1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  34 #include "gc_implementation/shared/liveRange.hpp"
  35 #include "memory/genOopClosures.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/space.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 #include "gc_implementation/g1/heapRegionTracer.hpp"
  41 
  42 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  43 
  44 int    HeapRegion::LogOfHRGrainBytes = 0;
  45 int    HeapRegion::LogOfHRGrainWords = 0;
  46 size_t HeapRegion::GrainBytes        = 0;
  47 size_t HeapRegion::GrainWords        = 0;
  48 size_t HeapRegion::CardsPerRegion    = 0;
  49 
  50 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  51                                  HeapRegion* hr,
  52                                  G1ParPushHeapRSClosure* cl,
  53                                  CardTableModRefBS::PrecisionStyle precision) :
  54   DirtyCardToOopClosure(hr, cl, precision, NULL),
  55   _hr(hr), _rs_scan(cl), _g1(g1) { }
  56 
  57 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  58                                                    OopClosure* oc) :
  59   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  60 
  61 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  62                                       HeapWord* bottom,
  63                                       HeapWord* top) {
  64   G1CollectedHeap* g1h = _g1;
  65   size_t oop_size;
  66   HeapWord* cur = bottom;
  67 
  68   // Start filtering what we add to the remembered set. If the object is
  69   // not considered dead, either because it is marked (in the mark bitmap)
  70   // or it was allocated after marking finished, then we add it. Otherwise
  71   // we can safely ignore the object.
  72   if (!g1h->is_obj_dead(oop(cur), _hr)) {
  73     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
  74   } else {
  75     oop_size = _hr->block_size(cur);
  76   }
  77 
  78   cur += oop_size;
  79 
  80   if (cur < top) {
  81     oop cur_oop = oop(cur);
  82     oop_size = _hr->block_size(cur);
  83     HeapWord* next_obj = cur + oop_size;
  84     while (next_obj < top) {
  85       // Keep filtering the remembered set.
  86       if (!g1h->is_obj_dead(cur_oop, _hr)) {
  87         // Bottom lies entirely below top, so we can call the
  88         // non-memRegion version of oop_iterate below.
  89         cur_oop->oop_iterate(_rs_scan);
  90       }
  91       cur = next_obj;
  92       cur_oop = oop(cur);
  93       oop_size = _hr->block_size(cur);
  94       next_obj = cur + oop_size;
  95     }
  96 
  97     // Last object. Need to do dead-obj filtering here too.
  98     if (!g1h->is_obj_dead(oop(cur), _hr)) {
  99       oop(cur)->oop_iterate(_rs_scan, mr);
 100     }
 101   }
 102 }
 103 
 104 size_t HeapRegion::max_region_size() {
 105   return HeapRegionBounds::max_size();
 106 }
 107 
 108 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 109   uintx region_size = G1HeapRegionSize;
 110   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 111     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 112     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 113                        (uintx) HeapRegionBounds::min_size());
 114   }
 115 
 116   int region_size_log = log2_long((jlong) region_size);
 117   // Recalculate the region size to make sure it's a power of
 118   // 2. This means that region_size is the largest power of 2 that's
 119   // <= what we've calculated so far.
 120   region_size = ((uintx)1 << region_size_log);
 121 
 122   // Now make sure that we don't go over or under our limits.
 123   if (region_size < HeapRegionBounds::min_size()) {
 124     region_size = HeapRegionBounds::min_size();
 125   } else if (region_size > HeapRegionBounds::max_size()) {
 126     region_size = HeapRegionBounds::max_size();
 127   }
 128 
 129   // And recalculate the log.
 130   region_size_log = log2_long((jlong) region_size);
 131 
 132   // Now, set up the globals.
 133   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 134   LogOfHRGrainBytes = region_size_log;
 135 
 136   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 137   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 138 
 139   guarantee(GrainBytes == 0, "we should only set it once");
 140   // The cast to int is safe, given that we've bounded region_size by
 141   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 142   GrainBytes = (size_t)region_size;
 143 
 144   guarantee(GrainWords == 0, "we should only set it once");
 145   GrainWords = GrainBytes >> LogHeapWordSize;
 146   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 147 
 148   guarantee(CardsPerRegion == 0, "we should only set it once");
 149   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 150 }
 151 
 152 void HeapRegion::reset_after_compaction() {
 153   G1OffsetTableContigSpace::reset_after_compaction();
 154   // After a compaction the mark bitmap is invalid, so we must
 155   // treat all objects as being inside the unmarked area.
 156   zero_marked_bytes();
 157   init_top_at_mark_start();
 158 }
 159 
 160 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 161   assert(_humongous_start_region == NULL,
 162          "we should have already filtered out humongous regions");
 163   assert(_end == _orig_end,
 164          "we should have already filtered out humongous regions");
 165 
 166   _in_collection_set = false;
 167 
 168   set_allocation_context(AllocationContext::system());
 169   set_young_index_in_cset(-1);
 170   uninstall_surv_rate_group();
 171   set_free();
 172   reset_pre_dummy_top();
 173 
 174   if (!par) {
 175     // If this is parallel, this will be done later.
