1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "osContainer_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/elfFile.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <pwd.h>
  92 # include <poll.h>
  93 # include <semaphore.h>
  94 # include <fcntl.h>
  95 # include <string.h>
  96 # include <syscall.h>
  97 # include <sys/sysinfo.h>
  98 # include <gnu/libc-version.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 # include <link.h>
 102 # include <stdint.h>
 103 # include <inttypes.h>
 104 # include <sys/ioctl.h>
 105 
 106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 107 
 108 #ifndef _GNU_SOURCE
 109   #define _GNU_SOURCE
 110   #include <sched.h>
 111   #undef _GNU_SOURCE
 112 #else
 113   #include <sched.h>
 114 #endif
 115 
 116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 117 // getrusage() is prepared to handle the associated failure.
 118 #ifndef RUSAGE_THREAD
 119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 120 #endif
 121 
 122 #define MAX_PATH    (2 * K)
 123 
 124 #define MAX_SECS 100000000
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 ////////////////////////////////////////////////////////////////////////////////
 131 // global variables
 132 julong os::Linux::_physical_memory = 0;
 133 
 134 address   os::Linux::_initial_thread_stack_bottom = NULL;
 135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 136 
 137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 139 Mutex* os::Linux::_createThread_lock = NULL;
 140 pthread_t os::Linux::_main_thread;
 141 int os::Linux::_page_size = -1;
 142 const int os::Linux::_vm_default_page_size = (8 * K);
 143 bool os::Linux::_is_floating_stack = false;
 144 bool os::Linux::_is_NPTL = false;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 pthread_condattr_t os::Linux::_condattr[1];
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 static pid_t _initial_pid = 0;
 159 
 160 /* Signal number used to suspend/resume a thread */
 161 
 162 /* do not use any signal number less than SIGSEGV, see 4355769 */
 163 static int SR_signum = SIGUSR2;
 164 sigset_t SR_sigset;
 165 
 166 /* Used to protect dlsym() calls */
 167 static pthread_mutex_t dl_mutex;
 168 
 169 // Declarations
 170 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 171 
 172 // utility functions
 173 
 174 static int SR_initialize();
 175 
 176 julong os::available_memory() {
 177   return Linux::available_memory();
 178 }
 179 
 180 julong os::Linux::available_memory() {
 181   // values in struct sysinfo are "unsigned long"
 182   struct sysinfo si;
 183   julong avail_mem;
 184 
 185   if (OSContainer::is_containerized()) {
 186     jlong mem_limit, mem_usage;
 187     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 188       if (PrintContainerInfo) {
 189         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 190                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 191       }
 192     }
 193 
 194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 195       if (PrintContainerInfo) {
 196         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 197       }
 198     }
 199 
 200     if (mem_limit > 0 && mem_usage > 0 ) {
 201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 202       if (PrintContainerInfo) {
 203         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
 204       }
 205       return avail_mem;
 206     }
 207   }
 208 
 209   sysinfo(&si);
 210   avail_mem = (julong)si.freeram * si.mem_unit;
 211   if (Verbose) {
 212     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
 213   }
 214   return avail_mem;
 215 }
 216 
 217 julong os::physical_memory() {
 218   jlong phys_mem = 0;
 219   if (OSContainer::is_containerized()) {
 220     jlong mem_limit;
 221     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 222       if (PrintContainerInfo) {
 223         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
 224       }
 225       return mem_limit;
 226     }
 227 
 228     if (PrintContainerInfo) {
 229       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
 230                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 231     }
 232   }
 233 
 234   phys_mem = Linux::physical_memory();
 235   if (Verbose) {
 236     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
 237   }
 238   return phys_mem;
 239 }
 240 
 241 ////////////////////////////////////////////////////////////////////////////////
 242 // environment support
 243 
 244 bool os::getenv(const char* name, char* buf, int len) {
 245   const char* val = ::getenv(name);
 246   if (val != NULL && strlen(val) < (size_t)len) {
 247     strcpy(buf, val);
 248     return true;
 249   }
 250   if (len > 0) buf[0] = 0;  // return a null string
 251   return false;
 252 }
 253 
 254 
 255 // Return true if user is running as root.
 256 
 257 bool os::have_special_privileges() {
 258   static bool init = false;
 259   static bool privileges = false;
 260   if (!init) {
 261     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 262     init = true;
 263   }
 264   return privileges;
 265 }
 266 
 267 
 268 #ifndef SYS_gettid
 269 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 270   #ifdef __ia64__
 271     #define SYS_gettid 1105
 272   #else
 273     #ifdef __i386__
 274       #define SYS_gettid 224
 275     #else
 276       #ifdef __amd64__
 277         #define SYS_gettid 186
 278       #else
 279         #ifdef __sparc__
 280           #define SYS_gettid 143
 281         #else
 282           #error define gettid for the arch
 283         #endif
 284       #endif
 285     #endif
 286   #endif
 287 #endif
 288 
 289 // Cpu architecture string
 290 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 291 
 292 // pid_t gettid()
 293 //
 294 // Returns the kernel thread id of the currently running thread. Kernel
 295 // thread id is used to access /proc.
 296 //
 297 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 298 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 299 //
 300 pid_t os::Linux::gettid() {
 301   int rslt = syscall(SYS_gettid);
 302   if (rslt == -1) {
 303      // old kernel, no NPTL support
 304      return getpid();
 305   } else {
 306      return (pid_t)rslt;
 307   }
 308 }
 309 
 310 // Most versions of linux have a bug where the number of processors are
 311 // determined by looking at the /proc file system.  In a chroot environment,
 312 // the system call returns 1.  This causes the VM to act as if it is
 313 // a single processor and elide locking (see is_MP() call).
