1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "osContainer_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/elfFile.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <syscall.h>
  97 # include <sys/sysinfo.h>
  98 # include <gnu/libc-version.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 # include <link.h>
 102 # include <stdint.h>
 103 # include <inttypes.h>
 104 # include <sys/ioctl.h>
 105 
 106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 107 
 108 #ifndef _GNU_SOURCE
 109   #define _GNU_SOURCE
 110   #include <sched.h>
 111   #undef _GNU_SOURCE
 112 #else
 113   #include <sched.h>
 114 #endif
 115 
 116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 117 // getrusage() is prepared to handle the associated failure.
 118 #ifndef RUSAGE_THREAD
 119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 120 #endif
 121 
 122 #define MAX_PATH    (2 * K)
 123 
 124 #define MAX_SECS 100000000
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 ////////////////////////////////////////////////////////////////////////////////
 131 // global variables
 132 julong os::Linux::_physical_memory = 0;
 133 
 134 address   os::Linux::_initial_thread_stack_bottom = NULL;
 135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 136 
 137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 139 Mutex* os::Linux::_createThread_lock = NULL;
 140 pthread_t os::Linux::_main_thread;
 141 int os::Linux::_page_size = -1;
 142 const int os::Linux::_vm_default_page_size = (8 * K);
 143 bool os::Linux::_is_floating_stack = false;
 144 bool os::Linux::_is_NPTL = false;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 pthread_condattr_t os::Linux::_condattr[1];
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 static pid_t _initial_pid = 0;
 159 
 160 /* Signal number used to suspend/resume a thread */
 161 
 162 /* do not use any signal number less than SIGSEGV, see 4355769 */
 163 static int SR_signum = SIGUSR2;
 164 sigset_t SR_sigset;
 165 
 166 /* Used to protect dlsym() calls */
 167 static pthread_mutex_t dl_mutex;
 168 
 169 // Declarations
 170 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 171 
 172 // utility functions
 173 
 174 static int SR_initialize();
 175 
 176 julong os::available_memory() {
 177   return Linux::available_memory();
 178 }
 179 
 180 julong os::Linux::available_memory() {
 181   // values in struct sysinfo are "unsigned long"
 182   struct sysinfo si;
 183   julong avail_mem;
 184 
 185   if (OSContainer::is_containerized()) {
 186     jlong mem_limit, mem_usage;
 187     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 188       if (PrintContainerInfo) {
 189         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 190                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 191       }
 192     }
 193 
 194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 195       if (PrintContainerInfo) {
 196         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 197       }
 198     }
 199 
 200     if (mem_limit > 0 && mem_usage > 0 ) {
 201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 202       if (PrintContainerInfo) {
 203         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
 204       }
 205       return avail_mem;
 206     }
 207   }
 208 
 209   sysinfo(&si);
 210   avail_mem = (julong)si.freeram * si.mem_unit;
 211   if (Verbose) {
 212     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
 213   }
 214   return avail_mem;
 215 }
 216 
 217 julong os::physical_memory() {
 218   jlong phys_mem = 0;
 219   if (OSContainer::is_containerized()) {
 220     jlong mem_limit;
 221     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 222       if (PrintContainerInfo) {
 223         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
 224       }
 225       return mem_limit;
 226     }
 227 
 228     if (PrintContainerInfo) {
 229       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 230                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 231     }
 232   }
 233 
 234   phys_mem = Linux::physical_memory();
 235   if (Verbose) {
 236     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
 237   }
 238   return phys_mem;
 239 }
 240 
 241 ////////////////////////////////////////////////////////////////////////////////
 242 // environment support
 243 
 244 bool os::getenv(const char* name, char* buf, int len) {
 245   const char* val = ::getenv(name);
 246   if (val != NULL && strlen(val) < (size_t)len) {
 247     strcpy(buf, val);
 248     return true;
 249   }
 250   if (len > 0) buf[0] = 0;  // return a null string
 251   return false;
 252 }
 253 
 254 
 255 // Return true if user is running as root.
 256 
 257 bool os::have_special_privileges() {
 258   static bool init = false;
 259   static bool privileges = false;
 260   if (!init) {
 261     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 262     init = true;
 263   }
 264   return privileges;
 265 }
 266 
 267 
 268 #ifndef SYS_gettid
 269 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 270   #ifdef __ia64__
 271     #define SYS_gettid 1105
 272   #else
 273     #ifdef __i386__
 274       #define SYS_gettid 224
 275     #else
 276       #ifdef __amd64__
 277         #define SYS_gettid 186
 278       #else
 279         #ifdef __sparc__
 280           #define SYS_gettid 143
 281         #else
 282           #error define gettid for the arch
 283         #endif
 284       #endif
 285     #endif
 286   #endif
 287 #endif
 288 
 289 // Cpu architecture string
 290 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 291 
 292 // pid_t gettid()
 293 //
 294 // Returns the kernel thread id of the currently running thread. Kernel
 295 // thread id is used to access /proc.
 296 //
 297 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 298 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 299 //
 300 pid_t os::Linux::gettid() {
 301   int rslt = syscall(SYS_gettid);
 302   if (rslt == -1) {
 303      // old kernel, no NPTL support
 304      return getpid();
 305   } else {
 306      return (pid_t)rslt;
 307   }
 308 }
 309 
 310 // Most versions of linux have a bug where the number of processors are
 311 // determined by looking at the /proc file system.  In a chroot environment,
 312 // the system call returns 1.  This causes the VM to act as if it is
 313 // a single processor and elide locking (see is_MP() call).
 314 static bool unsafe_chroot_detected = false;
 315 static const char *unstable_chroot_error = "/proc file system not found.\n"
 316                      "Java may be unstable running multithreaded in a chroot "
 317                      "environment on Linux when /proc filesystem is not mounted.";
 318 
 319 void os::Linux::initialize_system_info() {
 320   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 321   if (processor_count() == 1) {
 322     pid_t pid = os::Linux::gettid();
 323     char fname[32];
 324     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 325     FILE *fp = fopen(fname, "r");
 326     if (fp == NULL) {
 327       unsafe_chroot_detected = true;
 328     } else {
 329       fclose(fp);
 330     }
 331   }
 332   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 333   assert(processor_count() > 0, "linux error");
 334 }
 335 
 336 void os::init_system_properties_values() {
 337   // The next steps are taken in the product version:
 338   //
 339   // Obtain the JAVA_HOME value from the location of libjvm.so.
 340   // This library should be located at:
 341   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 342   //
 343   // If "/jre/lib/" appears at the right place in the path, then we
 344   // assume libjvm.so is installed in a JDK and we use this path.
 345   //
 346   // Otherwise exit with message: "Could not create the Java virtual machine."
 347   //
 348   // The following extra steps are taken in the debugging version:
 349   //
 350   // If "/jre/lib/" does NOT appear at the right place in the path
 351   // instead of exit check for $JAVA_HOME environment variable.
 352   //
 353   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 354   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 355   // it looks like libjvm.so is installed there
 356   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 357   //
 358   // Otherwise exit.
 359   //
 360   // Important note: if the location of libjvm.so changes this
 361   // code needs to be changed accordingly.
 362 
 363 // See ld(1):
 364 //      The linker uses the following search paths to locate required
 365 //      shared libraries:
 366 //        1: ...
 367 //        ...
 368 //        7: The default directories, normally /lib and /usr/lib.
 369 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 370 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 371 #else
 372 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 373 #endif
 374 
 375 // Base path of extensions installed on the system.
 376 #define SYS_EXT_DIR     "/usr/java/packages"
 377 #define EXTENSIONS_DIR  "/lib/ext"
 378 #define ENDORSED_DIR    "/lib/endorsed"
 379 
 380   // Buffer that fits several sprintfs.
 381   // Note that the space for the colon and the trailing null are provided
 382   // by the nulls included by the sizeof operator.
 383   const size_t bufsize =
 384     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 385          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 386          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 387   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 388 
 389   // sysclasspath, java_home, dll_dir
 390   {
 391     char *pslash;
 392     os::jvm_path(buf, bufsize);
 393 
 394     // Found the full path to libjvm.so.
 395     // Now cut the path to <java_home>/jre if we can.
 396     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 397     pslash = strrchr(buf, '/');
 398     if (pslash != NULL) {
 399       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 400     }
 401     Arguments::set_dll_dir(buf);
 402 
 403     if (pslash != NULL) {
 404       pslash = strrchr(buf, '/');
 405       if (pslash != NULL) {
 406         *pslash = '\0';          // Get rid of /<arch>.
 407         pslash = strrchr(buf, '/');
 408         if (pslash != NULL) {
 409           *pslash = '\0';        // Get rid of /lib.
 410         }
 411       }
 412     }
 413     Arguments::set_java_home(buf);
 414     set_boot_path('/', ':');
 415   }
 416 
 417   // Where to look for native libraries.
 418   //
 419   // Note: Due to a legacy implementation, most of the library path
 420   // is set in the launcher. This was to accomodate linking restrictions
 421   // on legacy Linux implementations (which are no longer supported).
 422   // Eventually, all the library path setting will be done here.
 423   //
 424   // However, to prevent the proliferation of improperly built native
 425   // libraries, the new path component /usr/java/packages is added here.
 426   // Eventually, all the library path setting will be done here.
 427   {
 428     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 429     // should always exist (until the legacy problem cited above is
 430     // addressed).
 431     const char *v = ::getenv("LD_LIBRARY_PATH");
 432     const char *v_colon = ":";
 433     if (v == NULL) { v = ""; v_colon = ""; }
 434     // That's +1 for the colon and +1 for the trailing '\0'.
 435     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 436                                                      strlen(v) + 1 +
 437                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 438                                                      mtInternal);
 439     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 440     Arguments::set_library_path(ld_library_path);
 441     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 442   }
 443 
 444   // Extensions directories.
 445   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 446   Arguments::set_ext_dirs(buf);
 447 
 448   // Endorsed standards default directory.
 449   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 450   Arguments::set_endorsed_dirs(buf);
 451 
 452   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 453 
 454 #undef DEFAULT_LIBPATH
 455 #undef SYS_EXT_DIR
 456 #undef EXTENSIONS_DIR
 457 #undef ENDORSED_DIR
 458 }
 459 
 460 ////////////////////////////////////////////////////////////////////////////////
 461 // breakpoint support
 462 
 463 void os::breakpoint() {
 464   BREAKPOINT;
 465 }
 466 
 467 extern "C" void breakpoint() {
 468   // use debugger to set breakpoint here
 469 }
 470 
 471 ////////////////////////////////////////////////////////////////////////////////
 472 // signal support
 473 
 474 debug_only(static bool signal_sets_initialized = false);
 475 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 476 
 477 bool os::Linux::is_sig_ignored(int sig) {
 478       struct sigaction oact;
 479       sigaction(sig, (struct sigaction*)NULL, &oact);
 480       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 481                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 482       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 483            return true;
 484       else
 485            return false;
 486 }
 487 
 488 void os::Linux::signal_sets_init() {
 489   // Should also have an assertion stating we are still single-threaded.
 490   assert(!signal_sets_initialized, "Already initialized");
 491   // Fill in signals that are necessarily unblocked for all threads in
 492   // the VM. Currently, we unblock the following signals:
 493   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 494   //                         by -Xrs (=ReduceSignalUsage));
 495   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 496   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 497   // the dispositions or masks wrt these signals.
 498   // Programs embedding the VM that want to use the above signals for their
 499   // own purposes must, at this time, use the "-Xrs" option to prevent
 500   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 501   // (See bug 4345157, and other related bugs).
 502   // In reality, though, unblocking these signals is really a nop, since
 503   // these signals are not blocked by default.
 504   sigemptyset(&unblocked_sigs);
 505   sigemptyset(&allowdebug_blocked_sigs);
 506   sigaddset(&unblocked_sigs, SIGILL);
 507   sigaddset(&unblocked_sigs, SIGSEGV);
 508   sigaddset(&unblocked_sigs, SIGBUS);
 509   sigaddset(&unblocked_sigs, SIGFPE);
 510 #if defined(PPC64)
 511   sigaddset(&unblocked_sigs, SIGTRAP);
 512 #endif
 513   sigaddset(&unblocked_sigs, SR_signum);
 514 
 515   if (!ReduceSignalUsage) {
 516    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 517       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 518       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 519    }
 520    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 521       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 522       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 523    }
 524    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 525       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 526       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 527    }
 528   }
 529   // Fill in signals that are blocked by all but the VM thread.
 530   sigemptyset(&vm_sigs);
 531   if (!ReduceSignalUsage)
 532     sigaddset(&vm_sigs, BREAK_SIGNAL);
 533   debug_only(signal_sets_initialized = true);
 534 
 535 }
 536 
 537 // These are signals that are unblocked while a thread is running Java.
 538 // (For some reason, they get blocked by default.)
 539 sigset_t* os::Linux::unblocked_signals() {
 540   assert(signal_sets_initialized, "Not initialized");
 541   return &unblocked_sigs;
 542 }
 543 
 544 // These are the signals that are blocked while a (non-VM) thread is
 545 // running Java. Only the VM thread handles these signals.
 546 sigset_t* os::Linux::vm_signals() {
 547   assert(signal_sets_initialized, "Not initialized");
 548   return &vm_sigs;
 549 }
 550 
 551 // These are signals that are blocked during cond_wait to allow debugger in
 552 sigset_t* os::Linux::allowdebug_blocked_signals() {
 553   assert(signal_sets_initialized, "Not initialized");
 554   return &allowdebug_blocked_sigs;
 555 }
 556 
 557 void os::Linux::hotspot_sigmask(Thread* thread) {
 558 
 559   //Save caller's signal mask before setting VM signal mask
 560   sigset_t caller_sigmask;
 561   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 562 
 563   OSThread* osthread = thread->osthread();
 564   osthread->set_caller_sigmask(caller_sigmask);
 565 
 566   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 567 
 568   if (!ReduceSignalUsage) {
 569     if (thread->is_VM_thread()) {
 570       // Only the VM thread handles BREAK_SIGNAL ...
 571       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 572     } else {
 573       // ... all other threads block BREAK_SIGNAL
 574       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 575     }
 576   }
 577 }
 578 
 579 //////////////////////////////////////////////////////////////////////////////
 580 // detecting pthread library
 581 
 582 void os::Linux::libpthread_init() {
 583   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 584   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 585   // generic name for earlier versions.
 586   // Define macros here so we can build HotSpot on old systems.
 587 # ifndef _CS_GNU_LIBC_VERSION
 588 # define _CS_GNU_LIBC_VERSION 2
 589 # endif
 590 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 591 # define _CS_GNU_LIBPTHREAD_VERSION 3
 592 # endif
 593 
 594   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 595   if (n > 0) {
 596      char *str = (char *)malloc(n, mtInternal);
 597      confstr(_CS_GNU_LIBC_VERSION, str, n);
 598      os::Linux::set_glibc_version(str);
 599   } else {
 600      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 601      static char _gnu_libc_version[32];
 602      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 603               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 604      os::Linux::set_glibc_version(_gnu_libc_version);
 605   }
 606 
 607   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 608   if (n > 0) {
 609      char *str = (char *)malloc(n, mtInternal);
 610      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 611      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 612      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 613      // is the case. LinuxThreads has a hard limit on max number of threads.
 614      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 615      // On the other hand, NPTL does not have such a limit, sysconf()
 616      // will return -1 and errno is not changed. Check if it is really NPTL.
 617      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 618          strstr(str, "NPTL") &&
 619          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 620        free(str);
 621        os::Linux::set_libpthread_version("linuxthreads");
 622      } else {
 623        os::Linux::set_libpthread_version(str);
 624      }
 625   } else {
 626     // glibc before 2.3.2 only has LinuxThreads.
 627     os::Linux::set_libpthread_version("linuxthreads");
 628   }
 629 
 630   if (strstr(libpthread_version(), "NPTL")) {
 631      os::Linux::set_is_NPTL();
 632   } else {
 633      os::Linux::set_is_LinuxThreads();
 634   }
 635 
 636   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 637   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 638   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 639      os::Linux::set_is_floating_stack();
 640   }
 641 }
 642 
 643 /////////////////////////////////////////////////////////////////////////////
 644 // thread stack
 645 
 646 // Force Linux kernel to expand current thread stack. If "bottom" is close
 647 // to the stack guard, caller should block all signals.
 648 //
 649 // MAP_GROWSDOWN:
 650 //   A special mmap() flag that is used to implement thread stacks. It tells
 651 //   kernel that the memory region should extend downwards when needed. This
 652 //   allows early versions of LinuxThreads to only mmap the first few pages
 653 //   when creating a new thread. Linux kernel will automatically expand thread
 654 //   stack as needed (on page faults).
 655 //
 656 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 657 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 658 //   region, it's hard to tell if the fault is due to a legitimate stack
 659 //   access or because of reading/writing non-exist memory (e.g. buffer
 660 //   overrun). As a rule, if the fault happens below current stack pointer,
 661 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 662 //   application (see Linux kernel fault.c).
 663 //
 664 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 665 //   stack overflow detection.
 666 //
 667 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 668 //   not use this flag. However, the stack of initial thread is not created
 669 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 670 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 671 //   and then attach the thread to JVM.
 672 //
 673 // To get around the problem and allow stack banging on Linux, we need to
 674 // manually expand thread stack after receiving the SIGSEGV.
 675 //
 676 // There are two ways to expand thread stack to address "bottom", we used
 677 // both of them in JVM before 1.5:
 678 //   1. adjust stack pointer first so that it is below "bottom", and then
 679 //      touch "bottom"
 680 //   2. mmap() the page in question
 681 //
 682 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 683 // if current sp is already near the lower end of page 101, and we need to
 684 // call mmap() to map page 100, it is possible that part of the mmap() frame
 685 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 686 // That will destroy the mmap() frame and cause VM to crash.
 687 //
 688 // The following code works by adjusting sp first, then accessing the "bottom"
 689 // page to force a page fault. Linux kernel will then automatically expand the
 690 // stack mapping.
 691 //
 692 // _expand_stack_to() assumes its frame size is less than page size, which
 693 // should always be true if the function is not inlined.
 694 
 695 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 696 #define NOINLINE
 697 #else
 698 #define NOINLINE __attribute__ ((noinline))
 699 #endif
 700 
 701 static void _expand_stack_to(address bottom) NOINLINE;
 702 
 703 static void _expand_stack_to(address bottom) {
 704   address sp;
 705   size_t size;
 706   volatile char *p;
 707 
 708   // Adjust bottom to point to the largest address within the same page, it
 709   // gives us a one-page buffer if alloca() allocates slightly more memory.
 710   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 711   bottom += os::Linux::page_size() - 1;
 712 
 713   // sp might be slightly above current stack pointer; if that's the case, we
 714   // will alloca() a little more space than necessary, which is OK. Don't use
 715   // os::current_stack_pointer(), as its result can be slightly below current
 716   // stack pointer, causing us to not alloca enough to reach "bottom".
 717   sp = (address)&sp;
 718 
 719   if (sp > bottom) {
 720     size = sp - bottom;
 721     p = (volatile char *)alloca(size);
 722     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 723     p[0] = '\0';
 724   }
 725 }
 726 
 727 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 728   assert(t!=NULL, "just checking");
 729   assert(t->osthread()->expanding_stack(), "expand should be set");
 730   assert(t->stack_base() != NULL, "stack_base was not initialized");
 731 
 732   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 733     sigset_t mask_all, old_sigset;
 734     sigfillset(&mask_all);
 735     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 736     _expand_stack_to(addr);
 737     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 738     return true;
 739   }
 740   return false;
 741 }
 742 
 743 //////////////////////////////////////////////////////////////////////////////
 744 // create new thread
 745 
 746 static address highest_vm_reserved_address();
 747 
 748 // check if it's safe to start a new thread
 749 static bool _thread_safety_check(Thread* thread) {
 750   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 751     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 752     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 753     //   allocated (MAP_FIXED) from high address space. Every thread stack
 754     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 755     //   it to other values if they rebuild LinuxThreads).
 756     //
 757     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 758     // the memory region has already been mmap'ed. That means if we have too
 759     // many threads and/or very large heap, eventually thread stack will
 760     // collide with heap.
 761     //
 762     // Here we try to prevent heap/stack collision by comparing current
 763     // stack bottom with the highest address that has been mmap'ed by JVM
 764     // plus a safety margin for memory maps created by native code.
 765     //
 766     // This feature can be disabled by setting ThreadSafetyMargin to 0
 767     //
 768     if (ThreadSafetyMargin > 0) {
 769       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 770 
 771       // not safe if our stack extends below the safety margin
 772       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 773     } else {
 774       return true;
 775     }
 776   } else {
 777     // Floating stack LinuxThreads or NPTL:
 778     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 779     //   there's not enough space left, pthread_create() will fail. If we come
 780     //   here, that means enough space has been reserved for stack.
 781     return true;
 782   }
 783 }
 784 
 785 // Thread start routine for all newly created threads
 786 static void *java_start(Thread *thread) {
 787   // Try to randomize the cache line index of hot stack frames.
 788   // This helps when threads of the same stack traces evict each other's
 789   // cache lines. The threads can be either from the same JVM instance, or
 790   // from different JVM instances. The benefit is especially true for
 791   // processors with hyperthreading technology.
 792   static int counter = 0;
 793   int pid = os::current_process_id();
 794   alloca(((pid ^ counter++) & 7) * 128);
 795 
 796   ThreadLocalStorage::set_thread(thread);
 797 
 798   OSThread* osthread = thread->osthread();
 799   Monitor* sync = osthread->startThread_lock();
 800 
 801   // non floating stack LinuxThreads needs extra check, see above
 802   if (!_thread_safety_check(thread)) {
 803     // notify parent thread
 804     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 805     osthread->set_state(ZOMBIE);
 806     sync->notify_all();
 807     return NULL;
 808   }
 809 
 810   // thread_id is kernel thread id (similar to Solaris LWP id)
 811   osthread->set_thread_id(os::Linux::gettid());
 812 
 813   if (UseNUMA) {
 814     int lgrp_id = os::numa_get_group_id();
 815     if (lgrp_id != -1) {
 816       thread->set_lgrp_id(lgrp_id);
 817     }
 818   }
 819   // initialize signal mask for this thread
 820   os::Linux::hotspot_sigmask(thread);
 821 
 822   // initialize floating point control register
 823   os::Linux::init_thread_fpu_state();
 824 
 825   // handshaking with parent thread
 826   {
 827     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 828 
 829     // notify parent thread
 830     osthread->set_state(INITIALIZED);
 831     sync->notify_all();
 832 
 833     // wait until os::start_thread()
 834     while (osthread->get_state() == INITIALIZED) {
 835       sync->wait(Mutex::_no_safepoint_check_flag);
 836     }
 837   }
 838 
 839   // call one more level start routine
 840   thread->run();
 841 
 842   return 0;
 843 }
 844 
 845 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 846   assert(thread->osthread() == NULL, "caller responsible");
 847 
 848   // Allocate the OSThread object
 849   OSThread* osthread = new OSThread(NULL, NULL);
 850   if (osthread == NULL) {
 851     return false;
 852   }
 853 
 854   // set the correct thread state
 855   osthread->set_thread_type(thr_type);
 856 
 857   // Initial state is ALLOCATED but not INITIALIZED
 858   osthread->set_state(ALLOCATED);
 859 
 860   thread->set_osthread(osthread);
 861 
 862   // init thread attributes
 863   pthread_attr_t attr;
 864   pthread_attr_init(&attr);
 865   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 866 
 867   // stack size
 868   if (os::Linux::supports_variable_stack_size()) {
 869     // calculate stack size if it's not specified by caller
 870     if (stack_size == 0) {
 871       stack_size = os::Linux::default_stack_size(thr_type);
 872 
 873       switch (thr_type) {
 874       case os::java_thread:
 875         // Java threads use ThreadStackSize which default value can be
 876         // changed with the flag -Xss
 877         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 878         stack_size = JavaThread::stack_size_at_create();
 879         break;
 880       case os::compiler_thread:
 881         if (CompilerThreadStackSize > 0) {
 882           stack_size = (size_t)(CompilerThreadStackSize * K);
 883           break;
 884         } // else fall through:
 885           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 886       case os::vm_thread:
 887       case os::pgc_thread:
 888       case os::cgc_thread:
 889       case os::watcher_thread:
 890         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 891         break;
 892       }
 893     }
 894 
 895     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 896     pthread_attr_setstacksize(&attr, stack_size);
 897   } else {
 898     // let pthread_create() pick the default value.