 176     HeapRegionRemSet* hrrs = rem_set();
 177     if (locked) {
 178       hrrs->clear_locked();
 179     } else {
 180       hrrs->clear();
 181     }
 182     _claimed = InitialClaimValue;
 183   }
 184   zero_marked_bytes();
 185 
 186   _offsets.resize(HeapRegion::GrainWords);
 187   init_top_at_mark_start();
 188   if (clear_space) clear(SpaceDecorator::Mangle);
 189 }
 190 
 191 void HeapRegion::par_clear() {
 192   assert(used() == 0, "the region should have been already cleared");
 193   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 194   HeapRegionRemSet* hrrs = rem_set();
 195   hrrs->clear();
 196   CardTableModRefBS* ct_bs =
 197                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 198   ct_bs->clear(MemRegion(bottom(), end()));
 199 }
 200 
 201 void HeapRegion::calc_gc_efficiency() {
 202   // GC efficiency is the ratio of how much space would be
 203   // reclaimed over how long we predict it would take to reclaim it.
 204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 205   G1CollectorPolicy* g1p = g1h->g1_policy();
 206 
 207   // Retrieve a prediction of the elapsed time for this region for
 208   // a mixed gc because the region will only be evacuated during a
 209   // mixed gc.
 210   double region_elapsed_time_ms =
 211     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 212   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 213 }
 214 
 215 void HeapRegion::set_free() {
 216   report_region_type_change(G1HeapRegionTraceType::Free);
 217   _type.set_free();
 218 }
 219 
 220 void HeapRegion::set_eden() {
 221   report_region_type_change(G1HeapRegionTraceType::Eden);
 222   _type.set_eden();
 223 }
 224 
 225 void HeapRegion::set_eden_pre_gc() {
 226   report_region_type_change(G1HeapRegionTraceType::Eden);
 227   _type.set_eden_pre_gc();
 228 }
 229 
 230 void HeapRegion::set_survivor() {
 231   report_region_type_change(G1HeapRegionTraceType::Survivor);
 232   _type.set_survivor();
 233 }
 234 
 235 void HeapRegion::set_old() {
 236   report_region_type_change(G1HeapRegionTraceType::Old);
 237   _type.set_old();
 238 }
 239 
 240 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 241   assert(!isHumongous(), "sanity / pre-condition");
 242   assert(end() == _orig_end,
 243          "Should be normal before the humongous object allocation");
 244   assert(top() == bottom(), "should be empty");
 245   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 246 
 247   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
 248   _type.set_starts_humongous();
 249   _humongous_start_region = this;
 250 
 251   set_end(new_end);
 252   _offsets.set_for_starts_humongous(new_top);
 253 }
 254 
 255 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 256   assert(!isHumongous(), "sanity / pre-condition");
 257   assert(end() == _orig_end,
 258          "Should be normal before the humongous object allocation");
 259   assert(top() == bottom(), "should be empty");
 260   assert(first_hr->startsHumongous(), "pre-condition");
 261 
 262   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
 263   _type.set_continues_humongous();
 264   _humongous_start_region = first_hr;
 265 }
 266 
 267 void HeapRegion::clear_humongous() {
 268   assert(isHumongous(), "pre-condition");
 269 
 270   if (startsHumongous()) {
 271     assert(top() <= end(), "pre-condition");
 272     set_end(_orig_end);
 273     if (top() > end()) {
 274       // at least one "continues humongous" region after it
 275       set_top(end());
 276     }
 277   } else {
 278     // continues humongous
 279     assert(end() == _orig_end, "sanity");
 280   }
 281 
 282   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 283   _humongous_start_region = NULL;
 284 }
 285 
 286 bool HeapRegion::claimHeapRegion(jint claimValue) {
 287   jint current = _claimed;
 288   if (current != claimValue) {
 289     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 290     if (res == current) {
 291       return true;
 292     }
 293   }
 294   return false;
 295 }
 296 
 297 HeapRegion::HeapRegion(uint hrm_index,
 298                        G1BlockOffsetSharedArray* sharedOffsetArray,
 299                        MemRegion mr) :
 300     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 301     _hrm_index(hrm_index),
 302     _allocation_context(AllocationContext::system()),
 303     _humongous_start_region(NULL),
 304     _in_collection_set(false),
 305     _next_in_special_set(NULL), _orig_end(NULL),
 306     _claimed(InitialClaimValue), _evacuation_failed(false),
 307     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 308     _next_young_region(NULL),
 309     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 310 #ifdef ASSERT
 311     _containing_set(NULL),
 312 #endif // ASSERT
 313      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 314     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 315     _predicted_bytes_to_copy(0)
 316 {
 317   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 318   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 319 
 320   initialize(mr);
 321 }
 322 
 323 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 324   assert(_rem_set->is_empty(), "Remembered set must be empty");
 325 
 326   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 327 
 328   _orig_end = mr.end();
 329   hr_clear(false /*par*/, false /*clear_space*/);
 330   set_top(bottom());
 331   record_timestamp();
 332 }
 333 
 334 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
 335   HeapRegionTracer::send_region_type_change(_hrm_index,
 336                                             get_trace_type(),
 337                                             to,
 338                                             (uintptr_t)bottom(),
 339                                             used());
 340 }
 341 
 342 CompactibleSpace* HeapRegion::next_compaction_space() const {
 343   return G1CollectedHeap::heap()->next_compaction_region(this);
 344 }
 345 
 346 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 347                                                     bool during_conc_mark) {
 348   // We always recreate the prev marking info and we'll explicitly
 349   // mark all objects we find to be self-forwarded on the prev
 350   // bitmap. So all objects need to be below PTAMS.