 314 static bool unsafe_chroot_detected = false;
 315 static const char *unstable_chroot_error = "/proc file system not found.\n"
 316                      "Java may be unstable running multithreaded in a chroot "
 317                      "environment on Linux when /proc filesystem is not mounted.";
 318 
 319 void os::Linux::initialize_system_info() {
 320   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 321   if (processor_count() == 1) {
 322     pid_t pid = os::Linux::gettid();
 323     char fname[32];
 324     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 325     FILE *fp = fopen(fname, "r");
 326     if (fp == NULL) {
 327       unsafe_chroot_detected = true;
 328     } else {
 329       fclose(fp);
 330     }
 331   }
 332   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 333   assert(processor_count() > 0, "linux error");
 334 }
 335 
 336 void os::init_system_properties_values() {
 337   // The next steps are taken in the product version:
 338   //
 339   // Obtain the JAVA_HOME value from the location of libjvm.so.
 340   // This library should be located at:
 341   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 342   //
 343   // If "/jre/lib/" appears at the right place in the path, then we
 344   // assume libjvm.so is installed in a JDK and we use this path.
 345   //
 346   // Otherwise exit with message: "Could not create the Java virtual machine."
 347   //
 348   // The following extra steps are taken in the debugging version:
 349   //
 350   // If "/jre/lib/" does NOT appear at the right place in the path
 351   // instead of exit check for $JAVA_HOME environment variable.
 352   //
 353   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 354   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 355   // it looks like libjvm.so is installed there
 356   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 357   //
 358   // Otherwise exit.
 359   //
 360   // Important note: if the location of libjvm.so changes this
 361   // code needs to be changed accordingly.
 362 
 363 // See ld(1):
 364 //      The linker uses the following search paths to locate required
 365 //      shared libraries:
 366 //        1: ...
 367 //        ...
 368 //        7: The default directories, normally /lib and /usr/lib.
 369 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 370 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 371 #else
 372 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 373 #endif
 374 
 375 // Base path of extensions installed on the system.
 376 #define SYS_EXT_DIR     "/usr/java/packages"
 377 #define EXTENSIONS_DIR  "/lib/ext"
 378 #define ENDORSED_DIR    "/lib/endorsed"
 379 
 380   // Buffer that fits several sprintfs.
 381   // Note that the space for the colon and the trailing null are provided
 382   // by the nulls included by the sizeof operator.
 383   const size_t bufsize =
 384     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 385          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 386          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 387   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 388 
 389   // sysclasspath, java_home, dll_dir
 390   {
 391     char *pslash;
 392     os::jvm_path(buf, bufsize);
 393 
 394     // Found the full path to libjvm.so.
 395     // Now cut the path to <java_home>/jre if we can.
 396     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 397     pslash = strrchr(buf, '/');
 398     if (pslash != NULL) {
 399       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 400     }
 401     Arguments::set_dll_dir(buf);
 402 
 403     if (pslash != NULL) {
 404       pslash = strrchr(buf, '/');
 405       if (pslash != NULL) {
 406         *pslash = '\0';          // Get rid of /<arch>.
 407         pslash = strrchr(buf, '/');
 408         if (pslash != NULL) {
 409           *pslash = '\0';        // Get rid of /lib.
 410         }
 411       }
 412     }
 413     Arguments::set_java_home(buf);
 414     set_boot_path('/', ':');
 415   }
 416 
 417   // Where to look for native libraries.
 418   //
 419   // Note: Due to a legacy implementation, most of the library path
 420   // is set in the launcher. This was to accomodate linking restrictions
 421   // on legacy Linux implementations (which are no longer supported).
 422   // Eventually, all the library path setting will be done here.
 423   //
 424   // However, to prevent the proliferation of improperly built native
 425   // libraries, the new path component /usr/java/packages is added here.
 426   // Eventually, all the library path setting will be done here.
 427   {
 428     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 429     // should always exist (until the legacy problem cited above is
 430     // addressed).
 431     const char *v = ::getenv("LD_LIBRARY_PATH");
 432     const char *v_colon = ":";
 433     if (v == NULL) { v = ""; v_colon = ""; }
 434     // That's +1 for the colon and +1 for the trailing '\0'.
 435     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 436                                                      strlen(v) + 1 +
 437                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 438                                                      mtInternal);
 439     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 440     Arguments::set_library_path(ld_library_path);
 441     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 442   }
 443 
 444   // Extensions directories.
 445   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 446   Arguments::set_ext_dirs(buf);
 447 
 448   // Endorsed standards default directory.
 449   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 450   Arguments::set_endorsed_dirs(buf);
 451 
 452   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 453 
 454 #undef DEFAULT_LIBPATH
 455 #undef SYS_EXT_DIR
 456 #undef EXTENSIONS_DIR
 457 #undef ENDORSED_DIR
 458 }
 459 
 460 ////////////////////////////////////////////////////////////////////////////////
 461 // breakpoint support
 462 
 463 void os::breakpoint() {
 464   BREAKPOINT;
 465 }
 466 
 467 extern "C" void breakpoint() {
 468   // use debugger to set breakpoint here
 469 }
 470 
 471 ////////////////////////////////////////////////////////////////////////////////
 472 // signal support
 473 
 474 debug_only(static bool signal_sets_initialized = false);
 475 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 476 
 477 bool os::Linux::is_sig_ignored(int sig) {
 478       struct sigaction oact;
 479       sigaction(sig, (struct sigaction*)NULL, &oact);
 480       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 481                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 482       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 483            return true;
 484       else
 485            return false;
 486 }
 487 
 488 void os::Linux::signal_sets_init() {
 489   // Should also have an assertion stating we are still single-threaded.
 490   assert(!signal_sets_initialized, "Already initialized");
 491   // Fill in signals that are necessarily unblocked for all threads in
 492   // the VM. Currently, we unblock the following signals:
 493   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 494   //                         by -Xrs (=ReduceSignalUsage));
 495   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 496   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 497   // the dispositions or masks wrt these signals.
