do_heap_region(HeapRegion* r) {
2784       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2785       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2786       assert(r->rem_set()->is_tracked() == needs_remset_update,
2787              "Region %u remset tracking status (%s) different to region attribute (%s)",
2788              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2789       return false;
2790     }
2791   } cl;
2792   heap_region_iterate(&cl);
2793 }
2794 #endif
2795 
2796 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2797   public:
2798     bool do_heap_region(HeapRegion* hr) {
2799       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2800         hr->verify_rem_set();
2801       }
2802       return false;
2803     }
2804 };
2805 
2806 uint G1CollectedHeap::num_task_queues() const {
2807   return _task_queues->size();
2808 }
2809 
2810 #if TASKQUEUE_STATS
2811 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2812   st->print_raw_cr("GC Task Stats");
2813   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2814   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2815 }
2816 
2817 void G1CollectedHeap::print_taskqueue_stats() const {
2818   if (!log_is_enabled(Trace, gc, task, stats)) {
2819     return;
2820   }
2821   Log(gc, task, stats) log;
2822   ResourceMark rm;
2823   LogStream ls(log.trace());
2824   outputStream* st = &ls;
2825 
2826   print_taskqueue_stats_hdr(st);
2827 
2828   TaskQueueStats totals;
2829   const uint n = num_task_queues();
2830   for (uint i = 0; i < n; ++i) {
2831     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2832     totals += task_queue(i)->stats;
2833   }
2834   st->print_raw("tot "); totals.print(st); st->cr();
2835 
2836   DEBUG_ONLY(totals.verify());
2837 }
2838 
2839 void G1CollectedHeap::reset_taskqueue_stats() {
2840   const uint n = num_task_queues();
2841   for (uint i = 0; i < n; ++i) {
2842     task_queue(i)->stats.reset();
2843   }
2844 }
2845 #endif // TASKQUEUE_STATS
2846 
2847 void G1CollectedHeap::wait_for_root_region_scanning() {
2848   double scan_wait_start = os::elapsedTime();
2849   // We have to wait until the CM threads finish scanning the
2850   // root regions as it's the only way to ensure that all the
2851   // objects on them have been correctly scanned before we start
2852   // moving them during the GC.
2853   bool waited = _cm->root_regions()->wait_until_scan_finished();
2854   double wait_time_ms = 0.0;
2855   if (waited) {
2856     double scan_wait_end = os::elapsedTime();
2857     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2858   }
2859   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2860 }
2861 
2862 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2863 private:
2864   G1HRPrinter* _hr_printer;
2865 public:
2866   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2867 
2868   virtual bool do_heap_region(HeapRegion* r) {
2869     _hr_printer->cset(r);
2870     return false;
2871   }
2872 };
2873 
2874 void G1CollectedHeap::start_new_collection_set() {
2875   double start = os::elapsedTime();
2876 
2877   collection_set()->start_incremental_building();
2878 
2879   clear_region_attr();
2880 
2881   guarantee(_eden.length() == 0, "eden should have been cleared");
2882   policy()->transfer_survivors_to_cset(survivor());
2883 
2884   // We redo the verification but now wrt to the new CSet which
2885   // has just got initialized after the previous CSet was freed.
2886   _cm->verify_no_collection_set_oops();
2887 
2888   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2889 }
2890 
2891 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2892 
2893   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2894   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2895                                             collection_set()->optional_region_length());
2896 
2897   _cm->verify_no_collection_set_oops();
2898 
2899   if (_hr_printer.is_active()) {
2900     G1PrintCollectionSetClosure cl(&_hr_printer);
2901     _collection_set.iterate(&cl);
2902     _collection_set.iterate_optional(&cl);
2903   }
2904 }
2905 
2906 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2907   if (collector_state()->in_initial_mark_gc()) {
2908     return G1HeapVerifier::G1VerifyConcurrentStart;
2909   } else if (collector_state()->in_young_only_phase()) {
2910     return G1HeapVerifier::G1VerifyYoungNormal;
2911   } else {
2912     return G1HeapVerifier::G1VerifyMixed;
2913   }
2914 }
2915 
2916 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2917   if (VerifyRememberedSets) {
2918     log_info(gc, verify)("[Verifying RemSets before GC]");
2919     VerifyRegionRemSetClosure v_cl;
2920     heap_region_iterate(&v_cl);
2921   }
2922   _verifier->verify_before_gc(type);
2923   _verifier->check_bitmaps("GC Start");
2924   verify_numa_regions("GC Start");
2925 }
2926 
2927 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2928   if (VerifyRememberedSets) {
2929     log_info(gc, verify)("[Verifying RemSets after GC]");
2930     VerifyRegionRemSetClosure v_cl;
2931     heap_region_iterate(&v_cl);
2932   }
2933   _verifier->verify_after_gc(type);
2934   _verifier->check_bitmaps("GC End");
2935   verify_numa_regions("GC End");
2936 }
2937 
2938 void G1CollectedHeap::resize_heap_after_young_collection() {
2939   Ticks start = Ticks::now();
2940   if (!expand_heap_after_young_collection()) {
2941     // If we don't attempt to expand heap, try if we need to shrink the heap
2942     shrink_heap_after_young_collection();
2943   }
2944   phase_times()->record_resize_heap_time((Ticks::now() - start).seconds() * 1000.0);
2945 }
2946 
2947 bool G1CollectedHeap::expand_heap_after_young_collection(){
2948   size_t expand_bytes = _heap_sizing_policy->expansion_amount_after_young_collection();
2949   if (expand_bytes > 0) {
2950     if (expand(expand_bytes, _workers, NULL)) {
2951       // We failed to expand the heap. Cannot do anything about it.
2952     }
2953     return true;
2954   }
2955   return false;
2956 }
2957 
2958 void G1CollectedHeap::shrink_heap_after_young_collection() {
2959   if (!collector_state()->finish_of_mixed_gc()) {
2960     // Do the shrink only after finish of mixed gc
2961     return;
2962   }
2963   size_t shrink_bytes = _heap_sizing_policy->shrink_amount_after_mixed_collections();
2964   if (shrink_bytes > 0) {
2965     shrink(shrink_bytes);
2966   }
2967 }
2968 
2969 void G1CollectedHeap::expand_heap_after_concurrent_mark() {
2970   size_t expand_bytes = _heap_sizing_policy->expansion_amount_after_concurrent_mark();
2971   if (expand_bytes > 0) {
2972     expand(expand_bytes, _workers, NULL);
2973   }
2974 }
2975 
2976 const char* G1CollectedHeap::young_gc_name() const {
2977   if (collector_state()->in_initial_mark_gc()) {
2978     return "Pause Young (Concurrent Start)";
2979   } else if (collector_state()->in_young_only_phase()) {
2980     if (collector_state()->in_young_gc_before_mixed()) {
2981       return "Pause Young (Prepare Mixed)";
2982     } else {
2983       return "Pause Young (Normal)";
2984     }
2985   } else {
2986     return "Pause Young (Mixed)";
2987   }
2988 }
2989 
2990 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2991   assert_at_safepoint_on_vm_thread();
2992   guarantee(!is_gc_active(), "collection is not reentrant");
2993 
2994   if (GCLocker::check_active_before_gc()) {
2995     return false;
2996   }
2997 
2998   GCIdMark gc_id_mark;
2999 
3000   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3001   ResourceMark rm;
3002 
3003   policy()->note_gc_start();
3004 
3005   _gc_timer_stw->register_gc_start();
3006   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3007 
3008   wait_for_root_region_scanning();
3009 
3010   print_heap_before_gc();
3011   print_heap_regions();
3012   trace_heap_before_gc(_gc_tracer_stw);
3013 
3014   _verifier->verify_region_sets_optional();
3015   _verifier->verify_dirty_young_regions();
3016 
3017   // We should not be doing initial mark unless the conc mark thread is running
3018   if (!_cm_thread->should_terminate()) {
3019     // This call will decide whether this pause is an initial-mark
3020     // pause. If it is, in_initial_mark_gc() will return true
3021     // for the duration of this pause.
3022     policy()->decide_on_conc_mark_initiation();
3023   }
3024 
3025   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3026   assert(!collector_state()->in_initial_mark_gc() ||
3027          collector_state()->in_young_only_phase(), "sanity");
3028   // We also do not allow mixed GCs during marking.
3029   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3030 
3031   // Record whether this pause is an initial mark. When the current
3032   // thread has completed its logging output and it's safe to signal
3033   // the CM thread, the flag's value in the policy has been reset.