 351   _prev_marked_bytes = 0;
 352 
 353   if (during_initial_mark) {
 354     // During initial-mark, we'll also explicitly mark all objects
 355     // we find to be self-forwarded on the next bitmap. So all
 356     // objects need to be below NTAMS.
 357     _next_top_at_mark_start = top();
 358     _next_marked_bytes = 0;
 359   } else if (during_conc_mark) {
 360     // During concurrent mark, all objects in the CSet (including
 361     // the ones we find to be self-forwarded) are implicitly live.
 362     // So all objects need to be above NTAMS.
 363     _next_top_at_mark_start = bottom();
 364     _next_marked_bytes = 0;
 365   }
 366 }
 367 
 368 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 369                                                   bool during_conc_mark,
 370                                                   size_t marked_bytes) {
 371   assert(0 <= marked_bytes && marked_bytes <= used(),
 372          err_msg("marked: " SIZE_FORMAT " used: " SIZE_FORMAT,
 373                  marked_bytes, used()));
 374   _prev_top_at_mark_start = top();
 375   _prev_marked_bytes = marked_bytes;
 376 }
 377 
 378 HeapWord*
 379 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 380                                                  ObjectClosure* cl) {
 381   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 382   // We used to use "block_start_careful" here.  But we're actually happy
 383   // to update the BOT while we do this...
 384   HeapWord* cur = block_start(mr.start());
 385   mr = mr.intersection(used_region());
 386   if (mr.is_empty()) return NULL;
 387   // Otherwise, find the obj that extends onto mr.start().
 388 
 389   assert(cur <= mr.start()
 390          && (oop(cur)->klass_or_null() == NULL ||
 391              cur + oop(cur)->size() > mr.start()),
 392          "postcondition of block_start");
 393   oop obj;
 394   while (cur < mr.end()) {
 395     obj = oop(cur);
 396     if (obj->klass_or_null() == NULL) {
 397       // Ran into an unparseable point.
 398       return cur;
 399     } else if (!g1h->is_obj_dead(obj)) {
 400       cl->do_object(obj);
 401     }
 402     if (cl->abort()) return cur;
 403     // The check above must occur before the operation below, since an
 404     // abort might invalidate the "size" operation.
 405     cur += block_size(cur);
 406   }
 407   return NULL;
 408 }
 409 
 410 HeapWord*
 411 HeapRegion::
 412 oops_on_card_seq_iterate_careful(MemRegion mr,
 413                                  FilterOutOfRegionClosure* cl,
 414                                  bool filter_young,
 415                                  jbyte* card_ptr) {
 416   // Currently, we should only have to clean the card if filter_young
 417   // is true and vice versa.
 418   if (filter_young) {
 419     assert(card_ptr != NULL, "pre-condition");
 420   } else {
 421     assert(card_ptr == NULL, "pre-condition");
 422   }
 423   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 424 
 425   // If we're within a stop-world GC, then we might look at a card in a
 426   // GC alloc region that extends onto a GC LAB, which may not be
 427   // parseable.  Stop such at the "scan_top" of the region.
 428   if (g1h->is_gc_active()) {
 429     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 430   } else {
 431     mr = mr.intersection(used_region());
 432   }
 433   if (mr.is_empty()) return NULL;
 434   // Otherwise, find the obj that extends onto mr.start().
 435 
 436   // The intersection of the incoming mr (for the card) and the
 437   // allocated part of the region is non-empty. This implies that
 438   // we have actually allocated into this region. The code in
 439   // G1CollectedHeap.cpp that allocates a new region sets the
 440   // is_young tag on the region before allocating. Thus we
 441   // safely know if this region is young.