 899   }
 900 
 901   // glibc guard page
 902   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 903 
 904   ThreadState state;
 905 
 906   {
 907     // Serialize thread creation if we are running with fixed stack LinuxThreads
 908     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 909     if (lock) {
 910       os::Linux::createThread_lock()->lock_without_safepoint_check();
 911     }
 912 
 913     pthread_t tid;
 914     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 915 
 916     pthread_attr_destroy(&attr);
 917 
 918     if (ret != 0) {
 919       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 920         perror("pthread_create()");
 921       }
 922       // Need to clean up stuff we've allocated so far
 923       thread->set_osthread(NULL);
 924       delete osthread;
 925       if (lock) os::Linux::createThread_lock()->unlock();
 926       return false;
 927     }
 928 
 929     // Store pthread info into the OSThread
 930     osthread->set_pthread_id(tid);
 931 
 932     // Wait until child thread is either initialized or aborted
 933     {
 934       Monitor* sync_with_child = osthread->startThread_lock();
 935       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 936       while ((state = osthread->get_state()) == ALLOCATED) {
 937         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 938       }
 939     }
 940 
 941     if (lock) {
 942       os::Linux::createThread_lock()->unlock();
 943     }
 944   }
 945 
 946   // Aborted due to thread limit being reached
 947   if (state == ZOMBIE) {
 948       thread->set_osthread(NULL);
 949       delete osthread;
 950       return false;
 951   }
 952 
 953   // The thread is returned suspended (in state INITIALIZED),
 954   // and is started higher up in the call chain
 955   assert(state == INITIALIZED, "race condition");
 956   return true;
 957 }
 958 
 959 /////////////////////////////////////////////////////////////////////////////
 960 // attach existing thread
 961 
 962 // bootstrap the main thread
 963 bool os::create_main_thread(JavaThread* thread) {
 964   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 965   return create_attached_thread(thread);
 966 }
 967 
 968 bool os::create_attached_thread(JavaThread* thread) {
 969 #ifdef ASSERT
 970     thread->verify_not_published();
 971 #endif
 972 
 973   // Allocate the OSThread object
 974   OSThread* osthread = new OSThread(NULL, NULL);
 975 
 976   if (osthread == NULL) {
 977     return false;
 978   }
 979 
 980   // Store pthread info into the OSThread
 981   osthread->set_thread_id(os::Linux::gettid());
 982   osthread->set_pthread_id(::pthread_self());
 983 
 984   // initialize floating point control register
 985   os::Linux::init_thread_fpu_state();
 986 
 987   // Initial thread state is RUNNABLE
 988   osthread->set_state(RUNNABLE);
 989 
 990   thread->set_osthread(osthread);
 991 
 992   if (UseNUMA) {
 993     int lgrp_id = os::numa_get_group_id();
 994     if (lgrp_id != -1) {
 995       thread->set_lgrp_id(lgrp_id);
 996     }
 997   }
 998 
 999   if (os::is_primordial_thread()) {
1000     // If current thread is primordial thread, its stack is mapped on demand,
1001     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1002     // the entire stack region to avoid SEGV in stack banging.
1003     // It is also useful to get around the heap-stack-gap problem on SuSE
1004     // kernel (see 4821821 for details). We first expand stack to the top
1005     // of yellow zone, then enable stack yellow zone (order is significant,
1006     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1007     // is no gap between the last two virtual memory regions.
1008 
1009     JavaThread *jt = (JavaThread *)thread;
1010     address addr = jt->stack_yellow_zone_base();
1011     assert(addr != NULL, "initialization problem?");
1012     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1013 
1014     osthread->set_expanding_stack();
1015     os::Linux::manually_expand_stack(jt, addr);
1016     osthread->clear_expanding_stack();
1017   }
1018 
1019   // initialize signal mask for this thread
1020   // and save the caller's signal mask
1021   os::Linux::hotspot_sigmask(thread);
1022 
1023   return true;
1024 }
1025 
1026 void os::pd_start_thread(Thread* thread) {
1027   OSThread * osthread = thread->osthread();
1028   assert(osthread->get_state() != INITIALIZED, "just checking");
1029   Monitor* sync_with_child = osthread->startThread_lock();
1030   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1031   sync_with_child->notify();
1032 }
1033 
1034 // Free Linux resources related to the OSThread
1035 void os::free_thread(OSThread* osthread) {
1036   assert(osthread != NULL, "osthread not set");
1037 
1038   if (Thread::current()->osthread() == osthread) {
1039     // Restore caller's signal mask
1040     sigset_t sigmask = osthread->caller_sigmask();
1041     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1042    }
1043 
1044   delete osthread;
1045 }
1046 
1047 //////////////////////////////////////////////////////////////////////////////
1048 // thread local storage
1049 
1050 // Restore the thread pointer if the destructor is called. This is in case
1051 // someone from JNI code sets up a destructor with pthread_key_create to run
1052 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1053 // will hang or crash. When detachCurrentThread is called the key will be set
1054 // to null and we will not be called again. If detachCurrentThread is never
1055 // called we could loop forever depending on the pthread implementation.
1056 static void restore_thread_pointer(void* p) {
1057   Thread* thread = (Thread*) p;
1058   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1059 }
1060 
1061 int os::allocate_thread_local_storage() {
1062   pthread_key_t key;
1063   int rslt = pthread_key_create(&key, restore_thread_pointer);
1064   assert(rslt == 0, "cannot allocate thread local storage");
1065   return (int)key;
1066 }
1067 
1068 // Note: This is currently not used by VM, as we don't destroy TLS key
1069 // on VM exit.
1070 void os::free_thread_local_storage(int index) {
1071   int rslt = pthread_key_delete((pthread_key_t)index);
1072   assert(rslt == 0, "invalid index");
1073 }
1074 
1075 void os::thread_local_storage_at_put(int index, void* value) {
1076   int rslt = pthread_setspecific((pthread_key_t)index, value);
1077   assert(rslt == 0, "pthread_setspecific failed");
1078 }
1079 
1080 extern "C" Thread* get_thread() {
1081   return ThreadLocalStorage::thread();
1082 }
1083 
1084 //////////////////////////////////////////////////////////////////////////////
1085 // primordial thread
1086 
1087 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1088 bool os::is_primordial_thread(void) {
1089   char dummy;
1090   // If called before init complete, thread stack bottom will be null.
1091   // Can be called if fatal error occurs before initialization.
1092   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1093   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1094          os::Linux::initial_thread_stack_size()   != 0,
1095          "os::init did not locate primordial thread's stack region");
1096   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1097       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1098                         os::Linux::initial_thread_stack_size()) {
1099        return true;
1100   } else {
1101        return false;
1102   }
1103 }
1104 
1105 // Find the virtual memory area that contains addr
1106 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1107   FILE *fp = fopen("/proc/self/maps", "r");
1108   if (fp) {
1109     address low, high;
1110     while (!feof(fp)) {
1111       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1112         if (low <= addr && addr < high) {
1113            if (vma_low)  *vma_low  = low;
1114            if (vma_high) *vma_high = high;
1115            fclose (fp);
1116            return true;
1117         }
1118       }
1119       for (;;) {
1120         int ch = fgetc(fp);
1121         if (ch == EOF || ch == (int)'\n') break;
1122       }
1123     }
1124     fclose(fp);
1125   }
1126   return false;
1127 }
1128 
1129 // Locate primordial thread stack. This special handling of primordial thread stack
1130 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1131 // bogus value for the primordial process thread. While the launcher has created
1132 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1133 // JNI invocation API from a primordial thread.
1134 void os::Linux::capture_initial_stack(size_t max_size) {
1135 
1136   // max_size is either 0 (which means accept OS default for thread stacks) or
1137   // a user-specified value known to be at least the minimum needed. If we
1138   // are actually on the primordial thread we can make it appear that we have a
1139   // smaller max_size stack by inserting the guard pages at that location. But we
1140   // cannot do anything to emulate a larger stack than what has been provided by
1141   // the OS or threading library. In fact if we try to use a stack greater than
1142   // what is set by rlimit then we will crash the hosting process.
1143 
1144   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1145   // If this is "unlimited" then it will be a huge value.
1146   struct rlimit rlim;
1147   getrlimit(RLIMIT_STACK, &rlim);
1148   size_t stack_size = rlim.rlim_cur;
1149 
1150   // 6308388: a bug in ld.so will relocate its own .data section to the
1151   //   lower end of primordial stack; reduce ulimit -s value a little bit
1152   //   so we won't install guard page on ld.so's data section.
1153   //   But ensure we don't underflow the stack size - allow 1 page spare
1154   if (stack_size >= (size_t)(3 * page_size())) {
1155     stack_size -= 2 * page_size();
1156   }
1157 
1158   // Try to figure out where the stack base (top) is. This is harder.
1159   //
1160   // When an application is started, glibc saves the initial stack pointer in
1161   // a global variable "__libc_stack_end", which is then used by system
1162   // libraries. __libc_stack_end should be pretty close to stack top. The
1163   // variable is available since the very early days. However, because it is
1164   // a private interface, it could disappear in the future.
1165   //
1166   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1167   // to __libc_stack_end, it is very close to stack top, but isn't the real
1168   // stack top. Note that /proc may not exist if VM is running as a chroot
1169   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1170   // /proc/<pid>/stat could change in the future (though unlikely).
1171   //
1172   // We try __libc_stack_end first. If that doesn't work, look for
1173   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1174   // as a hint, which should work well in most cases.
1175 
1176   uintptr_t stack_start;
1177 
1178   // try __libc_stack_end first
1179   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1180   if (p && *p) {
1181     stack_start = *p;
1182   } else {
1183     // see if we can get the start_stack field from /proc/self/stat
1184     FILE *fp;
1185     int pid;
1186     char state;
1187     int ppid;
1188     int pgrp;
1189     int session;
1190     int nr;
1191     int tpgrp;
1192     unsigned long flags;
1193     unsigned long minflt;
1194     unsigned long cminflt;
1195     unsigned long majflt;
1196     unsigned long cmajflt;
1197     unsigned long utime;
1198     unsigned long stime;
1199     long cutime;
1200     long cstime;
1201     long prio;
1202     long nice;
1203     long junk;
1204     long it_real;
1205     uintptr_t start;
1206     uintptr_t vsize;
1207     intptr_t rss;
1208     uintptr_t rsslim;
1209     uintptr_t scodes;
1210     uintptr_t ecode;
1211     int i;
1212 
1213     // Figure what the primordial thread stack base is. Code is inspired
1214     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1215     // followed by command name surrounded by parentheses, state, etc.
1216     char stat[2048];
1217     int statlen;
1218 
1219     fp = fopen("/proc/self/stat", "r");
1220     if (fp) {
1221       statlen = fread(stat, 1, 2047, fp);
1222       stat[statlen] = '\0';
1223       fclose(fp);
1224 
1225       // Skip pid and the command string. Note that we could be dealing with
1226       // weird command names, e.g. user could decide to rename java launcher
1227       // to "java 1.4.2 :)", then the stat file would look like
1228       //                1234 (java 1.4.2 :)) R ... ...
1229       // We don't really need to know the command string, just find the last
1230       // occurrence of ")" and then start parsing from there. See bug 4726580.
1231       char * s = strrchr(stat, ')');
1232 
1233       i = 0;
1234       if (s) {
1235         // Skip blank chars
1236         do s++; while (isspace(*s));
1237 
1238 #define _UFM UINTX_FORMAT
1239 #define _DFM INTX_FORMAT
1240 
1241         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1242         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1243         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1244              &state,          /* 3  %c  */
1245              &ppid,           /* 4  %d  */
1246              &pgrp,           /* 5  %d  */
1247              &session,        /* 6  %d  */
1248              &nr,             /* 7  %d  */
1249              &tpgrp,          /* 8  %d  */
1250              &flags,          /* 9  %lu  */
1251              &minflt,         /* 10 %lu  */
1252              &cminflt,        /* 11 %lu  */
1253              &majflt,         /* 12 %lu  */
1254              &cmajflt,        /* 13 %lu  */
1255              &utime,          /* 14 %lu  */
1256              &stime,          /* 15 %lu  */
1257              &cutime,         /* 16 %ld  */
1258              &cstime,         /* 17 %ld  */
1259              &prio,           /* 18 %ld  */
1260              &nice,           /* 19 %ld  */
1261              &junk,           /* 20 %ld  */
1262              &it_real,        /* 21 %ld  */
1263              &start,          /* 22 UINTX_FORMAT */
1264              &vsize,          /* 23 UINTX_FORMAT */
1265              &rss,            /* 24 INTX_FORMAT  */
1266              &rsslim,         /* 25 UINTX_FORMAT */
1267              &scodes,         /* 26 UINTX_FORMAT */
1268              &ecode,          /* 27 UINTX_FORMAT */
1269              &stack_start);   /* 28 UINTX_FORMAT */
1270       }
1271 
1272 #undef _UFM
1273 #undef _DFM
1274 
1275       if (i != 28 - 2) {
1276          assert(false, "Bad conversion from /proc/self/stat");
1277          // product mode - assume we are the primordial thread, good luck in the
1278          // embedded case.
1279          warning("Can't detect primordial thread stack location - bad conversion");
1280          stack_start = (uintptr_t) &rlim;
1281       }
1282     } else {
1283       // For some reason we can't open /proc/self/stat (for example, running on
1284       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1285       // most cases, so don't abort:
1286       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1287       stack_start = (uintptr_t) &rlim;
1288     }
1289   }
1290 
1291   // Now we have a pointer (stack_start) very close to the stack top, the
1292   // next thing to do is to figure out the exact location of stack top. We
1293   // can find out the virtual memory area that contains stack_start by
1294   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1295   // and its upper limit is the real stack top. (again, this would fail if
1296   // running inside chroot, because /proc may not exist.)
1297 
1298   uintptr_t stack_top;
1299   address low, high;
1300   if (find_vma((address)stack_start, &low, &high)) {
1301     // success, "high" is the true stack top. (ignore "low", because initial
1302     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1303     stack_top = (uintptr_t)high;
1304   } else {
1305     // failed, likely because /proc/self/maps does not exist
1306     warning("Can't detect primordial thread stack location - find_vma failed");
1307     // best effort: stack_start is normally within a few pages below the real
1308     // stack top, use it as stack top, and reduce stack size so we won't put
1309     // guard page outside stack.
1310     stack_top = stack_start;
1311     stack_size -= 16 * page_size();
1312   }
1313 
1314   // stack_top could be partially down the page so align it
1315   stack_top = align_size_up(stack_top, page_size());
1316 
1317   // Allowed stack value is minimum of max_size and what we derived from rlimit
1318   if (max_size > 0) {
1319     _initial_thread_stack_size = MIN2(max_size, stack_size);
1320   } else {
1321     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1322     // clamp it at 8MB as we do on Solaris
1323     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1324   }
1325 
1326   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1327   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1328   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1329 }
1330 
1331 ////////////////////////////////////////////////////////////////////////////////
1332 // time support
1333 
1334 // Time since start-up in seconds to a fine granularity.
1335 // Used by VMSelfDestructTimer and the MemProfiler.
1336 double os::elapsedTime() {
1337 
1338   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1339 }
1340 
1341 jlong os::elapsed_counter() {
1342   return javaTimeNanos() - initial_time_count;
1343 }
1344 
1345 jlong os::elapsed_frequency() {
1346   return NANOSECS_PER_SEC; // nanosecond resolution
1347 }
1348 
1349 bool os::supports_vtime() { return true; }
1350 bool os::enable_vtime()   { return false; }
1351 bool os::vtime_enabled()  { return false; }
1352 
1353 double os::elapsedVTime() {
1354   struct rusage usage;
1355   int retval = getrusage(RUSAGE_THREAD, &usage);
1356   if (retval == 0) {
1357     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1358   } else {
1359     // better than nothing, but not much
1360     return elapsedTime();
1361   }
1362 }
1363 
1364 jlong os::javaTimeMillis() {
1365   timeval time;
1366   int status = gettimeofday(&time, NULL);
1367   assert(status != -1, "linux error");
1368   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1369 }
1370 
1371 #ifndef CLOCK_MONOTONIC
1372 #define CLOCK_MONOTONIC (1)
1373 #endif
1374 
1375 void os::Linux::clock_init() {
1376   // we do dlopen's in this particular order due to bug in linux
1377   // dynamical loader (see 6348968) leading to crash on exit
1378   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1379   if (handle == NULL) {
1380     handle = dlopen("librt.so", RTLD_LAZY);
1381   }
1382 
1383   if (handle) {
1384     int (*clock_getres_func)(clockid_t, struct timespec*) =
1385            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1386     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1387            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1388     if (clock_getres_func && clock_gettime_func) {
1389       // See if monotonic clock is supported by the kernel. Note that some
1390       // early implementations simply return kernel jiffies (updated every
1391       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1392       // for nano time (though the monotonic property is still nice to have).
1393       // It's fixed in newer kernels, however clock_getres() still returns
1394       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1395       // resolution for now. Hopefully as people move to new kernels, this
1396       // won't be a problem.
1397       struct timespec res;
1398       struct timespec tp;
1399       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1400           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1401         // yes, monotonic clock is supported
1402         _clock_gettime = clock_gettime_func;
1403         return;
1404       } else {
1405         // close librt if there is no monotonic clock
1406         dlclose(handle);
1407       }
1408     }
1409   }
1410   warning("No monotonic clock was available - timed services may " \
1411           "be adversely affected if the time-of-day clock changes");
1412 }
1413 
1414 #ifndef SYS_clock_getres
1415 
1416 #if defined(IA32) || defined(AMD64)
1417 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1418 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1419 #else
1420 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1421 #define sys_clock_getres(x,y)  -1
1422 #endif
1423 
1424 #else
1425 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1426 #endif
1427 
1428 void os::Linux::fast_thread_clock_init() {
1429   if (!UseLinuxPosixThreadCPUClocks) {
1430     return;
1431   }
1432   clockid_t clockid;
1433   struct timespec tp;
1434   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1435       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1436 
1437   // Switch to using fast clocks for thread cpu time if
1438   // the sys_clock_getres() returns 0 error code.
1439   // Note, that some kernels may support the current thread
1440   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1441   // returned by the pthread_getcpuclockid().
1442   // If the fast Posix clocks are supported then the sys_clock_getres()
1443   // must return at least tp.tv_sec == 0 which means a resolution
1444   // better than 1 sec. This is extra check for reliability.
1445 
1446   if(pthread_getcpuclockid_func &&
1447      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1448      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1449 
1450     _supports_fast_thread_cpu_time = true;
1451     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1452   }
1453 }
1454 
1455 jlong os::javaTimeNanos() {
1456   if (Linux::supports_monotonic_clock()) {
1457     struct timespec tp;
1458     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1459     assert(status == 0, "gettime error");
1460     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1461     return result;
1462   } else {
1463     timeval time;
1464     int status = gettimeofday(&time, NULL);
1465     assert(status != -1, "linux error");
1466     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1467     return 1000 * usecs;
1468   }
1469 }
1470 
1471 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1472   if (Linux::supports_monotonic_clock()) {
1473     info_ptr->max_value = ALL_64_BITS;
1474 
1475     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1476     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1477     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1478   } else {
1479     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1480     info_ptr->max_value = ALL_64_BITS;
1481 
1482     // gettimeofday is a real time clock so it skips
1483     info_ptr->may_skip_backward = true;
1484     info_ptr->may_skip_forward = true;
1485   }
1486 
1487   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1488 }
1489 
1490 // Return the real, user, and system times in seconds from an
1491 // arbitrary fixed point in the past.
1492 bool os::getTimesSecs(double* process_real_time,
1493                       double* process_user_time,
1494                       double* process_system_time) {
1495   struct tms ticks;
1496   clock_t real_ticks = times(&ticks);
1497 
1498   if (real_ticks == (clock_t) (-1)) {
1499     return false;
1500   } else {
1501     double ticks_per_second = (double) clock_tics_per_sec;
1502     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1503     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1504     *process_real_time = ((double) real_ticks) / ticks_per_second;
1505 
1506     return true;
1507   }
1508 }
1509 
1510 
1511 char * os::local_time_string(char *buf, size_t buflen) {
1512   struct tm t;
1513   time_t long_time;
1514   time(&long_time);
1515   localtime_r(&long_time, &t);
1516   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1517                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1518                t.tm_hour, t.tm_min, t.tm_sec);
1519   return buf;
1520 }
1521 
1522 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1523   return localtime_r(clock, res);
1524 }
1525 
1526 ////////////////////////////////////////////////////////////////////////////////
1527 // runtime exit support
1528 
1529 // Note: os::shutdown() might be called very early during initialization, or
1530 // called from signal handler. Before adding something to os::shutdown(), make
1531 // sure it is async-safe and can handle partially initialized VM.
1532 void os::shutdown() {
1533 
1534   // allow PerfMemory to attempt cleanup of any persistent resources
1535   perfMemory_exit();
1536 
1537   // needs to remove object in file system
1538   AttachListener::abort();
1539 
1540   // flush buffered output, finish log files
1541   ostream_abort();
1542 
1543   // Check for abort hook
1544   abort_hook_t abort_hook = Arguments::abort_hook();
1545   if (abort_hook != NULL) {
1546     abort_hook();
1547   }
1548 
1549 }
1550 
1551 // Note: os::abort() might be called very early during initialization, or
1552 // called from signal handler. Before adding something to os::abort(), make
1553 // sure it is async-safe and can handle partially initialized VM.
1554 void os::abort(bool dump_core) {
1555   os::shutdown();
1556   if (dump_core) {
1557 #ifndef PRODUCT
1558     fdStream out(defaultStream::output_fd());
1559     out.print_raw("Current thread is ");
1560     char buf[16];
1561     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1562     out.print_raw_cr(buf);
1563     out.print_raw_cr("Dumping core ...");
1564 #endif
1565     ::abort(); // dump core
1566   }
1567 
1568   ::exit(1);
1569 }
1570 
1571 // Die immediately, no exit hook, no abort hook, no cleanup.
1572 void os::die() {
1573   // _exit() on LinuxThreads only kills current thread
1574   ::abort();
1575 }
1576 
1577 
1578 // This method is a copy of JDK's sysGetLastErrorString
1579 // from src/solaris/hpi/src/system_md.c
1580 
1581 size_t os::lasterror(char *buf, size_t len) {
1582 
1583   if (errno == 0)  return 0;
1584 
1585   const char *s = ::strerror(errno);
1586   size_t n = ::strlen(s);
1587   if (n >= len) {
1588     n = len - 1;
1589   }
1590   ::strncpy(buf, s, n);
1591   buf[n] = '\0';
1592   return n;
1593 }
1594 
1595 intx os::current_thread_id() { return (intx)pthread_self(); }
1596 int os::current_process_id() {
1597 
1598   // Under the old linux thread library, linux gives each thread
1599   // its own process id. Because of this each thread will return
1600   // a different pid if this method were to return the result
1601   // of getpid(2). Linux provides no api that returns the pid
1602   // of the launcher thread for the vm. This implementation
1603   // returns a unique pid, the pid of the launcher thread
1604   // that starts the vm 'process'.
1605 
1606   // Under the NPTL, getpid() returns the same pid as the
1607   // launcher thread rather than a unique pid per thread.
1608   // Use gettid() if you want the old pre NPTL behaviour.
1609 
1610   // if you are looking for the result of a call to getpid() that
1611   // returns a unique pid for the calling thread, then look at the
1612   // OSThread::thread_id() method in osThread_linux.hpp file
1613 
1614   return (int)(_initial_pid ? _initial_pid : getpid());
1615 }
1616 
1617 // DLL functions
1618 
1619 const char* os::dll_file_extension() { return ".so"; }
1620 
1621 // This must be hard coded because it's the system's temporary
1622 // directory not the java application's temp directory, ala java.io.tmpdir.
1623 const char* os::get_temp_directory() { return "/tmp"; }
1624 
1625 static bool file_exists(const char* filename) {
1626   struct stat statbuf;
1627   if (filename == NULL || strlen(filename) == 0) {
1628     return false;
1629   }
1630   return os::stat(filename, &statbuf) == 0;
1631 }
1632 
1633 bool os::dll_build_name(char* buffer, size_t buflen,
1634                         const char* pname, const char* fname) {
1635   bool retval = false;
1636   // Copied from libhpi
1637   const size_t pnamelen = pname ? strlen(pname) : 0;
1638 
1639   // Return error on buffer overflow.