 498   // Programs embedding the VM that want to use the above signals for their
 499   // own purposes must, at this time, use the "-Xrs" option to prevent
 500   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 501   // (See bug 4345157, and other related bugs).
 502   // In reality, though, unblocking these signals is really a nop, since
 503   // these signals are not blocked by default.
 504   sigemptyset(&unblocked_sigs);
 505   sigemptyset(&allowdebug_blocked_sigs);
 506   sigaddset(&unblocked_sigs, SIGILL);
 507   sigaddset(&unblocked_sigs, SIGSEGV);
 508   sigaddset(&unblocked_sigs, SIGBUS);
 509   sigaddset(&unblocked_sigs, SIGFPE);
 510 #if defined(PPC64)
 511   sigaddset(&unblocked_sigs, SIGTRAP);
 512 #endif
 513   sigaddset(&unblocked_sigs, SR_signum);
 514 
 515   if (!ReduceSignalUsage) {
 516    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 517       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 518       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 519    }
 520    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 521       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 522       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 523    }
 524    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 525       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 526       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 527    }
 528   }
 529   // Fill in signals that are blocked by all but the VM thread.
 530   sigemptyset(&vm_sigs);
 531   if (!ReduceSignalUsage)
 532     sigaddset(&vm_sigs, BREAK_SIGNAL);
 533   debug_only(signal_sets_initialized = true);
 534 
 535 }
 536 
 537 // These are signals that are unblocked while a thread is running Java.
 538 // (For some reason, they get blocked by default.)
 539 sigset_t* os::Linux::unblocked_signals() {
 540   assert(signal_sets_initialized, "Not initialized");
 541   return &unblocked_sigs;
 542 }
 543 
 544 // These are the signals that are blocked while a (non-VM) thread is
 545 // running Java. Only the VM thread handles these signals.
 546 sigset_t* os::Linux::vm_signals() {
 547   assert(signal_sets_initialized, "Not initialized");
 548   return &vm_sigs;
 549 }
 550 
 551 // These are signals that are blocked during cond_wait to allow debugger in
 552 sigset_t* os::Linux::allowdebug_blocked_signals() {
 553   assert(signal_sets_initialized, "Not initialized");
 554   return &allowdebug_blocked_sigs;
 555 }
 556 
 557 void os::Linux::hotspot_sigmask(Thread* thread) {
 558 
 559   //Save caller's signal mask before setting VM signal mask
 560   sigset_t caller_sigmask;
 561   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 562 
 563   OSThread* osthread = thread->osthread();
 564   osthread->set_caller_sigmask(caller_sigmask);
 565 
 566   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 567 
 568   if (!ReduceSignalUsage) {
 569     if (thread->is_VM_thread()) {
 570       // Only the VM thread handles BREAK_SIGNAL ...
 571       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 572     } else {
 573       // ... all other threads block BREAK_SIGNAL
 574       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 575     }
 576   }
 577 }
 578 
 579 //////////////////////////////////////////////////////////////////////////////
 580 // detecting pthread library
 581 
 582 void os::Linux::libpthread_init() {
 583   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 584   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 585   // generic name for earlier versions.
 586   // Define macros here so we can build HotSpot on old systems.
 587 # ifndef _CS_GNU_LIBC_VERSION
 588 # define _CS_GNU_LIBC_VERSION 2
 589 # endif
 590 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 591 # define _CS_GNU_LIBPTHREAD_VERSION 3
 592 # endif
 593 
 594   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 595   if (n > 0) {
 596      char *str = (char *)malloc(n, mtInternal);
 597      confstr(_CS_GNU_LIBC_VERSION, str, n);
 598      os::Linux::set_glibc_version(str);
 599   } else {
 600      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 601      static char _gnu_libc_version[32];
 602      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 603               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 604      os::Linux::set_glibc_version(_gnu_libc_version);
 605   }
 606 
 607   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 608   if (n > 0) {
 609      char *str = (char *)malloc(n, mtInternal);
 610      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 611      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 612      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 613      // is the case. LinuxThreads has a hard limit on max number of threads.
 614      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 615      // On the other hand, NPTL does not have such a limit, sysconf()
 616      // will return -1 and errno is not changed. Check if it is really NPTL.
 617      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 618          strstr(str, "NPTL") &&
 619          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 620        free(str);
 621        os::Linux::set_libpthread_version("linuxthreads");
 622      } else {
 623        os::Linux::set_libpthread_version(str);
 624      }
 625   } else {
 626     // glibc before 2.3.2 only has LinuxThreads.
 627     os::Linux::set_libpthread_version("linuxthreads");
 628   }
 629 
 630   if (strstr(libpthread_version(), "NPTL")) {
 631      os::Linux::set_is_NPTL();
 632   } else {
 633      os::Linux::set_is_LinuxThreads();
 634   }
 635 
 636   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 637   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 638   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 639      os::Linux::set_is_floating_stack();
 640   }
 641 }
 642 
 643 /////////////////////////////////////////////////////////////////////////////
 644 // thread stack
 645 
 646 // Force Linux kernel to expand current thread stack. If "bottom" is close
 647 // to the stack guard, caller should block all signals.
 648 //
 649 // MAP_GROWSDOWN:
 650 //   A special mmap() flag that is used to implement thread stacks. It tells
 651 //   kernel that the memory region should extend downwards when needed. This
 652 //   allows early versions of LinuxThreads to only mmap the first few pages
 653 //   when creating a new thread. Linux kernel will automatically expand thread
 654 //   stack as needed (on page faults).
 655 //
 656 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 657 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 658 //   region, it's hard to tell if the fault is due to a legitimate stack
 659 //   access or because of reading/writing non-exist memory (e.g. buffer
 660 //   overrun). As a rule, if the fault happens below current stack pointer,
 661 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 662 //   application (see Linux kernel fault.c).
