1 /*
   2  * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1CollectedHeap.inline.hpp"
  27 #include "gc/g1/g1ConcurrentRefine.hpp"
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/g1/heapRegionManager.inline.hpp"
  30 #include "gc/g1/heapRegionSet.inline.hpp"
  31 #include "gc/g1/heterogeneousHeapRegionManager.hpp"
  32 #include "memory/allocation.hpp"
  33 
  34 
  35 HeterogeneousHeapRegionManager* HeterogeneousHeapRegionManager::manager() {
  36   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  37   assert(g1h != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()");
  38 
  39   HeapRegionManager* hrm = g1h->hrm();
  40   assert(hrm != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()");
  41   return (HeterogeneousHeapRegionManager*)hrm;
  42 }
  43 
  44 void HeterogeneousHeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage,
  45                                                 G1RegionToSpaceMapper* prev_bitmap,
  46                                                 G1RegionToSpaceMapper* next_bitmap,
  47                                                 G1RegionToSpaceMapper* bot,
  48                                                 G1RegionToSpaceMapper* cardtable,
  49                                                 G1RegionToSpaceMapper* card_counts) {
  50   HeapRegionManager::initialize(heap_storage, prev_bitmap, next_bitmap, bot, cardtable, card_counts);
  51 
  52   // We commit bitmap for all regions during initialization and mark the bitmap space as special.
  53   // This allows regions to be un-committed while concurrent-marking threads are accessing the bitmap concurrently.
  54   _prev_bitmap_mapper->commit_and_set_special();
  55   _next_bitmap_mapper->commit_and_set_special();
  56 }
  57 
  58 // expand_by() is called to grow the heap. We grow into nvdimm now.
  59 // Dram regions are committed later as needed during mutator region allocation or
  60 // when young list target length is determined after gc cycle.
  61 uint HeterogeneousHeapRegionManager::expand_by(uint num_regions, WorkGang* pretouch_workers) {
  62   uint num_regions_possible = total_regions_committed() >= max_expandable_length() ? 0 : max_expandable_length() - total_regions_committed();
  63   uint num_expanded = expand_nvdimm(MIN2(num_regions, num_regions_possible), pretouch_workers);
  64   return num_expanded;
  65 }
  66 
  67 // Expands heap starting from 'start' index. The question is should we expand from one memory (e.g. nvdimm) to another (e.g. dram).
  68 // Looking at the code, expand_at() is called for humongous allocation where 'start' is in nv-dimm.
  69 // So we only allocate regions in the same kind of memory as 'start'.
  70 uint HeterogeneousHeapRegionManager::expand_at(uint start, uint num_regions, WorkGang* pretouch_workers) {
  71   if (num_regions == 0) {
  72     return 0;
  73   }
  74   uint target_num_regions = MIN2(num_regions, max_expandable_length() - total_regions_committed());
  75   uint end = is_in_nvdimm(start) ? end_index_of_nvdimm() : end_index_of_dram();
  76 
  77   uint num_expanded = expand_in_range(start, end, target_num_regions, pretouch_workers);
  78   assert(total_regions_committed() <= max_expandable_length(), "must be");
  79   return num_expanded;
  80 }
  81 
  82 // This function ensures that there are 'expected_num_regions' committed regions in dram.
  83 // If new regions are committed, it un-commits that many regions from nv-dimm.
  84 // If there are already more regions committed in dram, extra regions are un-committed.
  85 void HeterogeneousHeapRegionManager::adjust_dram_regions(uint expected_num_regions, WorkGang* pretouch_workers) {
  86 
  87   // Release back the extra regions allocated in evacuation failure scenario.
  88   if(_no_borrowed_regions > 0) {
  89     _no_borrowed_regions -= shrink_dram(_no_borrowed_regions);
  90     _no_borrowed_regions -= shrink_nvdimm(_no_borrowed_regions);
  91   }
  92 
  93   if(expected_num_regions > free_list_dram_length()) {
  94     // If we are going to expand DRAM, we expand a little more so that we can absorb small variations in Young gen sizing.