1640   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1641     return retval;
1642   }
1643 
1644   if (pnamelen == 0) {
1645     snprintf(buffer, buflen, "lib%s.so", fname);
1646     retval = true;
1647   } else if (strchr(pname, *os::path_separator()) != NULL) {
1648     int n;
1649     char** pelements = split_path(pname, &n);
1650     if (pelements == NULL) {
1651       return false;
1652     }
1653     for (int i = 0 ; i < n ; i++) {
1654       // Really shouldn't be NULL, but check can't hurt
1655       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1656         continue; // skip the empty path values
1657       }
1658       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1659       if (file_exists(buffer)) {
1660         retval = true;
1661         break;
1662       }
1663     }
1664     // release the storage
1665     for (int i = 0 ; i < n ; i++) {
1666       if (pelements[i] != NULL) {
1667         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1668       }
1669     }
1670     if (pelements != NULL) {
1671       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1672     }
1673   } else {
1674     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1675     retval = true;
1676   }
1677   return retval;
1678 }
1679 
1680 // check if addr is inside libjvm.so
1681 bool os::address_is_in_vm(address addr) {
1682   static address libjvm_base_addr;
1683   Dl_info dlinfo;
1684 
1685   if (libjvm_base_addr == NULL) {
1686     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1687       libjvm_base_addr = (address)dlinfo.dli_fbase;
1688     }
1689     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1690   }
1691 
1692   if (dladdr((void *)addr, &dlinfo) != 0) {
1693     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1694   }
1695 
1696   return false;
1697 }
1698 
1699 bool os::dll_address_to_function_name(address addr, char *buf,
1700                                       int buflen, int *offset) {
1701   // buf is not optional, but offset is optional
1702   assert(buf != NULL, "sanity check");
1703 
1704   Dl_info dlinfo;
1705 
1706   if (dladdr((void*)addr, &dlinfo) != 0) {
1707     // see if we have a matching symbol
1708     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1709       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1710         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1711       }
1712       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1713       return true;
1714     }
1715     // no matching symbol so try for just file info
1716     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1717       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1718                           buf, buflen, offset, dlinfo.dli_fname)) {
1719         return true;
1720       }
1721     }
1722   }
1723 
1724   buf[0] = '\0';
1725   if (offset != NULL) *offset = -1;
1726   return false;
1727 }
1728 
1729 struct _address_to_library_name {
1730   address addr;          // input : memory address
1731   size_t  buflen;        //         size of fname
1732   char*   fname;         // output: library name
1733   address base;          //         library base addr
1734 };
1735 
1736 static int address_to_library_name_callback(struct dl_phdr_info *info,
1737                                             size_t size, void *data) {
1738   int i;
1739   bool found = false;
1740   address libbase = NULL;
1741   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1742 
1743   // iterate through all loadable segments
1744   for (i = 0; i < info->dlpi_phnum; i++) {
1745     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1746     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1747       // base address of a library is the lowest address of its loaded
1748       // segments.
1749       if (libbase == NULL || libbase > segbase) {
1750         libbase = segbase;
1751       }
1752       // see if 'addr' is within current segment
1753       if (segbase <= d->addr &&
1754           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1755         found = true;
1756       }
1757     }
1758   }
1759 
1760   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1761   // so dll_address_to_library_name() can fall through to use dladdr() which
1762   // can figure out executable name from argv[0].
1763   if (found && info->dlpi_name && info->dlpi_name[0]) {
1764     d->base = libbase;
1765     if (d->fname) {
1766       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1767     }
1768     return 1;
1769   }
1770   return 0;
1771 }
1772 
1773 bool os::dll_address_to_library_name(address addr, char* buf,
1774                                      int buflen, int* offset) {
1775   // buf is not optional, but offset is optional
1776   assert(buf != NULL, "sanity check");
1777 
1778   Dl_info dlinfo;
1779   struct _address_to_library_name data;
1780 
1781   // There is a bug in old glibc dladdr() implementation that it could resolve
1782   // to wrong library name if the .so file has a base address != NULL. Here
1783   // we iterate through the program headers of all loaded libraries to find
1784   // out which library 'addr' really belongs to. This workaround can be
1785   // removed once the minimum requirement for glibc is moved to 2.3.x.
1786   data.addr = addr;
1787   data.fname = buf;
1788   data.buflen = buflen;
1789   data.base = NULL;
1790   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1791 
1792   if (rslt) {
1793      // buf already contains library name
1794      if (offset) *offset = addr - data.base;
1795      return true;
1796   }
1797   if (dladdr((void*)addr, &dlinfo) != 0) {
1798     if (dlinfo.dli_fname != NULL) {
1799       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1800     }
1801     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1802       *offset = addr - (address)dlinfo.dli_fbase;
1803     }
1804     return true;
1805   }
1806 
1807   buf[0] = '\0';
1808   if (offset) *offset = -1;
1809   return false;
1810 }
1811 
1812   // Loads .dll/.so and
1813   // in case of error it checks if .dll/.so was built for the
1814   // same architecture as Hotspot is running on
1815 
1816 
1817 // Remember the stack's state. The Linux dynamic linker will change
1818 // the stack to 'executable' at most once, so we must safepoint only once.
1819 bool os::Linux::_stack_is_executable = false;
1820 
1821 // VM operation that loads a library.  This is necessary if stack protection
1822 // of the Java stacks can be lost during loading the library.  If we
1823 // do not stop the Java threads, they can stack overflow before the stacks
1824 // are protected again.
1825 class VM_LinuxDllLoad: public VM_Operation {
1826  private:
1827   const char *_filename;
1828   char *_ebuf;
1829   int _ebuflen;
1830   void *_lib;
1831  public:
1832   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1833     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1834   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1835   void doit() {
1836     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1837     os::Linux::_stack_is_executable = true;
1838   }
1839   void* loaded_library() { return _lib; }
1840 };
1841 
1842 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1843 {
1844   void * result = NULL;
1845   bool load_attempted = false;
1846 
1847   // Check whether the library to load might change execution rights
1848   // of the stack. If they are changed, the protection of the stack
1849   // guard pages will be lost. We need a safepoint to fix this.
1850   //
1851   // See Linux man page execstack(8) for more info.
1852   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1853     ElfFile ef(filename);
1854     if (!ef.specifies_noexecstack()) {
1855       if (!is_init_completed()) {
1856         os::Linux::_stack_is_executable = true;
1857         // This is OK - No Java threads have been created yet, and hence no
1858         // stack guard pages to fix.
1859         //
1860         // This should happen only when you are building JDK7 using a very
1861         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1862         //
1863         // Dynamic loader will make all stacks executable after
1864         // this function returns, and will not do that again.
1865         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1866       } else {
1867         warning("You have loaded library %s which might have disabled stack guard. "
1868                 "The VM will try to fix the stack guard now.\n"
1869                 "It's highly recommended that you fix the library with "
1870                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1871                 filename);
1872 
1873         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1874         JavaThread *jt = JavaThread::current();
1875         if (jt->thread_state() != _thread_in_native) {
1876           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1877           // that requires ExecStack. Cannot enter safe point. Let's give up.
1878           warning("Unable to fix stack guard. Giving up.");
1879         } else {
1880           if (!LoadExecStackDllInVMThread) {
1881             // This is for the case where the DLL has an static
1882             // constructor function that executes JNI code. We cannot
1883             // load such DLLs in the VMThread.
1884             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1885           }
1886 
1887           ThreadInVMfromNative tiv(jt);
1888           debug_only(VMNativeEntryWrapper vew;)
1889 
1890           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1891           VMThread::execute(&op);
1892           if (LoadExecStackDllInVMThread) {
1893             result = op.loaded_library();
1894           }
1895           load_attempted = true;
1896         }
1897       }
1898     }
1899   }
1900 
1901   if (!load_attempted) {
1902     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1903   }
1904 
1905   if (result != NULL) {
1906     // Successful loading
1907     return result;
1908   }
1909 
1910   Elf32_Ehdr elf_head;
1911   int diag_msg_max_length=ebuflen-strlen(ebuf);
1912   char* diag_msg_buf=ebuf+strlen(ebuf);
1913 
1914   if (diag_msg_max_length==0) {
1915     // No more space in ebuf for additional diagnostics message
1916     return NULL;
1917   }
1918 
1919 
1920   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1921 
1922   if (file_descriptor < 0) {
1923     // Can't open library, report dlerror() message
1924     return NULL;
1925   }
1926 
1927   bool failed_to_read_elf_head=
1928     (sizeof(elf_head)!=
1929         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1930 
1931   ::close(file_descriptor);
1932   if (failed_to_read_elf_head) {
1933     // file i/o error - report dlerror() msg
1934     return NULL;
1935   }
1936 
1937   typedef struct {
1938     Elf32_Half  code;         // Actual value as defined in elf.h
1939     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1940     char        elf_class;    // 32 or 64 bit
1941     char        endianess;    // MSB or LSB
1942     char*       name;         // String representation
1943   } arch_t;
1944 
1945   #ifndef EM_486
1946   #define EM_486          6               /* Intel 80486 */
1947   #endif
1948 
1949   static const arch_t arch_array[]={
1950     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1951     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1952     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1953     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1954     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1955     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1956     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1957     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1958 #if defined(VM_LITTLE_ENDIAN)
1959     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1960 #else
1961     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1962 #endif
1963     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1964     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1965     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1966     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1967     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1968     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1969     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1970   };
1971 
1972   #if  (defined IA32)
1973     static  Elf32_Half running_arch_code=EM_386;
1974   #elif   (defined AMD64)
1975     static  Elf32_Half running_arch_code=EM_X86_64;
1976   #elif  (defined IA64)
1977     static  Elf32_Half running_arch_code=EM_IA_64;
1978   #elif  (defined __sparc) && (defined _LP64)
1979     static  Elf32_Half running_arch_code=EM_SPARCV9;
1980   #elif  (defined __sparc) && (!defined _LP64)
1981     static  Elf32_Half running_arch_code=EM_SPARC;
1982   #elif  (defined __powerpc64__)
1983     static  Elf32_Half running_arch_code=EM_PPC64;
1984   #elif  (defined __powerpc__)
1985     static  Elf32_Half running_arch_code=EM_PPC;
1986   #elif  (defined ARM)
1987     static  Elf32_Half running_arch_code=EM_ARM;
1988   #elif  (defined S390)
1989     static  Elf32_Half running_arch_code=EM_S390;
1990   #elif  (defined ALPHA)
1991     static  Elf32_Half running_arch_code=EM_ALPHA;
1992   #elif  (defined MIPSEL)
1993     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1994   #elif  (defined PARISC)
1995     static  Elf32_Half running_arch_code=EM_PARISC;
1996   #elif  (defined MIPS)
1997     static  Elf32_Half running_arch_code=EM_MIPS;
1998   #elif  (defined M68K)
1999     static  Elf32_Half running_arch_code=EM_68K;
2000   #else
2001     #error Method os::dll_load requires that one of following is defined:\
2002          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2003   #endif
2004 
2005   // Identify compatability class for VM's architecture and library's architecture
2006   // Obtain string descriptions for architectures
2007 
2008   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2009   int running_arch_index=-1;
2010 
2011   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2012     if (running_arch_code == arch_array[i].code) {
2013       running_arch_index    = i;
2014     }
2015     if (lib_arch.code == arch_array[i].code) {
2016       lib_arch.compat_class = arch_array[i].compat_class;
2017       lib_arch.name         = arch_array[i].name;
2018     }
2019   }
2020 
2021   assert(running_arch_index != -1,
2022     "Didn't find running architecture code (running_arch_code) in arch_array");
2023   if (running_arch_index == -1) {
2024     // Even though running architecture detection failed
2025     // we may still continue with reporting dlerror() message
2026     return NULL;
2027   }
2028 
2029   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2030     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2031     return NULL;
2032   }
2033 
2034 #ifndef S390
2035   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2036     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2037     return NULL;
2038   }
2039 #endif // !S390
2040 
2041   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2042     if ( lib_arch.name!=NULL ) {
2043       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2044         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2045         lib_arch.name, arch_array[running_arch_index].name);
2046     } else {
2047       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2048       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2049         lib_arch.code,
2050         arch_array[running_arch_index].name);
2051     }
2052   }
2053 
2054   return NULL;
2055 }
2056 
2057 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2058   void * result = ::dlopen(filename, RTLD_LAZY);
2059   if (result == NULL) {
2060     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2061     ebuf[ebuflen-1] = '\0';
2062   }
2063   return result;
2064 }
2065 
2066 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2067   void * result = NULL;
2068   if (LoadExecStackDllInVMThread) {
2069     result = dlopen_helper(filename, ebuf, ebuflen);
2070   }
2071 
2072   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2073   // library that requires an executable stack, or which does not have this
2074   // stack attribute set, dlopen changes the stack attribute to executable. The
2075   // read protection of the guard pages gets lost.
2076   //
2077   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2078   // may have been queued at the same time.
2079 
2080   if (!_stack_is_executable) {
2081     JavaThread *jt = Threads::first();
2082 
2083     while (jt) {
2084       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2085           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2086         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2087                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2088           warning("Attempt to reguard stack yellow zone failed.");
2089         }
2090       }
2091       jt = jt->next();
2092     }
2093   }
2094 
2095   return result;
2096 }
2097 
2098 /*
2099  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2100  * chances are you might want to run the generated bits against glibc-2.0
2101  * libdl.so, so always use locking for any version of glibc.
2102  */
2103 void* os::dll_lookup(void* handle, const char* name) {
2104   pthread_mutex_lock(&dl_mutex);
2105   void* res = dlsym(handle, name);
2106   pthread_mutex_unlock(&dl_mutex);
2107   return res;
2108 }
2109 
2110 void* os::get_default_process_handle() {
2111   return (void*)::dlopen(NULL, RTLD_LAZY);
2112 }
2113 
2114 static bool _print_ascii_file(const char* filename, outputStream* st) {
2115   int fd = ::open(filename, O_RDONLY);
2116   if (fd == -1) {
2117      return false;
2118   }
2119 
2120   char buf[32];
2121   int bytes;
2122   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2123     st->print_raw(buf, bytes);
2124   }
2125 
2126   ::close(fd);
2127 
2128   return true;
2129 }
2130 
2131 void os::print_dll_info(outputStream *st) {
2132    st->print_cr("Dynamic libraries:");
2133 
2134    char fname[32];
2135    pid_t pid = os::Linux::gettid();
2136 
2137    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2138 
2139    if (!_print_ascii_file(fname, st)) {
2140      st->print("Can not get library information for pid = %d\n", pid);
2141    }
2142 }
2143 
2144 void os::print_os_info_brief(outputStream* st) {
2145   os::Linux::print_distro_info(st);
2146 
2147   os::Posix::print_uname_info(st);
2148 
2149   os::Linux::print_libversion_info(st);
2150 
2151 }
2152 
2153 void os::print_os_info(outputStream* st) {
2154   st->print("OS:");
2155 
2156   os::Linux::print_distro_info(st);
2157 
2158   os::Posix::print_uname_info(st);
2159 
2160   // Print warning if unsafe chroot environment detected
2161   if (unsafe_chroot_detected) {
2162     st->print("WARNING!! ");
2163     st->print_cr("%s", unstable_chroot_error);
2164   }
2165 
2166   os::Linux::print_libversion_info(st);
2167 
2168   os::Posix::print_rlimit_info(st);
2169 
2170   os::Posix::print_load_average(st);
2171 
2172   os::Linux::print_full_memory_info(st);
2173 
2174   os::Linux::print_container_info(st);
2175 }
2176 
2177 // Try to identify popular distros.
2178 // Most Linux distributions have a /etc/XXX-release file, which contains
2179 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2180 // file that also contains the OS version string. Some have more than one
2181 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2182 // /etc/redhat-release.), so the order is important.
2183 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2184 // their own specific XXX-release file as well as a redhat-release file.
2185 // Because of this the XXX-release file needs to be searched for before the
2186 // redhat-release file.
2187 // Since Red Hat has a lsb-release file that is not very descriptive the
2188 // search for redhat-release needs to be before lsb-release.
2189 // Since the lsb-release file is the new standard it needs to be searched
2190 // before the older style release files.
2191 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2192 // next to last resort.  The os-release file is a new standard that contains
2193 // distribution information and the system-release file seems to be an old
2194 // standard that has been replaced by the lsb-release and os-release files.
2195 // Searching for the debian_version file is the last resort.  It contains
2196 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2197 // "Debian " is printed before the contents of the debian_version file.
2198 void os::Linux::print_distro_info(outputStream* st) {
2199    if (!_print_ascii_file("/etc/oracle-release", st) &&
2200        !_print_ascii_file("/etc/mandriva-release", st) &&
2201        !_print_ascii_file("/etc/mandrake-release", st) &&
2202        !_print_ascii_file("/etc/sun-release", st) &&
2203        !_print_ascii_file("/etc/redhat-release", st) &&
2204        !_print_ascii_file("/etc/lsb-release", st) &&
2205        !_print_ascii_file("/etc/SuSE-release", st) &&
2206        !_print_ascii_file("/etc/turbolinux-release", st) &&
2207        !_print_ascii_file("/etc/gentoo-release", st) &&
2208        !_print_ascii_file("/etc/ltib-release", st) &&
2209        !_print_ascii_file("/etc/angstrom-version", st) &&
2210        !_print_ascii_file("/etc/system-release", st) &&
2211        !_print_ascii_file("/etc/os-release", st)) {
2212 
2213        if (file_exists("/etc/debian_version")) {
2214          st->print("Debian ");
2215          _print_ascii_file("/etc/debian_version", st);
2216        } else {
2217          st->print("Linux");
2218        }
2219    }
2220    st->cr();
2221 }
2222 
2223 void os::Linux::print_libversion_info(outputStream* st) {
2224   // libc, pthread
2225   st->print("libc:");
2226   st->print("%s ", os::Linux::glibc_version());
2227   st->print("%s ", os::Linux::libpthread_version());
2228   if (os::Linux::is_LinuxThreads()) {
2229      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2230   }
2231   st->cr();
2232 }
2233 
2234 void os::Linux::print_full_memory_info(outputStream* st) {
2235    st->print("\n/proc/meminfo:\n");
2236    _print_ascii_file("/proc/meminfo", st);
2237    st->cr();
2238 }
2239 
2240 void os::Linux::print_container_info(outputStream* st) {
2241 if (!OSContainer::is_containerized()) {
2242     return;
2243   }
2244 
2245   st->print("container (cgroup) information:\n");
2246 
2247   const char *p_ct = OSContainer::container_type();
2248   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2249 
2250   char *p = OSContainer::cpu_cpuset_cpus();
2251   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2252   free(p);
2253 
2254   p = OSContainer::cpu_cpuset_memory_nodes();
2255   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2256   free(p);
2257 
2258   int i = OSContainer::active_processor_count();
2259   if (i > 0) {
2260     st->print("active_processor_count: %d\n", i);
2261   } else {
2262     st->print("active_processor_count: failed\n");
2263   }
2264 
2265   i = OSContainer::cpu_quota();
2266   st->print("cpu_quota: %d\n", i);
2267 
2268   i = OSContainer::cpu_period();
2269   st->print("cpu_period: %d\n", i);
2270 
2271   i = OSContainer::cpu_shares();
2272   st->print("cpu_shares: %d\n", i);
2273 
2274   jlong j = OSContainer::memory_limit_in_bytes();
2275   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2276 
2277   j = OSContainer::memory_and_swap_limit_in_bytes();
2278   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2279 
2280   j = OSContainer::memory_soft_limit_in_bytes();
2281   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2282 
2283   j = OSContainer::OSContainer::memory_usage_in_bytes();
2284   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2285 
2286   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2287   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2288   st->cr();
2289 }
2290 
2291 void os::print_memory_info(outputStream* st) {
2292 
2293   st->print("Memory:");
2294   st->print(" %dk page", os::vm_page_size()>>10);
2295 
2296   // values in struct sysinfo are "unsigned long"
2297   struct sysinfo si;
2298   sysinfo(&si);
2299 
2300   st->print(", physical " UINT64_FORMAT "k",
2301             os::physical_memory() >> 10);
2302   st->print("(" UINT64_FORMAT "k free)",
2303             os::available_memory() >> 10);
2304   st->print(", swap " UINT64_FORMAT "k",
2305             ((jlong)si.totalswap * si.mem_unit) >> 10);
2306   st->print("(" UINT64_FORMAT "k free)",
2307             ((jlong)si.freeswap * si.mem_unit) >> 10);
2308   st->cr();
2309 }
2310 
2311 void os::pd_print_cpu_info(outputStream* st) {
2312   st->print("\n/proc/cpuinfo:\n");
2313   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2314     st->print("  <Not Available>");
2315   }
2316   st->cr();
2317 }
2318 
2319 void os::print_siginfo(outputStream* st, void* siginfo) {
2320   const siginfo_t* si = (const siginfo_t*)siginfo;
2321 
2322   os::Posix::print_siginfo_brief(st, si);
2323 #if INCLUDE_CDS
2324   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2325       UseSharedSpaces) {
2326     FileMapInfo* mapinfo = FileMapInfo::current_info();
2327     if (mapinfo->is_in_shared_space(si->si_addr)) {
2328       st->print("\n\nError accessing class data sharing archive."   \
2329                 " Mapped file inaccessible during execution, "      \
2330                 " possible disk/network problem.");
2331     }
2332   }
2333 #endif
2334   st->cr();
2335 }
2336 
2337 
2338 static void print_signal_handler(outputStream* st, int sig,
2339                                  char* buf, size_t buflen);
2340 
2341 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2342   st->print_cr("Signal Handlers:");
2343   print_signal_handler(st, SIGSEGV, buf, buflen);
2344   print_signal_handler(st, SIGBUS , buf, buflen);
2345   print_signal_handler(st, SIGFPE , buf, buflen);
2346   print_signal_handler(st, SIGPIPE, buf, buflen);
2347   print_signal_handler(st, SIGXFSZ, buf, buflen);
2348   print_signal_handler(st, SIGILL , buf, buflen);
2349   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2350   print_signal_handler(st, SR_signum, buf, buflen);
2351   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2352   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2353   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2354   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2355 #if defined(PPC64)
2356   print_signal_handler(st, SIGTRAP, buf, buflen);
2357 #endif
2358 }
2359 
2360 static char saved_jvm_path[MAXPATHLEN] = {0};
2361 
2362 // Find the full path to the current module, libjvm.so
2363 void os::jvm_path(char *buf, jint buflen) {
2364   // Error checking.
2365   if (buflen < MAXPATHLEN) {
2366     assert(false, "must use a large-enough buffer");
2367     buf[0] = '\0';
2368     return;
2369   }
2370   // Lazy resolve the path to current module.
2371   if (saved_jvm_path[0] != 0) {
2372     strcpy(buf, saved_jvm_path);
2373     return;
2374   }
2375 
2376   char dli_fname[MAXPATHLEN];
2377   bool ret = dll_address_to_library_name(
2378                 CAST_FROM_FN_PTR(address, os::jvm_path),
2379                 dli_fname, sizeof(dli_fname), NULL);
2380   assert(ret, "cannot locate libjvm");
2381   char *rp = NULL;
2382   if (ret && dli_fname[0] != '\0') {
2383     rp = realpath(dli_fname, buf);
2384   }
2385   if (rp == NULL)
2386     return;
2387 
2388   if (Arguments::created_by_gamma_launcher()) {
2389     // Support for the gamma launcher.  Typical value for buf is
2390     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2391     // the right place in the string, then assume we are installed in a JDK and
2392     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2393     // up the path so it looks like libjvm.so is installed there (append a
2394     // fake suffix hotspot/libjvm.so).
2395     const char *p = buf + strlen(buf) - 1;
2396     for (int count = 0; p > buf && count < 5; ++count) {
2397       for (--p; p > buf && *p != '/'; --p)
2398         /* empty */ ;
2399     }
2400 
2401     if (strncmp(p, "/jre/lib/", 9) != 0) {
2402       // Look for JAVA_HOME in the environment.
2403       char* java_home_var = ::getenv("JAVA_HOME");
2404       if (java_home_var != NULL && java_home_var[0] != 0) {
2405         char* jrelib_p;
2406         int len;
2407 
2408         // Check the current module name "libjvm.so".
2409         p = strrchr(buf, '/');
2410         assert(strstr(p, "/libjvm") == p, "invalid library name");
2411 
2412         rp = realpath(java_home_var, buf);
2413         if (rp == NULL)
2414           return;
2415 
2416         // determine if this is a legacy image or modules image
2417         // modules image doesn't have "jre" subdirectory
2418         len = strlen(buf);
2419         assert(len < buflen, "Ran out of buffer room");
2420         jrelib_p = buf + len;
2421         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2422         if (0 != access(buf, F_OK)) {
2423           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2424         }
2425 
2426         if (0 == access(buf, F_OK)) {
2427           // Use current module name "libjvm.so"
2428           len = strlen(buf);
2429           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2430         } else {
2431           // Go back to path of .so
2432           rp = realpath(dli_fname, buf);
2433           if (rp == NULL)
2434             return;
2435         }
2436       }
2437     }
2438   }
2439 
2440   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2441 }
2442 
2443 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2444   // no prefix required, not even "_"
2445 }
2446 
2447 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2448   // no suffix required
2449 }
2450 
2451 ////////////////////////////////////////////////////////////////////////////////
2452 // sun.misc.Signal support
2453 
2454 static volatile jint sigint_count = 0;
2455 
2456 static void
2457 UserHandler(int sig, void *siginfo, void *context) {
2458   // 4511530 - sem_post is serialized and handled by the manager thread. When
2459   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2460   // don't want to flood the manager thread with sem_post requests.
2461   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2462       return;
2463 
2464   // Ctrl-C is pressed during error reporting, likely because the error
2465   // handler fails to abort. Let VM die immediately.