3034   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3035   if (should_start_conc_mark) {
3036     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3037   }
3038 
3039   // Inner scope for scope based logging, timers, and stats collection
3040   {
3041     G1EvacuationInfo evacuation_info;
3042 
3043     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3044 
3045     GCTraceCPUTime tcpu;
3046 
3047     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3048 
3049     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3050                                                             workers()->active_workers(),
3051                                                             Threads::number_of_non_daemon_threads());
3052     active_workers = workers()->update_active_workers(active_workers);
3053     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3054 
3055     G1MonitoringScope ms(g1mm(),
3056                          false /* full_gc */,
3057                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3058 
3059     G1HeapTransition heap_transition(this);
3060 
3061     {
3062       IsGCActiveMark x;
3063 
3064       gc_prologue(false);
3065 
3066       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3067       verify_before_young_collection(verify_type);
3068 
3069       {
3070         // The elapsed time induced by the start time below deliberately elides
3071         // the possible verification above.
3072         double sample_start_time_sec = os::elapsedTime();
3073 
3074         // Please see comment in g1CollectedHeap.hpp and
3075         // G1CollectedHeap::ref_processing_init() to see how
3076         // reference processing currently works in G1.
3077         _ref_processor_stw->enable_discovery();
3078 
3079         // We want to temporarily turn off discovery by the
3080         // CM ref processor, if necessary, and turn it back on
3081         // on again later if we do. Using a scoped
3082         // NoRefDiscovery object will do this.
3083         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3084 
3085         policy()->record_collection_pause_start(sample_start_time_sec);
3086 
3087         // Forget the current allocation region (we might even choose it to be part
3088         // of the collection set!).
3089         _allocator->release_mutator_alloc_regions();
3090 
3091         calculate_collection_set(evacuation_info, target_pause_time_ms);
3092 
3093         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3094         G1ParScanThreadStateSet per_thread_states(this,
3095                                                   &rdcqs,
3096                                                   workers()->active_workers(),
3097                                                   collection_set()->young_region_length(),
3098                                                   collection_set()->optional_region_length());
3099         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3100 
3101         // Actually do the work...
3102         evacuate_initial_collection_set(&per_thread_states);
3103 
3104         if (_collection_set.optional_region_length() != 0) {
3105           evacuate_optional_collection_set(&per_thread_states);
3106         }
3107         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3108 
3109         start_new_collection_set();
3110 
3111         _survivor_evac_stats.adjust_desired_plab_sz();
3112         _old_evac_stats.adjust_desired_plab_sz();
3113 
3114         if (should_start_conc_mark) {
3115           // We have to do this before we notify the CM threads that
3116           // they can start working to make sure that all the
3117           // appropriate initialization is done on the CM object.
3118           concurrent_mark()->post_initial_mark();
3119           // Note that we don't actually trigger the CM thread at
3120           // this point. We do that later when we're sure that
3121           // the current thread has completed its logging output.
3122         }
3123 
3124         allocate_dummy_regions();
3125 
3126         _allocator->init_mutator_alloc_regions();
3127 
3128         resize_heap_after_young_collection();
3129 
3130         double sample_end_time_sec = os::elapsedTime();
3131         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3132         policy()->record_collection_pause_end(pause_time_ms);
3133       }
3134 
3135       verify_after_young_collection(verify_type);
3136 
3137 #ifdef TRACESPINNING
3138       ParallelTaskTerminator::print_termination_counts();
3139 #endif
3140 
3141       gc_epilogue(false);
3142     }
3143 
3144     // Print the remainder of the GC log output.
3145     if (evacuation_failed()) {
3146       log_info(gc)("To-space exhausted");
3147     }
3148 
3149     policy()->print_phases();
3150     heap_transition.print();
3151 
3152     _hrm->verify_optional();
3153     _verifier->verify_region_sets_optional();
3154 
3155     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3156     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3157 
3158     print_heap_after_gc();
3159     print_heap_regions();
3160     trace_heap_after_gc(_gc_tracer_stw);
3161 
3162     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3163     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3164     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3165     // before any GC notifications are raised.
3166     g1mm()->update_sizes();
3167 
3168     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3169     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3170     _gc_timer_stw->register_gc_end();
3171     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3172   }
3173   // It should now be safe to tell the concurrent mark thread to start
3174   // without its logging output interfering with the logging output
3175   // that came from the pause.
3176 
3177   if (should_start_conc_mark) {
3178     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3179     // thread(s) could be running concurrently with us. Make sure that anything
3180     // after this point does not assume that we are the only GC thread running.
3181     // Note: of course, the actual marking work will not start until the safepoint
3182     // itself is released in SuspendibleThreadSet::desynchronize().
3183     do_concurrent_mark();
3184   }
3185 
3186   return true;
3187 }
3188 
3189 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3190   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3191   workers()->run_task(&rsfp_task);
3192 }
3193 
3194 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3195   double remove_self_forwards_start = os::elapsedTime();
3196 
3197   remove_self_forwarding_pointers(rdcqs);
3198   _preserved_marks_set.restore(workers());
3199 
3200   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3201 }
3202 
3203 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3204   if (!_evacuation_failed) {
3205     _evacuation_failed = true;
3206   }
3207 
3208   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3209   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3210 }
3211 
3212 bool G1ParEvacuateFollowersClosure::offer_termination() {
3213   EventGCPhaseParallel event;
3214   G1ParScanThreadState* const pss = par_scan_state();
3215   start_term_time();
3216   const bool res = terminator()->offer_termination();
3217   end_term_time();
3218   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3219   return res;
3220 }
3221 
3222 void G1ParEvacuateFollowersClosure::do_void() {
3223   EventGCPhaseParallel event;
3224   G1ParScanThreadState* const pss = par_scan_state();
3225   pss->trim_queue();
3226   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3227   do {
3228     EventGCPhaseParallel event;
3229     pss->steal_and_trim_queue(queues());
3230     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3231   } while (!offer_termination());
3232 }
3233 
3234 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3235                                         bool class_unloading_occurred) {
3236   uint num_workers = workers()->active_workers();
3237   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3238   workers()->run_task(&unlink_task);
3239 }
3240 
3241 // Clean string dedup data structures.
3242 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3243 // record the durations of the phases. Hence the almost-copy.
3244 class G1StringDedupCleaningTask : public AbstractGangTask {
3245   BoolObjectClosure* _is_alive;
3246   OopClosure* _keep_alive;
3247   G1GCPhaseTimes* _phase_times;
3248 
3249 public:
3250   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3251                             OopClosure* keep_alive,
3252                             G1GCPhaseTimes* phase_times) :
3253     AbstractGangTask("Partial Cleaning Task"),
3254     _is_alive(is_alive),
3255     _keep_alive(keep_alive),
3256     _phase_times(phase_times)
3257   {
3258     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3259     StringDedup::gc_prologue(true);
3260   }
3261 
3262   ~G1StringDedupCleaningTask() {
3263     StringDedup::gc_epilogue();
3264   }
3265 
3266   void work(uint worker_id) {
3267     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3268     {
3269       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3270       StringDedupQueue::unlink_or_oops_do(&cl);
3271     }
3272     {
3273       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3274       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3275     }
3276   }
3277 };
3278 
3279 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3280                                             OopClosure* keep_alive,
3281                                             G1GCPhaseTimes* phase_times) {
3282   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3283   workers()->run_task(&cl);
3284 }
3285 
3286 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3287  private:
3288   G1RedirtyCardsQueueSet* _qset;
3289   G1CollectedHeap* _g1h;
3290   BufferNode* volatile _nodes;
3291 
3292   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3293     size_t buffer_size = _qset->buffer_size();
3294     BufferNode* next = Atomic::load(&_nodes);
3295     while (next != NULL) {
3296       BufferNode* node = next;
3297       next = Atomic::cmpxchg(&_nodes, node, node->next());
3298       if (next == node) {
3299         cl->apply_to_buffer(node, buffer_size, worker_id);
3300         next = node->next();
3301       }
3302     }
3303   }
3304 
3305  public:
3306   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3307     AbstractGangTask("Redirty Cards"),
3308     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3309 
3310   virtual void work(uint worker_id) {
3311     G1GCPhaseTimes* p = _g1h->phase_times();
3312     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3313 
3314     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3315     par_apply(&cl, worker_id);
3316 
3317     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3318   }
3319 };
3320 
3321 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3322   double redirty_logged_cards_start = os::elapsedTime();
3323 
3324   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3325   workers()->run_task(&redirty_task);
3326 
3327   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3328   dcq.merge_bufferlists(rdcqs);
3329 
3330   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3331 }
3332 
3333 // Weak Reference Processing support
3334 
3335 bool G1STWIsAliveClosure::do_object_b(oop p) {
3336   // An object is reachable if it is outside the collection set,
3337   // or is inside and copied.