  95     uint targeted_dram_regions = expected_num_regions * (1 + (double)G1YoungExpansionBufferPercent / 100);
  96     uint to_be_made_available = targeted_dram_regions - free_list_dram_length();
  97 
  98 #ifdef ASSERT
  99     uint total_committed_before = total_regions_committed();
 100 #endif
 101     uint can_be_made_available = shrink_nvdimm(to_be_made_available);
 102     uint ret = expand_dram(can_be_made_available, pretouch_workers);
 103 #ifdef ASSERT
 104     assert(ret == can_be_made_available, "should be equal");
 105     assert(total_committed_before == total_regions_committed(), "invariant not met");
 106 #endif
 107   } else {
 108     uint to_be_released = free_list_dram_length() - expected_num_regions;
 109     // if number of extra DRAM regions is small, do not shrink.
 110     if (to_be_released < expected_num_regions * G1YoungExpansionBufferPercent / 100) {
 111       return;
 112     }
 113 
 114 #ifdef ASSERT
 115     uint total_committed_before = total_regions_committed();
 116 #endif
 117     uint ret = shrink_dram(to_be_released);
 118     assert(ret == to_be_released, "Should be able to shrink by given amount");
 119     ret = expand_nvdimm(to_be_released, pretouch_workers);
 120 #ifdef ASSERT
 121     assert(ret == to_be_released, "Should be able to expand by given amount");
 122     assert(total_committed_before == total_regions_committed(), "invariant not met");
 123 #endif
 124   }
 125 }
 126 
 127 uint HeterogeneousHeapRegionManager::total_regions_committed() const {
 128   return num_committed_dram() + num_committed_nvdimm();
 129 }
 130 
 131 uint HeterogeneousHeapRegionManager::num_committed_dram() const {
 132   // This class does not keep count of committed regions in dram and nv-dimm.
 133   // G1RegionToHeteroSpaceMapper keeps this information.
 134   return static_cast<G1RegionToHeteroSpaceMapper*>(_heap_mapper)->num_committed_dram();
 135 }
 136 
 137 uint HeterogeneousHeapRegionManager::num_committed_nvdimm() const {
 138   // See comment for num_committed_dram()
 139   return static_cast<G1RegionToHeteroSpaceMapper*>(_heap_mapper)->num_committed_nvdimm();
 140 }
 141 
 142 // Return maximum number of regions that heap can expand to.
 143 uint HeterogeneousHeapRegionManager::max_expandable_length() const {
 144   return _max_regions;
 145 }
 146 
 147 uint HeterogeneousHeapRegionManager::find_unavailable_in_range(uint start_idx, uint end_idx, uint* res_idx) const {
 148   guarantee(res_idx != NULL, "checking");
 149   guarantee(start_idx <= (max_length() + 1), "checking");
 150 
 151   uint num_regions = 0;
 152 
 153   uint cur = start_idx;
 154   while (cur <= end_idx && is_available(cur)) {
 155     cur++;
 156   }
 157   if (cur == end_idx + 1) {
 158     return num_regions;
 159   }
 160   *res_idx = cur;
 161   while (cur <= end_idx && is_unavailable_for_allocation(cur)) {
 162     cur++;
 163   }
 164   num_regions = cur - *res_idx;
 165 
 166 #ifdef ASSERT
 167   for (uint i = *res_idx; i < (*res_idx + num_regions); i++) {
 168     assert(is_unavailable_for_allocation(i), "just checking");
 169   }
 170   assert(cur == end_idx + 1 || num_regions == 0 || is_available(cur),
 171     "The region at the current position %u must be available or at the end", cur);
 172 #endif
 173   return num_regions;
 174 }
 175 
 176 uint HeterogeneousHeapRegionManager::expand_dram(uint num_regions, WorkGang* pretouch_workers) {
 177   return expand_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, pretouch_workers);
 178 }
 179 
 180 uint HeterogeneousHeapRegionManager::expand_nvdimm(uint num_regions, WorkGang* pretouch_workers) {
 181   return expand_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, pretouch_workers);
 182 }
 183 
 184 // Follows same logic as expand_at() form HeapRegionManager.