2466   if (sig == SIGINT && is_error_reported()) {
2467      os::die();
2468   }
2469 
2470   os::signal_notify(sig);
2471 }
2472 
2473 void* os::user_handler() {
2474   return CAST_FROM_FN_PTR(void*, UserHandler);
2475 }
2476 
2477 class Semaphore : public StackObj {
2478   public:
2479     Semaphore();
2480     ~Semaphore();
2481     void signal();
2482     void wait();
2483     bool trywait();
2484     bool timedwait(unsigned int sec, int nsec);
2485   private:
2486     sem_t _semaphore;
2487 };
2488 
2489 Semaphore::Semaphore() {
2490   sem_init(&_semaphore, 0, 0);
2491 }
2492 
2493 Semaphore::~Semaphore() {
2494   sem_destroy(&_semaphore);
2495 }
2496 
2497 void Semaphore::signal() {
2498   sem_post(&_semaphore);
2499 }
2500 
2501 void Semaphore::wait() {
2502   sem_wait(&_semaphore);
2503 }
2504 
2505 bool Semaphore::trywait() {
2506   return sem_trywait(&_semaphore) == 0;
2507 }
2508 
2509 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2510 
2511   struct timespec ts;
2512   // Semaphore's are always associated with CLOCK_REALTIME
2513   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2514   // see unpackTime for discussion on overflow checking
2515   if (sec >= MAX_SECS) {
2516     ts.tv_sec += MAX_SECS;
2517     ts.tv_nsec = 0;
2518   } else {
2519     ts.tv_sec += sec;
2520     ts.tv_nsec += nsec;
2521     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2522       ts.tv_nsec -= NANOSECS_PER_SEC;
2523       ++ts.tv_sec; // note: this must be <= max_secs
2524     }
2525   }
2526 
2527   while (1) {
2528     int result = sem_timedwait(&_semaphore, &ts);
2529     if (result == 0) {
2530       return true;
2531     } else if (errno == EINTR) {
2532       continue;
2533     } else if (errno == ETIMEDOUT) {
2534       return false;
2535     } else {
2536       return false;
2537     }
2538   }
2539 }
2540 
2541 extern "C" {
2542   typedef void (*sa_handler_t)(int);
2543   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2544 }
2545 
2546 void* os::signal(int signal_number, void* handler) {
2547   struct sigaction sigAct, oldSigAct;
2548 
2549   sigfillset(&(sigAct.sa_mask));
2550   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2551   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2552 
2553   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2554     // -1 means registration failed
2555     return (void *)-1;
2556   }
2557 
2558   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2559 }
2560 
2561 void os::signal_raise(int signal_number) {
2562   ::raise(signal_number);
2563 }
2564 
2565 /*
2566  * The following code is moved from os.cpp for making this
2567  * code platform specific, which it is by its very nature.
2568  */
2569 
2570 // Will be modified when max signal is changed to be dynamic
2571 int os::sigexitnum_pd() {
2572   return NSIG;
2573 }
2574 
2575 // a counter for each possible signal value
2576 static volatile jint pending_signals[NSIG+1] = { 0 };
2577 
2578 // Linux(POSIX) specific hand shaking semaphore.
2579 static sem_t sig_sem;
2580 static Semaphore sr_semaphore;
2581 
2582 void os::signal_init_pd() {
2583   // Initialize signal structures
2584   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2585 
2586   // Initialize signal semaphore
2587   ::sem_init(&sig_sem, 0, 0);
2588 }
2589 
2590 void os::signal_notify(int sig) {
2591   Atomic::inc(&pending_signals[sig]);
2592   ::sem_post(&sig_sem);
2593 }
2594 
2595 static int check_pending_signals(bool wait) {
2596   Atomic::store(0, &sigint_count);
2597   for (;;) {
2598     for (int i = 0; i < NSIG + 1; i++) {
2599       jint n = pending_signals[i];
2600       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2601         return i;
2602       }
2603     }
2604     if (!wait) {
2605       return -1;
2606     }
2607     JavaThread *thread = JavaThread::current();
2608     ThreadBlockInVM tbivm(thread);
2609 
2610     bool threadIsSuspended;
2611     do {
2612       thread->set_suspend_equivalent();
2613       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2614       ::sem_wait(&sig_sem);
2615 
2616       // were we externally suspended while we were waiting?
2617       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2618       if (threadIsSuspended) {
2619         //
2620         // The semaphore has been incremented, but while we were waiting
2621         // another thread suspended us. We don't want to continue running
2622         // while suspended because that would surprise the thread that
2623         // suspended us.
2624         //
2625         ::sem_post(&sig_sem);
2626 
2627         thread->java_suspend_self();
2628       }
2629     } while (threadIsSuspended);
2630   }
2631 }
2632 
2633 int os::signal_lookup() {
2634   return check_pending_signals(false);
2635 }
2636 
2637 int os::signal_wait() {
2638   return check_pending_signals(true);
2639 }
2640 
2641 ////////////////////////////////////////////////////////////////////////////////
2642 // Virtual Memory
2643 
2644 int os::vm_page_size() {
2645   // Seems redundant as all get out
2646   assert(os::Linux::page_size() != -1, "must call os::init");
2647   return os::Linux::page_size();
2648 }
2649 
2650 // Solaris allocates memory by pages.
2651 int os::vm_allocation_granularity() {
2652   assert(os::Linux::page_size() != -1, "must call os::init");
2653   return os::Linux::page_size();
2654 }
2655 
2656 // Rationale behind this function:
2657 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2658 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2659 //  samples for JITted code. Here we create private executable mapping over the code cache
2660 //  and then we can use standard (well, almost, as mapping can change) way to provide
2661 //  info for the reporting script by storing timestamp and location of symbol
2662 void linux_wrap_code(char* base, size_t size) {
2663   static volatile jint cnt = 0;
2664 
2665   if (!UseOprofile) {
2666     return;
2667   }
2668 
2669   char buf[PATH_MAX+1];
2670   int num = Atomic::add(1, &cnt);
2671 
2672   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2673            os::get_temp_directory(), os::current_process_id(), num);
2674   unlink(buf);
2675 
2676   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2677 
2678   if (fd != -1) {
2679     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2680     if (rv != (off_t)-1) {
2681       if (::write(fd, "", 1) == 1) {
2682         mmap(base, size,
2683              PROT_READ|PROT_WRITE|PROT_EXEC,
2684              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2685       }
2686     }
2687     ::close(fd);
2688     unlink(buf);
2689   }
2690 }
2691 
2692 static bool recoverable_mmap_error(int err) {
2693   // See if the error is one we can let the caller handle. This
2694   // list of errno values comes from JBS-6843484. I can't find a
2695   // Linux man page that documents this specific set of errno
2696   // values so while this list currently matches Solaris, it may
2697   // change as we gain experience with this failure mode.
2698   switch (err) {
2699   case EBADF:
2700   case EINVAL:
2701   case ENOTSUP:
2702     // let the caller deal with these errors
2703     return true;
2704 
2705   default:
2706     // Any remaining errors on this OS can cause our reserved mapping
2707     // to be lost. That can cause confusion where different data
2708     // structures think they have the same memory mapped. The worst
2709     // scenario is if both the VM and a library think they have the
2710     // same memory mapped.
2711     return false;
2712   }
2713 }
2714 
2715 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2716                                     int err) {
2717   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2718           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2719           strerror(err), err);
2720 }
2721 
2722 static void warn_fail_commit_memory(char* addr, size_t size,
2723                                     size_t alignment_hint, bool exec,
2724                                     int err) {
2725   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2726           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2727           alignment_hint, exec, strerror(err), err);
2728 }
2729 
2730 // NOTE: Linux kernel does not really reserve the pages for us.
2731 //       All it does is to check if there are enough free pages
2732 //       left at the time of mmap(). This could be a potential
2733 //       problem.
2734 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2735   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2736   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2737                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2738   if (res != (uintptr_t) MAP_FAILED) {
2739     if (UseNUMAInterleaving) {
2740       numa_make_global(addr, size);
2741     }
2742     return 0;
2743   }
2744 
2745   int err = errno;  // save errno from mmap() call above
2746 
2747   if (!recoverable_mmap_error(err)) {
2748     warn_fail_commit_memory(addr, size, exec, err);
2749     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2750   }
2751 
2752   return err;
2753 }
2754 
2755 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2756   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2757 }
2758 
2759 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2760                                   const char* mesg) {
2761   assert(mesg != NULL, "mesg must be specified");
2762   int err = os::Linux::commit_memory_impl(addr, size, exec);
2763   if (err != 0) {
2764     // the caller wants all commit errors to exit with the specified mesg:
2765     warn_fail_commit_memory(addr, size, exec, err);
2766     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2767   }
2768 }
2769 
2770 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2771 #ifndef MAP_HUGETLB
2772 #define MAP_HUGETLB 0x40000
2773 #endif
2774 
2775 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2776 #ifndef MADV_HUGEPAGE
2777 #define MADV_HUGEPAGE 14
2778 #endif
2779 
2780 int os::Linux::commit_memory_impl(char* addr, size_t size,
2781                                   size_t alignment_hint, bool exec) {
2782   int err = os::Linux::commit_memory_impl(addr, size, exec);
2783   if (err == 0) {
2784     realign_memory(addr, size, alignment_hint);
2785   }
2786   return err;
2787 }
2788 
2789 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2790                           bool exec) {
2791   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2792 }
2793 
2794 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2795                                   size_t alignment_hint, bool exec,
2796                                   const char* mesg) {
2797   assert(mesg != NULL, "mesg must be specified");
2798   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2799   if (err != 0) {
2800     // the caller wants all commit errors to exit with the specified mesg:
2801     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2802     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2803   }
2804 }
2805 
2806 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2807   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2808     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2809     // be supported or the memory may already be backed by huge pages.
2810     ::madvise(addr, bytes, MADV_HUGEPAGE);
2811   }
2812 }
2813 
2814 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2815   // This method works by doing an mmap over an existing mmaping and effectively discarding
2816   // the existing pages. However it won't work for SHM-based large pages that cannot be
2817   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2818   // small pages on top of the SHM segment. This method always works for small pages, so we
2819   // allow that in any case.
2820   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2821     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2822   }
2823 }
2824 
2825 void os::numa_make_global(char *addr, size_t bytes) {
2826   Linux::numa_interleave_memory(addr, bytes);
2827 }
2828 
2829 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2830 // bind policy to MPOL_PREFERRED for the current thread.
2831 #define USE_MPOL_PREFERRED 0
2832 
2833 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2834   // To make NUMA and large pages more robust when both enabled, we need to ease
2835   // the requirements on where the memory should be allocated. MPOL_BIND is the
2836   // default policy and it will force memory to be allocated on the specified
2837   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2838   // the specified node, but will not force it. Using this policy will prevent
2839   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2840   // free large pages.
2841   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2842   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2843 }
2844 
2845 bool os::numa_topology_changed()   { return false; }
2846 
2847 size_t os::numa_get_groups_num() {
2848   // Return just the number of nodes in which it's possible to allocate memory
2849   // (in numa terminology, configured nodes).
2850   return Linux::numa_num_configured_nodes();
2851 }
2852 
2853 int os::numa_get_group_id() {
2854   int cpu_id = Linux::sched_getcpu();
2855   if (cpu_id != -1) {
2856     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2857     if (lgrp_id != -1) {
2858       return lgrp_id;
2859     }
2860   }
2861   return 0;
2862 }
2863 
2864 int os::Linux::get_existing_num_nodes() {
2865   size_t node;
2866   size_t highest_node_number = Linux::numa_max_node();
2867   int num_nodes = 0;
2868 
2869   // Get the total number of nodes in the system including nodes without memory.
2870   for (node = 0; node <= highest_node_number; node++) {
2871     if (isnode_in_existing_nodes(node)) {
2872       num_nodes++;
2873     }
2874   }
2875   return num_nodes;
2876 }
2877 
2878 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2879   size_t highest_node_number = Linux::numa_max_node();
2880   size_t i = 0;
2881 
2882   // Map all node ids in which is possible to allocate memory. Also nodes are
2883   // not always consecutively available, i.e. available from 0 to the highest
2884   // node number.
2885   for (size_t node = 0; node <= highest_node_number; node++) {
2886     if (Linux::isnode_in_configured_nodes(node)) {
2887       ids[i++] = node;
2888     }
2889   }
2890   return i;
2891 }
2892 
2893 bool os::get_page_info(char *start, page_info* info) {
2894   return false;
2895 }
2896 
2897 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2898   return end;
2899 }
2900 
2901 
2902 int os::Linux::sched_getcpu_syscall(void) {
2903   unsigned int cpu = 0;
2904   int retval = -1;
2905 
2906 #if defined(IA32)
2907 # ifndef SYS_getcpu
2908 # define SYS_getcpu 318
2909 # endif
2910   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2911 #elif defined(AMD64)
2912 // Unfortunately we have to bring all these macros here from vsyscall.h
2913 // to be able to compile on old linuxes.
2914 # define __NR_vgetcpu 2
2915 # define VSYSCALL_START (-10UL << 20)
2916 # define VSYSCALL_SIZE 1024
2917 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2918   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2919   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2920   retval = vgetcpu(&cpu, NULL, NULL);
2921 #endif
2922 
2923   return (retval == -1) ? retval : cpu;
2924 }
2925 
2926 // Something to do with the numa-aware allocator needs these symbols
2927 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2928 extern "C" JNIEXPORT void numa_error(char *where) { }
2929 extern "C" JNIEXPORT int fork1() { return fork(); }
2930 
2931 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2932 // load symbol from base version instead.
2933 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2934   void *f = dlvsym(handle, name, "libnuma_1.1");
2935   if (f == NULL) {
2936     f = dlsym(handle, name);
2937   }
2938   return f;
2939 }
2940 
2941 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2942 // Return NULL if the symbol is not defined in this particular version.
2943 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2944   return dlvsym(handle, name, "libnuma_1.2");
2945 }
2946 
2947 bool os::Linux::libnuma_init() {
2948   // sched_getcpu() should be in libc.
2949   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2950                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2951 
2952   // If it's not, try a direct syscall.
2953   if (sched_getcpu() == -1)
2954     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2955 
2956   if (sched_getcpu() != -1) { // Does it work?
2957     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2958     if (handle != NULL) {
2959       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2960                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2961       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2962                                        libnuma_dlsym(handle, "numa_max_node")));
2963       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2964                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2965       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2966                                         libnuma_dlsym(handle, "numa_available")));
2967       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2968                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2969       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2970                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2971       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2972                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2973       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2974                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2975       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2976                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2977       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2978                                        libnuma_dlsym(handle, "numa_distance")));
2979 
2980       if (numa_available() != -1) {
2981         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2982         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2983         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2984         // Create an index -> node mapping, since nodes are not always consecutive
2985         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2986         rebuild_nindex_to_node_map();
2987         // Create a cpu -> node mapping
2988         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2989         rebuild_cpu_to_node_map();
2990         return true;
2991       }
2992     }
2993   }
2994   return false;
2995 }
2996 
2997 void os::Linux::rebuild_nindex_to_node_map() {
2998   int highest_node_number = Linux::numa_max_node();
2999 
3000   nindex_to_node()->clear();
3001   for (int node = 0; node <= highest_node_number; node++) {
3002     if (Linux::isnode_in_existing_nodes(node)) {
3003       nindex_to_node()->append(node);
3004     }
3005   }
3006 }
3007 
3008 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3009 // The table is later used in get_node_by_cpu().
3010 void os::Linux::rebuild_cpu_to_node_map() {
3011   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3012                               // in libnuma (possible values are starting from 16,
3013                               // and continuing up with every other power of 2, but less
3014                               // than the maximum number of CPUs supported by kernel), and
3015                               // is a subject to change (in libnuma version 2 the requirements
3016                               // are more reasonable) we'll just hardcode the number they use
3017                               // in the library.
3018   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3019 
3020   size_t cpu_num = processor_count();
3021   size_t cpu_map_size = NCPUS / BitsPerCLong;
3022   size_t cpu_map_valid_size =
3023     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3024 
3025   cpu_to_node()->clear();
3026   cpu_to_node()->at_grow(cpu_num - 1);
3027 
3028   size_t node_num = get_existing_num_nodes();
3029 
3030   int distance = 0;
3031   int closest_distance = INT_MAX;
3032   int closest_node = 0;
3033   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3034   for (size_t i = 0; i < node_num; i++) {
3035     // Check if node is configured (not a memory-less node). If it is not, find
3036     // the closest configured node.
3037     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3038       closest_distance = INT_MAX;
3039       // Check distance from all remaining nodes in the system. Ignore distance
3040       // from itself and from another non-configured node.
3041       for (size_t m = 0; m < node_num; m++) {
3042         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3043           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3044           // If a closest node is found, update. There is always at least one
3045           // configured node in the system so there is always at least one node
3046           // close.
3047           if (distance != 0 && distance < closest_distance) {
3048             closest_distance = distance;
3049             closest_node = nindex_to_node()->at(m);
3050           }
3051         }
3052       }
3053      } else {
3054        // Current node is already a configured node.
3055        closest_node = nindex_to_node()->at(i);
3056      }
3057 
3058     // Get cpus from the original node and map them to the closest node. If node
3059     // is a configured node (not a memory-less node), then original node and
3060     // closest node are the same.
3061     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3062       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3063         if (cpu_map[j] != 0) {
3064           for (size_t k = 0; k < BitsPerCLong; k++) {
3065             if (cpu_map[j] & (1UL << k)) {
3066               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3067             }
3068           }
3069         }
3070       }
3071     }
3072   }
3073   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
3074 }
3075 
3076 int os::Linux::get_node_by_cpu(int cpu_id) {
3077   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3078     return cpu_to_node()->at(cpu_id);
3079   }
3080   return -1;
3081 }
3082 
3083 GrowableArray<int>* os::Linux::_cpu_to_node;
3084 GrowableArray<int>* os::Linux::_nindex_to_node;
3085 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3086 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3087 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3088 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3089 os::Linux::numa_available_func_t os::Linux::_numa_available;
3090 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3091 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3092 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3093 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3094 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3095 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3096 unsigned long* os::Linux::_numa_all_nodes;
3097 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3098 struct bitmask* os::Linux::_numa_nodes_ptr;
3099 
3100 bool os::pd_uncommit_memory(char* addr, size_t size) {
3101   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3102                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3103   return res  != (uintptr_t) MAP_FAILED;
3104 }
3105 
3106 static
3107 address get_stack_commited_bottom(address bottom, size_t size) {
3108   address nbot = bottom;
3109   address ntop = bottom + size;
3110 
3111   size_t page_sz = os::vm_page_size();
3112   unsigned pages = size / page_sz;
3113 
3114   unsigned char vec[1];
3115   unsigned imin = 1, imax = pages + 1, imid;
3116   int mincore_return_value = 0;
3117 
3118   assert(imin <= imax, "Unexpected page size");
3119 
3120   while (imin < imax) {
3121     imid = (imax + imin) / 2;
3122     nbot = ntop - (imid * page_sz);
3123 
3124     // Use a trick with mincore to check whether the page is mapped or not.
3125     // mincore sets vec to 1 if page resides in memory and to 0 if page
3126     // is swapped output but if page we are asking for is unmapped
3127     // it returns -1,ENOMEM
3128     mincore_return_value = mincore(nbot, page_sz, vec);
3129 
3130     if (mincore_return_value == -1) {
3131       // Page is not mapped go up
3132       // to find first mapped page
3133       if (errno != EAGAIN) {
3134         assert(errno == ENOMEM, "Unexpected mincore errno");
3135         imax = imid;
3136       }
3137     } else {
3138       // Page is mapped go down
3139       // to find first not mapped page
3140       imin = imid + 1;
3141     }
3142   }
3143 
3144   nbot = nbot + page_sz;
3145 
3146   // Adjust stack bottom one page up if last checked page is not mapped
3147   if (mincore_return_value == -1) {
3148     nbot = nbot + page_sz;
3149   }
3150 
3151   return nbot;
3152 }
3153 
3154 
3155 // Linux uses a growable mapping for the stack, and if the mapping for
3156 // the stack guard pages is not removed when we detach a thread the
3157 // stack cannot grow beyond the pages where the stack guard was
3158 // mapped.  If at some point later in the process the stack expands to
3159 // that point, the Linux kernel cannot expand the stack any further
3160 // because the guard pages are in the way, and a segfault occurs.
3161 //
3162 // However, it's essential not to split the stack region by unmapping
3163 // a region (leaving a hole) that's already part of the stack mapping,
3164 // so if the stack mapping has already grown beyond the guard pages at
3165 // the time we create them, we have to truncate the stack mapping.
3166 // So, we need to know the extent of the stack mapping when
3167 // create_stack_guard_pages() is called.
3168 
3169 // We only need this for stacks that are growable: at the time of
3170 // writing thread stacks don't use growable mappings (i.e. those
3171 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3172 // only applies to the main thread.
3173 
3174 // If the (growable) stack mapping already extends beyond the point
3175 // where we're going to put our guard pages, truncate the mapping at
3176 // that point by munmap()ping it.  This ensures that when we later
3177 // munmap() the guard pages we don't leave a hole in the stack
3178 // mapping. This only affects the main/primordial thread
3179 
3180 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3181 
3182   if (os::is_primordial_thread()) {
3183     // As we manually grow stack up to bottom inside create_attached_thread(),
3184     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3185     // we don't need to do anything special.
3186     // Check it first, before calling heavy function.
3187     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3188     unsigned char vec[1];
3189 
3190     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3191       // Fallback to slow path on all errors, including EAGAIN
3192       stack_extent = (uintptr_t) get_stack_commited_bottom(
3193                                     os::Linux::initial_thread_stack_bottom(),
3194                                     (size_t)addr - stack_extent);
3195     }
3196 
3197     if (stack_extent < (uintptr_t)addr) {
3198       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3199     }
3200   }
3201 
3202   return os::commit_memory(addr, size, !ExecMem);
3203 }
3204 
3205 // If this is a growable mapping, remove the guard pages entirely by
3206 // munmap()ping them.  If not, just call uncommit_memory(). This only
3207 // affects the main/primordial thread, but guard against future OS changes.
3208 // It's safe to always unmap guard pages for primordial thread because we
3209 // always place it right after end of the mapped region.
3210 
3211 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3212   uintptr_t stack_extent, stack_base;
3213 
3214   if (os::is_primordial_thread()) {
3215     return ::munmap(addr, size) == 0;
3216   }
3217 
3218   return os::uncommit_memory(addr, size);
3219 }
3220 
3221 static address _highest_vm_reserved_address = NULL;
3222 
3223 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3224 // at 'requested_addr'. If there are existing memory mappings at the same
3225 // location, however, they will be overwritten. If 'fixed' is false,
3226 // 'requested_addr' is only treated as a hint, the return value may or
3227 // may not start from the requested address. Unlike Linux mmap(), this
3228 // function returns NULL to indicate failure.
3229 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3230   char * addr;
3231   int flags;
3232 
3233   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3234   if (fixed) {
3235     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3236     flags |= MAP_FIXED;
3237   }
3238 
3239   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3240   // touch an uncommitted page. Otherwise, the read/write might
3241   // succeed if we have enough swap space to back the physical page.
3242   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3243                        flags, -1, 0);
3244 
3245   if (addr != MAP_FAILED) {
3246     // anon_mmap() should only get called during VM initialization,
3247     // don't need lock (actually we can skip locking even it can be called
3248     // from multiple threads, because _highest_vm_reserved_address is just a
3249     // hint about the upper limit of non-stack memory regions.)
3250     if ((address)addr + bytes > _highest_vm_reserved_address) {
3251       _highest_vm_reserved_address = (address)addr + bytes;
3252     }
3253   }
3254 
3255   return addr == MAP_FAILED ? NULL : addr;
3256 }
3257 
3258 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3259 //   (req_addr != NULL) or with a given alignment.
3260 //  - bytes shall be a multiple of alignment.
3261 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3262 //  - alignment sets the alignment at which memory shall be allocated.
3263 //     It must be a multiple of allocation granularity.
3264 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3265 //  req_addr or NULL.
3266 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3267 
3268   size_t extra_size = bytes;
3269   if (req_addr == NULL && alignment > 0) {
3270     extra_size += alignment;
3271   }
3272 
3273   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3274     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3275     -1, 0);
3276   if (start == MAP_FAILED) {
3277     start = NULL;
3278   } else {
3279     if (req_addr != NULL) {
3280       if (start != req_addr) {
3281         ::munmap(start, extra_size);
3282         start = NULL;
3283       }
3284     } else {
3285       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3286       char* const end_aligned = start_aligned + bytes;
3287       char* const end = start + extra_size;
3288       if (start_aligned > start) {
3289         ::munmap(start, start_aligned - start);
3290       }
3291       if (end_aligned < end) {
3292         ::munmap(end_aligned, end - end_aligned);
3293       }
3294       start = start_aligned;
3295     }
3296   }
3297   return start;
3298 }
3299 
3300 // Don't update _highest_vm_reserved_address, because there might be memory
3301 // regions above addr + size. If so, releasing a memory region only creates
3302 // a hole in the address space, it doesn't help prevent heap-stack collision.