 663 //
 664 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 665 //   stack overflow detection.
 666 //
 667 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 668 //   not use this flag. However, the stack of initial thread is not created
 669 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 670 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 671 //   and then attach the thread to JVM.
 672 //
 673 // To get around the problem and allow stack banging on Linux, we need to
 674 // manually expand thread stack after receiving the SIGSEGV.
 675 //
 676 // There are two ways to expand thread stack to address "bottom", we used
 677 // both of them in JVM before 1.5:
 678 //   1. adjust stack pointer first so that it is below "bottom", and then
 679 //      touch "bottom"
 680 //   2. mmap() the page in question
 681 //
 682 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 683 // if current sp is already near the lower end of page 101, and we need to
 684 // call mmap() to map page 100, it is possible that part of the mmap() frame
 685 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 686 // That will destroy the mmap() frame and cause VM to crash.
 687 //
 688 // The following code works by adjusting sp first, then accessing the "bottom"
 689 // page to force a page fault. Linux kernel will then automatically expand the
 690 // stack mapping.
 691 //
 692 // _expand_stack_to() assumes its frame size is less than page size, which
 693 // should always be true if the function is not inlined.
 694 
 695 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 696 #define NOINLINE
 697 #else
 698 #define NOINLINE __attribute__ ((noinline))
 699 #endif
 700 
 701 static void _expand_stack_to(address bottom) NOINLINE;
 702 
 703 static void _expand_stack_to(address bottom) {
 704   address sp;
 705   size_t size;
 706   volatile char *p;
 707 
 708   // Adjust bottom to point to the largest address within the same page, it
 709   // gives us a one-page buffer if alloca() allocates slightly more memory.
 710   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 711   bottom += os::Linux::page_size() - 1;
 712 
 713   // sp might be slightly above current stack pointer; if that's the case, we
 714   // will alloca() a little more space than necessary, which is OK. Don't use
 715   // os::current_stack_pointer(), as its result can be slightly below current
 716   // stack pointer, causing us to not alloca enough to reach "bottom".
 717   sp = (address)&sp;
 718 
 719   if (sp > bottom) {
 720     size = sp - bottom;
 721     p = (volatile char *)alloca(size);
 722     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 723     p[0] = '\0';
 724   }
 725 }
 726 
 727 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 728   assert(t!=NULL, "just checking");
 729   assert(t->osthread()->expanding_stack(), "expand should be set");
 730   assert(t->stack_base() != NULL, "stack_base was not initialized");
 731 
 732   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 733     sigset_t mask_all, old_sigset;
 734     sigfillset(&mask_all);
 735     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 736     _expand_stack_to(addr);
 737     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 738     return true;
 739   }
 740   return false;
 741 }
 742 
 743 //////////////////////////////////////////////////////////////////////////////
 744 // create new thread
 745 
 746 static address highest_vm_reserved_address();
 747 
 748 // check if it's safe to start a new thread
 749 static bool _thread_safety_check(Thread* thread) {
 750   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 751     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 752     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 753     //   allocated (MAP_FIXED) from high address space. Every thread stack
 754     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 755     //   it to other values if they rebuild LinuxThreads).
 756     //
 757     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 758     // the memory region has already been mmap'ed. That means if we have too
 759     // many threads and/or very large heap, eventually thread stack will
 760     // collide with heap.
 761     //
 762     // Here we try to prevent heap/stack collision by comparing current
 763     // stack bottom with the highest address that has been mmap'ed by JVM
 764     // plus a safety margin for memory maps created by native code.
 765     //
 766     // This feature can be disabled by setting ThreadSafetyMargin to 0
 767     //
 768     if (ThreadSafetyMargin > 0) {
 769       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 770 
 771       // not safe if our stack extends below the safety margin
 772       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 773     } else {
 774       return true;
 775     }
 776   } else {
 777     // Floating stack LinuxThreads or NPTL:
 778     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 779     //   there's not enough space left, pthread_create() will fail. If we come
 780     //   here, that means enough space has been reserved for stack.
 781     return true;
 782   }
 783 }
 784 
 785 // Thread start routine for all newly created threads
 786 static void *java_start(Thread *thread) {
 787   // Try to randomize the cache line index of hot stack frames.
 788   // This helps when threads of the same stack traces evict each other's
 789   // cache lines. The threads can be either from the same JVM instance, or
 790   // from different JVM instances. The benefit is especially true for
 791   // processors with hyperthreading technology.