 185 uint HeterogeneousHeapRegionManager::expand_in_range(uint start, uint end, uint num_regions, WorkGang* pretouch_gang) {
 186 
 187   uint so_far = 0;
 188   uint chunk_start = 0;
 189   uint num_last_found = 0;
 190   while (so_far < num_regions &&
 191          (num_last_found = find_unavailable_in_range(start, end, &chunk_start)) > 0) {
 192     uint to_commit = MIN2(num_regions - so_far, num_last_found);
 193     make_regions_available(chunk_start, to_commit, pretouch_gang);
 194     so_far += to_commit;
 195     start = chunk_start + to_commit + 1;
 196   }
 197 
 198   return so_far;
 199 }
 200 
 201 // Shrink in the range of indexes which are reserved for dram.
 202 uint HeterogeneousHeapRegionManager::shrink_dram(uint num_regions, bool update_free_list) {
 203   return shrink_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, update_free_list);
 204 }
 205 
 206 // Shrink in the range of indexes which are reserved for nv-dimm.
 207 uint HeterogeneousHeapRegionManager::shrink_nvdimm(uint num_regions, bool update_free_list) {
 208   return shrink_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, update_free_list);
 209 }
 210 
 211 // Find empty regions in given range, un-commit them and return the count.
 212 uint HeterogeneousHeapRegionManager::shrink_in_range(uint start, uint end, uint num_regions, bool update_free_list) {
 213 
 214   if (num_regions == 0) {
 215     return 0;
 216   }
 217   uint so_far = 0;
 218   uint idx_last_found = 0;
 219   uint num_last_found;
 220   while (so_far < num_regions &&
 221          (num_last_found = find_empty_in_range_reverse(start, end, &idx_last_found)) > 0) {
 222     uint to_uncommit = MIN2(num_regions - so_far, num_last_found);
 223     if(update_free_list) {
 224       _free_list.remove_starting_at(at(idx_last_found + num_last_found - to_uncommit), to_uncommit);
 225     }
 226     uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit);
 227     so_far += to_uncommit;
 228     end = idx_last_found;
 229   }
 230   return so_far;
 231 }
 232 
 233 uint HeterogeneousHeapRegionManager::find_empty_in_range_reverse(uint start_idx, uint end_idx, uint* res_idx) {
 234   guarantee(res_idx != NULL, "checking");
 235   guarantee(start_idx < max_length(), "checking");
 236   guarantee(end_idx < max_length(), "checking");
 237   if(start_idx > end_idx) {
 238     return 0;
 239   }
 240 
 241   uint num_regions_found = 0;
 242 
 243   jlong cur = end_idx;
 244   while (cur >= start_idx && !(is_available(cur) && at(cur)->is_empty())) {
 245     cur--;
 246   }
 247   if (cur == start_idx - 1) {
 248     return num_regions_found;
 249   }
 250   jlong old_cur = cur;
 251   // cur indexes the first empty region
 252   while (cur >= start_idx && is_available(cur) && at(cur)->is_empty()) {
 253     cur--;
 254   }
 255   *res_idx = cur + 1;
 256   num_regions_found = old_cur - cur;
 257 
 258 #ifdef ASSERT
 259   for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) {
 260     assert(at(i)->is_empty(), "just checking");
 261   }
 262 #endif
 263   return num_regions_found;
 264 }
 265 
 266 HeapRegion* HeterogeneousHeapRegionManager::allocate_free_region(HeapRegionType type, uint node_index) {
 267 
 268   // We want to prevent mutators from proceeding when we have borrowed regions from the last collection. This
 269   // will force a full collection to remedy the situation.