3303 //
3304 static int anon_munmap(char * addr, size_t size) {
3305   return ::munmap(addr, size) == 0;
3306 }
3307 
3308 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3309                          size_t alignment_hint) {
3310   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3311 }
3312 
3313 bool os::pd_release_memory(char* addr, size_t size) {
3314   return anon_munmap(addr, size);
3315 }
3316 
3317 static address highest_vm_reserved_address() {
3318   return _highest_vm_reserved_address;
3319 }
3320 
3321 static bool linux_mprotect(char* addr, size_t size, int prot) {
3322   // Linux wants the mprotect address argument to be page aligned.
3323   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3324 
3325   // According to SUSv3, mprotect() should only be used with mappings
3326   // established by mmap(), and mmap() always maps whole pages. Unaligned
3327   // 'addr' likely indicates problem in the VM (e.g. trying to change
3328   // protection of malloc'ed or statically allocated memory). Check the
3329   // caller if you hit this assert.
3330   assert(addr == bottom, "sanity check");
3331 
3332   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3333   return ::mprotect(bottom, size, prot) == 0;
3334 }
3335 
3336 // Set protections specified
3337 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3338                         bool is_committed) {
3339   unsigned int p = 0;
3340   switch (prot) {
3341   case MEM_PROT_NONE: p = PROT_NONE; break;
3342   case MEM_PROT_READ: p = PROT_READ; break;
3343   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3344   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3345   default:
3346     ShouldNotReachHere();
3347   }
3348   // is_committed is unused.
3349   return linux_mprotect(addr, bytes, p);
3350 }
3351 
3352 bool os::guard_memory(char* addr, size_t size) {
3353   return linux_mprotect(addr, size, PROT_NONE);
3354 }
3355 
3356 bool os::unguard_memory(char* addr, size_t size) {
3357   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3358 }
3359 
3360 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3361   bool result = false;
3362   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3363                  MAP_ANONYMOUS|MAP_PRIVATE,
3364                  -1, 0);
3365   if (p != MAP_FAILED) {
3366     void *aligned_p = align_ptr_up(p, page_size);
3367 
3368     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3369 
3370     munmap(p, page_size * 2);
3371   }
3372 
3373   if (warn && !result) {
3374     warning("TransparentHugePages is not supported by the operating system.");
3375   }
3376 
3377   return result;
3378 }
3379 
3380 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3381   bool result = false;
3382   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3383                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3384                  -1, 0);
3385 
3386   if (p != MAP_FAILED) {
3387     // We don't know if this really is a huge page or not.
3388     FILE *fp = fopen("/proc/self/maps", "r");
3389     if (fp) {
3390       while (!feof(fp)) {
3391         char chars[257];
3392         long x = 0;
3393         if (fgets(chars, sizeof(chars), fp)) {
3394           if (sscanf(chars, "%lx-%*x", &x) == 1
3395               && x == (long)p) {
3396             if (strstr (chars, "hugepage")) {
3397               result = true;
3398               break;
3399             }
3400           }
3401         }
3402       }
3403       fclose(fp);
3404     }
3405     munmap(p, page_size);
3406   }
3407 
3408   if (warn && !result) {
3409     warning("HugeTLBFS is not supported by the operating system.");
3410   }
3411 
3412   return result;
3413 }
3414 
3415 /*
3416 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3417 *
3418 * From the coredump_filter documentation:
3419 *
3420 * - (bit 0) anonymous private memory
3421 * - (bit 1) anonymous shared memory
3422 * - (bit 2) file-backed private memory
3423 * - (bit 3) file-backed shared memory
3424 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3425 *           effective only if the bit 2 is cleared)
3426 * - (bit 5) hugetlb private memory
3427 * - (bit 6) hugetlb shared memory
3428 */
3429 static void set_coredump_filter(void) {
3430   FILE *f;
3431   long cdm;
3432 
3433   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3434     return;
3435   }
3436 
3437   if (fscanf(f, "%lx", &cdm) != 1) {
3438     fclose(f);
3439     return;
3440   }
3441 
3442   rewind(f);
3443 
3444   if ((cdm & LARGEPAGES_BIT) == 0) {
3445     cdm |= LARGEPAGES_BIT;
3446     fprintf(f, "%#lx", cdm);
3447   }
3448 
3449   fclose(f);
3450 }
3451 
3452 // Large page support
3453 
3454 static size_t _large_page_size = 0;
3455 
3456 size_t os::Linux::find_large_page_size() {
3457   size_t large_page_size = 0;
3458 
3459   // large_page_size on Linux is used to round up heap size. x86 uses either
3460   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3461   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3462   // page as large as 256M.
3463   //
3464   // Here we try to figure out page size by parsing /proc/meminfo and looking
3465   // for a line with the following format:
3466   //    Hugepagesize:     2048 kB
3467   //
3468   // If we can't determine the value (e.g. /proc is not mounted, or the text
3469   // format has been changed), we'll use the largest page size supported by
3470   // the processor.
3471 
3472 #ifndef ZERO
3473   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3474                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3475 #endif // ZERO
3476 
3477   FILE *fp = fopen("/proc/meminfo", "r");
3478   if (fp) {
3479     while (!feof(fp)) {
3480       int x = 0;
3481       char buf[16];
3482       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3483         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3484           large_page_size = x * K;
3485           break;
3486         }
3487       } else {
3488         // skip to next line
3489         for (;;) {
3490           int ch = fgetc(fp);
3491           if (ch == EOF || ch == (int)'\n') break;
3492         }
3493       }
3494     }
3495     fclose(fp);
3496   }
3497 
3498   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3499     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3500         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3501         proper_unit_for_byte_size(large_page_size));
3502   }
3503 
3504   return large_page_size;
3505 }
3506 
3507 size_t os::Linux::setup_large_page_size() {
3508   _large_page_size = Linux::find_large_page_size();
3509   const size_t default_page_size = (size_t)Linux::page_size();
3510   if (_large_page_size > default_page_size) {
3511     _page_sizes[0] = _large_page_size;
3512     _page_sizes[1] = default_page_size;
3513     _page_sizes[2] = 0;
3514   }
3515 
3516   return _large_page_size;
3517 }
3518 
3519 bool os::Linux::setup_large_page_type(size_t page_size) {
3520   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3521       FLAG_IS_DEFAULT(UseSHM) &&
3522       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3523 
3524     // The type of large pages has not been specified by the user.
3525 
3526     // Try UseHugeTLBFS and then UseSHM.
3527     UseHugeTLBFS = UseSHM = true;
3528 
3529     // Don't try UseTransparentHugePages since there are known
3530     // performance issues with it turned on. This might change in the future.
3531     UseTransparentHugePages = false;
3532   }
3533 
3534   if (UseTransparentHugePages) {
3535     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3536     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3537       UseHugeTLBFS = false;
3538       UseSHM = false;
3539       return true;
3540     }
3541     UseTransparentHugePages = false;
3542   }
3543 
3544   if (UseHugeTLBFS) {
3545     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3546     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3547       UseSHM = false;
3548       return true;
3549     }
3550     UseHugeTLBFS = false;
3551   }
3552 
3553   return UseSHM;
3554 }
3555 
3556 void os::large_page_init() {
3557   if (!UseLargePages &&
3558       !UseTransparentHugePages &&
3559       !UseHugeTLBFS &&
3560       !UseSHM) {
3561     // Not using large pages.
3562     return;
3563   }
3564 
3565   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3566     // The user explicitly turned off large pages.
3567     // Ignore the rest of the large pages flags.
3568     UseTransparentHugePages = false;
3569     UseHugeTLBFS = false;
3570     UseSHM = false;
3571     return;
3572   }
3573 
3574   size_t large_page_size = Linux::setup_large_page_size();
3575   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3576 
3577   set_coredump_filter();
3578 }
3579 
3580 #ifndef SHM_HUGETLB
3581 #define SHM_HUGETLB 04000
3582 #endif
3583 
3584 #define shm_warning_format(format, ...)              \
3585   do {                                               \
3586     if (UseLargePages &&                             \
3587         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3588          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3589          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3590       warning(format, __VA_ARGS__);                  \
3591     }                                                \
3592   } while (0)
3593 
3594 #define shm_warning(str) shm_warning_format("%s", str)
3595 
3596 #define shm_warning_with_errno(str)                \
3597   do {                                             \
3598     int err = errno;                               \
3599     shm_warning_format(str " (error = %d)", err);  \
3600   } while (0)
3601 
3602 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3603   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3604 
3605   if (!is_size_aligned(alignment, SHMLBA)) {
3606     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3607     return NULL;
3608   }
3609 
3610   // To ensure that we get 'alignment' aligned memory from shmat,
3611   // we pre-reserve aligned virtual memory and then attach to that.
3612 
3613   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3614   if (pre_reserved_addr == NULL) {
3615     // Couldn't pre-reserve aligned memory.
3616     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3617     return NULL;
3618   }
3619 
3620   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3621   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3622 
3623   if ((intptr_t)addr == -1) {
3624     int err = errno;
3625     shm_warning_with_errno("Failed to attach shared memory.");
3626 
3627     assert(err != EACCES, "Unexpected error");
3628     assert(err != EIDRM,  "Unexpected error");
3629     assert(err != EINVAL, "Unexpected error");
3630 
3631     // Since we don't know if the kernel unmapped the pre-reserved memory area
3632     // we can't unmap it, since that would potentially unmap memory that was
3633     // mapped from other threads.
3634     return NULL;
3635   }
3636 
3637   return addr;
3638 }
3639 
3640 static char* shmat_at_address(int shmid, char* req_addr) {
3641   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3642     assert(false, "Requested address needs to be SHMLBA aligned");
3643     return NULL;
3644   }
3645 
3646   char* addr = (char*)shmat(shmid, req_addr, 0);
3647 
3648   if ((intptr_t)addr == -1) {
3649     shm_warning_with_errno("Failed to attach shared memory.");
3650     return NULL;
3651   }
3652 
3653   return addr;
3654 }
3655 
3656 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3657   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3658   if (req_addr != NULL) {
3659     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3660     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3661     return shmat_at_address(shmid, req_addr);
3662   }
3663 
3664   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3665   // return large page size aligned memory addresses when req_addr == NULL.
3666   // However, if the alignment is larger than the large page size, we have
3667   // to manually ensure that the memory returned is 'alignment' aligned.
3668   if (alignment > os::large_page_size()) {
3669     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3670     return shmat_with_alignment(shmid, bytes, alignment);
3671   } else {
3672     return shmat_at_address(shmid, NULL);
3673   }
3674 }
3675 
3676 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3677   // "exec" is passed in but not used.  Creating the shared image for
3678   // the code cache doesn't have an SHM_X executable permission to check.
3679   assert(UseLargePages && UseSHM, "only for SHM large pages");
3680   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3681   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3682 
3683   if (!is_size_aligned(bytes, os::large_page_size())) {
3684     return NULL; // Fallback to small pages.
3685   }
3686 
3687   // Create a large shared memory region to attach to based on size.
3688   // Currently, size is the total size of the heap.
3689   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3690   if (shmid == -1) {
3691     // Possible reasons for shmget failure:
3692     // 1. shmmax is too small for Java heap.
3693     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3694     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3695     // 2. not enough large page memory.
3696     //    > check available large pages: cat /proc/meminfo
3697     //    > increase amount of large pages:
3698     //          echo new_value > /proc/sys/vm/nr_hugepages
3699     //      Note 1: different Linux may use different name for this property,
3700     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3701     //      Note 2: it's possible there's enough physical memory available but
3702     //            they are so fragmented after a long run that they can't
3703     //            coalesce into large pages. Try to reserve large pages when
3704     //            the system is still "fresh".
3705     shm_warning_with_errno("Failed to reserve shared memory.");
3706     return NULL;
3707   }
3708 
3709   // Attach to the region.
3710   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3711 
3712   // Remove shmid. If shmat() is successful, the actual shared memory segment
3713   // will be deleted when it's detached by shmdt() or when the process
3714   // terminates. If shmat() is not successful this will remove the shared
3715   // segment immediately.
3716   shmctl(shmid, IPC_RMID, NULL);
3717 
3718   return addr;
3719 }
3720 
3721 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3722   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3723 
3724   bool warn_on_failure = UseLargePages &&
3725       (!FLAG_IS_DEFAULT(UseLargePages) ||
3726        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3727        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3728 
3729   if (warn_on_failure) {
3730     char msg[128];
3731     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3732         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3733     warning("%s", msg);
3734   }
3735 }
3736 
3737 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3738   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3739   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3740   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3741 
3742   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3743   char* addr = (char*)::mmap(req_addr, bytes, prot,
3744                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3745                              -1, 0);
3746 
3747   if (addr == MAP_FAILED) {
3748     warn_on_large_pages_failure(req_addr, bytes, errno);
3749     return NULL;
3750   }
3751 
3752   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3753 
3754   return addr;
3755 }
3756 
3757 // Reserve memory using mmap(MAP_HUGETLB).
3758 //  - bytes shall be a multiple of alignment.
3759 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3760 //  - alignment sets the alignment at which memory shall be allocated.
3761 //     It must be a multiple of allocation granularity.
3762 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3763 //  req_addr or NULL.
3764 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3765   size_t large_page_size = os::large_page_size();
3766   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3767 
3768   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3769   assert(is_size_aligned(bytes, alignment), "Must be");
3770 
3771   // First reserve - but not commit - the address range in small pages.
3772   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3773 
3774   if (start == NULL) {
3775     return NULL;
3776   }
3777 
3778   assert(is_ptr_aligned(start, alignment), "Must be");
3779 
3780   char* end = start + bytes;
3781 
3782   // Find the regions of the allocated chunk that can be promoted to large pages.
3783   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3784   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3785 
3786   size_t lp_bytes = lp_end - lp_start;
3787 
3788   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3789 
3790   if (lp_bytes == 0) {
3791     // The mapped region doesn't even span the start and the end of a large page.
3792     // Fall back to allocate a non-special area.
3793     ::munmap(start, end - start);
3794     return NULL;
3795   }
3796 
3797   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3798 
3799   void* result;
3800 
3801   // Commit small-paged leading area.
3802   if (start != lp_start) {
3803     result = ::mmap(start, lp_start - start, prot,
3804                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3805                     -1, 0);
3806     if (result == MAP_FAILED) {
3807       ::munmap(lp_start, end - lp_start);
3808       return NULL;
3809     }
3810   }
3811 
3812   // Commit large-paged area.
3813   result = ::mmap(lp_start, lp_bytes, prot,
3814                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3815                   -1, 0);
3816   if (result == MAP_FAILED) {
3817     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3818     // If the mmap above fails, the large pages region will be unmapped and we
3819     // have regions before and after with small pages. Release these regions.
3820     //
3821     // |  mapped  |  unmapped  |  mapped  |
3822     // ^          ^            ^          ^
3823     // start      lp_start     lp_end     end
3824     //
3825     ::munmap(start, lp_start - start);
3826     ::munmap(lp_end, end - lp_end);
3827     return NULL;
3828   }
3829 
3830   // Commit small-paged trailing area.
3831   if (lp_end != end) {
3832       result = ::mmap(lp_end, end - lp_end, prot,
3833                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3834                       -1, 0);
3835     if (result == MAP_FAILED) {
3836       ::munmap(start, lp_end - start);
3837       return NULL;
3838     }
3839   }
3840 
3841   return start;
3842 }
3843 
3844 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3845   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3846   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3847   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3848   assert(is_power_of_2(os::large_page_size()), "Must be");
3849   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3850 
3851   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3852     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3853   } else {
3854     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3855   }
3856 }
3857 
3858 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3859   assert(UseLargePages, "only for large pages");
3860 
3861   char* addr;
3862   if (UseSHM) {
3863     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3864   } else {
3865     assert(UseHugeTLBFS, "must be");
3866     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3867   }
3868 
3869   if (addr != NULL) {
3870     if (UseNUMAInterleaving) {
3871       numa_make_global(addr, bytes);
3872     }
3873 
3874     // The memory is committed
3875     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3876   }
3877 
3878   return addr;
3879 }
3880 
3881 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3882   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3883   return shmdt(base) == 0;
3884 }
3885 
3886 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3887   return pd_release_memory(base, bytes);
3888 }
3889 
3890 bool os::release_memory_special(char* base, size_t bytes) {
3891   bool res;
3892   if (MemTracker::tracking_level() > NMT_minimal) {
3893     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3894     res = os::Linux::release_memory_special_impl(base, bytes);
3895     if (res) {
3896       tkr.record((address)base, bytes);
3897     }
3898 
3899   } else {
3900     res = os::Linux::release_memory_special_impl(base, bytes);
3901   }
3902   return res;
3903 }
3904 
3905 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3906   assert(UseLargePages, "only for large pages");
3907   bool res;
3908 
3909   if (UseSHM) {
3910     res = os::Linux::release_memory_special_shm(base, bytes);
3911   } else {
3912     assert(UseHugeTLBFS, "must be");
3913     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3914   }
3915   return res;
3916 }
3917 
3918 size_t os::large_page_size() {
3919   return _large_page_size;
3920 }
3921 
3922 // With SysV SHM the entire memory region must be allocated as shared
3923 // memory.
3924 // HugeTLBFS allows application to commit large page memory on demand.
3925 // However, when committing memory with HugeTLBFS fails, the region
3926 // that was supposed to be committed will lose the old reservation
3927 // and allow other threads to steal that memory region. Because of this
3928 // behavior we can't commit HugeTLBFS memory.
3929 bool os::can_commit_large_page_memory() {
3930   return UseTransparentHugePages;
3931 }
3932 
3933 bool os::can_execute_large_page_memory() {
3934   return UseTransparentHugePages || UseHugeTLBFS;
3935 }
3936 
3937 // Reserve memory at an arbitrary address, only if that area is
3938 // available (and not reserved for something else).
3939 
3940 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3941   const int max_tries = 10;
3942   char* base[max_tries];
3943   size_t size[max_tries];
3944   const size_t gap = 0x000000;
3945 
3946   // Assert only that the size is a multiple of the page size, since
3947   // that's all that mmap requires, and since that's all we really know
3948   // about at this low abstraction level.  If we need higher alignment,
3949   // we can either pass an alignment to this method or verify alignment
3950   // in one of the methods further up the call chain.  See bug 5044738.
3951   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3952 
3953   // Repeatedly allocate blocks until the block is allocated at the
3954   // right spot. Give up after max_tries. Note that reserve_memory() will
3955   // automatically update _highest_vm_reserved_address if the call is
3956   // successful. The variable tracks the highest memory address every reserved
3957   // by JVM. It is used to detect heap-stack collision if running with
3958   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3959   // space than needed, it could confuse the collision detecting code. To
3960   // solve the problem, save current _highest_vm_reserved_address and
3961   // calculate the correct value before return.
3962   address old_highest = _highest_vm_reserved_address;
3963 
3964   // Linux mmap allows caller to pass an address as hint; give it a try first,
3965   // if kernel honors the hint then we can return immediately.
3966   char * addr = anon_mmap(requested_addr, bytes, false);
3967   if (addr == requested_addr) {
3968      return requested_addr;
3969   }
3970 
3971   if (addr != NULL) {
3972      // mmap() is successful but it fails to reserve at the requested address
3973      anon_munmap(addr, bytes);
3974   }
3975 
3976   int i;
3977   for (i = 0; i < max_tries; ++i) {
3978     base[i] = reserve_memory(bytes);
3979 
3980     if (base[i] != NULL) {
3981       // Is this the block we wanted?
3982       if (base[i] == requested_addr) {
3983         size[i] = bytes;
3984         break;
3985       }
3986 
3987       // Does this overlap the block we wanted? Give back the overlapped
3988       // parts and try again.
3989 
3990       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3991       if (top_overlap >= 0 && top_overlap < bytes) {
3992         unmap_memory(base[i], top_overlap);
3993         base[i] += top_overlap;
3994         size[i] = bytes - top_overlap;
3995       } else {
3996         size_t bottom_overlap = base[i] + bytes - requested_addr;
3997         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3998           unmap_memory(requested_addr, bottom_overlap);
3999           size[i] = bytes - bottom_overlap;
4000         } else {
4001           size[i] = bytes;
4002         }
4003       }
4004     }
4005   }
4006 
4007   // Give back the unused reserved pieces.
4008 
4009   for (int j = 0; j < i; ++j) {
4010     if (base[j] != NULL) {
4011       unmap_memory(base[j], size[j]);
4012     }
4013   }
4014 
4015   if (i < max_tries) {
4016     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
4017     return requested_addr;
4018   } else {
4019     _highest_vm_reserved_address = old_highest;
4020     return NULL;
4021   }
4022 }
4023 
4024 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4025   return ::read(fd, buf, nBytes);
4026 }
4027 
4028 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
4029 // Solaris uses poll(), linux uses park().
4030 // Poll() is likely a better choice, assuming that Thread.interrupt()
4031 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
4032 // SIGSEGV, see 4355769.
4033 
4034 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
4035   assert(thread == Thread::current(),  "thread consistency check");
4036 
4037   ParkEvent * const slp = thread->_SleepEvent ;
4038   slp->reset() ;
4039   OrderAccess::fence() ;
4040 
4041   if (interruptible) {
4042     jlong prevtime = javaTimeNanos();
4043 
4044     for (;;) {
4045       if (os::is_interrupted(thread, true)) {
4046         return OS_INTRPT;
4047       }
4048 
4049       jlong newtime = javaTimeNanos();
4050 
4051       if (newtime - prevtime < 0) {
4052         // time moving backwards, should only happen if no monotonic clock
4053         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4054         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4055       } else {
4056         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4057       }
4058 
4059       if(millis <= 0) {
4060         return OS_OK;
4061       }
4062 
4063       prevtime = newtime;
4064 
4065       {
4066         assert(thread->is_Java_thread(), "sanity check");
4067         JavaThread *jt = (JavaThread *) thread;
4068         ThreadBlockInVM tbivm(jt);
4069         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
4070 
4071         jt->set_suspend_equivalent();
4072         // cleared by handle_special_suspend_equivalent_condition() or
4073         // java_suspend_self() via check_and_wait_while_suspended()
4074 
4075         slp->park(millis);
4076 
4077         // were we externally suspended while we were waiting?
4078         jt->check_and_wait_while_suspended();
4079       }
4080     }
4081   } else {
4082     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4083     jlong prevtime = javaTimeNanos();
4084 
4085     for (;;) {
4086       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
4087       // the 1st iteration ...
4088       jlong newtime = javaTimeNanos();
4089 
4090       if (newtime - prevtime < 0) {
4091         // time moving backwards, should only happen if no monotonic clock
4092         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4093         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4094       } else {
4095         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4096       }
4097 
4098       if(millis <= 0) break ;
4099 
4100       prevtime = newtime;
4101       slp->park(millis);
4102     }
4103     return OS_OK ;
4104   }
4105 }
4106 
4107 //
4108 // Short sleep, direct OS call.
4109 //
4110 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4111 // sched_yield(2) will actually give up the CPU:
4112 //
4113 //   * Alone on this pariticular CPU, keeps running.
4114 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4115 //     (pre 2.6.39).
4116 //
4117 // So calling this with 0 is an alternative.
4118 //
4119 void os::naked_short_sleep(jlong ms) {
4120   struct timespec req;
4121 
4122   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4123   req.tv_sec = 0;
4124   if (ms > 0) {
4125     req.tv_nsec = (ms % 1000) * 1000000;
4126   }
4127   else {
4128     req.tv_nsec = 1;
4129   }
4130 
4131   nanosleep(&req, NULL);
4132 
4133   return;
4134 }
4135 
4136 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4137 void os::infinite_sleep() {
4138   while (true) {    // sleep forever ...
4139     ::sleep(100);   // ... 100 seconds at a time
4140   }
4141 }
4142 
4143 // Used to convert frequent JVM_Yield() to nops
4144 bool os::dont_yield() {
4145   return DontYieldALot;
4146 }
4147 
4148 void os::yield() {
4149   sched_yield();
4150 }
4151 
4152 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
4153 
4154 void os::yield_all(int attempts) {
4155   // Yields to all threads, including threads with lower priorities
4156   // Threads on Linux are all with same priority. The Solaris style
4157   // os::yield_all() with nanosleep(1ms) is not necessary.
4158   sched_yield();
4159 }
4160 
4161 // Called from the tight loops to possibly influence time-sharing heuristics
4162 void os::loop_breaker(int attempts) {
4163   os::yield_all(attempts);
4164 }
4165 
4166 ////////////////////////////////////////////////////////////////////////////////
4167 // thread priority support
4168 
4169 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4170 // only supports dynamic priority, static priority must be zero. For real-time
4171 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4172 // However, for large multi-threaded applications, SCHED_RR is not only slower
4173 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4174 // of 5 runs - Sep 2005).