 792   static int counter = 0;
 793   int pid = os::current_process_id();
 794   alloca(((pid ^ counter++) & 7) * 128);
 795 
 796   ThreadLocalStorage::set_thread(thread);
 797 
 798   OSThread* osthread = thread->osthread();
 799   Monitor* sync = osthread->startThread_lock();
 800 
 801   // non floating stack LinuxThreads needs extra check, see above
 802   if (!_thread_safety_check(thread)) {
 803     // notify parent thread
 804     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 805     osthread->set_state(ZOMBIE);
 806     sync->notify_all();
 807     return NULL;
 808   }
 809 
 810   // thread_id is kernel thread id (similar to Solaris LWP id)
 811   osthread->set_thread_id(os::Linux::gettid());
 812 
 813   if (UseNUMA) {
 814     int lgrp_id = os::numa_get_group_id();
 815     if (lgrp_id != -1) {
 816       thread->set_lgrp_id(lgrp_id);
 817     }
 818   }
 819   // initialize signal mask for this thread
 820   os::Linux::hotspot_sigmask(thread);
 821 
 822   // initialize floating point control register
 823   os::Linux::init_thread_fpu_state();
 824 
 825   // handshaking with parent thread
 826   {
 827     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 828 
 829     // notify parent thread
 830     osthread->set_state(INITIALIZED);
 831     sync->notify_all();
 832 
 833     // wait until os::start_thread()
 834     while (osthread->get_state() == INITIALIZED) {
 835       sync->wait(Mutex::_no_safepoint_check_flag);
 836     }
 837   }
 838 
 839   // call one more level start routine
 840   thread->run();
 841 
 842   return 0;
 843 }
 844 
 845 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 846   assert(thread->osthread() == NULL, "caller responsible");
 847 
 848   // Allocate the OSThread object
 849   OSThread* osthread = new OSThread(NULL, NULL);
 850   if (osthread == NULL) {
 851     return false;
 852   }
 853 
 854   // set the correct thread state
 855   osthread->set_thread_type(thr_type);
 856 
 857   // Initial state is ALLOCATED but not INITIALIZED
 858   osthread->set_state(ALLOCATED);
 859 
 860   thread->set_osthread(osthread);
 861 
 862   // init thread attributes
 863   pthread_attr_t attr;
 864   pthread_attr_init(&attr);
 865   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 866 
 867   // stack size
 868   if (os::Linux::supports_variable_stack_size()) {
 869     // calculate stack size if it's not specified by caller
 870     if (stack_size == 0) {
 871       stack_size = os::Linux::default_stack_size(thr_type);
 872 
 873       switch (thr_type) {
 874       case os::java_thread:
 875         // Java threads use ThreadStackSize which default value can be
 876         // changed with the flag -Xss
 877         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 878         stack_size = JavaThread::stack_size_at_create();
 879         break;
 880       case os::compiler_thread:
 881         if (CompilerThreadStackSize > 0) {
 882           stack_size = (size_t)(CompilerThreadStackSize * K);
 883           break;
 884         } // else fall through:
 885           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 886       case os::vm_thread:
 887       case os::pgc_thread:
 888       case os::cgc_thread:
 889       case os::watcher_thread:
 890         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 891         break;
 892       }
 893     }
 894 
 895     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 896     pthread_attr_setstacksize(&attr, stack_size);
 897   } else {
 898     // let pthread_create() pick the default value.
 899   }
 900 
 901   // glibc guard page
 902   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 903 
 904   ThreadState state;
 905 
 906   {
 907     // Serialize thread creation if we are running with fixed stack LinuxThreads
 908     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 909     if (lock) {
 910       os::Linux::createThread_lock()->lock_without_safepoint_check();
 911     }
 912 
 913     pthread_t tid;
 914     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 915 
 916     pthread_attr_destroy(&attr);
 917 
 918     if (ret != 0) {
 919       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 920         perror("pthread_create()");
 921       }
 922       // Need to clean up stuff we've allocated so far
 923       thread->set_osthread(NULL);
 924       delete osthread;
 925       if (lock) os::Linux::createThread_lock()->unlock();
 926       return false;
 927     }
 928 
 929     // Store pthread info into the OSThread
 930     osthread->set_pthread_id(tid);
 931 
 932     // Wait until child thread is either initialized or aborted
 933     {
 934       Monitor* sync_with_child = osthread->startThread_lock();
 935       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 936       while ((state = osthread->get_state()) == ALLOCATED) {
 937         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 938       }
 939     }
 940 
 941     if (lock) {
 942       os::Linux::createThread_lock()->unlock();
 943     }
 944   }
 945 
 946   // Aborted due to thread limit being reached
 947   if (state == ZOMBIE) {
 948       thread->set_osthread(NULL);
 949       delete osthread;
 950       return false;
 951   }
 952 
 953   // The thread is returned suspended (in state INITIALIZED),
 954   // and is started higher up in the call chain
 955   assert(state == INITIALIZED, "race condition");
 956   return true;
 957 }
 958 
 959 /////////////////////////////////////////////////////////////////////////////
 960 // attach existing thread
 961 
 962 // bootstrap the main thread
 963 bool os::create_main_thread(JavaThread* thread) {
 964   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 965   return create_attached_thread(thread);
 966 }
 967 
 968 bool os::create_attached_thread(JavaThread* thread) {
 969 #ifdef ASSERT
 970     thread->verify_not_published();
 971 #endif
 972 
 973   // Allocate the OSThread object
 974   OSThread* osthread = new OSThread(NULL, NULL);
 975 
 976   if (osthread == NULL) {
 977     return false;
 978   }
 979 
 980   // Store pthread info into the OSThread
 981   osthread->set_thread_id(os::Linux::gettid());
 982   osthread->set_pthread_id(::pthread_self());
 983 
 984   // initialize floating point control register
 985   os::Linux::init_thread_fpu_state();
 986 
 987   // Initial thread state is RUNNABLE
 988   osthread->set_state(RUNNABLE);
 989 
 990   thread->set_osthread(osthread);
 991 
 992   if (UseNUMA) {
 993     int lgrp_id = os::numa_get_group_id();
 994     if (lgrp_id != -1) {
 995       thread->set_lgrp_id(lgrp_id);
 996     }
 997   }
 998 
 999   if (os::is_primordial_thread()) {
1000     // If current thread is primordial thread, its stack is mapped on demand,
1001     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1002     // the entire stack region to avoid SEGV in stack banging.
1003     // It is also useful to get around the heap-stack-gap problem on SuSE
1004     // kernel (see 4821821 for details). We first expand stack to the top
1005     // of yellow zone, then enable stack yellow zone (order is significant,
1006     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1007     // is no gap between the last two virtual memory regions.