 270   // Free region requests from GC threads can proceed.
 271   if(type.is_eden() || type.is_humongous()) {
 272     if(has_borrowed_regions()) {
 273       return NULL;
 274     }
 275   }
 276 
 277   // old and humongous regions are allocated from nv-dimm; eden and survivor regions are allocated from dram
 278   // assumption: dram regions take higher indexes
 279   bool from_nvdimm = (type.is_old() || type.is_humongous()) ? true : false;
 280   bool from_head = from_nvdimm;
 281   HeapRegion* hr = _free_list.remove_region(from_head);
 282 
 283   if (hr != NULL && ( (from_nvdimm && !is_in_nvdimm(hr->hrm_index())) || (!from_nvdimm && !is_in_dram(hr->hrm_index())) ) ) {
 284     _free_list.add_ordered(hr);
 285     hr = NULL;
 286   }
 287 
 288 #ifdef ASSERT
 289   uint total_committed_before = total_regions_committed();
 290 #endif
 291 
 292   if (hr == NULL) {
 293     if (!from_nvdimm) {
 294       uint ret = shrink_nvdimm(1);
 295       if (ret == 1) {
 296         ret = expand_dram(1, NULL);
 297         assert(ret == 1, "We should be able to commit one region");
 298         hr = _free_list.remove_region(from_head);
 299       }
 300     }
 301     else { /*is_old*/
 302       uint ret = shrink_dram(1);
 303       if (ret == 1) {
 304         ret = expand_nvdimm(1, NULL);
 305         assert(ret == 1, "We should be able to commit one region");
 306         hr = _free_list.remove_region(from_head);
 307       }
 308     }
 309   }
 310 #ifdef ASSERT
 311   assert(total_committed_before == total_regions_committed(), "invariant not met");
 312 #endif
 313 
 314   // When an old region is requested (which happens during collection pause) and we can't find any empty region
 315   // in the set of available regions (which is an evacuation failure scenario), we borrow (or pre-allocate) an unavailable region
 316   // from nv-dimm. This region is used to evacuate surviving objects from eden, survivor or old.
 317   if(hr == NULL && type.is_old()) {
 318     hr = borrow_old_region_for_gc();
 319   }
 320 
 321   if (hr != NULL) {
 322     assert(hr->next() == NULL, "Single region should not have next");
 323     assert(is_available(hr->hrm_index()), "Must be committed");
 324   }
 325   return hr;
 326 }
 327 
 328 uint HeterogeneousHeapRegionManager::find_contiguous_only_empty(size_t num) {
 329   if (has_borrowed_regions()) {
 330       return G1_NO_HRM_INDEX;
 331   }
 332   return find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num, true);
 333 }
 334 
 335 uint HeterogeneousHeapRegionManager::find_contiguous_empty_or_unavailable(size_t num) {
 336   if (has_borrowed_regions()) {
 337     return G1_NO_HRM_INDEX;
 338   }
 339   return find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num, false);
 340 }
 341 
 342 uint HeterogeneousHeapRegionManager::find_contiguous(size_t start, size_t end, size_t num, bool empty_only) {
 343   uint found = 0;
 344   size_t length_found = 0;
 345   uint cur = (uint)start;
 346   uint length_unavailable = 0;
 347 
 348   while (length_found < num && cur <= end) {
 349     HeapRegion* hr = _regions.get_by_index(cur);
 350     if ((!empty_only && is_unavailable_for_allocation(cur)) || (is_available(cur) && hr != NULL && hr->is_empty())) {
 351       // This region is a potential candidate for allocation into.
 352       if (is_unavailable_for_allocation(cur)) {
 353         if(shrink_dram(1) == 1) {
 354           uint ret = expand_in_range(cur, cur, 1, NULL);
 355           assert(ret == 1, "We should be able to expand at this index");
 356         } else {
 357           length_unavailable++;
 358         }
 359       }
 360       length_found++;
 361     }
 362     else {
 363       // This region is not a candidate. The next region is the next possible one.