4175 //
4176 // The following code actually changes the niceness of kernel-thread/LWP. It
4177 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4178 // not the entire user process, and user level threads are 1:1 mapped to kernel
4179 // threads. It has always been the case, but could change in the future. For
4180 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4181 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4182 
4183 int os::java_to_os_priority[CriticalPriority + 1] = {
4184   19,              // 0 Entry should never be used
4185 
4186    4,              // 1 MinPriority
4187    3,              // 2
4188    2,              // 3
4189 
4190    1,              // 4
4191    0,              // 5 NormPriority
4192   -1,              // 6
4193 
4194   -2,              // 7
4195   -3,              // 8
4196   -4,              // 9 NearMaxPriority
4197 
4198   -5,              // 10 MaxPriority
4199 
4200   -5               // 11 CriticalPriority
4201 };
4202 
4203 static int prio_init() {
4204   if (ThreadPriorityPolicy == 1) {
4205     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4206     // if effective uid is not root. Perhaps, a more elegant way of doing
4207     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4208     if (geteuid() != 0) {
4209       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4210         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4211       }
4212       ThreadPriorityPolicy = 0;
4213     }
4214   }
4215   if (UseCriticalJavaThreadPriority) {
4216     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4217   }
4218   return 0;
4219 }
4220 
4221 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4222   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4223 
4224   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4225   return (ret == 0) ? OS_OK : OS_ERR;
4226 }
4227 
4228 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4229   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4230     *priority_ptr = java_to_os_priority[NormPriority];
4231     return OS_OK;
4232   }
4233 
4234   errno = 0;
4235   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4236   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4237 }
4238 
4239 // Hint to the underlying OS that a task switch would not be good.
4240 // Void return because it's a hint and can fail.
4241 void os::hint_no_preempt() {}
4242 
4243 ////////////////////////////////////////////////////////////////////////////////
4244 // suspend/resume support
4245 
4246 //  the low-level signal-based suspend/resume support is a remnant from the
4247 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4248 //  within hotspot. Now there is a single use-case for this:
4249 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4250 //      that runs in the watcher thread.
4251 //  The remaining code is greatly simplified from the more general suspension
4252 //  code that used to be used.
4253 //
4254 //  The protocol is quite simple:
4255 //  - suspend:
4256 //      - sends a signal to the target thread
4257 //      - polls the suspend state of the osthread using a yield loop
4258 //      - target thread signal handler (SR_handler) sets suspend state
4259 //        and blocks in sigsuspend until continued
4260 //  - resume:
4261 //      - sets target osthread state to continue
4262 //      - sends signal to end the sigsuspend loop in the SR_handler
4263 //
4264 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4265 //
4266 
4267 static void resume_clear_context(OSThread *osthread) {
4268   osthread->set_ucontext(NULL);
4269   osthread->set_siginfo(NULL);
4270 }
4271 
4272 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4273   osthread->set_ucontext(context);
4274   osthread->set_siginfo(siginfo);
4275 }
4276 
4277 //
4278 // Handler function invoked when a thread's execution is suspended or
4279 // resumed. We have to be careful that only async-safe functions are
4280 // called here (Note: most pthread functions are not async safe and
4281 // should be avoided.)
4282 //
4283 // Note: sigwait() is a more natural fit than sigsuspend() from an
4284 // interface point of view, but sigwait() prevents the signal hander
4285 // from being run. libpthread would get very confused by not having
4286 // its signal handlers run and prevents sigwait()'s use with the
4287 // mutex granting granting signal.
4288 //
4289 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4290 //
4291 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4292   // Save and restore errno to avoid confusing native code with EINTR
4293   // after sigsuspend.
4294   int old_errno = errno;
4295 
4296   Thread* thread = Thread::current();
4297   OSThread* osthread = thread->osthread();
4298   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4299 
4300   os::SuspendResume::State current = osthread->sr.state();
4301   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4302     suspend_save_context(osthread, siginfo, context);
4303 
4304     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4305     os::SuspendResume::State state = osthread->sr.suspended();
4306     if (state == os::SuspendResume::SR_SUSPENDED) {
4307       sigset_t suspend_set;  // signals for sigsuspend()
4308 
4309       // get current set of blocked signals and unblock resume signal
4310       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4311       sigdelset(&suspend_set, SR_signum);
4312 
4313       sr_semaphore.signal();
4314       // wait here until we are resumed
4315       while (1) {
4316         sigsuspend(&suspend_set);
4317 
4318         os::SuspendResume::State result = osthread->sr.running();
4319         if (result == os::SuspendResume::SR_RUNNING) {
4320           sr_semaphore.signal();
4321           break;
4322         }
4323       }
4324 
4325     } else if (state == os::SuspendResume::SR_RUNNING) {
4326       // request was cancelled, continue
4327     } else {
4328       ShouldNotReachHere();
4329     }
4330 
4331     resume_clear_context(osthread);
4332   } else if (current == os::SuspendResume::SR_RUNNING) {
4333     // request was cancelled, continue
4334   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4335     // ignore
4336   } else {
4337     // ignore
4338   }
4339 
4340   errno = old_errno;
4341 }
4342 
4343 
4344 static int SR_initialize() {
4345   struct sigaction act;
4346   char *s;
4347   /* Get signal number to use for suspend/resume */
4348   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4349     int sig = ::strtol(s, 0, 10);
4350     if (sig > 0 || sig < _NSIG) {
4351         SR_signum = sig;
4352     }
4353   }
4354 
4355   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4356         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4357 
4358   sigemptyset(&SR_sigset);
4359   sigaddset(&SR_sigset, SR_signum);
4360 
4361   /* Set up signal handler for suspend/resume */
4362   act.sa_flags = SA_RESTART|SA_SIGINFO;
4363   act.sa_handler = (void (*)(int)) SR_handler;
4364 
4365   // SR_signum is blocked by default.
4366   // 4528190 - We also need to block pthread restart signal (32 on all
4367   // supported Linux platforms). Note that LinuxThreads need to block
4368   // this signal for all threads to work properly. So we don't have
4369   // to use hard-coded signal number when setting up the mask.
4370   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4371 
4372   if (sigaction(SR_signum, &act, 0) == -1) {
4373     return -1;
4374   }
4375 
4376   // Save signal flag
4377   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4378   return 0;
4379 }
4380 
4381 static int sr_notify(OSThread* osthread) {
4382   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4383   assert_status(status == 0, status, "pthread_kill");
4384   return status;
4385 }
4386 
4387 // "Randomly" selected value for how long we want to spin
4388 // before bailing out on suspending a thread, also how often
4389 // we send a signal to a thread we want to resume
4390 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4391 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4392 
4393 // returns true on success and false on error - really an error is fatal
4394 // but this seems the normal response to library errors
4395 static bool do_suspend(OSThread* osthread) {
4396   assert(osthread->sr.is_running(), "thread should be running");
4397   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4398 
4399   // mark as suspended and send signal
4400   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4401     // failed to switch, state wasn't running?
4402     ShouldNotReachHere();
4403     return false;
4404   }
4405 
4406   if (sr_notify(osthread) != 0) {
4407     ShouldNotReachHere();
4408   }
4409 
4410   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4411   while (true) {
4412     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4413       break;
4414     } else {
4415       // timeout
4416       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4417       if (cancelled == os::SuspendResume::SR_RUNNING) {
4418         return false;
4419       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4420         // make sure that we consume the signal on the semaphore as well
4421         sr_semaphore.wait();
4422         break;
4423       } else {
4424         ShouldNotReachHere();
4425         return false;
4426       }
4427     }
4428   }
4429 
4430   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4431   return true;
4432 }
4433 
4434 static void do_resume(OSThread* osthread) {
4435   assert(osthread->sr.is_suspended(), "thread should be suspended");
4436   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4437 
4438   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4439     // failed to switch to WAKEUP_REQUEST
4440     ShouldNotReachHere();
4441     return;
4442   }
4443 
4444   while (true) {
4445     if (sr_notify(osthread) == 0) {
4446       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4447         if (osthread->sr.is_running()) {
4448           return;
4449         }
4450       }
4451     } else {
4452       ShouldNotReachHere();
4453     }
4454   }
4455 
4456   guarantee(osthread->sr.is_running(), "Must be running!");
4457 }
4458 
4459 ////////////////////////////////////////////////////////////////////////////////
4460 // interrupt support
4461 
4462 void os::interrupt(Thread* thread) {
4463   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4464     "possibility of dangling Thread pointer");
4465 
4466   OSThread* osthread = thread->osthread();
4467 
4468   if (!osthread->interrupted()) {
4469     osthread->set_interrupted(true);
4470     // More than one thread can get here with the same value of osthread,
4471     // resulting in multiple notifications.  We do, however, want the store
4472     // to interrupted() to be visible to other threads before we execute unpark().
4473     OrderAccess::fence();
4474     ParkEvent * const slp = thread->_SleepEvent ;
4475     if (slp != NULL) slp->unpark() ;
4476   }
4477 
4478   // For JSR166. Unpark even if interrupt status already was set
4479   if (thread->is_Java_thread())
4480     ((JavaThread*)thread)->parker()->unpark();
4481 
4482   ParkEvent * ev = thread->_ParkEvent ;
4483   if (ev != NULL) ev->unpark() ;
4484 
4485 }
4486 
4487 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4488   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4489     "possibility of dangling Thread pointer");
4490 
4491   OSThread* osthread = thread->osthread();
4492 
4493   bool interrupted = osthread->interrupted();
4494 
4495   if (interrupted && clear_interrupted) {
4496     osthread->set_interrupted(false);
4497     // consider thread->_SleepEvent->reset() ... optional optimization
4498   }
4499 
4500   return interrupted;
4501 }
4502 
4503 ///////////////////////////////////////////////////////////////////////////////////
4504 // signal handling (except suspend/resume)
4505 
4506 // This routine may be used by user applications as a "hook" to catch signals.
4507 // The user-defined signal handler must pass unrecognized signals to this
4508 // routine, and if it returns true (non-zero), then the signal handler must
4509 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4510 // routine will never retun false (zero), but instead will execute a VM panic
4511 // routine kill the process.
4512 //
4513 // If this routine returns false, it is OK to call it again.  This allows
4514 // the user-defined signal handler to perform checks either before or after
4515 // the VM performs its own checks.  Naturally, the user code would be making
4516 // a serious error if it tried to handle an exception (such as a null check
4517 // or breakpoint) that the VM was generating for its own correct operation.
4518 //
4519 // This routine may recognize any of the following kinds of signals:
4520 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4521 // It should be consulted by handlers for any of those signals.
4522 //
4523 // The caller of this routine must pass in the three arguments supplied
4524 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4525 // field of the structure passed to sigaction().  This routine assumes that
4526 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4527 //
4528 // Note that the VM will print warnings if it detects conflicting signal
4529 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4530 //
4531 extern "C" JNIEXPORT int
4532 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4533                         void* ucontext, int abort_if_unrecognized);
4534 
4535 void signalHandler(int sig, siginfo_t* info, void* uc) {
4536   assert(info != NULL && uc != NULL, "it must be old kernel");
4537   int orig_errno = errno;  // Preserve errno value over signal handler.
4538   JVM_handle_linux_signal(sig, info, uc, true);
4539   errno = orig_errno;
4540 }
4541 
4542 
4543 // This boolean allows users to forward their own non-matching signals
4544 // to JVM_handle_linux_signal, harmlessly.
4545 bool os::Linux::signal_handlers_are_installed = false;
4546 
4547 // For signal-chaining
4548 struct sigaction os::Linux::sigact[MAXSIGNUM];
4549 unsigned int os::Linux::sigs = 0;
4550 bool os::Linux::libjsig_is_loaded = false;
4551 typedef struct sigaction *(*get_signal_t)(int);
4552 get_signal_t os::Linux::get_signal_action = NULL;
4553 
4554 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4555   struct sigaction *actp = NULL;
4556 
4557   if (libjsig_is_loaded) {
4558     // Retrieve the old signal handler from libjsig
4559     actp = (*get_signal_action)(sig);
4560   }
4561   if (actp == NULL) {
4562     // Retrieve the preinstalled signal handler from jvm
4563     actp = get_preinstalled_handler(sig);
4564   }
4565 
4566   return actp;
4567 }
4568 
4569 static bool call_chained_handler(struct sigaction *actp, int sig,
4570                                  siginfo_t *siginfo, void *context) {
4571   // Call the old signal handler
4572   if (actp->sa_handler == SIG_DFL) {
4573     // It's more reasonable to let jvm treat it as an unexpected exception
4574     // instead of taking the default action.
4575     return false;
4576   } else if (actp->sa_handler != SIG_IGN) {
4577     if ((actp->sa_flags & SA_NODEFER) == 0) {
4578       // automaticlly block the signal
4579       sigaddset(&(actp->sa_mask), sig);
4580     }
4581 
4582     sa_handler_t hand = NULL;
4583     sa_sigaction_t sa = NULL;
4584     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4585     // retrieve the chained handler
4586     if (siginfo_flag_set) {
4587       sa = actp->sa_sigaction;
4588     } else {
4589       hand = actp->sa_handler;
4590     }
4591 
4592     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4593       actp->sa_handler = SIG_DFL;
4594     }
4595 
4596     // try to honor the signal mask
4597     sigset_t oset;
4598     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4599 
4600     // call into the chained handler
4601     if (siginfo_flag_set) {
4602       (*sa)(sig, siginfo, context);
4603     } else {
4604       (*hand)(sig);
4605     }
4606 
4607     // restore the signal mask
4608     pthread_sigmask(SIG_SETMASK, &oset, 0);
4609   }
4610   // Tell jvm's signal handler the signal is taken care of.
4611   return true;
4612 }
4613 
4614 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4615   bool chained = false;
4616   // signal-chaining
4617   if (UseSignalChaining) {
4618     struct sigaction *actp = get_chained_signal_action(sig);
4619     if (actp != NULL) {
4620       chained = call_chained_handler(actp, sig, siginfo, context);
4621     }
4622   }
4623   return chained;
4624 }
4625 
4626 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4627   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4628     return &sigact[sig];
4629   }
4630   return NULL;
4631 }
4632 
4633 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4634   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4635   sigact[sig] = oldAct;
4636   sigs |= (unsigned int)1 << sig;
4637 }
4638 
4639 // for diagnostic
4640 int os::Linux::sigflags[MAXSIGNUM];
4641 
4642 int os::Linux::get_our_sigflags(int sig) {
4643   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4644   return sigflags[sig];
4645 }
4646 
4647 void os::Linux::set_our_sigflags(int sig, int flags) {
4648   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4649   sigflags[sig] = flags;
4650 }
4651 
4652 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4653   // Check for overwrite.
4654   struct sigaction oldAct;
4655   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4656 
4657   void* oldhand = oldAct.sa_sigaction
4658                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4659                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4660   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4661       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4662       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4663     if (AllowUserSignalHandlers || !set_installed) {
4664       // Do not overwrite; user takes responsibility to forward to us.
4665       return;
4666     } else if (UseSignalChaining) {
4667       // save the old handler in jvm
4668       save_preinstalled_handler(sig, oldAct);
4669       // libjsig also interposes the sigaction() call below and saves the
4670       // old sigaction on it own.
4671     } else {
4672       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4673                     "%#lx for signal %d.", (long)oldhand, sig));
4674     }
4675   }
4676 
4677   struct sigaction sigAct;
4678   sigfillset(&(sigAct.sa_mask));
4679   sigAct.sa_handler = SIG_DFL;
4680   if (!set_installed) {
4681     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4682   } else {
4683     sigAct.sa_sigaction = signalHandler;
4684     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4685   }
4686   // Save flags, which are set by ours
4687   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4688   sigflags[sig] = sigAct.sa_flags;
4689 
4690   int ret = sigaction(sig, &sigAct, &oldAct);
4691   assert(ret == 0, "check");
4692 
4693   void* oldhand2  = oldAct.sa_sigaction
4694                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4695                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4696   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4697 }
4698 
4699 // install signal handlers for signals that HotSpot needs to
4700 // handle in order to support Java-level exception handling.
4701 
4702 void os::Linux::install_signal_handlers() {
4703   if (!signal_handlers_are_installed) {
4704     signal_handlers_are_installed = true;
4705 
4706     // signal-chaining
4707     typedef void (*signal_setting_t)();
4708     signal_setting_t begin_signal_setting = NULL;
4709     signal_setting_t end_signal_setting = NULL;
4710     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4711                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4712     if (begin_signal_setting != NULL) {
4713       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4714                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4715       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4716                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4717       libjsig_is_loaded = true;
4718       assert(UseSignalChaining, "should enable signal-chaining");
4719     }
4720     if (libjsig_is_loaded) {
4721       // Tell libjsig jvm is setting signal handlers
4722       (*begin_signal_setting)();
4723     }
4724 
4725     set_signal_handler(SIGSEGV, true);
4726     set_signal_handler(SIGPIPE, true);
4727     set_signal_handler(SIGBUS, true);
4728     set_signal_handler(SIGILL, true);
4729     set_signal_handler(SIGFPE, true);
4730 #if defined(PPC64)
4731     set_signal_handler(SIGTRAP, true);
4732 #endif
4733     set_signal_handler(SIGXFSZ, true);
4734 
4735     if (libjsig_is_loaded) {
4736       // Tell libjsig jvm finishes setting signal handlers
4737       (*end_signal_setting)();
4738     }
4739 
4740     // We don't activate signal checker if libjsig is in place, we trust ourselves
4741     // and if UserSignalHandler is installed all bets are off.
4742     // Log that signal checking is off only if -verbose:jni is specified.
4743     if (CheckJNICalls) {
4744       if (libjsig_is_loaded) {
4745         if (PrintJNIResolving) {
4746           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4747         }
4748         check_signals = false;
4749       }
4750       if (AllowUserSignalHandlers) {
4751         if (PrintJNIResolving) {
4752           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4753         }
4754         check_signals = false;
4755       }
4756     }
4757   }
4758 }
4759 
4760 // This is the fastest way to get thread cpu time on Linux.
4761 // Returns cpu time (user+sys) for any thread, not only for current.
4762 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4763 // It might work on 2.6.10+ with a special kernel/glibc patch.
4764 // For reference, please, see IEEE Std 1003.1-2004:
4765 //   http://www.unix.org/single_unix_specification
4766 
4767 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4768   struct timespec tp;
4769   int rc = os::Linux::clock_gettime(clockid, &tp);
4770   assert(rc == 0, "clock_gettime is expected to return 0 code");
4771 
4772   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4773 }
4774 
4775 /////
4776 // glibc on Linux platform uses non-documented flag
4777 // to indicate, that some special sort of signal
4778 // trampoline is used.
4779 // We will never set this flag, and we should
4780 // ignore this flag in our diagnostic
4781 #ifdef SIGNIFICANT_SIGNAL_MASK
4782 #undef SIGNIFICANT_SIGNAL_MASK
4783 #endif
4784 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4785 
4786 static const char* get_signal_handler_name(address handler,
4787                                            char* buf, int buflen) {
4788   int offset = 0;
4789   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4790   if (found) {
4791     // skip directory names
4792     const char *p1, *p2;
4793     p1 = buf;
4794     size_t len = strlen(os::file_separator());
4795     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4796     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4797   } else {
4798     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4799   }
4800   return buf;
4801 }
4802 
4803 static void print_signal_handler(outputStream* st, int sig,
4804                                  char* buf, size_t buflen) {
4805   struct sigaction sa;
4806 
4807   sigaction(sig, NULL, &sa);
4808 
4809   // See comment for SIGNIFICANT_SIGNAL_MASK define
4810   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4811 
4812   st->print("%s: ", os::exception_name(sig, buf, buflen));
4813 
4814   address handler = (sa.sa_flags & SA_SIGINFO)
4815     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4816     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4817 
4818   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4819     st->print("SIG_DFL");
4820   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4821     st->print("SIG_IGN");
4822   } else {
4823     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4824   }
4825 
4826   st->print(", sa_mask[0]=");
4827   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4828 
4829   address rh = VMError::get_resetted_sighandler(sig);
4830   // May be, handler was resetted by VMError?
4831   if(rh != NULL) {
4832     handler = rh;
4833     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4834   }
4835 
4836   st->print(", sa_flags=");
4837   os::Posix::print_sa_flags(st, sa.sa_flags);
4838 
4839   // Check: is it our handler?
4840   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4841      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4842     // It is our signal handler
4843     // check for flags, reset system-used one!
4844     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4845       st->print(
4846                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4847                 os::Linux::get_our_sigflags(sig));
4848     }
4849   }
4850   st->cr();
4851 }
4852 
4853 
4854 #define DO_SIGNAL_CHECK(sig) \
4855   if (!sigismember(&check_signal_done, sig)) \
4856     os::Linux::check_signal_handler(sig)
4857 
4858 // This method is a periodic task to check for misbehaving JNI applications
4859 // under CheckJNI, we can add any periodic checks here
4860 
4861 void os::run_periodic_checks() {
4862 
4863   if (check_signals == false) return;
4864 
4865   // SEGV and BUS if overridden could potentially prevent
4866   // generation of hs*.log in the event of a crash, debugging
4867   // such a case can be very challenging, so we absolutely
4868   // check the following for a good measure:
4869   DO_SIGNAL_CHECK(SIGSEGV);
4870   DO_SIGNAL_CHECK(SIGILL);
4871   DO_SIGNAL_CHECK(SIGFPE);
4872   DO_SIGNAL_CHECK(SIGBUS);
4873   DO_SIGNAL_CHECK(SIGPIPE);
4874   DO_SIGNAL_CHECK(SIGXFSZ);
4875 #if defined(PPC64)
4876   DO_SIGNAL_CHECK(SIGTRAP);
4877 #endif
4878 
4879   // ReduceSignalUsage allows the user to override these handlers
4880   // see comments at the very top and jvm_solaris.h
4881   if (!ReduceSignalUsage) {
4882     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4883     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4884     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4885     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4886   }
4887 
4888   DO_SIGNAL_CHECK(SR_signum);
4889   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4890 }
4891 
4892 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4893 
4894 static os_sigaction_t os_sigaction = NULL;
4895 
4896 void os::Linux::check_signal_handler(int sig) {
4897   char buf[O_BUFLEN];
4898   address jvmHandler = NULL;
4899 
4900 
4901   struct sigaction act;
4902   if (os_sigaction == NULL) {
4903     // only trust the default sigaction, in case it has been interposed
4904     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4905     if (os_sigaction == NULL) return;
4906   }
4907 
4908   os_sigaction(sig, (struct sigaction*)NULL, &act);
4909 
4910 
4911   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4912 
4913   address thisHandler = (act.sa_flags & SA_SIGINFO)
4914     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4915     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4916 
4917 
4918   switch(sig) {
4919   case SIGSEGV:
4920   case SIGBUS:
4921   case SIGFPE:
4922   case SIGPIPE:
4923   case SIGILL:
4924   case SIGXFSZ:
4925     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4926     break;
4927 
4928   case SHUTDOWN1_SIGNAL:
4929   case SHUTDOWN2_SIGNAL:
4930   case SHUTDOWN3_SIGNAL:
4931   case BREAK_SIGNAL:
4932     jvmHandler = (address)user_handler();
4933     break;
4934 
4935   case INTERRUPT_SIGNAL:
4936     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4937     break;
4938 
4939   default:
4940     if (sig == SR_signum) {
4941       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4942     } else {
4943       return;
4944     }
4945     break;
4946   }
4947 
4948   if (thisHandler != jvmHandler) {
4949     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4950     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4951     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4952     // No need to check this sig any longer
4953     sigaddset(&check_signal_done, sig);
4954     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4955     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4956       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4957                     exception_name(sig, buf, O_BUFLEN));
4958     }
4959   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4960     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4961     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4962     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4963     // No need to check this sig any longer
4964     sigaddset(&check_signal_done, sig);
4965   }
4966 
4967   // Dump all the signal
4968   if (sigismember(&check_signal_done, sig)) {
4969     print_signal_handlers(tty, buf, O_BUFLEN);
4970   }
4971 }
4972 
4973 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4974 
4975 extern bool signal_name(int signo, char* buf, size_t len);
4976 
4977 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4978   if (0 < exception_code && exception_code <= SIGRTMAX) {
4979     // signal
4980     if (!signal_name(exception_code, buf, size)) {
4981       jio_snprintf(buf, size, "SIG%d", exception_code);
4982     }
4983     return buf;
4984   } else {
4985     return NULL;
4986   }
4987 }
4988 
4989 // this is called _before_ most of the global arguments have been parsed
4990 void os::init(void) {
4991   char dummy;   /* used to get a guess on initial stack address */
4992 
4993   // With LinuxThreads the JavaMain thread pid (primordial thread)
4994   // is different than the pid of the java launcher thread.
4995   // So, on Linux, the launcher thread pid is passed to the VM
4996   // via the sun.java.launcher.pid property.
4997   // Use this property instead of getpid() if it was correctly passed.
4998   // See bug 6351349.
4999   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
5000 
5001   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
5002 
5003   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5004 
5005   init_random(1234567);
5006 
5007   ThreadCritical::initialize();
5008 
5009   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5010   if (Linux::page_size() == -1) {
5011     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
5012                   strerror(errno)));
5013   }
5014   init_page_sizes((size_t) Linux::page_size());
5015 
5016   Linux::initialize_system_info();
5017 
5018   // _main_thread points to the thread that created/loaded the JVM.