3338   return !_g1h->is_in_cset(p) || p->is_forwarded();
3339 }
3340 
3341 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3342   assert(obj != NULL, "must not be NULL");
3343   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3344   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3345   // may falsely indicate that this is not the case here: however the collection set only
3346   // contains old regions when concurrent mark is not running.
3347   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3348 }
3349 
3350 // Non Copying Keep Alive closure
3351 class G1KeepAliveClosure: public OopClosure {
3352   G1CollectedHeap*_g1h;
3353 public:
3354   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3355   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3356   void do_oop(oop* p) {
3357     oop obj = *p;
3358     assert(obj != NULL, "the caller should have filtered out NULL values");
3359 
3360     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3361     if (!region_attr.is_in_cset_or_humongous()) {
3362       return;
3363     }
3364     if (region_attr.is_in_cset()) {
3365       assert( obj->is_forwarded(), "invariant" );
3366       *p = obj->forwardee();
3367     } else {
3368       assert(!obj->is_forwarded(), "invariant" );
3369       assert(region_attr.is_humongous(),
3370              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3371      _g1h->set_humongous_is_live(obj);
3372     }
3373   }
3374 };
3375 
3376 // Copying Keep Alive closure - can be called from both
3377 // serial and parallel code as long as different worker
3378 // threads utilize different G1ParScanThreadState instances
3379 // and different queues.
3380 
3381 class G1CopyingKeepAliveClosure: public OopClosure {
3382   G1CollectedHeap*         _g1h;
3383   G1ParScanThreadState*    _par_scan_state;
3384 
3385 public:
3386   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3387                             G1ParScanThreadState* pss):
3388     _g1h(g1h),
3389     _par_scan_state(pss)
3390   {}
3391 
3392   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3393   virtual void do_oop(      oop* p) { do_oop_work(p); }
3394 
3395   template <class T> void do_oop_work(T* p) {
3396     oop obj = RawAccess<>::oop_load(p);
3397 
3398     if (_g1h->is_in_cset_or_humongous(obj)) {
3399       // If the referent object has been forwarded (either copied
3400       // to a new location or to itself in the event of an
3401       // evacuation failure) then we need to update the reference
3402       // field and, if both reference and referent are in the G1
3403       // heap, update the RSet for the referent.
3404       //
3405       // If the referent has not been forwarded then we have to keep
3406       // it alive by policy. Therefore we have copy the referent.
3407       //
3408       // When the queue is drained (after each phase of reference processing)
3409       // the object and it's followers will be copied, the reference field set
3410       // to point to the new location, and the RSet updated.
3411       _par_scan_state->push_on_queue(p);
3412     }
3413   }
3414 };
3415 
3416 // Serial drain queue closure. Called as the 'complete_gc'
3417 // closure for each discovered list in some of the
3418 // reference processing phases.
3419 
3420 class G1STWDrainQueueClosure: public VoidClosure {
3421 protected:
3422   G1CollectedHeap* _g1h;
3423   G1ParScanThreadState* _par_scan_state;
3424 
3425   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3426 
3427 public:
3428   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3429     _g1h(g1h),
3430     _par_scan_state(pss)
3431   { }
3432 
3433   void do_void() {
3434     G1ParScanThreadState* const pss = par_scan_state();
3435     pss->trim_queue();
3436   }
3437 };
3438 
3439 // Parallel Reference Processing closures
3440 
3441 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3442 // processing during G1 evacuation pauses.
3443 
3444 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3445 private:
3446   G1CollectedHeap*          _g1h;
3447   G1ParScanThreadStateSet*  _pss;
3448   RefToScanQueueSet*        _queues;
3449   WorkGang*                 _workers;
3450 
3451 public:
3452   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3453                            G1ParScanThreadStateSet* per_thread_states,
3454                            WorkGang* workers,
3455                            RefToScanQueueSet *task_queues) :
3456     _g1h(g1h),
3457     _pss(per_thread_states),
3458     _queues(task_queues),
3459     _workers(workers)
3460   {
3461     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3462   }
3463 
3464   // Executes the given task using concurrent marking worker threads.
3465   virtual void execute(ProcessTask& task, uint ergo_workers);
3466 };
3467 
3468 // Gang task for possibly parallel reference processing
3469 
3470 class G1STWRefProcTaskProxy: public AbstractGangTask {
3471   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3472   ProcessTask&     _proc_task;
3473   G1CollectedHeap* _g1h;
3474   G1ParScanThreadStateSet* _pss;
3475   RefToScanQueueSet* _task_queues;
3476   ParallelTaskTerminator* _terminator;
3477 
3478 public:
3479   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3480                         G1CollectedHeap* g1h,
3481                         G1ParScanThreadStateSet* per_thread_states,
3482                         RefToScanQueueSet *task_queues,
3483                         ParallelTaskTerminator* terminator) :
3484     AbstractGangTask("Process reference objects in parallel"),
3485     _proc_task(proc_task),
3486     _g1h(g1h),
3487     _pss(per_thread_states),
3488     _task_queues(task_queues),
3489     _terminator(terminator)
3490   {}
3491 
3492   virtual void work(uint worker_id) {
3493     // The reference processing task executed by a single worker.
3494     ResourceMark rm;
3495     HandleMark   hm;
3496 
3497     G1STWIsAliveClosure is_alive(_g1h);
3498 
3499     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3500     pss->set_ref_discoverer(NULL);
3501 
3502     // Keep alive closure.
3503     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3504 
3505     // Complete GC closure
3506     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3507 
3508     // Call the reference processing task's work routine.
3509     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3510 
3511     // Note we cannot assert that the refs array is empty here as not all
3512     // of the processing tasks (specifically phase2 - pp2_work) execute
3513     // the complete_gc closure (which ordinarily would drain the queue) so
3514     // the queue may not be empty.
3515   }
3516 };
3517 
3518 // Driver routine for parallel reference processing.
3519 // Creates an instance of the ref processing gang
3520 // task and has the worker threads execute it.
3521 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3522   assert(_workers != NULL, "Need parallel worker threads.");
3523 
3524   assert(_workers->active_workers() >= ergo_workers,
3525          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3526          ergo_workers, _workers->active_workers());
3527   TaskTerminator terminator(ergo_workers, _queues);
3528   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3529 
3530   _workers->run_task(&proc_task_proxy, ergo_workers);
3531 }
3532 
3533 // End of weak reference support closures
3534 
3535 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3536   double ref_proc_start = os::elapsedTime();
3537 
3538   ReferenceProcessor* rp = _ref_processor_stw;
3539   assert(rp->discovery_enabled(), "should have been enabled");
3540 
3541   // Closure to test whether a referent is alive.
3542   G1STWIsAliveClosure is_alive(this);
3543 
3544   // Even when parallel reference processing is enabled, the processing
3545   // of JNI refs is serial and performed serially by the current thread
3546   // rather than by a worker. The following PSS will be used for processing
3547   // JNI refs.
3548 
3549   // Use only a single queue for this PSS.
3550   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3551   pss->set_ref_discoverer(NULL);
3552   assert(pss->queue_is_empty(), "pre-condition");
3553 
3554   // Keep alive closure.
3555   G1CopyingKeepAliveClosure keep_alive(this, pss);
3556 
3557   // Serial Complete GC closure
3558   G1STWDrainQueueClosure drain_queue(this, pss);
3559 
3560   // Setup the soft refs policy...
3561   rp->setup_policy(false);
3562 
3563   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3564 
3565   ReferenceProcessorStats stats;
3566   if (!rp->processing_is_mt()) {
3567     // Serial reference processing...
3568     stats = rp->process_discovered_references(&is_alive,
3569                                               &keep_alive,
3570                                               &drain_queue,
3571                                               NULL,
3572                                               pt);
3573   } else {
3574     uint no_of_gc_workers = workers()->active_workers();
3575 
3576     // Parallel reference processing
3577     assert(no_of_gc_workers <= rp->max_num_queues(),
3578            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3579            no_of_gc_workers,  rp->max_num_queues());
3580 
3581     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3582     stats = rp->process_discovered_references(&is_alive,
3583                                               &keep_alive,
3584                                               &drain_queue,
3585                                               &par_task_executor,
3586                                               pt);
3587   }
3588 
3589   _gc_tracer_stw->report_gc_reference_stats(stats);
3590 
3591   // We have completed copying any necessary live referent objects.