 442   if (is_young() && filter_young) {
 443     return NULL;
 444   }
 445 
 446   assert(!is_young(), "check value of filter_young");
 447 
 448   // We can only clean the card here, after we make the decision that
 449   // the card is not young. And we only clean the card if we have been
 450   // asked to (i.e., card_ptr != NULL).
 451   if (card_ptr != NULL) {
 452     *card_ptr = CardTableModRefBS::clean_card_val();
 453     // We must complete this write before we do any of the reads below.
 454     OrderAccess::storeload();
 455   }
 456 
 457   // Cache the boundaries of the memory region in some const locals
 458   HeapWord* const start = mr.start();
 459   HeapWord* const end = mr.end();
 460 
 461   // We used to use "block_start_careful" here.  But we're actually happy
 462   // to update the BOT while we do this...
 463   HeapWord* cur = block_start(start);
 464   assert(cur <= start, "Postcondition");
 465 
 466   oop obj;
 467 
 468   HeapWord* next = cur;
 469   do {
 470     cur = next;
 471     obj = oop(cur);
 472     if (obj->klass_or_null() == NULL) {
 473       // Ran into an unparseable point.
 474       return cur;
 475     }
 476     // Otherwise...
 477     next = cur + block_size(cur);
 478   } while (next <= start);
 479 
 480   // If we finish the above loop...We have a parseable object that
 481   // begins on or before the start of the memory region, and ends
 482   // inside or spans the entire region.
 483   assert(cur <= start, "Loop postcondition");
 484   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 485 
 486   do {
 487     obj = oop(cur);
 488     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
 489     if (obj->klass_or_null() == NULL) {
 490       // Ran into an unparseable point.
 491       return cur;
 492     }
 493 
 494     // Advance the current pointer. "obj" still points to the object to iterate.
 495     cur = cur + block_size(cur);
 496 
 497     if (!g1h->is_obj_dead(obj)) {
 498       // Non-objArrays are sometimes marked imprecise at the object start. We
 499       // always need to iterate over them in full.
 500       // We only iterate over object arrays in full if they are completely contained
 501       // in the memory region.
 502       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 503         obj->oop_iterate(cl);
 504       } else {
 505         obj->oop_iterate(cl, mr);
 506       }
 507     }
 508   } while (cur < end);
 509 
 510   return NULL;
 511 }
 512 
 513 // Code roots support
 514 
 515 void HeapRegion::add_strong_code_root(nmethod* nm) {
 516   HeapRegionRemSet* hrrs = rem_set();
 517   hrrs->add_strong_code_root(nm);
 518 }
 519 
 520 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 521   assert_locked_or_safepoint(CodeCache_lock);
 522   HeapRegionRemSet* hrrs = rem_set();
 523   hrrs->add_strong_code_root_locked(nm);
 524 }
 525 
 526 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 527   HeapRegionRemSet* hrrs = rem_set();
 528   hrrs->remove_strong_code_root(nm);
 529 }
 530 
 531 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 532   HeapRegionRemSet* hrrs = rem_set();
 533   hrrs->strong_code_roots_do(blk);
 534 }
 535 
 536 class VerifyStrongCodeRootOopClosure: public OopClosure {
 537   const HeapRegion* _hr;
 538   nmethod* _nm;
 539   bool _failures;
 540   bool _has_oops_in_region;
 541 
 542   template <class T> void do_oop_work(T* p) {
 543     T heap_oop = oopDesc::load_heap_oop(p);
 544     if (!oopDesc::is_null(heap_oop)) {
 545       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 546 
 547       // Note: not all the oops embedded in the nmethod are in the
 548       // current region. We only look at those which are.
 549       if (_hr->is_in(obj)) {
 550         // Object is in the region. Check that its less than top
 551         if (_hr->top() <= (HeapWord*)obj) {
 552           // Object is above top
 553           gclog_or_tty->print_cr("Object " PTR_FORMAT " in region "
 554                                  "[" PTR_FORMAT ", " PTR_FORMAT ") is above "
 555                                  "top " PTR_FORMAT,
 556                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 557           _failures = true;
 558           return;
 559         }
 560         // Nmethod has at least one oop in the current region
 561         _has_oops_in_region = true;
 562       }
 563     }
 564   }
 565 
 566 public:
 567   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 568     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 569 
 570   void do_oop(narrowOop* p) { do_oop_work(p); }
 571   void do_oop(oop* p)       { do_oop_work(p); }
 572 
 573   bool failures()           { return _failures; }
 574   bool has_oops_in_region() { return _has_oops_in_region; }
 575 };
 576 
 577 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 578   const HeapRegion* _hr;
 579   bool _failures;
 580 public:
 581   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 582     _hr(hr), _failures(false) {}
 583 
 584   void do_code_blob(CodeBlob* cb) {
 585     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 586     if (nm != NULL) {
 587       // Verify that the nemthod is live
 588       if (!nm->is_alive()) {
 589         gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod "
 590                                PTR_FORMAT " in its strong code roots",
 591                                _hr->bottom(), _hr->end(), nm);
 592         _failures = true;
 593       } else {
 594         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 595         nm->oops_do(&oop_cl);
 596         if (!oop_cl.has_oops_in_region()) {
 597           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod "
 598                                  PTR_FORMAT " in its strong code roots "
 599                                  "with no pointers into region",
 600                                  _hr->bottom(), _hr->end(), nm);
 601           _failures = true;
 602         } else if (oop_cl.failures()) {
 603           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has other "
 604                                  "failures for nmethod " PTR_FORMAT,
 605                                  _hr->bottom(), _hr->end(), nm);
 606           _failures = true;
 607         }
 608       }
 609     }
 610   }
 611 
 612   bool failures()       { return _failures; }
 613 };
 614 
 615 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 616   if (!G1VerifyHeapRegionCodeRoots) {
 617     // We're not verifying code roots.