1008 
1009     JavaThread *jt = (JavaThread *)thread;
1010     address addr = jt->stack_yellow_zone_base();
1011     assert(addr != NULL, "initialization problem?");
1012     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1013 
1014     osthread->set_expanding_stack();
1015     os::Linux::manually_expand_stack(jt, addr);
1016     osthread->clear_expanding_stack();
1017   }
1018 
1019   // initialize signal mask for this thread
1020   // and save the caller's signal mask
1021   os::Linux::hotspot_sigmask(thread);
1022 
1023   return true;
1024 }
1025 
1026 void os::pd_start_thread(Thread* thread) {
1027   OSThread * osthread = thread->osthread();
1028   assert(osthread->get_state() != INITIALIZED, "just checking");
1029   Monitor* sync_with_child = osthread->startThread_lock();
1030   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1031   sync_with_child->notify();
1032 }
1033 
1034 // Free Linux resources related to the OSThread
1035 void os::free_thread(OSThread* osthread) {
1036   assert(osthread != NULL, "osthread not set");
1037 
1038   if (Thread::current()->osthread() == osthread) {
1039     // Restore caller's signal mask
1040     sigset_t sigmask = osthread->caller_sigmask();
1041     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1042    }
1043 
1044   delete osthread;
1045 }
1046 
1047 //////////////////////////////////////////////////////////////////////////////
1048 // thread local storage
1049 
1050 // Restore the thread pointer if the destructor is called. This is in case
1051 // someone from JNI code sets up a destructor with pthread_key_create to run
1052 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1053 // will hang or crash. When detachCurrentThread is called the key will be set
1054 // to null and we will not be called again. If detachCurrentThread is never
1055 // called we could loop forever depending on the pthread implementation.
1056 static void restore_thread_pointer(void* p) {
1057   Thread* thread = (Thread*) p;
1058   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1059 }
1060 
1061 int os::allocate_thread_local_storage() {
1062   pthread_key_t key;
1063   int rslt = pthread_key_create(&key, restore_thread_pointer);
1064   assert(rslt == 0, "cannot allocate thread local storage");
1065   return (int)key;
1066 }
1067 
1068 // Note: This is currently not used by VM, as we don't destroy TLS key
1069 // on VM exit.
1070 void os::free_thread_local_storage(int index) {
1071   int rslt = pthread_key_delete((pthread_key_t)index);
1072   assert(rslt == 0, "invalid index");
1073 }
1074 
1075 void os::thread_local_storage_at_put(int index, void* value) {
1076   int rslt = pthread_setspecific((pthread_key_t)index, value);
1077   assert(rslt == 0, "pthread_setspecific failed");
1078 }
1079 
1080 extern "C" Thread* get_thread() {
1081   return ThreadLocalStorage::thread();
1082 }
1083 
1084 //////////////////////////////////////////////////////////////////////////////
1085 // primordial thread
1086 
1087 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1088 bool os::is_primordial_thread(void) {
1089   char dummy;
1090   // If called before init complete, thread stack bottom will be null.
1091   // Can be called if fatal error occurs before initialization.
1092   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1093   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1094          os::Linux::initial_thread_stack_size()   != 0,
1095          "os::init did not locate primordial thread's stack region");
1096   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1097       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1098                         os::Linux::initial_thread_stack_size()) {
1099        return true;
1100   } else {
1101        return false;
1102   }
1103 }
1104 
1105 // Find the virtual memory area that contains addr
1106 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1107   FILE *fp = fopen("/proc/self/maps", "r");
1108   if (fp) {
1109     address low, high;
1110     while (!feof(fp)) {
1111       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1112         if (low <= addr && addr < high) {
1113            if (vma_low)  *vma_low  = low;
1114            if (vma_high) *vma_high = high;
1115            fclose (fp);
1116            return true;
1117         }
1118       }
1119       for (;;) {
1120         int ch = fgetc(fp);
1121         if (ch == EOF || ch == (int)'\n') break;
1122       }
1123     }
1124     fclose(fp);
1125   }
1126   return false;
1127 }
1128 
1129 // Locate primordial thread stack. This special handling of primordial thread stack
1130 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1131 // bogus value for the primordial process thread. While the launcher has created
1132 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1133 // JNI invocation API from a primordial thread.
1134 void os::Linux::capture_initial_stack(size_t max_size) {
1135 
1136   // max_size is either 0 (which means accept OS default for thread stacks) or
1137   // a user-specified value known to be at least the minimum needed. If we
1138   // are actually on the primordial thread we can make it appear that we have a
1139   // smaller max_size stack by inserting the guard pages at that location. But we
1140   // cannot do anything to emulate a larger stack than what has been provided by
1141   // the OS or threading library. In fact if we try to use a stack greater than
1142   // what is set by rlimit then we will crash the hosting process.
1143 
1144   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1145   // If this is "unlimited" then it will be a huge value.
1146   struct rlimit rlim;
1147   getrlimit(RLIMIT_STACK, &rlim);
1148   size_t stack_size = rlim.rlim_cur;
1149 
1150   // 6308388: a bug in ld.so will relocate its own .data section to the
1151   //   lower end of primordial stack; reduce ulimit -s value a little bit
1152   //   so we won't install guard page on ld.so's data section.
1153   //   But ensure we don't underflow the stack size - allow 1 page spare
1154   if (stack_size >= (size_t)(3 * page_size())) {
1155     stack_size -= 2 * page_size();
1156   }
1157 
1158   // Try to figure out where the stack base (top) is. This is harder.
1159   //
1160   // When an application is started, glibc saves the initial stack pointer in
1161   // a global variable "__libc_stack_end", which is then used by system
1162   // libraries. __libc_stack_end should be pretty close to stack top. The
1163   // variable is available since the very early days. However, because it is
1164   // a private interface, it could disappear in the future.
1165   //
1166   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1167   // to __libc_stack_end, it is very close to stack top, but isn't the real
1168   // stack top. Note that /proc may not exist if VM is running as a chroot
1169   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1170   // /proc/<pid>/stat could change in the future (though unlikely).
1171   //
1172   // We try __libc_stack_end first. If that doesn't work, look for
1173   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1174   // as a hint, which should work well in most cases.