5019   Linux::_main_thread = pthread_self();
5020 
5021   Linux::clock_init();
5022   initial_time_count = javaTimeNanos();
5023 
5024   // pthread_condattr initialization for monotonic clock
5025   int status;
5026   pthread_condattr_t* _condattr = os::Linux::condAttr();
5027   if ((status = pthread_condattr_init(_condattr)) != 0) {
5028     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
5029   }
5030   // Only set the clock if CLOCK_MONOTONIC is available
5031   if (Linux::supports_monotonic_clock()) {
5032     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
5033       if (status == EINVAL) {
5034         warning("Unable to use monotonic clock with relative timed-waits" \
5035                 " - changes to the time-of-day clock may have adverse affects");
5036       } else {
5037         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
5038       }
5039     }
5040   }
5041   // else it defaults to CLOCK_REALTIME
5042 
5043   pthread_mutex_init(&dl_mutex, NULL);
5044 
5045   // If the pagesize of the VM is greater than 8K determine the appropriate
5046   // number of initial guard pages.  The user can change this with the
5047   // command line arguments, if needed.
5048   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
5049     StackYellowPages = 1;
5050     StackRedPages = 1;
5051     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
5052   }
5053 }
5054 
5055 // To install functions for atexit system call
5056 extern "C" {
5057   static void perfMemory_exit_helper() {
5058     perfMemory_exit();
5059   }
5060 }
5061 
5062 void os::pd_init_container_support() {
5063   OSContainer::init();
5064 }
5065 
5066 // this is called _after_ the global arguments have been parsed
5067 jint os::init_2(void)
5068 {
5069   Linux::fast_thread_clock_init();
5070 
5071   // Allocate a single page and mark it as readable for safepoint polling
5072   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5073   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
5074 
5075   os::set_polling_page( polling_page );
5076 
5077 #ifndef PRODUCT
5078   if(Verbose && PrintMiscellaneous)
5079     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5080 #endif
5081 
5082   if (!UseMembar) {
5083     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5084     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
5085     os::set_memory_serialize_page( mem_serialize_page );
5086 
5087 #ifndef PRODUCT
5088     if(Verbose && PrintMiscellaneous)
5089       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5090 #endif
5091   }
5092 
5093   // initialize suspend/resume support - must do this before signal_sets_init()
5094   if (SR_initialize() != 0) {
5095     perror("SR_initialize failed");
5096     return JNI_ERR;
5097   }
5098 
5099   Linux::signal_sets_init();
5100   Linux::install_signal_handlers();
5101 
5102   // Check minimum allowable stack size for thread creation and to initialize
5103   // the java system classes, including StackOverflowError - depends on page
5104   // size.  Add a page for compiler2 recursion in main thread.
5105   // Add in 2*BytesPerWord times page size to account for VM stack during
5106   // class initialization depending on 32 or 64 bit VM.
5107   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
5108             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
5109                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
5110 
5111   size_t threadStackSizeInBytes = ThreadStackSize * K;
5112   if (threadStackSizeInBytes != 0 &&
5113       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
5114         tty->print_cr("\nThe stack size specified is too small, "
5115                       "Specify at least %dk",
5116                       os::Linux::min_stack_allowed/ K);
5117         return JNI_ERR;
5118   }
5119 
5120   // Make the stack size a multiple of the page size so that
5121   // the yellow/red zones can be guarded.
5122   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5123         vm_page_size()));
5124 
5125   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5126 
5127 #if defined(IA32)
5128   workaround_expand_exec_shield_cs_limit();
5129 #endif
5130 
5131   Linux::libpthread_init();
5132   if (PrintMiscellaneous && (Verbose || WizardMode)) {
5133      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
5134           Linux::glibc_version(), Linux::libpthread_version(),
5135           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
5136   }
5137 
5138   if (UseNUMA) {
5139     if (!Linux::libnuma_init()) {
5140       UseNUMA = false;
5141     } else {
5142       if ((Linux::numa_max_node() < 1)) {
5143         // There's only one node(they start from 0), disable NUMA.
5144         UseNUMA = false;
5145       }
5146     }
5147     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5148     // we can make the adaptive lgrp chunk resizing work. If the user specified
5149     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
5150     // disable adaptive resizing.
5151     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5152       if (FLAG_IS_DEFAULT(UseNUMA)) {
5153         UseNUMA = false;
5154       } else {
5155         if (FLAG_IS_DEFAULT(UseLargePages) &&
5156             FLAG_IS_DEFAULT(UseSHM) &&
5157             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
5158           UseLargePages = false;
5159         } else {
5160           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
5161           UseAdaptiveSizePolicy = false;
5162           UseAdaptiveNUMAChunkSizing = false;
5163         }
5164       }
5165     }
5166     if (!UseNUMA && ForceNUMA) {
5167       UseNUMA = true;
5168     }
5169   }
5170 
5171   if (MaxFDLimit) {
5172     // set the number of file descriptors to max. print out error
5173     // if getrlimit/setrlimit fails but continue regardless.
5174     struct rlimit nbr_files;
5175     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5176     if (status != 0) {
5177       if (PrintMiscellaneous && (Verbose || WizardMode))
5178         perror("os::init_2 getrlimit failed");
5179     } else {
5180       nbr_files.rlim_cur = nbr_files.rlim_max;
5181       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5182       if (status != 0) {
5183         if (PrintMiscellaneous && (Verbose || WizardMode))
5184           perror("os::init_2 setrlimit failed");
5185       }
5186     }
5187   }
5188 
5189   // Initialize lock used to serialize thread creation (see os::create_thread)
5190   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5191 
5192   // at-exit methods are called in the reverse order of their registration.
5193   // atexit functions are called on return from main or as a result of a
5194   // call to exit(3C). There can be only 32 of these functions registered
5195   // and atexit() does not set errno.
5196 
5197   if (PerfAllowAtExitRegistration) {
5198     // only register atexit functions if PerfAllowAtExitRegistration is set.
5199     // atexit functions can be delayed until process exit time, which
5200     // can be problematic for embedded VM situations. Embedded VMs should
5201     // call DestroyJavaVM() to assure that VM resources are released.
5202 
5203     // note: perfMemory_exit_helper atexit function may be removed in
5204     // the future if the appropriate cleanup code can be added to the
5205     // VM_Exit VMOperation's doit method.
5206     if (atexit(perfMemory_exit_helper) != 0) {
5207       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5208     }
5209   }
5210 
5211   // initialize thread priority policy
5212   prio_init();
5213 
5214   return JNI_OK;
5215 }
5216 
5217 // Mark the polling page as unreadable
5218 void os::make_polling_page_unreadable(void) {
5219   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5220     fatal("Could not disable polling page");
5221 };
5222 
5223 // Mark the polling page as readable
5224 void os::make_polling_page_readable(void) {
5225   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5226     fatal("Could not enable polling page");
5227   }
5228 };
5229 
5230 static int os_cpu_count(const cpu_set_t* cpus) {
5231   int count = 0;
5232   // only look up to the number of configured processors
5233   for (int i = 0; i < os::processor_count(); i++) {
5234     if (CPU_ISSET(i, cpus)) {
5235       count++;
5236     }
5237   }
5238   return count;
5239 }
5240 
5241 // Get the current number of available processors for this process.
5242 // This value can change at any time during a process's lifetime.
5243 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5244 // If anything goes wrong we fallback to returning the number of online
5245 // processors - which can be greater than the number available to the process.
5246 int os::Linux::active_processor_count() {
5247   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5248   int cpus_size = sizeof(cpu_set_t);
5249   int cpu_count = 0;
5250 
5251   // pid 0 means the current thread - which we have to assume represents the process
5252   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
5253     cpu_count = os_cpu_count(&cpus);
5254     if (PrintActiveCpus) {
5255       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5256     }
5257   }
5258   else {
5259     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5260     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5261             "which may exceed available processors", strerror(errno), cpu_count);
5262   }
5263 
5264   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5265   return cpu_count;
5266 }
5267 
5268 // Determine the active processor count from one of
5269 // three different sources:
5270 //
5271 // 1. User option -XX:ActiveProcessorCount
5272 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5273 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5274 //
5275 // Option 1, if specified, will always override.
5276 // If the cgroup subsystem is active and configured, we
5277 // will return the min of the cgroup and option 2 results.
5278 // This is required since tools, such as numactl, that
5279 // alter cpu affinity do not update cgroup subsystem
5280 // cpuset configuration files.
5281 int os::active_processor_count() {
5282   // User has overridden the number of active processors
5283   if (ActiveProcessorCount > 0) {
5284     if (PrintActiveCpus) {
5285       tty->print_cr("active_processor_count: "
5286                     "active processor count set by user : %d",
5287                     ActiveProcessorCount);
5288     }
5289     return ActiveProcessorCount;
5290   }
5291 
5292   int active_cpus;
5293   if (OSContainer::is_containerized()) {
5294     active_cpus = OSContainer::active_processor_count();
5295     if (PrintActiveCpus) {
5296       tty->print_cr("active_processor_count: determined by OSContainer: %d",
5297                      active_cpus);
5298     }
5299   } else {
5300     active_cpus = os::Linux::active_processor_count();
5301   }
5302 
5303   return active_cpus;
5304 }
5305 
5306 void os::set_native_thread_name(const char *name) {
5307   // Not yet implemented.
5308   return;
5309 }
5310 
5311 bool os::distribute_processes(uint length, uint* distribution) {
5312   // Not yet implemented.
5313   return false;
5314 }
5315 
5316 bool os::bind_to_processor(uint processor_id) {
5317   // Not yet implemented.
5318   return false;
5319 }
5320 
5321 ///
5322 
5323 void os::SuspendedThreadTask::internal_do_task() {
5324   if (do_suspend(_thread->osthread())) {
5325     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5326     do_task(context);
5327     do_resume(_thread->osthread());
5328   }
5329 }
5330 
5331 class PcFetcher : public os::SuspendedThreadTask {
5332 public:
5333   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5334   ExtendedPC result();
5335 protected:
5336   void do_task(const os::SuspendedThreadTaskContext& context);
5337 private:
5338   ExtendedPC _epc;
5339 };
5340 
5341 ExtendedPC PcFetcher::result() {
5342   guarantee(is_done(), "task is not done yet.");
5343   return _epc;
5344 }
5345 
5346 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5347   Thread* thread = context.thread();
5348   OSThread* osthread = thread->osthread();
5349   if (osthread->ucontext() != NULL) {
5350     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5351   } else {
5352     // NULL context is unexpected, double-check this is the VMThread
5353     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5354   }
5355 }
5356 
5357 // Suspends the target using the signal mechanism and then grabs the PC before
5358 // resuming the target. Used by the flat-profiler only
5359 ExtendedPC os::get_thread_pc(Thread* thread) {
5360   // Make sure that it is called by the watcher for the VMThread
5361   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5362   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5363 
5364   PcFetcher fetcher(thread);
5365   fetcher.run();
5366   return fetcher.result();
5367 }
5368 
5369 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5370 {
5371    if (is_NPTL()) {
5372       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5373    } else {
5374       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5375       // word back to default 64bit precision if condvar is signaled. Java
5376       // wants 53bit precision.  Save and restore current value.
5377       int fpu = get_fpu_control_word();
5378       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5379       set_fpu_control_word(fpu);
5380       return status;
5381    }
5382 }
5383 
5384 ////////////////////////////////////////////////////////////////////////////////
5385 // debug support
5386 
5387 bool os::find(address addr, outputStream* st) {
5388   Dl_info dlinfo;
5389   memset(&dlinfo, 0, sizeof(dlinfo));
5390   if (dladdr(addr, &dlinfo) != 0) {
5391     st->print(PTR_FORMAT ": ", addr);
5392     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5393       st->print("%s+%#x", dlinfo.dli_sname,
5394                  addr - (intptr_t)dlinfo.dli_saddr);
5395     } else if (dlinfo.dli_fbase != NULL) {
5396       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5397     } else {
5398       st->print("<absolute address>");
5399     }
5400     if (dlinfo.dli_fname != NULL) {
5401       st->print(" in %s", dlinfo.dli_fname);
5402     }
5403     if (dlinfo.dli_fbase != NULL) {
5404       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5405     }
5406     st->cr();
5407 
5408     if (Verbose) {
5409       // decode some bytes around the PC
5410       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5411       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5412       address       lowest = (address) dlinfo.dli_sname;
5413       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5414       if (begin < lowest)  begin = lowest;
5415       Dl_info dlinfo2;
5416       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5417           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5418         end = (address) dlinfo2.dli_saddr;
5419       Disassembler::decode(begin, end, st);
5420     }
5421     return true;
5422   }
5423   return false;
5424 }
5425 
5426 ////////////////////////////////////////////////////////////////////////////////
5427 // misc
5428 
5429 // This does not do anything on Linux. This is basically a hook for being
5430 // able to use structured exception handling (thread-local exception filters)
5431 // on, e.g., Win32.
5432 void
5433 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5434                          JavaCallArguments* args, Thread* thread) {
5435   f(value, method, args, thread);
5436 }
5437 
5438 void os::print_statistics() {
5439 }
5440 
5441 int os::message_box(const char* title, const char* message) {
5442   int i;
5443   fdStream err(defaultStream::error_fd());
5444   for (i = 0; i < 78; i++) err.print_raw("=");
5445   err.cr();
5446   err.print_raw_cr(title);
5447   for (i = 0; i < 78; i++) err.print_raw("-");
5448   err.cr();
5449   err.print_raw_cr(message);
5450   for (i = 0; i < 78; i++) err.print_raw("=");
5451   err.cr();
5452 
5453   char buf[16];
5454   // Prevent process from exiting upon "read error" without consuming all CPU
5455   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5456 
5457   return buf[0] == 'y' || buf[0] == 'Y';
5458 }
5459 
5460 int os::stat(const char *path, struct stat *sbuf) {
5461   char pathbuf[MAX_PATH];
5462   if (strlen(path) > MAX_PATH - 1) {
5463     errno = ENAMETOOLONG;
5464     return -1;
5465   }
5466   os::native_path(strcpy(pathbuf, path));
5467   return ::stat(pathbuf, sbuf);
5468 }
5469 
5470 bool os::check_heap(bool force) {
5471   return true;
5472 }
5473 
5474 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5475   return ::vsnprintf(buf, count, format, args);
5476 }
5477 
5478 // Is a (classpath) directory empty?
5479 bool os::dir_is_empty(const char* path) {
5480   DIR *dir = NULL;
5481   struct dirent *ptr;
5482 
5483   dir = opendir(path);
5484   if (dir == NULL) return true;
5485 
5486   /* Scan the directory */
5487   bool result = true;
5488   char buf[sizeof(struct dirent) + MAX_PATH];
5489   while (result && (ptr = ::readdir(dir)) != NULL) {
5490     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5491       result = false;
5492     }
5493   }
5494   closedir(dir);
5495   return result;
5496 }
5497 
5498 // This code originates from JDK's sysOpen and open64_w
5499 // from src/solaris/hpi/src/system_md.c
5500 
5501 #ifndef O_DELETE
5502 #define O_DELETE 0x10000
5503 #endif
5504 
5505 // Open a file. Unlink the file immediately after open returns
5506 // if the specified oflag has the O_DELETE flag set.
5507 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5508 
5509 int os::open(const char *path, int oflag, int mode) {
5510 
5511   if (strlen(path) > MAX_PATH - 1) {
5512     errno = ENAMETOOLONG;
5513     return -1;
5514   }
5515   int fd;
5516   int o_delete = (oflag & O_DELETE);
5517   oflag = oflag & ~O_DELETE;
5518 
5519   fd = ::open64(path, oflag, mode);
5520   if (fd == -1) return -1;
5521 
5522   //If the open succeeded, the file might still be a directory
5523   {
5524     struct stat64 buf64;
5525     int ret = ::fstat64(fd, &buf64);
5526     int st_mode = buf64.st_mode;
5527 
5528     if (ret != -1) {
5529       if ((st_mode & S_IFMT) == S_IFDIR) {
5530         errno = EISDIR;
5531         ::close(fd);
5532         return -1;
5533       }
5534     } else {
5535       ::close(fd);
5536       return -1;
5537     }
5538   }
5539 
5540     /*
5541      * All file descriptors that are opened in the JVM and not
5542      * specifically destined for a subprocess should have the
5543      * close-on-exec flag set.  If we don't set it, then careless 3rd
5544      * party native code might fork and exec without closing all
5545      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5546      * UNIXProcess.c), and this in turn might:
5547      *
5548      * - cause end-of-file to fail to be detected on some file
5549      *   descriptors, resulting in mysterious hangs, or
5550      *
5551      * - might cause an fopen in the subprocess to fail on a system
5552      *   suffering from bug 1085341.
5553      *
5554      * (Yes, the default setting of the close-on-exec flag is a Unix
5555      * design flaw)
5556      *
5557      * See:
5558      * 1085341: 32-bit stdio routines should support file descriptors >255
5559      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5560      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5561      */
5562 #ifdef FD_CLOEXEC
5563     {
5564         int flags = ::fcntl(fd, F_GETFD);
5565         if (flags != -1)
5566             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5567     }
5568 #endif
5569 
5570   if (o_delete != 0) {
5571     ::unlink(path);
5572   }
5573   return fd;
5574 }
5575 
5576 
5577 // create binary file, rewriting existing file if required
5578 int os::create_binary_file(const char* path, bool rewrite_existing) {
5579   int oflags = O_WRONLY | O_CREAT;
5580   if (!rewrite_existing) {
5581     oflags |= O_EXCL;
5582   }
5583   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5584 }
5585 
5586 // return current position of file pointer
5587 jlong os::current_file_offset(int fd) {
5588   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5589 }
5590 
5591 // move file pointer to the specified offset
5592 jlong os::seek_to_file_offset(int fd, jlong offset) {
5593   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5594 }
5595 
5596 // This code originates from JDK's sysAvailable
5597 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5598 
5599 int os::available(int fd, jlong *bytes) {
5600   jlong cur, end;
5601   int mode;
5602   struct stat64 buf64;
5603 
5604   if (::fstat64(fd, &buf64) >= 0) {
5605     mode = buf64.st_mode;
5606     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5607       /*
5608       * XXX: is the following call interruptible? If so, this might
5609       * need to go through the INTERRUPT_IO() wrapper as for other
5610       * blocking, interruptible calls in this file.
5611       */
5612       int n;
5613       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5614         *bytes = n;
5615         return 1;
5616       }
5617     }
5618   }
5619   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5620     return 0;
5621   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5622     return 0;
5623   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5624     return 0;
5625   }
5626   *bytes = end - cur;
5627   return 1;
5628 }
5629 
5630 int os::socket_available(int fd, jint *pbytes) {
5631   // Linux doc says EINTR not returned, unlike Solaris
5632   int ret = ::ioctl(fd, FIONREAD, pbytes);
5633 
5634   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5635   // is expected to return 0 on failure and 1 on success to the jdk.
5636   return (ret < 0) ? 0 : 1;
5637 }
5638 
5639 // Map a block of memory.
5640 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5641                      char *addr, size_t bytes, bool read_only,
5642                      bool allow_exec) {
5643   int prot;
5644   int flags = MAP_PRIVATE;
5645 
5646   if (read_only) {
5647     prot = PROT_READ;
5648   } else {
5649     prot = PROT_READ | PROT_WRITE;
5650   }
5651 
5652   if (allow_exec) {
5653     prot |= PROT_EXEC;
5654   }
5655 
5656   if (addr != NULL) {
5657     flags |= MAP_FIXED;
5658   }
5659 
5660   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5661                                      fd, file_offset);
5662   if (mapped_address == MAP_FAILED) {
5663     return NULL;
5664   }
5665   return mapped_address;
5666 }
5667 
5668 
5669 // Remap a block of memory.
5670 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5671                        char *addr, size_t bytes, bool read_only,
5672                        bool allow_exec) {
5673   // same as map_memory() on this OS
5674   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5675                         allow_exec);
5676 }
5677 
5678 
5679 // Unmap a block of memory.
5680 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5681   return munmap(addr, bytes) == 0;
5682 }
5683 
5684 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5685 
5686 static clockid_t thread_cpu_clockid(Thread* thread) {
5687   pthread_t tid = thread->osthread()->pthread_id();
5688   clockid_t clockid;
5689 
5690   // Get thread clockid
5691   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5692   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5693   return clockid;
5694 }
5695 
5696 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5697 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5698 // of a thread.
5699 //
5700 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5701 // the fast estimate available on the platform.
5702 
5703 jlong os::current_thread_cpu_time() {
5704   if (os::Linux::supports_fast_thread_cpu_time()) {
5705     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5706   } else {
5707     // return user + sys since the cost is the same
5708     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5709   }
5710 }
5711 
5712 jlong os::thread_cpu_time(Thread* thread) {
5713   // consistent with what current_thread_cpu_time() returns
5714   if (os::Linux::supports_fast_thread_cpu_time()) {
5715     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5716   } else {
5717     return slow_thread_cpu_time(thread, true /* user + sys */);
5718   }
5719 }
5720 
5721 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5722   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5723     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5724   } else {
5725     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5726   }
5727 }
5728 
5729 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5730   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5731     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5732   } else {
5733     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5734   }
5735 }
5736 
5737 //
5738 //  -1 on error.
5739 //
5740 
5741 PRAGMA_DIAG_PUSH
5742 PRAGMA_FORMAT_NONLITERAL_IGNORED
5743 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5744   static bool proc_task_unchecked = true;
5745   static const char *proc_stat_path = "/proc/%d/stat";
5746   pid_t  tid = thread->osthread()->thread_id();
5747   char *s;
5748   char stat[2048];
5749   int statlen;
5750   char proc_name[64];
5751   int count;
5752   long sys_time, user_time;
5753   char cdummy;
5754   int idummy;
5755   long ldummy;
5756   FILE *fp;
5757 
5758   // The /proc/<tid>/stat aggregates per-process usage on
5759   // new Linux kernels 2.6+ where NPTL is supported.
5760   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5761   // See bug 6328462.
5762   // There possibly can be cases where there is no directory
5763   // /proc/self/task, so we check its availability.
5764   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5765     // This is executed only once
5766     proc_task_unchecked = false;
5767     fp = fopen("/proc/self/task", "r");
5768     if (fp != NULL) {
5769       proc_stat_path = "/proc/self/task/%d/stat";
5770       fclose(fp);
5771     }
5772   }
5773 
5774   sprintf(proc_name, proc_stat_path, tid);
5775   fp = fopen(proc_name, "r");
5776   if ( fp == NULL ) return -1;
5777   statlen = fread(stat, 1, 2047, fp);
5778   stat[statlen] = '\0';
5779   fclose(fp);
5780 
5781   // Skip pid and the command string. Note that we could be dealing with
5782   // weird command names, e.g. user could decide to rename java launcher
5783   // to "java 1.4.2 :)", then the stat file would look like
5784   //                1234 (java 1.4.2 :)) R ... ...
5785   // We don't really need to know the command string, just find the last
5786   // occurrence of ")" and then start parsing from there. See bug 4726580.
5787   s = strrchr(stat, ')');
5788   if (s == NULL ) return -1;
5789 
5790   // Skip blank chars
5791   do s++; while (isspace(*s));
5792 
5793   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5794                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5795                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5796                  &user_time, &sys_time);
5797   if ( count != 13 ) return -1;
5798   if (user_sys_cpu_time) {
5799     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5800   } else {
5801     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5802   }
5803 }
5804 PRAGMA_DIAG_POP
5805 
5806 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5807   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5808   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5809   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5810   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5811 }
5812 
5813 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5814   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5815   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5816   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5817   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5818 }
5819 
5820 bool os::is_thread_cpu_time_supported() {
5821   return true;
5822 }
5823 
5824 // System loadavg support.  Returns -1 if load average cannot be obtained.
5825 // Linux doesn't yet have a (official) notion of processor sets,
5826 // so just return the system wide load average.
5827 int os::loadavg(double loadavg[], int nelem) {
5828   return ::getloadavg(loadavg, nelem);
5829 }
5830 
5831 void os::pause() {
5832   char filename[MAX_PATH];
5833   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5834     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5835   } else {
5836     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5837   }
5838 
5839   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5840   if (fd != -1) {
5841     struct stat buf;
5842     ::close(fd);
5843     while (::stat(filename, &buf) == 0) {
5844       (void)::poll(NULL, 0, 100);
5845     }
5846   } else {
5847     jio_fprintf(stderr,
5848       "Could not open pause file '%s', continuing immediately.\n", filename);
5849   }
5850 }
5851 
5852 
5853 // Refer to the comments in os_solaris.cpp park-unpark.
5854 //
5855 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5856 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5857 // For specifics regarding the bug see GLIBC BUGID 261237 :
5858 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5859 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5860 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5861 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5862 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5863 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5864 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5865 // of libpthread avoids the problem, but isn't practical.
5866 //
5867 // Possible remedies:
5868 //
5869 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5870 //      This is palliative and probabilistic, however.  If the thread is preempted
5871 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5872 //      than the minimum period may have passed, and the abstime may be stale (in the
5873 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5874 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5875 //
5876 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5877 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5878 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5879 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5880 //      thread.