 364       found = cur + 1;
 365       length_found = 0;
 366     }
 367     cur++;
 368   }
 369 
 370   if (length_found == num) {
 371     for (uint i = found; i < (found + num); i++) {
 372       HeapRegion* hr = _regions.get_by_index(i);
 373       // sanity check
 374       guarantee((!empty_only && is_unavailable_for_allocation(i)) || (is_available(i) && hr != NULL && hr->is_empty()),
 375                 "Found region sequence starting at " UINT32_FORMAT ", length " SIZE_FORMAT
 376                 " that is not empty at " UINT32_FORMAT ". Hr is " PTR_FORMAT, found, num, i, p2i(hr));
 377     }
 378     if (!empty_only && length_unavailable > (max_expandable_length() - total_regions_committed())) {
 379       // if 'length_unavailable' number of regions will be made available, we will exceed max regions.
 380       return G1_NO_HRM_INDEX;
 381     }
 382     return found;
 383   }
 384   else {
 385     return G1_NO_HRM_INDEX;
 386   }
 387 }
 388 
 389 uint HeterogeneousHeapRegionManager::find_highest_free(bool* expanded) {
 390   // Loop downwards from the highest dram region index, looking for an
 391   // entry which is either free or not yet committed.  If not yet
 392   // committed, expand_at that index.
 393   uint curr = end_index_of_dram();
 394   while (true) {
 395     HeapRegion *hr = _regions.get_by_index(curr);
 396     if (hr == NULL && !(total_regions_committed() < _max_regions)) {
 397       uint res = shrink_nvdimm(1);
 398       if (res == 1) {
 399         res = expand_in_range(curr, curr, 1, NULL);
 400         assert(res == 1, "We should be able to expand since shrink was successful");
 401         *expanded = true;
 402         return curr;
 403       }
 404     }
 405     else {
 406       if (hr->is_free()) {
 407         *expanded = false;
 408         return curr;
 409       }
 410     }
 411     if (curr == start_index_of_dram()) {
 412       return G1_NO_HRM_INDEX;
 413     }
 414     curr--;
 415   }
 416 }
 417 
 418 // We need to override this since region 0 which serves are dummy region in base class may not be available here.
 419 // This is a corner condition when either number of regions is small. When adaptive sizing is used, initial heap size
 420 // could be just one region.  This region is commited in dram to be used for young generation, leaving region 0 (which is in nvdimm)
 421 // unavailable.
 422 HeapRegion* HeterogeneousHeapRegionManager::get_dummy_region() {
 423   uint curr = 0;
 424 
 425   while (curr < _regions.length()) {
 426     if (is_available(curr)) {
 427       return new_heap_region(curr);
 428     }
 429     curr++;
 430   }
 431   assert(false, "We should always find a region available for dummy region");
 432   return NULL;
 433 }
 434 
 435 // First shrink in dram, then in nv-dimm.
 436 uint HeterogeneousHeapRegionManager::shrink_by(uint num_regions) {
 437   // This call is made at end of full collection. Before making this call the region sets are tore down (tear_down_region_sets()).
 438   // So shrink() calls below do not need to remove uncomitted regions from free list.
 439   uint ret = shrink_dram(num_regions, false /* update_free_list */);
 440   ret += shrink_nvdimm(num_regions - ret, false /* update_free_list */);
 441   return ret;
 442 }
 443 
 444 void HeterogeneousHeapRegionManager::verify() {
 445   HeapRegionManager::verify();
 446 }
 447 
 448 uint HeterogeneousHeapRegionManager::free_list_dram_length() const {
 449   return _free_list.num_of_regions_in_range(start_index_of_dram(), end_index_of_dram());
 450 }
 451 
 452 uint HeterogeneousHeapRegionManager::free_list_nvdimm_length() const {
 453   return _free_list.num_of_regions_in_range(start_index_of_nvdimm(), end_index_of_nvdimm());
 454 }
 455 
 456 bool HeterogeneousHeapRegionManager::is_in_nvdimm(uint index) const {
 457   return index >= start_index_of_nvdimm() && index <= end_index_of_nvdimm();
 458 }
 459 
 460 bool HeterogeneousHeapRegionManager::is_in_dram(uint index) const {
 461   return index >= start_index_of_dram() && index <= end_index_of_dram();
 462 }
 463 
 464 // We have to make sure full collection copies all surviving objects to NV-DIMM.