1175 
1176   uintptr_t stack_start;
1177 
1178   // try __libc_stack_end first
1179   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1180   if (p && *p) {
1181     stack_start = *p;
1182   } else {
1183     // see if we can get the start_stack field from /proc/self/stat
1184     FILE *fp;
1185     int pid;
1186     char state;
1187     int ppid;
1188     int pgrp;
1189     int session;
1190     int nr;
1191     int tpgrp;
1192     unsigned long flags;
1193     unsigned long minflt;
1194     unsigned long cminflt;
1195     unsigned long majflt;
1196     unsigned long cmajflt;
1197     unsigned long utime;
1198     unsigned long stime;
1199     long cutime;
1200     long cstime;
1201     long prio;
1202     long nice;
1203     long junk;
1204     long it_real;
1205     uintptr_t start;
1206     uintptr_t vsize;
1207     intptr_t rss;
1208     uintptr_t rsslim;
1209     uintptr_t scodes;
1210     uintptr_t ecode;
1211     int i;
1212 
1213     // Figure what the primordial thread stack base is. Code is inspired
1214     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1215     // followed by command name surrounded by parentheses, state, etc.
1216     char stat[2048];
1217     int statlen;
1218 
1219     fp = fopen("/proc/self/stat", "r");
1220     if (fp) {
1221       statlen = fread(stat, 1, 2047, fp);
1222       stat[statlen] = '\0';
1223       fclose(fp);
1224 
1225       // Skip pid and the command string. Note that we could be dealing with
1226       // weird command names, e.g. user could decide to rename java launcher
1227       // to "java 1.4.2 :)", then the stat file would look like
1228       //                1234 (java 1.4.2 :)) R ... ...
1229       // We don't really need to know the command string, just find the last
1230       // occurrence of ")" and then start parsing from there. See bug 4726580.
1231       char * s = strrchr(stat, ')');
1232 
1233       i = 0;
1234       if (s) {
1235         // Skip blank chars
1236         do s++; while (isspace(*s));
1237 
1238 #define _UFM UINTX_FORMAT
1239 #define _DFM INTX_FORMAT
1240 
1241         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1242         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1243         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1244              &state,          /* 3  %c  */
1245              &ppid,           /* 4  %d  */
1246              &pgrp,           /* 5  %d  */
1247              &session,        /* 6  %d  */
1248              &nr,             /* 7  %d  */
1249              &tpgrp,          /* 8  %d  */
1250              &flags,          /* 9  %lu  */
1251              &minflt,         /* 10 %lu  */
1252              &cminflt,        /* 11 %lu  */
1253              &majflt,         /* 12 %lu  */
1254              &cmajflt,        /* 13 %lu  */
1255              &utime,          /* 14 %lu  */
1256              &stime,          /* 15 %lu  */
1257              &cutime,         /* 16 %ld  */
1258              &cstime,         /* 17 %ld  */
1259              &prio,           /* 18 %ld  */
1260              &nice,           /* 19 %ld  */
1261              &junk,           /* 20 %ld  */
1262              &it_real,        /* 21 %ld  */
1263              &start,          /* 22 UINTX_FORMAT */
1264              &vsize,          /* 23 UINTX_FORMAT */
1265              &rss,            /* 24 INTX_FORMAT  */
1266              &rsslim,         /* 25 UINTX_FORMAT */
1267              &scodes,         /* 26 UINTX_FORMAT */
1268              &ecode,          /* 27 UINTX_FORMAT */
1269              &stack_start);   /* 28 UINTX_FORMAT */
1270       }
1271 
1272 #undef _UFM
1273 #undef _DFM
1274 
1275       if (i != 28 - 2) {
1276          assert(false, "Bad conversion from /proc/self/stat");
1277          // product mode - assume we are the primordial thread, good luck in the
1278          // embedded case.
1279          warning("Can't detect primordial thread stack location - bad conversion");
1280          stack_start = (uintptr_t) &rlim;
1281       }
1282     } else {
1283       // For some reason we can't open /proc/self/stat (for example, running on
1284       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1285       // most cases, so don't abort:
1286       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1287       stack_start = (uintptr_t) &rlim;
1288     }
1289   }
1290 
1291   // Now we have a pointer (stack_start) very close to the stack top, the
1292   // next thing to do is to figure out the exact location of stack top. We
1293   // can find out the virtual memory area that contains stack_start by
1294   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1295   // and its upper limit is the real stack top. (again, this would fail if
1296   // running inside chroot, because /proc may not exist.)
1297 
1298   uintptr_t stack_top;
1299   address low, high;
1300   if (find_vma((address)stack_start, &low, &high)) {
1301     // success, "high" is the true stack top. (ignore "low", because initial
1302     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1303     stack_top = (uintptr_t)high;
1304   } else {
1305     // failed, likely because /proc/self/maps does not exist
1306     warning("Can't detect primordial thread stack location - find_vma failed");
1307     // best effort: stack_start is normally within a few pages below the real
1308     // stack top, use it as stack top, and reduce stack size so we won't put
1309     // guard page outside stack.
1310     stack_top = stack_start;
1311     stack_size -= 16 * page_size();
1312   }
1313 
1314   // stack_top could be partially down the page so align it
1315   stack_top = align_size_up(stack_top, page_size());
1316 
1317   // Allowed stack value is minimum of max_size and what we derived from rlimit
1318   if (max_size > 0) {
1319     _initial_thread_stack_size = MIN2(max_size, stack_size);
1320   } else {
1321     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1322     // clamp it at 8MB as we do on Solaris
1323     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1324   }
1325 
1326   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1327   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1328   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1329 }
1330 
1331 ////////////////////////////////////////////////////////////////////////////////
1332 // time support
1333 
1334 // Time since start-up in seconds to a fine granularity.
1335 // Used by VMSelfDestructTimer and the MemProfiler.