3592   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3593 
3594   make_pending_list_reachable();
3595 
3596   assert(!rp->discovery_enabled(), "Postcondition");
3597   rp->verify_no_references_recorded();
3598 
3599   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3600   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3601 }
3602 
3603 void G1CollectedHeap::make_pending_list_reachable() {
3604   if (collector_state()->in_initial_mark_gc()) {
3605     oop pll_head = Universe::reference_pending_list();
3606     if (pll_head != NULL) {
3607       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3608       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3609     }
3610   }
3611 }
3612 
3613 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3614   Ticks start = Ticks::now();
3615   per_thread_states->flush();
3616   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3617 }
3618 
3619 class G1PrepareEvacuationTask : public AbstractGangTask {
3620   class G1PrepareRegionsClosure : public HeapRegionClosure {
3621     G1CollectedHeap* _g1h;
3622     G1PrepareEvacuationTask* _parent_task;
3623     size_t _worker_humongous_total;
3624     size_t _worker_humongous_candidates;
3625 
3626     bool humongous_region_is_candidate(HeapRegion* region) const {
3627       assert(region->is_starts_humongous(), "Must start a humongous object");
3628 
3629       oop obj = oop(region->bottom());
3630 
3631       // Dead objects cannot be eager reclaim candidates. Due to class
3632       // unloading it is unsafe to query their classes so we return early.
3633       if (_g1h->is_obj_dead(obj, region)) {
3634         return false;
3635       }
3636 
3637       // If we do not have a complete remembered set for the region, then we can
3638       // not be sure that we have all references to it.
3639       if (!region->rem_set()->is_complete()) {
3640         return false;
3641       }
3642       // Candidate selection must satisfy the following constraints
3643       // while concurrent marking is in progress:
3644       //
3645       // * In order to maintain SATB invariants, an object must not be
3646       // reclaimed if it was allocated before the start of marking and
3647       // has not had its references scanned.  Such an object must have
3648       // its references (including type metadata) scanned to ensure no
3649       // live objects are missed by the marking process.  Objects
3650       // allocated after the start of concurrent marking don't need to
3651       // be scanned.
3652       //
3653       // * An object must not be reclaimed if it is on the concurrent
3654       // mark stack.  Objects allocated after the start of concurrent
3655       // marking are never pushed on the mark stack.
3656       //
3657       // Nominating only objects allocated after the start of concurrent
3658       // marking is sufficient to meet both constraints.  This may miss
3659       // some objects that satisfy the constraints, but the marking data
3660       // structures don't support efficiently performing the needed
3661       // additional tests or scrubbing of the mark stack.
3662       //
3663       // However, we presently only nominate is_typeArray() objects.
3664       // A humongous object containing references induces remembered
3665       // set entries on other regions.  In order to reclaim such an
3666       // object, those remembered sets would need to be cleaned up.
3667       //
3668       // We also treat is_typeArray() objects specially, allowing them
3669       // to be reclaimed even if allocated before the start of
3670       // concurrent mark.  For this we rely on mark stack insertion to
3671       // exclude is_typeArray() objects, preventing reclaiming an object
3672       // that is in the mark stack.  We also rely on the metadata for
3673       // such objects to be built-in and so ensured to be kept live.
3674       // Frequent allocation and drop of large binary blobs is an
3675       // important use case for eager reclaim, and this special handling
3676       // may reduce needed headroom.
3677 
3678       return obj->is_typeArray() &&
3679              _g1h->is_potential_eager_reclaim_candidate(region);
3680     }
3681 
3682   public:
3683     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3684       _g1h(g1h),
3685       _parent_task(parent_task),
3686       _worker_humongous_total(0),
3687       _worker_humongous_candidates(0) { }
3688 
3689     ~G1PrepareRegionsClosure() {
3690       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3691       _parent_task->add_humongous_total(_worker_humongous_total);
3692     }
3693 
3694     virtual bool do_heap_region(HeapRegion* hr) {
3695       // First prepare the region for scanning
3696       _g1h->rem_set()->prepare_region_for_scan(hr);
3697 
3698       // Now check if region is a humongous candidate
3699       if (!hr->is_starts_humongous()) {
3700         _g1h->register_region_with_region_attr(hr);
3701         return false;
3702       }
3703 
3704       uint index = hr->hrm_index();
3705       if (humongous_region_is_candidate(hr)) {
3706         _g1h->set_humongous_reclaim_candidate(index, true);
3707         _g1h->register_humongous_region_with_region_attr(index);
3708         _worker_humongous_candidates++;
3709         // We will later handle the remembered sets of these regions.
3710       } else {
3711         _g1h->set_humongous_reclaim_candidate(index, false);
3712         _g1h->register_region_with_region_attr(hr);
3713       }
3714       _worker_humongous_total++;
3715 
3716       return false;
3717     }
3718   };
3719 
3720   G1CollectedHeap* _g1h;
3721   HeapRegionClaimer _claimer;
3722   volatile size_t _humongous_total;
3723   volatile size_t _humongous_candidates;
3724 public:
3725   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3726     AbstractGangTask("Prepare Evacuation"),
3727     _g1h(g1h),
3728     _claimer(_g1h->workers()->active_workers()),
3729     _humongous_total(0),
3730     _humongous_candidates(0) { }
3731 
3732   ~G1PrepareEvacuationTask() {
3733     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3734   }
3735 
3736   void work(uint worker_id) {
3737     G1PrepareRegionsClosure cl(_g1h, this);
3738     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3739   }
3740 
3741   void add_humongous_candidates(size_t candidates) {
3742     Atomic::add(&_humongous_candidates, candidates);
3743   }
3744 
3745   void add_humongous_total(size_t total) {
3746     Atomic::add(&_humongous_total, total);
3747   }
3748 
3749   size_t humongous_candidates() {
3750     return _humongous_candidates;
3751   }
3752 
3753   size_t humongous_total() {
3754     return _humongous_total;
3755   }
3756 };
3757 
3758 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3759   _bytes_used_during_gc = 0;
3760 
3761   _expand_heap_after_alloc_failure = true;
3762   _evacuation_failed = false;
3763 
3764   // Disable the hot card cache.
3765   _hot_card_cache->reset_hot_cache_claimed_index();
3766   _hot_card_cache->set_use_cache(false);
3767 
3768   // Initialize the GC alloc regions.
3769   _allocator->init_gc_alloc_regions(evacuation_info);
3770 
3771   {
3772     Ticks start = Ticks::now();
3773     rem_set()->prepare_for_scan_heap_roots();
3774     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3775   }
3776 
3777   {
3778     G1PrepareEvacuationTask g1_prep_task(this);
3779     Tickspan task_time = run_task(&g1_prep_task);
3780 
3781     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3782                                            g1_prep_task.humongous_total(),
3783                                            g1_prep_task.humongous_candidates());
3784   }
3785 
3786   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3787   _preserved_marks_set.assert_empty();
3788 
3789 #if COMPILER2_OR_JVMCI
3790   DerivedPointerTable::clear();
3791 #endif
3792 
3793   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3794   if (collector_state()->in_initial_mark_gc()) {
3795     concurrent_mark()->pre_initial_mark();
3796 
3797     double start_clear_claimed_marks = os::elapsedTime();
3798 
3799     ClassLoaderDataGraph::clear_claimed_marks();
3800 
3801     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3802     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3803   }
3804 
3805   // Should G1EvacuationFailureALot be in effect for this GC?