 618     return;
 619   }
 620   if (vo == VerifyOption_G1UseMarkWord) {
 621     // Marking verification during a full GC is performed after class
 622     // unloading, code cache unloading, etc so the strong code roots
 623     // attached to each heap region are in an inconsistent state. They won't
 624     // be consistent until the strong code roots are rebuilt after the
 625     // actual GC. Skip verifying the strong code roots in this particular
 626     // time.
 627     assert(VerifyDuringGC, "only way to get here");
 628     return;
 629   }
 630 
 631   HeapRegionRemSet* hrrs = rem_set();
 632   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 633 
 634   // if this region is empty then there should be no entries
 635   // on its strong code root list
 636   if (is_empty()) {
 637     if (strong_code_roots_length > 0) {
 638       gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is empty "
 639                              "but has " SIZE_FORMAT " code root entries",
 640                              bottom(), end(), strong_code_roots_length);
 641       *failures = true;
 642     }
 643     return;
 644   }
 645 
 646   if (continuesHumongous()) {
 647     if (strong_code_roots_length > 0) {
 648       gclog_or_tty->print_cr("region " HR_FORMAT " is a continuation of a humongous "
 649                              "region but has " SIZE_FORMAT " code root entries",
 650                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 651       *failures = true;
 652     }
 653     return;
 654   }
 655 
 656   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 657   strong_code_roots_do(&cb_cl);
 658 
 659   if (cb_cl.failures()) {
 660     *failures = true;
 661   }
 662 }
 663 
 664 void HeapRegion::print() const { print_on(gclog_or_tty); }
 665 void HeapRegion::print_on(outputStream* st) const {
 666   st->print("AC%4u", allocation_context());
 667   st->print(" %2s", get_short_type_str());
 668   if (in_collection_set())
 669     st->print(" CS");
 670   else
 671     st->print("   ");
 672   st->print(" TS %5d", _gc_time_stamp);
 673   st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
 674             prev_top_at_mark_start(), next_top_at_mark_start());
 675   G1OffsetTableContigSpace::print_on(st);
 676 }
 677 
 678 class G1VerificationClosure : public OopClosure {
 679 protected:
 680   G1CollectedHeap* _g1h;
 681   CardTableModRefBS* _bs;
 682   oop _containing_obj;
 683   bool _failures;
 684   int _n_failures;
 685   VerifyOption _vo;
 686 public:
 687   // _vo == UsePrevMarking -> use "prev" marking information,
 688   // _vo == UseNextMarking -> use "next" marking information,
 689   // _vo == UseMarkWord    -> use mark word from object header.