5881 //
5882 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5883 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5884 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5885 //      This also works well.  In fact it avoids kernel-level scalability impediments
5886 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5887 //      timers in a graceful fashion.
5888 //
5889 // 4.   When the abstime value is in the past it appears that control returns
5890 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5891 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5892 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5893 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5894 //      It may be possible to avoid reinitialization by checking the return
5895 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5896 //      condvar we must establish the invariant that cond_signal() is only called
5897 //      within critical sections protected by the adjunct mutex.  This prevents
5898 //      cond_signal() from "seeing" a condvar that's in the midst of being
5899 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5900 //      desirable signal-after-unlock optimization that avoids futile context switching.
5901 //
5902 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5903 //      structure when a condvar is used or initialized.  cond_destroy()  would
5904 //      release the helper structure.  Our reinitialize-after-timedwait fix
5905 //      put excessive stress on malloc/free and locks protecting the c-heap.
5906 //
5907 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5908 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5909 // and only enabling the work-around for vulnerable environments.
5910 
5911 // utility to compute the abstime argument to timedwait:
5912 // millis is the relative timeout time
5913 // abstime will be the absolute timeout time
5914 // TODO: replace compute_abstime() with unpackTime()
5915 
5916 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5917   if (millis < 0)  millis = 0;
5918 
5919   jlong seconds = millis / 1000;
5920   millis %= 1000;
5921   if (seconds > 50000000) { // see man cond_timedwait(3T)
5922     seconds = 50000000;
5923   }
5924 
5925   if (os::Linux::supports_monotonic_clock()) {
5926     struct timespec now;
5927     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5928     assert_status(status == 0, status, "clock_gettime");
5929     abstime->tv_sec = now.tv_sec  + seconds;
5930     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5931     if (nanos >= NANOSECS_PER_SEC) {
5932       abstime->tv_sec += 1;
5933       nanos -= NANOSECS_PER_SEC;
5934     }
5935     abstime->tv_nsec = nanos;
5936   } else {
5937     struct timeval now;
5938     int status = gettimeofday(&now, NULL);
5939     assert(status == 0, "gettimeofday");
5940     abstime->tv_sec = now.tv_sec  + seconds;
5941     long usec = now.tv_usec + millis * 1000;
5942     if (usec >= 1000000) {
5943       abstime->tv_sec += 1;
5944       usec -= 1000000;
5945     }
5946     abstime->tv_nsec = usec * 1000;
5947   }
5948   return abstime;
5949 }
5950 
5951 
5952 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5953 // Conceptually TryPark() should be equivalent to park(0).
5954 
5955 int os::PlatformEvent::TryPark() {
5956   for (;;) {
5957     const int v = _Event ;
5958     guarantee ((v == 0) || (v == 1), "invariant") ;
5959     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5960   }
5961 }
5962 
5963 void os::PlatformEvent::park() {       // AKA "down()"
5964   // Invariant: Only the thread associated with the Event/PlatformEvent
5965   // may call park().
5966   // TODO: assert that _Assoc != NULL or _Assoc == Self
5967   int v ;
5968   for (;;) {
5969       v = _Event ;
5970       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5971   }
5972   guarantee (v >= 0, "invariant") ;
5973   if (v == 0) {
5974      // Do this the hard way by blocking ...
5975      int status = pthread_mutex_lock(_mutex);
5976      assert_status(status == 0, status, "mutex_lock");
5977      guarantee (_nParked == 0, "invariant") ;
5978      ++ _nParked ;
5979      while (_Event < 0) {
5980         status = pthread_cond_wait(_cond, _mutex);
5981         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5982         // Treat this the same as if the wait was interrupted
5983         if (status == ETIME) { status = EINTR; }
5984         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5985      }
5986      -- _nParked ;
5987 
5988     _Event = 0 ;
5989      status = pthread_mutex_unlock(_mutex);
5990      assert_status(status == 0, status, "mutex_unlock");
5991     // Paranoia to ensure our locked and lock-free paths interact
5992     // correctly with each other.
5993     OrderAccess::fence();
5994   }
5995   guarantee (_Event >= 0, "invariant") ;
5996 }
5997 
5998 int os::PlatformEvent::park(jlong millis) {
5999   guarantee (_nParked == 0, "invariant") ;
6000 
6001   int v ;
6002   for (;;) {
6003       v = _Event ;
6004       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6005   }
6006   guarantee (v >= 0, "invariant") ;
6007   if (v != 0) return OS_OK ;
6008 
6009   // We do this the hard way, by blocking the thread.
6010   // Consider enforcing a minimum timeout value.
6011   struct timespec abst;
6012   compute_abstime(&abst, millis);
6013 
6014   int ret = OS_TIMEOUT;
6015   int status = pthread_mutex_lock(_mutex);
6016   assert_status(status == 0, status, "mutex_lock");
6017   guarantee (_nParked == 0, "invariant") ;
6018   ++_nParked ;
6019 
6020   // Object.wait(timo) will return because of
6021   // (a) notification
6022   // (b) timeout
6023   // (c) thread.interrupt
6024   //
6025   // Thread.interrupt and object.notify{All} both call Event::set.
6026   // That is, we treat thread.interrupt as a special case of notification.
6027   // The underlying Solaris implementation, cond_timedwait, admits
6028   // spurious/premature wakeups, but the JLS/JVM spec prevents the
6029   // JVM from making those visible to Java code.  As such, we must
6030   // filter out spurious wakeups.  We assume all ETIME returns are valid.
6031   //
6032   // TODO: properly differentiate simultaneous notify+interrupt.
6033   // In that case, we should propagate the notify to another waiter.
6034 
6035   while (_Event < 0) {
6036     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
6037     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6038       pthread_cond_destroy (_cond);
6039       pthread_cond_init (_cond, os::Linux::condAttr()) ;
6040     }
6041     assert_status(status == 0 || status == EINTR ||
6042                   status == ETIME || status == ETIMEDOUT,
6043                   status, "cond_timedwait");
6044     if (!FilterSpuriousWakeups) break ;                 // previous semantics
6045     if (status == ETIME || status == ETIMEDOUT) break ;
6046     // We consume and ignore EINTR and spurious wakeups.
6047   }
6048   --_nParked ;
6049   if (_Event >= 0) {
6050      ret = OS_OK;
6051   }
6052   _Event = 0 ;
6053   status = pthread_mutex_unlock(_mutex);
6054   assert_status(status == 0, status, "mutex_unlock");
6055   assert (_nParked == 0, "invariant") ;
6056   // Paranoia to ensure our locked and lock-free paths interact
6057   // correctly with each other.
6058   OrderAccess::fence();
6059   return ret;
6060 }
6061 
6062 void os::PlatformEvent::unpark() {
6063   // Transitions for _Event:
6064   //    0 :=> 1
6065   //    1 :=> 1
6066   //   -1 :=> either 0 or 1; must signal target thread
6067   //          That is, we can safely transition _Event from -1 to either
6068   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
6069   //          unpark() calls.
6070   // See also: "Semaphores in Plan 9" by Mullender & Cox
6071   //
6072   // Note: Forcing a transition from "-1" to "1" on an unpark() means
6073   // that it will take two back-to-back park() calls for the owning
6074   // thread to block. This has the benefit of forcing a spurious return
6075   // from the first park() call after an unpark() call which will help
6076   // shake out uses of park() and unpark() without condition variables.
6077 
6078   if (Atomic::xchg(1, &_Event) >= 0) return;
6079 
6080   // Wait for the thread associated with the event to vacate
6081   int status = pthread_mutex_lock(_mutex);
6082   assert_status(status == 0, status, "mutex_lock");
6083   int AnyWaiters = _nParked;
6084   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
6085   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
6086     AnyWaiters = 0;
6087     pthread_cond_signal(_cond);
6088   }
6089   status = pthread_mutex_unlock(_mutex);
6090   assert_status(status == 0, status, "mutex_unlock");
6091   if (AnyWaiters != 0) {
6092     status = pthread_cond_signal(_cond);
6093     assert_status(status == 0, status, "cond_signal");
6094   }
6095 
6096   // Note that we signal() _after dropping the lock for "immortal" Events.
6097   // This is safe and avoids a common class of  futile wakeups.  In rare
6098   // circumstances this can cause a thread to return prematurely from
6099   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
6100   // simply re-test the condition and re-park itself.
6101 }
6102 
6103 
6104 // JSR166
6105 // -------------------------------------------------------
6106 
6107 /*
6108  * The solaris and linux implementations of park/unpark are fairly
6109  * conservative for now, but can be improved. They currently use a
6110  * mutex/condvar pair, plus a a count.
6111  * Park decrements count if > 0, else does a condvar wait.  Unpark
6112  * sets count to 1 and signals condvar.  Only one thread ever waits
6113  * on the condvar. Contention seen when trying to park implies that someone
6114  * is unparking you, so don't wait. And spurious returns are fine, so there
6115  * is no need to track notifications.
6116  */
6117 
6118 /*
6119  * This code is common to linux and solaris and will be moved to a
6120  * common place in dolphin.
6121  *
6122  * The passed in time value is either a relative time in nanoseconds
6123  * or an absolute time in milliseconds. Either way it has to be unpacked
6124  * into suitable seconds and nanoseconds components and stored in the
6125  * given timespec structure.
6126  * Given time is a 64-bit value and the time_t used in the timespec is only
6127  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6128  * overflow if times way in the future are given. Further on Solaris versions
6129  * prior to 10 there is a restriction (see cond_timedwait) that the specified
6130  * number of seconds, in abstime, is less than current_time  + 100,000,000.
6131  * As it will be 28 years before "now + 100000000" will overflow we can
6132  * ignore overflow and just impose a hard-limit on seconds using the value
6133  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6134  * years from "now".
6135  */
6136 
6137 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6138   assert (time > 0, "convertTime");
6139   time_t max_secs = 0;
6140 
6141   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
6142     struct timeval now;
6143     int status = gettimeofday(&now, NULL);
6144     assert(status == 0, "gettimeofday");
6145 
6146     max_secs = now.tv_sec + MAX_SECS;
6147 
6148     if (isAbsolute) {
6149       jlong secs = time / 1000;
6150       if (secs > max_secs) {
6151         absTime->tv_sec = max_secs;
6152       } else {
6153         absTime->tv_sec = secs;
6154       }
6155       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6156     } else {
6157       jlong secs = time / NANOSECS_PER_SEC;
6158       if (secs >= MAX_SECS) {
6159         absTime->tv_sec = max_secs;
6160         absTime->tv_nsec = 0;
6161       } else {
6162         absTime->tv_sec = now.tv_sec + secs;
6163         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6164         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6165           absTime->tv_nsec -= NANOSECS_PER_SEC;
6166           ++absTime->tv_sec; // note: this must be <= max_secs
6167         }
6168       }
6169     }
6170   } else {
6171     // must be relative using monotonic clock
6172     struct timespec now;
6173     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
6174     assert_status(status == 0, status, "clock_gettime");
6175     max_secs = now.tv_sec + MAX_SECS;
6176     jlong secs = time / NANOSECS_PER_SEC;
6177     if (secs >= MAX_SECS) {
6178       absTime->tv_sec = max_secs;
6179       absTime->tv_nsec = 0;
6180     } else {
6181       absTime->tv_sec = now.tv_sec + secs;
6182       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
6183       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6184         absTime->tv_nsec -= NANOSECS_PER_SEC;
6185         ++absTime->tv_sec; // note: this must be <= max_secs
6186       }
6187     }
6188   }
6189   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6190   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6191   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6192   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6193 }
6194 
6195 void Parker::park(bool isAbsolute, jlong time) {
6196   // Ideally we'd do something useful while spinning, such
6197   // as calling unpackTime().
6198 
6199   // Optional fast-path check:
6200   // Return immediately if a permit is available.
6201   // We depend on Atomic::xchg() having full barrier semantics
6202   // since we are doing a lock-free update to _counter.
6203   if (Atomic::xchg(0, &_counter) > 0) return;
6204 
6205   Thread* thread = Thread::current();
6206   assert(thread->is_Java_thread(), "Must be JavaThread");
6207   JavaThread *jt = (JavaThread *)thread;
6208 
6209   // Optional optimization -- avoid state transitions if there's an interrupt pending.
6210   // Check interrupt before trying to wait
6211   if (Thread::is_interrupted(thread, false)) {
6212     return;
6213   }
6214 
6215   // Next, demultiplex/decode time arguments
6216   timespec absTime;
6217   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6218     return;
6219   }
6220   if (time > 0) {
6221     unpackTime(&absTime, isAbsolute, time);
6222   }
6223 
6224 
6225   // Enter safepoint region
6226   // Beware of deadlocks such as 6317397.
6227   // The per-thread Parker:: mutex is a classic leaf-lock.
6228   // In particular a thread must never block on the Threads_lock while
6229   // holding the Parker:: mutex.  If safepoints are pending both the
6230   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6231   ThreadBlockInVM tbivm(jt);
6232 
6233   // Don't wait if cannot get lock since interference arises from
6234   // unblocking.  Also. check interrupt before trying wait
6235   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
6236     return;
6237   }
6238 
6239   int status ;
6240   if (_counter > 0)  { // no wait needed
6241     _counter = 0;
6242     status = pthread_mutex_unlock(_mutex);
6243     assert (status == 0, "invariant") ;
6244     // Paranoia to ensure our locked and lock-free paths interact
6245     // correctly with each other and Java-level accesses.
6246     OrderAccess::fence();
6247     return;
6248   }
6249 
6250 #ifdef ASSERT
6251   // Don't catch signals while blocked; let the running threads have the signals.
6252   // (This allows a debugger to break into the running thread.)
6253   sigset_t oldsigs;
6254   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
6255   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6256 #endif
6257 
6258   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6259   jt->set_suspend_equivalent();
6260   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6261 
6262   assert(_cur_index == -1, "invariant");
6263   if (time == 0) {
6264     _cur_index = REL_INDEX; // arbitrary choice when not timed
6265     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
6266   } else {
6267     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
6268     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
6269     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6270       pthread_cond_destroy (&_cond[_cur_index]) ;
6271       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
6272     }
6273   }
6274   _cur_index = -1;
6275   assert_status(status == 0 || status == EINTR ||
6276                 status == ETIME || status == ETIMEDOUT,
6277                 status, "cond_timedwait");
6278 
6279 #ifdef ASSERT
6280   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6281 #endif
6282 
6283   _counter = 0 ;
6284   status = pthread_mutex_unlock(_mutex) ;
6285   assert_status(status == 0, status, "invariant") ;
6286   // Paranoia to ensure our locked and lock-free paths interact
6287   // correctly with each other and Java-level accesses.
6288   OrderAccess::fence();
6289 
6290   // If externally suspended while waiting, re-suspend
6291   if (jt->handle_special_suspend_equivalent_condition()) {
6292     jt->java_suspend_self();
6293   }
6294 }
6295 
6296 void Parker::unpark() {
6297   int s, status ;
6298   status = pthread_mutex_lock(_mutex);
6299   assert (status == 0, "invariant") ;
6300   s = _counter;
6301   _counter = 1;
6302   if (s < 1) {
6303     // thread might be parked
6304     if (_cur_index != -1) {
6305       // thread is definitely parked
6306       if (WorkAroundNPTLTimedWaitHang) {
6307         status = pthread_cond_signal (&_cond[_cur_index]);
6308         assert (status == 0, "invariant");
6309         status = pthread_mutex_unlock(_mutex);
6310         assert (status == 0, "invariant");
6311       } else {
6312         // must capture correct index before unlocking
6313         int index = _cur_index;
6314         status = pthread_mutex_unlock(_mutex);
6315         assert (status == 0, "invariant");
6316         status = pthread_cond_signal (&_cond[index]);
6317         assert (status == 0, "invariant");
6318       }
6319     } else {
6320       pthread_mutex_unlock(_mutex);
6321       assert (status == 0, "invariant") ;
6322     }
6323   } else {
6324     pthread_mutex_unlock(_mutex);
6325     assert (status == 0, "invariant") ;
6326   }
6327 }
6328 
6329 
6330 extern char** environ;
6331 
6332 // Run the specified command in a separate process. Return its exit value,
6333 // or -1 on failure (e.g. can't fork a new process).
6334 // Unlike system(), this function can be called from signal handler. It
6335 // doesn't block SIGINT et al.
6336 int os::fork_and_exec(char* cmd) {
6337   const char * argv[4] = {"sh", "-c", cmd, NULL};
6338 
6339   pid_t pid = fork();
6340 
6341   if (pid < 0) {
6342     // fork failed
6343     return -1;
6344 
6345   } else if (pid == 0) {
6346     // child process
6347 
6348     execve("/bin/sh", (char* const*)argv, environ);
6349 
6350     // execve failed
6351     _exit(-1);
6352 
6353   } else  {
6354     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6355     // care about the actual exit code, for now.
6356 
6357     int status;
6358 
6359     // Wait for the child process to exit.  This returns immediately if
6360     // the child has already exited. */
6361     while (waitpid(pid, &status, 0) < 0) {
6362         switch (errno) {
6363         case ECHILD: return 0;
6364         case EINTR: break;
6365         default: return -1;
6366         }
6367     }
6368 
6369     if (WIFEXITED(status)) {
6370        // The child exited normally; get its exit code.
6371        return WEXITSTATUS(status);
6372     } else if (WIFSIGNALED(status)) {
6373        // The child exited because of a signal
6374        // The best value to return is 0x80 + signal number,
6375        // because that is what all Unix shells do, and because
6376        // it allows callers to distinguish between process exit and
6377        // process death by signal.
6378        return 0x80 + WTERMSIG(status);
6379     } else {
6380        // Unknown exit code; pass it through
6381        return status;
6382     }
6383   }
6384 }
6385 
6386 // is_headless_jre()
6387 //
6388 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6389 // in order to report if we are running in a headless jre
6390 //
6391 // Since JDK8 xawt/libmawt.so was moved into the same directory
6392 // as libawt.so, and renamed libawt_xawt.so
6393 //
6394 bool os::is_headless_jre() {
6395     struct stat statbuf;
6396     char buf[MAXPATHLEN];
6397     char libmawtpath[MAXPATHLEN];
6398     const char *xawtstr  = "/xawt/libmawt.so";
6399     const char *new_xawtstr = "/libawt_xawt.so";
6400     char *p;
6401 
6402     // Get path to libjvm.so
6403     os::jvm_path(buf, sizeof(buf));
6404 
6405     // Get rid of libjvm.so
6406     p = strrchr(buf, '/');
6407     if (p == NULL) return false;
6408     else *p = '\0';
6409 
6410     // Get rid of client or server
6411     p = strrchr(buf, '/');
6412     if (p == NULL) return false;
6413     else *p = '\0';
6414 
6415     // check xawt/libmawt.so
6416     strcpy(libmawtpath, buf);
6417     strcat(libmawtpath, xawtstr);
6418     if (::stat(libmawtpath, &statbuf) == 0) return false;
6419 
6420     // check libawt_xawt.so
6421     strcpy(libmawtpath, buf);
6422     strcat(libmawtpath, new_xawtstr);
6423     if (::stat(libmawtpath, &statbuf) == 0) return false;
6424 
6425     return true;
6426 }
6427 
6428 // Get the default path to the core file
6429 // Returns the length of the string
6430 int os::get_core_path(char* buffer, size_t bufferSize) {
6431   const char* p = get_current_directory(buffer, bufferSize);
6432 
6433   if (p == NULL) {
6434     assert(p != NULL, "failed to get current directory");
6435     return 0;
6436   }
6437 
6438   return strlen(buffer);
6439 }
6440 
6441 /////////////// Unit tests ///////////////
6442 
6443 #ifndef PRODUCT
6444 
6445 #define test_log(...) \
6446   do {\
6447     if (VerboseInternalVMTests) { \
6448       tty->print_cr(__VA_ARGS__); \
6449       tty->flush(); \
6450     }\
6451   } while (false)
6452 
6453 class TestReserveMemorySpecial : AllStatic {
6454  public:
6455   static void small_page_write(void* addr, size_t size) {
6456     size_t page_size = os::vm_page_size();
6457 
6458     char* end = (char*)addr + size;
6459     for (char* p = (char*)addr; p < end; p += page_size) {
6460       *p = 1;
6461     }
6462   }
6463 
6464   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6465     if (!UseHugeTLBFS) {
6466       return;
6467     }
6468 
6469     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6470 
6471     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6472 
6473     if (addr != NULL) {
6474       small_page_write(addr, size);
6475 
6476       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6477     }
6478   }
6479 
6480   static void test_reserve_memory_special_huge_tlbfs_only() {
6481     if (!UseHugeTLBFS) {
6482       return;
6483     }
6484 
6485     size_t lp = os::large_page_size();
6486 
6487     for (size_t size = lp; size <= lp * 10; size += lp) {
6488       test_reserve_memory_special_huge_tlbfs_only(size);
6489     }
6490   }
6491 
6492   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6493     size_t lp = os::large_page_size();
6494     size_t ag = os::vm_allocation_granularity();
6495 
6496     // sizes to test
6497     const size_t sizes[] = {
6498       lp, lp + ag, lp + lp / 2, lp * 2,
6499       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6500       lp * 10, lp * 10 + lp / 2
6501     };
6502     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6503 
6504     // For each size/alignment combination, we test three scenarios:
6505     // 1) with req_addr == NULL
6506     // 2) with a non-null req_addr at which we expect to successfully allocate
6507     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6508     //    expect the allocation to either fail or to ignore req_addr
6509 
6510     // Pre-allocate two areas; they shall be as large as the largest allocation
6511     //  and aligned to the largest alignment we will be testing.
6512     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6513     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6514       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6515       -1, 0);
6516     assert(mapping1 != MAP_FAILED, "should work");
6517 
6518     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6519       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6520       -1, 0);
6521     assert(mapping2 != MAP_FAILED, "should work");
6522 
6523     // Unmap the first mapping, but leave the second mapping intact: the first
6524     // mapping will serve as a value for a "good" req_addr (case 2). The second
6525     // mapping, still intact, as "bad" req_addr (case 3).
6526     ::munmap(mapping1, mapping_size);
6527 
6528     // Case 1
6529     test_log("%s, req_addr NULL:", __FUNCTION__);
6530     test_log("size            align           result");
6531 
6532     for (int i = 0; i < num_sizes; i++) {
6533       const size_t size = sizes[i];
6534       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6535         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6536         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6537             size, alignment, p, (p != NULL ? "" : "(failed)"));
6538         if (p != NULL) {
6539           assert(is_ptr_aligned(p, alignment), "must be");
6540           small_page_write(p, size);
6541           os::Linux::release_memory_special_huge_tlbfs(p, size);
6542         }
6543       }
6544     }
6545 
6546     // Case 2
6547     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6548     test_log("size            align           req_addr         result");
6549 
6550     for (int i = 0; i < num_sizes; i++) {
6551       const size_t size = sizes[i];
6552       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6553         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6554         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6555         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6556             size, alignment, req_addr, p,
6557             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6558         if (p != NULL) {
6559           assert(p == req_addr, "must be");
6560           small_page_write(p, size);
6561           os::Linux::release_memory_special_huge_tlbfs(p, size);
6562         }
6563       }
6564     }
6565 
6566     // Case 3
6567     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6568     test_log("size            align           req_addr         result");
6569 
6570     for (int i = 0; i < num_sizes; i++) {
6571       const size_t size = sizes[i];
6572       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6573         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6574         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6575         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6576             size, alignment, req_addr, p,
6577             ((p != NULL ? "" : "(failed)")));
6578         // as the area around req_addr contains already existing mappings, the API should always
6579         // return NULL (as per contract, it cannot return another address)
6580         assert(p == NULL, "must be");
6581       }
6582     }
6583 
6584     ::munmap(mapping2, mapping_size);
6585 
6586   }
6587 
6588   static void test_reserve_memory_special_huge_tlbfs() {
6589     if (!UseHugeTLBFS) {
6590       return;
6591     }
6592 
6593     test_reserve_memory_special_huge_tlbfs_only();
6594     test_reserve_memory_special_huge_tlbfs_mixed();
6595   }
6596 
6597   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6598     if (!UseSHM) {
6599       return;
6600     }
6601 
6602     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6603 
6604     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6605 
6606     if (addr != NULL) {
6607       assert(is_ptr_aligned(addr, alignment), "Check");
6608       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6609 
6610       small_page_write(addr, size);
6611 
6612       os::Linux::release_memory_special_shm(addr, size);
6613     }
6614   }
6615 
6616   static void test_reserve_memory_special_shm() {
6617     size_t lp = os::large_page_size();
6618     size_t ag = os::vm_allocation_granularity();
6619 
6620     for (size_t size = ag; size < lp * 3; size += ag) {
6621       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6622         test_reserve_memory_special_shm(size, alignment);
6623       }
6624     }
6625   }
6626 
6627   static void test() {
6628     test_reserve_memory_special_huge_tlbfs();
6629     test_reserve_memory_special_shm();
6630   }
6631 };
6632 
6633 void TestReserveMemorySpecial_test() {
6634   TestReserveMemorySpecial::test();
6635 }
6636 
6637 #endif