3806   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3807 }
3808 
3809 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3810 protected:
3811   G1CollectedHeap* _g1h;
3812   G1ParScanThreadStateSet* _per_thread_states;
3813   RefToScanQueueSet* _task_queues;
3814   TaskTerminator _terminator;
3815   uint _num_workers;
3816 
3817   void evacuate_live_objects(G1ParScanThreadState* pss,
3818                              uint worker_id,
3819                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3820                              G1GCPhaseTimes::GCParPhases termination_phase) {
3821     G1GCPhaseTimes* p = _g1h->phase_times();
3822 
3823     Ticks start = Ticks::now();
3824     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3825     cl.do_void();
3826 
3827     assert(pss->queue_is_empty(), "should be empty");
3828 
3829     Tickspan evac_time = (Ticks::now() - start);
3830     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3831 
3832     if (termination_phase == G1GCPhaseTimes::Termination) {
3833       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3834       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3835     } else {
3836       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3837       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3838     }
3839     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3840   }
3841 
3842   virtual void start_work(uint worker_id) { }
3843 
3844   virtual void end_work(uint worker_id) { }
3845 
3846   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3847 
3848   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3849 
3850 public:
3851   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3852     AbstractGangTask(name),
3853     _g1h(G1CollectedHeap::heap()),
3854     _per_thread_states(per_thread_states),
3855     _task_queues(task_queues),
3856     _terminator(num_workers, _task_queues),
3857     _num_workers(num_workers)
3858   { }
3859 
3860   void work(uint worker_id) {
3861     start_work(worker_id);
3862 
3863     {
3864       ResourceMark rm;
3865       HandleMark   hm;
3866 
3867       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3868       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3869 
3870       scan_roots(pss, worker_id);
3871       evacuate_live_objects(pss, worker_id);
3872     }
3873 
3874     end_work(worker_id);
3875   }
3876 };
3877 
3878 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3879   G1RootProcessor* _root_processor;
3880 
3881   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3882     _root_processor->evacuate_roots(pss, worker_id);
3883     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3884     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3885   }
3886 
3887   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3888     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3889   }
3890 
3891   void start_work(uint worker_id) {
3892     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3893   }
3894 
3895   void end_work(uint worker_id) {
3896     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3897   }
3898 
3899 public:
3900   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3901                         G1ParScanThreadStateSet* per_thread_states,
3902                         RefToScanQueueSet* task_queues,
3903                         G1RootProcessor* root_processor,
3904                         uint num_workers) :
3905     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3906     _root_processor(root_processor)
3907   { }
3908 };
3909 
3910 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3911   G1GCPhaseTimes* p = phase_times();
3912 
3913   {
3914     Ticks start = Ticks::now();
3915     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3916     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3917   }
3918 
3919   Tickspan task_time;
3920   const uint num_workers = workers()->active_workers();
3921 
3922   Ticks start_processing = Ticks::now();
3923   {
3924     G1RootProcessor root_processor(this, num_workers);
3925     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3926     task_time = run_task(&g1_par_task);
3927     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3928     // To extract its code root fixup time we measure total time of this scope and
3929     // subtract from the time the WorkGang task took.
3930   }
3931   Tickspan total_processing = Ticks::now() - start_processing;
3932 
3933   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3934   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3935 }
3936 
3937 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3938 
3939   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3940     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3941     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3942   }
3943 
3944   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3945     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3946   }
3947 
3948 public:
3949   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3950                                 RefToScanQueueSet* queues,
3951                                 uint num_workers) :
3952     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3953   }
3954 };
3955 
3956 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3957   class G1MarkScope : public MarkScope { };
3958 
3959   Tickspan task_time;
3960 
3961   Ticks start_processing = Ticks::now();
3962   {
3963     G1MarkScope code_mark_scope;
3964     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3965     task_time = run_task(&task);
3966     // See comment in evacuate_collection_set() for the reason of the scope.
3967   }
3968   Tickspan total_processing = Ticks::now() - start_processing;
3969 
3970   G1GCPhaseTimes* p = phase_times();
3971   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3972 }
3973 
3974 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3975   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3976 
3977   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3978 
3979     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3980     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3981 
3982     if (time_left_ms < 0 ||
3983         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3984       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3985                                 _collection_set.optional_region_length(), time_left_ms);
3986       break;
3987     }
3988 
3989     {
3990       Ticks start = Ticks::now();
3991       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3992       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3993     }
3994 
3995     {
3996       Ticks start = Ticks::now();
3997       evacuate_next_optional_regions(per_thread_states);
3998       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3999     }
4000   }
4001 
4002   _collection_set.abandon_optional_collection_set(per_thread_states);
4003 }
4004 
4005 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
4006                                                    G1RedirtyCardsQueueSet* rdcqs,
4007                                                    G1ParScanThreadStateSet* per_thread_states) {
4008   G1GCPhaseTimes* p = phase_times();
4009 
4010   rem_set()->cleanup_after_scan_heap_roots();
4011 
4012   // Process any discovered reference objects - we have
4013   // to do this _before_ we retire the GC alloc regions
4014   // as we may have to copy some 'reachable' referent
4015   // objects (and their reachable sub-graphs) that were
4016   // not copied during the pause.
4017   process_discovered_references(per_thread_states);
4018 
4019   G1STWIsAliveClosure is_alive(this);
4020   G1KeepAliveClosure keep_alive(this);
4021 
4022   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4023 
4024   if (G1StringDedup::is_enabled()) {
4025     double string_dedup_time_ms = os::elapsedTime();
4026 
4027     string_dedup_cleaning(&is_alive, &keep_alive, p);
4028 
4029     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4030     p->record_string_deduplication_time(string_cleanup_time_ms);
4031   }
4032 
4033   _allocator->release_gc_alloc_regions(evacuation_info);
4034 
4035   if (evacuation_failed()) {
4036     restore_after_evac_failure(rdcqs);
4037 
4038     // Reset the G1EvacuationFailureALot counters and flags
4039     NOT_PRODUCT(reset_evacuation_should_fail();)
4040 
4041     double recalculate_used_start = os::elapsedTime();
4042     set_used(recalculate_used());
4043     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4044 
4045     if (_archive_allocator != NULL) {
4046       _archive_allocator->clear_used();
4047     }
4048     for (uint i = 0; i < ParallelGCThreads; i++) {
4049       if (_evacuation_failed_info_array[i].has_failed()) {
4050         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4051       }
4052     }
4053   } else {
4054     // The "used" of the the collection set have already been subtracted
4055     // when they were freed.  Add in the bytes used.
4056     increase_used(_bytes_used_during_gc);
4057   }
4058 
4059   _preserved_marks_set.assert_empty();
4060 
4061   merge_per_thread_state_info(per_thread_states);
4062 
4063   // Reset and re-enable the hot card cache.
4064   // Note the counts for the cards in the regions in the
4065   // collection set are reset when the collection set is freed.
4066   _hot_card_cache->reset_hot_cache();
4067   _hot_card_cache->set_use_cache(true);
4068 
4069   purge_code_root_memory();
4070 
4071   redirty_logged_cards(rdcqs);
4072 
4073   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4074 
4075   eagerly_reclaim_humongous_regions();
4076 
4077   record_obj_copy_mem_stats();
4078 
4079   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4080   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4081 
4082 #if COMPILER2_OR_JVMCI
4083   double start = os::elapsedTime();
4084   DerivedPointerTable::update_pointers();
4085   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4086 #endif
4087   policy()->print_age_table();
4088 }
4089 
4090 void G1CollectedHeap::record_obj_copy_mem_stats() {
4091   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4092 
4093   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4094                                                create_g1_evac_summary(&_old_evac_stats));
4095 }
4096 
4097 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4098   assert(!hr->is_free(), "the region should not be free");
4099   assert(!hr->is_empty(), "the region should not be empty");
4100   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4101 
4102   if (G1VerifyBitmaps) {
4103     MemRegion mr(hr->bottom(), hr->end());
4104     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4105   }
4106 
4107   // Clear the card counts for this region.
4108   // Note: we only need to do this if the region is not young
4109   // (since we don't refine cards in young regions).
4110   if (!hr->is_young()) {
4111     _hot_card_cache->reset_card_counts(hr);
4112   }
4113 
4114   // Reset region metadata to allow reuse.
4115   hr->hr_clear(true /* clear_space */);
4116   _policy->remset_tracker()->update_at_free(hr);
4117 
4118   if (free_list != NULL) {
4119     free_list->add_ordered(hr);
4120   }
4121 }
4122 
4123 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4124                                             FreeRegionList* free_list) {
4125   assert(hr->is_humongous(), "this is only for humongous regions");
4126   assert(free_list != NULL, "pre-condition");
4127   hr->clear_humongous();
4128   free_region(hr, free_list);
4129 }
4130 
4131 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4132                                            const uint humongous_regions_removed) {
4133   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4134     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4135     _old_set.bulk_remove(old_regions_removed);
4136     _humongous_set.bulk_remove(humongous_regions_removed);
4137   }
4138 
4139 }
4140 
4141 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4142   assert(list != NULL, "list can't be null");
4143   if (!list->is_empty()) {
4144     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4145     _hrm->insert_list_into_free_list(list);
4146   }
4147 }
4148 
4149 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4150   decrease_used(bytes);
4151 }
4152 
4153 class G1FreeCollectionSetTask : public AbstractGangTask {
4154   // Helper class to keep statistics for the collection set freeing
4155   class FreeCSetStats {
4156     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4157     size_t _after_used_bytes;    // Usage in regions failing evacuation
4158     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4159     size_t _failure_used_words;  // Live size in failed regions
4160     size_t _failure_waste_words; // Wasted size in failed regions
4161     size_t _rs_length;           // Remembered set size
4162     uint _regions_freed;         // Number of regions freed
4163   public:
4164     FreeCSetStats() :
4165         _before_used_bytes(0),
4166         _after_used_bytes(0),
4167         _bytes_allocated_in_old_since_last_gc(0),
4168         _failure_used_words(0),
4169         _failure_waste_words(0),
4170         _rs_length(0),
4171         _regions_freed(0) { }
4172 
4173     void merge_stats(FreeCSetStats* other) {
4174       assert(other != NULL, "invariant");
4175       _before_used_bytes += other->_before_used_bytes;
4176       _after_used_bytes += other->_after_used_bytes;
4177       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4178       _failure_used_words += other->_failure_used_words;
4179       _failure_waste_words += other->_failure_waste_words;
4180       _rs_length += other->_rs_length;
4181       _regions_freed += other->_regions_freed;
4182     }
4183 
4184     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4185       evacuation_info->set_regions_freed(_regions_freed);
4186       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4187 
4188       g1h->decrement_summary_bytes(_before_used_bytes);
4189       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4190 
4191       G1Policy *policy = g1h->policy();
4192       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4193       policy->record_rs_length(_rs_length);
4194       policy->cset_regions_freed();
4195     }
4196 
4197     void account_failed_region(HeapRegion* r) {
4198       size_t used_words = r->marked_bytes() / HeapWordSize;
4199       _failure_used_words += used_words;
4200       _failure_waste_words += HeapRegion::GrainWords - used_words;
4201       _after_used_bytes += r->used();
4202 
4203       // When moving a young gen region to old gen, we "allocate" that whole
4204       // region there. This is in addition to any already evacuated objects.