 690   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 691     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 692     _failures(false), _n_failures(0), _vo(vo)
 693   {
 694     BarrierSet* bs = _g1h->barrier_set();
 695     if (bs->is_a(BarrierSet::CardTableModRef))
 696       _bs = (CardTableModRefBS*)bs;
 697   }
 698 
 699   void set_containing_obj(oop obj) {
 700     _containing_obj = obj;
 701   }
 702 
 703   bool failures() { return _failures; }
 704   int n_failures() { return _n_failures; }
 705 
 706   void print_object(outputStream* out, oop obj) {
 707 #ifdef PRODUCT
 708     Klass* k = obj->klass();
 709     const char* class_name = InstanceKlass::cast(k)->external_name();
 710     out->print_cr("class name %s", class_name);
 711 #else // PRODUCT
 712     obj->print_on(out);
 713 #endif // PRODUCT
 714   }
 715 };
 716 
 717 class VerifyLiveClosure : public G1VerificationClosure {
 718 public:
 719   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 720   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 721   virtual void do_oop(oop* p) { do_oop_work(p); }
 722 
 723   template <class T>
 724   void do_oop_work(T* p) {
 725     assert(_containing_obj != NULL, "Precondition");
 726     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 727       "Precondition");
 728     verify_liveness(p);
 729   }
 730 
 731   template <class T>
 732   void verify_liveness(T* p) {
 733     T heap_oop = oopDesc::load_heap_oop(p);
 734     if (!oopDesc::is_null(heap_oop)) {
 735       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 736       bool failed = false;
 737       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 738         MutexLockerEx x(ParGCRareEvent_lock,
 739           Mutex::_no_safepoint_check_flag);
 740 
 741         if (!_failures) {
 742           gclog_or_tty->cr();
 743           gclog_or_tty->print_cr("----------");
 744         }
 745         if (!_g1h->is_in_closed_subset(obj)) {
 746           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 747           gclog_or_tty->print_cr("Field " PTR_FORMAT
 748                                  " of live obj " PTR_FORMAT " in region "
 749                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 750                                  p, (void*) _containing_obj,
 751                                  from->bottom(), from->end());
 752           print_object(gclog_or_tty, _containing_obj);
 753           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " not in the heap",
 754                                  (void*) obj);
 755         } else {
 756           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 757           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 758           gclog_or_tty->print_cr("Field " PTR_FORMAT
 759                                  " of live obj " PTR_FORMAT " in region "
 760                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 761                                  p, (void*) _containing_obj,
 762                                  from->bottom(), from->end());
 763           print_object(gclog_or_tty, _containing_obj);
 764           gclog_or_tty->print_cr("points to dead obj " PTR_FORMAT " in region "
 765                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 766                                  (void*) obj, to->bottom(), to->end());
 767           print_object(gclog_or_tty, obj);
 768         }
 769         gclog_or_tty->print_cr("----------");
 770         gclog_or_tty->flush();
 771         _failures = true;
 772         failed = true;
 773         _n_failures++;
 774       }
 775     }
 776   }
 777 };
 778 
 779 class VerifyRemSetClosure : public G1VerificationClosure {
 780 public:
 781   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 782   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 783   virtual void do_oop(oop* p) { do_oop_work(p); }
 784 
 785   template <class T>
 786   void do_oop_work(T* p) {
 787     assert(_containing_obj != NULL, "Precondition");
 788     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 789       "Precondition");
 790     verify_remembered_set(p);
 791   }
 792 
 793   template <class T>
 794   void verify_remembered_set(T* p) {
 795     T heap_oop = oopDesc::load_heap_oop(p);
 796     if (!oopDesc::is_null(heap_oop)) {
 797       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 798       bool failed = false;
 799       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 800       HeapRegion* to   = _g1h->heap_region_containing(obj);
 801       if (from != NULL && to != NULL &&
 802           from != to &&
 803           !to->isHumongous()) {
 804         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 805         jbyte cv_field = *_bs->byte_for_const(p);
 806         const jbyte dirty = CardTableModRefBS::dirty_card_val();
 807 
 808         bool is_bad = !(from->is_young()
 809                         || to->rem_set()->contains_reference(p)
 810                         || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 811                             (_containing_obj->is_objArray() ?
 812                                 cv_field == dirty
 813                              : cv_obj == dirty || cv_field == dirty));
 814         if (is_bad) {
 815           MutexLockerEx x(ParGCRareEvent_lock,
 816                           Mutex::_no_safepoint_check_flag);
 817 
 818           if (!_failures) {
 819             gclog_or_tty->cr();
 820             gclog_or_tty->print_cr("----------");
 821           }
 822           gclog_or_tty->print_cr("Missing rem set entry:");
 823           gclog_or_tty->print_cr("Field " PTR_FORMAT " "
 824                                  "of obj " PTR_FORMAT ", "
 825                                  "in region " HR_FORMAT,
 826                                  p, (void*) _containing_obj,
 827                                  HR_FORMAT_PARAMS(from));
 828           _containing_obj->print_on(gclog_or_tty);
 829           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " "
 830                                  "in region " HR_FORMAT,
 831                                  (void*) obj,
 832                                  HR_FORMAT_PARAMS(to));
 833           if (obj->is_oop()) {
 834             obj->print_on(gclog_or_tty);
 835           }
 836           gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 837                         cv_obj, cv_field);
 838           gclog_or_tty->print_cr("----------");
 839           gclog_or_tty->flush();
 840           _failures = true;
 841           if (!failed) _n_failures++;
 842         }
 843       }
 844     }
 845   }
 846 };
 847 
 848 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 849 // We would need a mechanism to make that code skip dead objects.