 465 // We might not have enough regions in nvdimm_set, so we need to make more regions on NV-DIMM available for full collection.
 466 // Note: by doing this we are breaking the in-variant that total number of committed regions is equal to current heap size.
 467 // After full collection ends, we will re-establish this in-variant by freeing DRAM regions.
 468 void HeterogeneousHeapRegionManager::prepare_for_full_collection_start() {
 469   _total_commited_before_full_gc = total_regions_committed() - _no_borrowed_regions;
 470   _no_borrowed_regions = 0;
 471   expand_nvdimm(num_committed_dram(), NULL);
 472   remove_all_free_regions();
 473 }
 474 
 475 // We need to bring back the total committed regions to before full collection start.
 476 // Unless we are close to OOM, all regular (not pinned) regions in DRAM should be free.
 477 // We shrink all free regions in DRAM and if needed from NV-DIMM (when there are pinned DRAM regions)
 478 // If we can't bring back committed regions count to _total_commited_before_full_gc, we keep the extra count in _no_borrowed_regions.
 479 // When this GC finishes, new regions won't be allocated since has_borrowed_regions() is true. VM will be forced to re-try GC
 480 // with clear soft references followed by OOM error in worst case.
 481 void HeterogeneousHeapRegionManager::prepare_for_full_collection_end() {
 482   uint shrink_size = total_regions_committed() - _total_commited_before_full_gc;
 483   uint so_far = 0;
 484   uint idx_last_found = 0;
 485   uint num_last_found;
 486   uint end = (uint)_regions.length() - 1;
 487   while (so_far < shrink_size &&
 488          (num_last_found = find_empty_in_range_reverse(0, end, &idx_last_found)) > 0) {
 489     uint to_uncommit = MIN2(shrink_size - so_far, num_last_found);
 490     uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit);
 491     so_far += to_uncommit;
 492     end = idx_last_found;
 493   }
 494   // See comment above the function.
 495   _no_borrowed_regions = shrink_size - so_far;
 496 }
 497 
 498 uint HeterogeneousHeapRegionManager::start_index_of_dram() const { return _max_regions;}
 499 
 500 uint HeterogeneousHeapRegionManager::end_index_of_dram() const { return 2*_max_regions - 1; }
 501 
 502 uint HeterogeneousHeapRegionManager::start_index_of_nvdimm() const { return 0; }
 503 
 504 uint HeterogeneousHeapRegionManager::end_index_of_nvdimm() const { return _max_regions - 1; }
 505 
 506 // This function is called when there are no free nv-dimm regions.
 507 // It borrows a region from the set of unavailable regions in nv-dimm for GC purpose.
 508 HeapRegion* HeterogeneousHeapRegionManager::borrow_old_region_for_gc() {
 509   assert(free_list_nvdimm_length() == 0, "this function should be called only when there are no nv-dimm regions in free list");
 510 
 511   uint ret = expand_nvdimm(1, NULL);
 512   if(ret != 1) {
 513     return NULL;
 514   }
 515   HeapRegion* hr = _free_list.remove_region(true /*from_head*/);
 516   assert(is_in_nvdimm(hr->hrm_index()), "allocated region should be in nv-dimm");
 517   _no_borrowed_regions++;
 518   return hr;
 519 }
 520 
 521 bool HeterogeneousHeapRegionManager::has_borrowed_regions() const {
 522   return _no_borrowed_regions > 0;
 523 }