4205       // Notify the policy about that. Old gen regions do not cause an
4206       // additional allocation: both the objects still in the region and the
4207       // ones already moved are accounted for elsewhere.
4208       if (r->is_young()) {
4209         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4210       }
4211     }
4212 
4213     void account_evacuated_region(HeapRegion* r) {
4214       _before_used_bytes += r->used();
4215       _regions_freed += 1;
4216     }
4217 
4218     void account_rs_length(HeapRegion* r) {
4219       _rs_length += r->rem_set()->occupied();
4220     }
4221   };
4222 
4223   // Closure applied to all regions in the collection set.
4224   class FreeCSetClosure : public HeapRegionClosure {
4225     // Helper to send JFR events for regions.
4226     class JFREventForRegion {
4227       EventGCPhaseParallel _event;
4228     public:
4229       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4230         _event.set_gcId(GCId::current());
4231         _event.set_gcWorkerId(worker_id);
4232         if (region->is_young()) {
4233           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4234         } else {
4235           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4236         }
4237       }
4238 
4239       ~JFREventForRegion() {
4240         _event.commit();
4241       }
4242     };
4243 
4244     // Helper to do timing for region work.
4245     class TimerForRegion {
4246       Tickspan& _time;
4247       Ticks     _start_time;
4248     public:
4249       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4250       ~TimerForRegion() {
4251         _time += Ticks::now() - _start_time;
4252       }
4253     };
4254 
4255     // FreeCSetClosure members
4256     G1CollectedHeap* _g1h;
4257     const size_t*    _surviving_young_words;
4258     uint             _worker_id;
4259     Tickspan         _young_time;
4260     Tickspan         _non_young_time;
4261     FreeCSetStats*   _stats;
4262 
4263     void assert_in_cset(HeapRegion* r) {
4264       assert(r->young_index_in_cset() != 0 &&
4265              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4266              "Young index %u is wrong for region %u of type %s with %u young regions",
4267              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4268     }
4269 
4270     void handle_evacuated_region(HeapRegion* r) {
4271       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4272       stats()->account_evacuated_region(r);
4273 
4274       // Free the region and and its remembered set.
4275       _g1h->free_region(r, NULL);
4276     }
4277 
4278     void handle_failed_region(HeapRegion* r) {
4279       // Do some allocation statistics accounting. Regions that failed evacuation
4280       // are always made old, so there is no need to update anything in the young
4281       // gen statistics, but we need to update old gen statistics.
4282       stats()->account_failed_region(r);
4283 
4284       // Update the region state due to the failed evacuation.
4285       r->handle_evacuation_failure();
4286 
4287       // Add region to old set, need to hold lock.
4288       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4289       _g1h->old_set_add(r);
4290     }
4291 
4292     Tickspan& timer_for_region(HeapRegion* r) {
4293       return r->is_young() ? _young_time : _non_young_time;
4294     }
4295 
4296     FreeCSetStats* stats() {
4297       return _stats;
4298     }
4299   public:
4300     FreeCSetClosure(const size_t* surviving_young_words,
4301                     uint worker_id,
4302                     FreeCSetStats* stats) :
4303         HeapRegionClosure(),
4304         _g1h(G1CollectedHeap::heap()),
4305         _surviving_young_words(surviving_young_words),
4306         _worker_id(worker_id),
4307         _young_time(),
4308         _non_young_time(),
4309         _stats(stats) { }
4310 
4311     virtual bool do_heap_region(HeapRegion* r) {
4312       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4313       JFREventForRegion event(r, _worker_id);
4314       TimerForRegion timer(timer_for_region(r));
4315 
4316       _g1h->clear_region_attr(r);
4317       stats()->account_rs_length(r);
4318 
4319       if (r->is_young()) {
4320         assert_in_cset(r);
4321         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4322       }
4323 
4324       if (r->evacuation_failed()) {
4325         handle_failed_region(r);
4326       } else {
4327         handle_evacuated_region(r);
4328       }
4329       assert(!_g1h->is_on_master_free_list(r), "sanity");
4330 
4331       return false;
4332     }
4333 
4334     void report_timing(Tickspan parallel_time) {
4335       G1GCPhaseTimes* pt = _g1h->phase_times();
4336       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4337       if (_young_time.value() > 0) {
4338         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4339       }
4340       if (_non_young_time.value() > 0) {
4341         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4342       }
4343     }
4344   };
4345 
4346   // G1FreeCollectionSetTask members
4347   G1CollectedHeap*  _g1h;
4348   G1EvacuationInfo* _evacuation_info;
4349   FreeCSetStats*    _worker_stats;
4350   HeapRegionClaimer _claimer;
4351   const size_t*     _surviving_young_words;
4352   uint              _active_workers;
4353 
4354   FreeCSetStats* worker_stats(uint worker) {
4355     return &_worker_stats[worker];
4356   }
4357 
4358   void report_statistics() {
4359     // Merge the accounting
4360     FreeCSetStats total_stats;
4361     for (uint worker = 0; worker < _active_workers; worker++) {
4362       total_stats.merge_stats(worker_stats(worker));
4363     }
4364     total_stats.report(_g1h, _evacuation_info);
4365   }
4366 
4367 public:
4368   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4369       AbstractGangTask("G1 Free Collection Set"),
4370       _g1h(G1CollectedHeap::heap()),
4371       _evacuation_info(evacuation_info),
4372       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4373       _claimer(active_workers),
4374       _surviving_young_words(surviving_young_words),
4375       _active_workers(active_workers) {
4376     for (uint worker = 0; worker < active_workers; worker++) {
4377       ::new (&_worker_stats[worker]) FreeCSetStats();
4378     }
4379   }
4380 
4381   ~G1FreeCollectionSetTask() {
4382     Ticks serial_time = Ticks::now();
4383     report_statistics();
4384     for (uint worker = 0; worker < _active_workers; worker++) {
4385       _worker_stats[worker].~FreeCSetStats();
4386     }
4387     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4388     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4389   }
4390 
4391   virtual void work(uint worker_id) {
4392     EventGCPhaseParallel event;
4393     Ticks start = Ticks::now();
4394     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4395     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4396 
4397     // Report the total parallel time along with some more detailed metrics.
4398     cl.report_timing(Ticks::now() - start);
4399     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4400   }
4401 };
4402 
4403 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4404   _eden.clear();
4405 
4406   // The free collections set is split up in two tasks, the first
4407   // frees the collection set and records what regions are free,
4408   // and the second one rebuilds the free list. This proved to be
4409   // more efficient than adding a sorted list to another.
4410 
4411   Ticks free_cset_start_time = Ticks::now();
4412   {
4413     uint const num_cs_regions = _collection_set.region_length();
4414     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4415     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4416 
4417     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4418                         cl.name(), num_workers, num_cs_regions, num_regions());
4419     workers()->run_task(&cl, num_workers);
4420   }
4421 
4422   Ticks free_cset_end_time = Ticks::now();
4423   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4424 
4425   // Now rebuild the free region list.