 850 
 851 void HeapRegion::verify(VerifyOption vo,
 852                         bool* failures) const {
 853   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 854   *failures = false;
 855   HeapWord* p = bottom();
 856   HeapWord* prev_p = NULL;
 857   VerifyLiveClosure vl_cl(g1, vo);
 858   VerifyRemSetClosure vr_cl(g1, vo);
 859   bool is_humongous = isHumongous();
 860   bool do_bot_verify = !is_young();
 861   size_t object_num = 0;
 862   while (p < top()) {
 863     oop obj = oop(p);
 864     size_t obj_size = block_size(p);
 865     object_num += 1;
 866 
 867     if (is_humongous != g1->isHumongous(obj_size) &&
 868         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 869       gclog_or_tty->print_cr("obj " PTR_FORMAT " is of %shumongous size ("
 870                              SIZE_FORMAT " words) in a %shumongous region",
 871                              p, g1->isHumongous(obj_size) ? "" : "non-",
 872                              obj_size, is_humongous ? "" : "non-");
 873        *failures = true;
 874        return;
 875     }
 876 
 877     // If it returns false, verify_for_object() will output the
 878     // appropriate message.
 879     if (do_bot_verify &&
 880         !g1->is_obj_dead(obj, this) &&
 881         !_offsets.verify_for_object(p, obj_size)) {
 882       *failures = true;
 883       return;
 884     }
 885 
 886     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 887       if (obj->is_oop()) {
 888         Klass* klass = obj->klass();
 889         bool is_metaspace_object = Metaspace::contains(klass) ||
 890                                    (vo == VerifyOption_G1UsePrevMarking &&
 891                                    ClassLoaderDataGraph::unload_list_contains(klass));
 892         if (!is_metaspace_object) {
 893           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 894                                  "not metadata", klass, (void *)obj);
 895           *failures = true;
 896           return;
 897         } else if (!klass->is_klass()) {
 898           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 899                                  "not a klass", klass, (void *)obj);
 900           *failures = true;
 901           return;
 902         } else {
 903           vl_cl.set_containing_obj(obj);
 904           if (!g1->full_collection() || G1VerifyRSetsDuringFullGC) {
 905             // verify liveness and rem_set
 906             vr_cl.set_containing_obj(obj);
 907             G1Mux2Closure mux(&vl_cl, &vr_cl);
 908             obj->oop_iterate_no_header(&mux);
 909 
 910             if (vr_cl.failures()) {
 911               *failures = true;
 912             }
 913             if (G1MaxVerifyFailures >= 0 &&
 914               vr_cl.n_failures() >= G1MaxVerifyFailures) {
 915               return;
 916             }
 917           } else {
 918             // verify only liveness
 919             obj->oop_iterate_no_header(&vl_cl);
 920           }
 921           if (vl_cl.failures()) {
 922             *failures = true;
 923           }
 924           if (G1MaxVerifyFailures >= 0 &&
 925               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 926             return;
 927           }
 928         }
 929       } else {
 930         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", (void *)obj);
 931         *failures = true;
 932         return;
 933       }
 934     }
 935     prev_p = p;
 936     p += obj_size;
 937   }
 938 
 939   if (p != top()) {
 940     gclog_or_tty->print_cr("end of last object " PTR_FORMAT " "
 941                            "does not match top " PTR_FORMAT, p, top());
 942     *failures = true;
 943     return;
 944   }
 945 
 946   HeapWord* the_end = end();
 947   assert(p == top(), "it should still hold");
 948   // Do some extra BOT consistency checking for addresses in the
 949   // range [top, end). BOT look-ups in this range should yield
 950   // top. No point in doing that if top == end (there's nothing there).
 951   if (p < the_end) {
 952     // Look up top
 953     HeapWord* addr_1 = p;
 954     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 955     if (b_start_1 != p) {
 956       gclog_or_tty->print_cr("BOT look up for top: " PTR_FORMAT " "
 957                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 958                              addr_1, b_start_1, p);
 959       *failures = true;
 960       return;
 961     }
 962 
 963     // Look up top + 1
 964     HeapWord* addr_2 = p + 1;
 965     if (addr_2 < the_end) {
 966       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 967       if (b_start_2 != p) {
 968         gclog_or_tty->print_cr("BOT look up for top + 1: " PTR_FORMAT " "
 969                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 970                                addr_2, b_start_2, p);
 971         *failures = true;
 972         return;
 973       }
 974     }
 975 
 976     // Look up an address between top and end
 977     size_t diff = pointer_delta(the_end, p) / 2;
 978     HeapWord* addr_3 = p + diff;
 979     if (addr_3 < the_end) {
 980       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 981       if (b_start_3 != p) {
 982         gclog_or_tty->print_cr("BOT look up for top + diff: " PTR_FORMAT " "
 983                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 984                                addr_3, b_start_3, p);
 985         *failures = true;
 986         return;
 987       }
 988     }
 989 
 990     // Loook up end - 1
 991     HeapWord* addr_4 = the_end - 1;
 992     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 993     if (b_start_4 != p) {