4426   hrm()->rebuild_free_list(workers());
4427   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4428 
4429   collection_set->clear();
4430 }
4431 
4432 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4433  private:
4434   FreeRegionList* _free_region_list;
4435   HeapRegionSet* _proxy_set;
4436   uint _humongous_objects_reclaimed;
4437   uint _humongous_regions_reclaimed;
4438   size_t _freed_bytes;
4439  public:
4440 
4441   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4442     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4443   }
4444 
4445   virtual bool do_heap_region(HeapRegion* r) {
4446     if (!r->is_starts_humongous()) {
4447       return false;
4448     }
4449 
4450     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4451 
4452     oop obj = (oop)r->bottom();
4453     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4454 
4455     // The following checks whether the humongous object is live are sufficient.
4456     // The main additional check (in addition to having a reference from the roots
4457     // or the young gen) is whether the humongous object has a remembered set entry.
4458     //
4459     // A humongous object cannot be live if there is no remembered set for it
4460     // because:
4461     // - there can be no references from within humongous starts regions referencing
4462     // the object because we never allocate other objects into them.
4463     // (I.e. there are no intra-region references that may be missed by the
4464     // remembered set)
4465     // - as soon there is a remembered set entry to the humongous starts region
4466     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4467     // until the end of a concurrent mark.
4468     //
4469     // It is not required to check whether the object has been found dead by marking
4470     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4471     // all objects allocated during that time are considered live.
4472     // SATB marking is even more conservative than the remembered set.
4473     // So if at this point in the collection there is no remembered set entry,
4474     // nobody has a reference to it.
4475     // At the start of collection we flush all refinement logs, and remembered sets
4476     // are completely up-to-date wrt to references to the humongous object.
4477     //
4478     // Other implementation considerations:
4479     // - never consider object arrays at this time because they would pose
4480     // considerable effort for cleaning up the the remembered sets. This is
4481     // required because stale remembered sets might reference locations that
4482     // are currently allocated into.
4483     uint region_idx = r->hrm_index();
4484     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4485         !r->rem_set()->is_empty()) {
4486       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4487                                region_idx,
4488                                (size_t)obj->size() * HeapWordSize,
4489                                p2i(r->bottom()),
4490                                r->rem_set()->occupied(),
4491                                r->rem_set()->strong_code_roots_list_length(),
4492                                next_bitmap->is_marked(r->bottom()),
4493                                g1h->is_humongous_reclaim_candidate(region_idx),
4494                                obj->is_typeArray()
4495                               );
4496       return false;
4497     }
4498 
4499     guarantee(obj->is_typeArray(),
4500               "Only eagerly reclaiming type arrays is supported, but the object "
4501               PTR_FORMAT " is not.", p2i(r->bottom()));
4502 
4503     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4504                              region_idx,
4505                              (size_t)obj->size() * HeapWordSize,
4506                              p2i(r->bottom()),
4507                              r->rem_set()->occupied(),
4508                              r->rem_set()->strong_code_roots_list_length(),
4509                              next_bitmap->is_marked(r->bottom()),
4510                              g1h->is_humongous_reclaim_candidate(region_idx),
4511                              obj->is_typeArray()
4512                             );
4513 
4514     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4515     cm->humongous_object_eagerly_reclaimed(r);
4516     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4517            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4518            region_idx,
4519            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4520            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4521     _humongous_objects_reclaimed++;
4522     do {
4523       HeapRegion* next = g1h->next_region_in_humongous(r);
4524       _freed_bytes += r->used();
4525       r->set_containing_set(NULL);
4526       _humongous_regions_reclaimed++;
4527       g1h->free_humongous_region(r, _free_region_list);
4528       r = next;
4529     } while (r != NULL);
4530 
4531     return false;
4532   }
4533 
4534   uint humongous_objects_reclaimed() {
4535     return _humongous_objects_reclaimed;
4536   }
4537 
4538   uint humongous_regions_reclaimed() {
4539     return _humongous_regions_reclaimed;
4540   }
4541 
4542   size_t bytes_freed() const {
4543     return _freed_bytes;
4544   }
4545 };
4546 
4547 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4548   assert_at_safepoint_on_vm_thread();
4549 
4550   if (!G1EagerReclaimHumongousObjects ||
4551       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4552     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4553     return;
4554   }
4555 
4556   double start_time = os::elapsedTime();
4557 
4558   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4559 
4560   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4561   heap_region_iterate(&cl);
4562 
4563   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4564 
4565   G1HRPrinter* hrp = hr_printer();
4566   if (hrp->is_active()) {
4567     FreeRegionListIterator iter(&local_cleanup_list);
4568     while (iter.more_available()) {
4569       HeapRegion* hr = iter.get_next();
4570       hrp->cleanup(hr);
4571     }
4572   }
4573 
4574   prepend_to_freelist(&local_cleanup_list);
4575   decrement_summary_bytes(cl.bytes_freed());
4576 
4577   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4578                                                        cl.humongous_objects_reclaimed());
4579 }
4580 
4581 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4582 public:
4583   virtual bool do_heap_region(HeapRegion* r) {
4584     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4585     G1CollectedHeap::heap()->clear_region_attr(r);
4586     r->clear_young_index_in_cset();
4587     return false;
4588   }
4589 };
4590 
4591 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4592   G1AbandonCollectionSetClosure cl;
4593   collection_set_iterate_all(&cl);
4594 
4595   collection_set->clear();
4596   collection_set->stop_incremental_building();
4597 }
4598 
4599 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4600   return _allocator->is_retained_old_region(hr);
4601 }
4602 
4603 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4604   _eden.add(hr);
4605   _policy->set_region_eden(hr);
4606 }
4607 
4608 #ifdef ASSERT
4609 
4610 class NoYoungRegionsClosure: public HeapRegionClosure {
4611 private:
4612   bool _success;
4613 public:
4614   NoYoungRegionsClosure() : _success(true) { }
4615   bool do_heap_region(HeapRegion* r) {
4616     if (r->is_young()) {
4617       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4618                             p2i(r->bottom()), p2i(r->end()));
4619       _success = false;
4620     }
4621     return false;
4622   }
4623   bool success() { return _success; }
4624 };
4625 
4626 bool G1CollectedHeap::check_young_list_empty() {
4627   bool ret = (young_regions_count() == 0);
4628 
4629   NoYoungRegionsClosure closure;
4630   heap_region_iterate(&closure);
4631   ret = ret && closure.success();
4632 
4633   return ret;
4634 }
4635 
4636 #endif // ASSERT
4637 
4638 class TearDownRegionSetsClosure : public HeapRegionClosure {
4639   HeapRegionSet *_old_set;
4640 
4641 public:
4642   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4643 
4644   bool do_heap_region(HeapRegion* r) {
4645     if (r->is_old()) {
4646       _old_set->remove(r);
4647     } else if(r->is_young()) {
4648       r->uninstall_surv_rate_group();
4649     } else {
4650       // We ignore free regions, we'll empty the free list afterwards.
4651       // We ignore humongous and archive regions, we're not tearing down these
4652       // sets.
4653       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4654              "it cannot be another type");
4655     }
4656     return false;
4657   }
4658 
4659   ~TearDownRegionSetsClosure() {
4660     assert(_old_set->is_empty(), "post-condition");
4661   }
4662 };
4663 
4664 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4665   assert_at_safepoint_on_vm_thread();
4666 
4667   if (!free_list_only) {
4668     TearDownRegionSetsClosure cl(&_old_set);
4669     heap_region_iterate(&cl);
4670 
4671     // Note that emptying the _young_list is postponed and instead done as
4672     // the first step when rebuilding the regions sets again. The reason for
4673     // this is that during a full GC string deduplication needs to know if
4674     // a collected region was young or old when the full GC was initiated.
4675   }
4676   _hrm->remove_all_free_regions();
4677 }
4678 
4679 void G1CollectedHeap::increase_used(size_t bytes) {
4680   _summary_bytes_used += bytes;
4681 }
4682 
4683 void G1CollectedHeap::decrease_used(size_t bytes) {
4684   assert(_summary_bytes_used >= bytes,
4685          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4686          _summary_bytes_used, bytes);
4687   _summary_bytes_used -= bytes;
4688 }
4689 
4690 void G1CollectedHeap::set_used(size_t bytes) {
4691   _summary_bytes_used = bytes;
4692 }
4693 
4694 class RebuildRegionSetsClosure : public HeapRegionClosure {
4695 private:
4696   bool _free_list_only;
4697 
4698   HeapRegionSet* _old_set;
4699   HeapRegionManager* _hrm;
4700 
4701   size_t _total_used;
4702 
4703 public:
4704   RebuildRegionSetsClosure(bool free_list_only,
4705                            HeapRegionSet* old_set,
4706                            HeapRegionManager* hrm) :
4707     _free_list_only(free_list_only),
4708     _old_set(old_set), _hrm(hrm), _total_used(0) {
4709     assert(_hrm->num_free_regions() == 0, "pre-condition");
4710     if (!free_list_only) {
4711       assert(_old_set->is_empty(), "pre-condition");
4712     }
4713   }
4714 
4715   bool do_heap_region(HeapRegion* r) {
4716     if (r->is_empty()) {
4717       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4718       // Add free regions to the free list
4719       r->set_free();
4720       _hrm->insert_into_free_list(r);
4721     } else if (!_free_list_only) {
4722       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4723 
4724       if (r->is_archive() || r->is_humongous()) {
4725         // We ignore archive and humongous regions. We left these sets unchanged.