 994       gclog_or_tty->print_cr("BOT look up for end - 1: " PTR_FORMAT " "
 995                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 996                              addr_4, b_start_4, p);
 997       *failures = true;
 998       return;
 999     }
1000   }
1001 
1002   if (is_humongous && object_num > 1) {
1003     gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is humongous "
1004                            "but has " SIZE_FORMAT ", objects",
1005                            bottom(), end(), object_num);
1006     *failures = true;
1007     return;
1008   }
1009 
1010   verify_strong_code_roots(vo, failures);
1011 }
1012 
1013 void HeapRegion::verify() const {
1014   bool dummy = false;
1015   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1016 }
1017 
1018 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
1019   G1CollectedHeap* g1 = G1CollectedHeap::heap();
1020   *failures = false;
1021   HeapWord* p = bottom();
1022   HeapWord* prev_p = NULL;
1023   VerifyRemSetClosure vr_cl(g1, vo);
1024   while (p < top()) {
1025     oop obj = oop(p);
1026     size_t obj_size = block_size(p);
1027 
1028     if (!g1->is_obj_dead_cond(obj, this, vo)) {
1029       if (obj->is_oop()) {
1030         vr_cl.set_containing_obj(obj);
1031         obj->oop_iterate_no_header(&vr_cl);
1032 
1033         if (vr_cl.failures()) {
1034           *failures = true;
1035         }
1036         if (G1MaxVerifyFailures >= 0 &&
1037           vr_cl.n_failures() >= G1MaxVerifyFailures) {
1038           return;
1039         }
1040       } else {
1041         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", p2i(obj));
1042         *failures = true;
1043         return;
1044       }
1045     }
1046 
1047     prev_p = p;
1048     p += obj_size;
1049   }
1050 }
1051 
1052 void HeapRegion::verify_rem_set() const {
1053   bool failures = false;
1054   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
1055   guarantee(!failures, "HeapRegion RemSet verification failed");
1056 }
1057 
1058 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1059 // away eventually.
1060 
1061 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1062   set_top(bottom());
1063   _scan_top = bottom();
1064   CompactibleSpace::clear(mangle_space);
1065   reset_bot();
1066 }
1067 
1068 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1069   Space::set_bottom(new_bottom);
1070   _offsets.set_bottom(new_bottom);
1071 }
1072 
1073 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1074   Space::set_end(new_end);
1075   _offsets.resize(new_end - bottom());
1076 }
1077 
1078 void G1OffsetTableContigSpace::print() const {
1079   print_short();
1080   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1081                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1082                 bottom(), top(), _offsets.threshold(), end());
1083 }
1084 
1085 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1086   return _offsets.initialize_threshold();
1087 }
1088 
1089 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1090                                                     HeapWord* end) {
1091   _offsets.alloc_block(start, end);
1092   return _offsets.threshold();
1093 }
1094 
1095 HeapWord* G1OffsetTableContigSpace::scan_top() const {
1096   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1097   HeapWord* local_top = top();
1098   OrderAccess::loadload();
1099   const unsigned local_time_stamp = _gc_time_stamp;
1100   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1101   if (local_time_stamp < g1h->get_gc_time_stamp()) {
1102     return local_top;
1103   } else {
1104     return _scan_top;
1105   }
1106 }
1107 
1108 void G1OffsetTableContigSpace::record_timestamp() {
1109   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1110   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1111 
1112   if (_gc_time_stamp < curr_gc_time_stamp) {
1113     // Setting the time stamp here tells concurrent readers to look at
1114     // scan_top to know the maximum allowed address to look at.
1115 
1116     // scan_top should be bottom for all regions except for the
1117     // retained old alloc region which should have scan_top == top
1118     HeapWord* st = _scan_top;
1119     guarantee(st == _bottom || st == _top, "invariant");
1120 
1121     _gc_time_stamp = curr_gc_time_stamp;
1122   }
1123 }
1124 
1125 void G1OffsetTableContigSpace::record_retained_region() {
1126   // scan_top is the maximum address where it's safe for the next gc to
1127   // scan this region.
1128   _scan_top = top();
1129 }
1130 
1131 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1132   object_iterate(blk);
1133 }
1134 
1135 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1136   HeapWord* p = bottom();
1137   while (p < top()) {
1138     if (block_is_obj(p)) {
1139       blk->do_object(oop(p));
1140     }
1141     p += block_size(p);
1142   }
1143 }
1144 
1145 #define block_is_always_obj(q) true
1146 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1147   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1148 }
1149 #undef block_is_always_obj
1150 
1151 G1OffsetTableContigSpace::
1152 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1153                          MemRegion mr) :
1154   _offsets(sharedOffsetArray, mr),
1155   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1156   _gc_time_stamp(0)
1157 {
1158   _offsets.set_space(this);
1159 }
1160 
1161 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1162   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1163   _top = bottom();
1164   _scan_top = bottom();
1165   set_saved_mark_word(NULL);
1166   reset_bot();
1167 }
1168