4726       } else {
4727         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4728         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4729         r->move_to_old();
4730         _old_set->add(r);
4731       }
4732       _total_used += r->used();
4733     }
4734 
4735     return false;
4736   }
4737 
4738   size_t total_used() {
4739     return _total_used;
4740   }
4741 };
4742 
4743 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4744   assert_at_safepoint_on_vm_thread();
4745 
4746   if (!free_list_only) {
4747     _eden.clear();
4748     _survivor.clear();
4749   }
4750 
4751   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4752   heap_region_iterate(&cl);
4753 
4754   if (!free_list_only) {
4755     set_used(cl.total_used());
4756     if (_archive_allocator != NULL) {
4757       _archive_allocator->clear_used();
4758     }
4759   }
4760   assert_used_and_recalculate_used_equal(this);
4761 }
4762 
4763 // Methods for the mutator alloc region
4764 
4765 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4766                                                       bool force,
4767                                                       uint node_index) {
4768   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4769   bool should_allocate = policy()->should_allocate_mutator_region();
4770   if (force || should_allocate) {
4771     HeapRegion* new_alloc_region = new_region(word_size,
4772                                               HeapRegionType::Eden,
4773                                               false /* do_expand */,
4774                                               node_index);
4775     if (new_alloc_region != NULL) {
4776       set_region_short_lived_locked(new_alloc_region);
4777       _hr_printer.alloc(new_alloc_region, !should_allocate);
4778       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4779       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4780       return new_alloc_region;
4781     }
4782   }
4783   return NULL;
4784 }
4785 
4786 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4787                                                   size_t allocated_bytes) {
4788   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4789   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4790 
4791   collection_set()->add_eden_region(alloc_region);
4792   increase_used(allocated_bytes);
4793   _eden.add_used_bytes(allocated_bytes);
4794   _hr_printer.retire(alloc_region);
4795 
4796   // We update the eden sizes here, when the region is retired,
4797   // instead of when it's allocated, since this is the point that its
4798   // used space has been recorded in _summary_bytes_used.
4799   g1mm()->update_eden_size();
4800 }
4801 
4802 // Methods for the GC alloc regions
4803 
4804 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4805   if (dest.is_old()) {
4806     return true;
4807   } else {
4808     return survivor_regions_count() < policy()->max_survivor_regions();
4809   }
4810 }
4811 
4812 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4813   assert(FreeList_lock->owned_by_self(), "pre-condition");
4814 
4815   if (!has_more_regions(dest)) {
4816     return NULL;
4817   }
4818 
4819   HeapRegionType type;
4820   if (dest.is_young()) {
4821     type = HeapRegionType::Survivor;
4822   } else {
4823     type = HeapRegionType::Old;
4824   }
4825 
4826   HeapRegion* new_alloc_region = new_region(word_size,
4827                                             type,
4828                                             true /* do_expand */,
4829                                             node_index);
4830 
4831   if (new_alloc_region != NULL) {
4832     if (type.is_survivor()) {
4833       new_alloc_region->set_survivor();
4834       _survivor.add(new_alloc_region);
4835       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4836     } else {
4837       new_alloc_region->set_old();
4838       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4839     }
4840     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4841     register_region_with_region_attr(new_alloc_region);
4842     _hr_printer.alloc(new_alloc_region);
4843     return new_alloc_region;
4844   }
4845   return NULL;
4846 }
4847 
4848 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4849                                              size_t allocated_bytes,
4850                                              G1HeapRegionAttr dest) {
4851   _bytes_used_during_gc += allocated_bytes;
4852   if (dest.is_old()) {
4853     old_set_add(alloc_region);
4854   } else {
4855     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4856     _survivor.add_used_bytes(allocated_bytes);
4857   }
4858 
4859   bool const during_im = collector_state()->in_initial_mark_gc();
4860   if (during_im && allocated_bytes > 0) {
4861     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4862   }
4863   _hr_printer.retire(alloc_region);
4864 }
4865 
4866 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4867   bool expanded = false;
4868   uint index = _hrm->find_highest_free(&expanded);
4869 
4870   if (index != G1_NO_HRM_INDEX) {
4871     if (expanded) {
4872       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4873                                 HeapRegion::GrainWords * HeapWordSize);
4874     }
4875     _hrm->allocate_free_regions_starting_at(index, 1);
4876     return region_at(index);
4877   }
4878   return NULL;
4879 }
4880 
4881 // Optimized nmethod scanning
4882 
4883 class RegisterNMethodOopClosure: public OopClosure {
4884   G1CollectedHeap* _g1h;
4885   nmethod* _nm;
4886 
4887   template <class T> void do_oop_work(T* p) {
4888     T heap_oop = RawAccess<>::oop_load(p);
4889     if (!CompressedOops::is_null(heap_oop)) {
4890       oop obj = CompressedOops::decode_not_null(heap_oop);
4891       HeapRegion* hr = _g1h->heap_region_containing(obj);
4892       assert(!hr->is_continues_humongous(),
4893              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4894              " starting at " HR_FORMAT,
4895              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4896 
4897       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4898       hr->add_strong_code_root_locked(_nm);
4899     }
4900   }
4901 
4902 public:
4903   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4904     _g1h(g1h), _nm(nm) {}
4905 
4906   void do_oop(oop* p)       { do_oop_work(p); }
4907   void do_oop(narrowOop* p) { do_oop_work(p); }
4908 };
4909 
4910 class UnregisterNMethodOopClosure: public OopClosure {
4911   G1CollectedHeap* _g1h;
4912   nmethod* _nm;
4913 
4914   template <class T> void do_oop_work(T* p) {
4915     T heap_oop = RawAccess<>::oop_load(p);
4916     if (!CompressedOops::is_null(heap_oop)) {
4917       oop obj = CompressedOops::decode_not_null(heap_oop);
4918       HeapRegion* hr = _g1h->heap_region_containing(obj);
4919       assert(!hr->is_continues_humongous(),
4920              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4921              " starting at " HR_FORMAT,
4922              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4923 
4924       hr->remove_strong_code_root(_nm);
4925     }
4926   }
4927 
4928 public:
4929   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4930     _g1h(g1h), _nm(nm) {}
4931 
4932   void do_oop(oop* p)       { do_oop_work(p); }
4933   void do_oop(narrowOop* p) { do_oop_work(p); }
4934 };
4935 
4936 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4937   guarantee(nm != NULL, "sanity");
4938   RegisterNMethodOopClosure reg_cl(this, nm);
4939   nm->oops_do(&reg_cl);
4940 }
4941 
4942 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4943   guarantee(nm != NULL, "sanity");
4944   UnregisterNMethodOopClosure reg_cl(this, nm);
4945   nm->oops_do(&reg_cl, true);
4946 }
4947 
4948 void G1CollectedHeap::purge_code_root_memory() {
4949   double purge_start = os::elapsedTime();
4950   G1CodeRootSet::purge();
4951   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4952   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4953 }
4954 
4955 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4956   G1CollectedHeap* _g1h;
4957 
4958 public:
4959   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4960     _g1h(g1h) {}
4961 
4962   void do_code_blob(CodeBlob* cb) {
4963     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4964     if (nm == NULL) {
4965       return;
4966     }
4967 
4968     _g1h->register_nmethod(nm);
4969   }
4970 };
4971 
4972 void G1CollectedHeap::rebuild_strong_code_roots() {
4973   RebuildStrongCodeRootClosure blob_cl(this);
4974   CodeCache::blobs_do(&blob_cl);
4975 }
4976 
4977 void G1CollectedHeap::initialize_serviceability() {
4978   _g1mm->initialize_serviceability();
4979 }
4980 
4981 MemoryUsage G1CollectedHeap::memory_usage() {
4982   return _g1mm->memory_usage();
4983 }
4984 
4985 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4986   return _g1mm->memory_managers();
4987 }
4988 
4989 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4990   return _g1mm->memory_pools();
4991 }