1336 double os::elapsedTime() {
1337 
1338   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1339 }
1340 
1341 jlong os::elapsed_counter() {
1342   return javaTimeNanos() - initial_time_count;
1343 }
1344 
1345 jlong os::elapsed_frequency() {
1346   return NANOSECS_PER_SEC; // nanosecond resolution
1347 }
1348 
1349 bool os::supports_vtime() { return true; }
1350 bool os::enable_vtime()   { return false; }
1351 bool os::vtime_enabled()  { return false; }
1352 
1353 double os::elapsedVTime() {
1354   struct rusage usage;
1355   int retval = getrusage(RUSAGE_THREAD, &usage);
1356   if (retval == 0) {
1357     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1358   } else {
1359     // better than nothing, but not much
1360     return elapsedTime();
1361   }
1362 }
1363 
1364 jlong os::javaTimeMillis() {
1365   timeval time;
1366   int status = gettimeofday(&time, NULL);
1367   assert(status != -1, "linux error");
1368   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1369 }
1370 
1371 #ifndef CLOCK_MONOTONIC
1372 #define CLOCK_MONOTONIC (1)
1373 #endif
1374 
1375 void os::Linux::clock_init() {
1376   // we do dlopen's in this particular order due to bug in linux
1377   // dynamical loader (see 6348968) leading to crash on exit
1378   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1379   if (handle == NULL) {
1380     handle = dlopen("librt.so", RTLD_LAZY);
1381   }
1382 
1383   if (handle) {
1384     int (*clock_getres_func)(clockid_t, struct timespec*) =
1385            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1386     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1387            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1388     if (clock_getres_func && clock_gettime_func) {
1389       // See if monotonic clock is supported by the kernel. Note that some
1390       // early implementations simply return kernel jiffies (updated every
1391       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1392       // for nano time (though the monotonic property is still nice to have).
1393       // It's fixed in newer kernels, however clock_getres() still returns
1394       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1395       // resolution for now. Hopefully as people move to new kernels, this
1396       // won't be a problem.
1397       struct timespec res;
1398       struct timespec tp;
1399       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1400           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1401         // yes, monotonic clock is supported
1402         _clock_gettime = clock_gettime_func;
1403         return;
1404       } else {
1405         // close librt if there is no monotonic clock
1406         dlclose(handle);
1407       }
1408     }
1409   }
1410   warning("No monotonic clock was available - timed services may " \
1411           "be adversely affected if the time-of-day clock changes");
1412 }
1413 
1414 #ifndef SYS_clock_getres
1415 
1416 #if defined(IA32) || defined(AMD64)
1417 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1418 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1419 #else
1420 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1421 #define sys_clock_getres(x,y)  -1
1422 #endif
1423 
1424 #else
1425 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1426 #endif
1427 
1428 void os::Linux::fast_thread_clock_init() {
1429   if (!UseLinuxPosixThreadCPUClocks) {
1430     return;
1431   }
1432   clockid_t clockid;
1433   struct timespec tp;
1434   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1435       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1436 
1437   // Switch to using fast clocks for thread cpu time if
1438   // the sys_clock_getres() returns 0 error code.
1439   // Note, that some kernels may support the current thread
1440   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1441   // returned by the pthread_getcpuclockid().
1442   // If the fast Posix clocks are supported then the sys_clock_getres()
1443   // must return at least tp.tv_sec == 0 which means a resolution
1444   // better than 1 sec. This is extra check for reliability.
1445 
1446   if(pthread_getcpuclockid_func &&
1447      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1448      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1449 
1450     _supports_fast_thread_cpu_time = true;
1451     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1452   }
1453 }
1454 
1455 jlong os::javaTimeNanos() {
1456   if (Linux::supports_monotonic_clock()) {
1457     struct timespec tp;
1458     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1459     assert(status == 0, "gettime error");
1460     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1461     return result;
1462   } else {
1463     timeval time;
1464     int status = gettimeofday(&time, NULL);
1465     assert(status != -1, "linux error");
1466     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1467     return 1000 * usecs;
1468   }
1469 }
1470 
1471 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1472   if (Linux::supports_monotonic_clock()) {
1473     info_ptr->max_value = ALL_64_BITS;
1474 
1475     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1476     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1477     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1478   } else {
1479     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1480     info_ptr->max_value = ALL_64_BITS;
1481 
1482     // gettimeofday is a real time clock so it skips
1483     info_ptr->may_skip_backward = true;
1484     info_ptr->may_skip_forward = true;
1485   }
1486 
1487   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1488 }
1489 
1490 // Return the real, user, and system times in seconds from an
1491 // arbitrary fixed point in the past.
1492 bool os::getTimesSecs(double* process_real_time,
1493                       double* process_user_time,
1494                       double* process_system_time) {
1495   struct tms ticks;
1496   clock_t real_ticks = times(&ticks);
1497 
1498   if (real_ticks == (clock_t) (-1)) {
1499     return false;
1500   } else {
1501     double ticks_per_second = (double) clock_tics_per_sec;
1502     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1503     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1504     *process_real_time = ((double) real_ticks) / ticks_per_second;
1505 
1506     return true;
1507   }
1508 }
1509 
1510 
1511 char * os::local_time_string(char *buf, size_t buflen) {
1512   struct tm t;
1513   time_t long_time;
1514   time(&long_time);
1515   localtime_r(&long_time, &t);
1516   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1517                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1518                t.tm_hour, t.tm_min, t.tm_sec);
1519   return buf;
1520 }
1521 
1522 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1523   return localtime_r(clock, res);
1524 }
1525 
1526 ////////////////////////////////////////////////////////////////////////////////
1527 // runtime exit support
1528 
1529 // Note: os::shutdown() might be called very early during initialization, or
1530 // called from signal handler. Before adding something to os::shutdown(), make
1531 // sure it is async-safe and can handle partially initialized VM.
1532 void os::shutdown() {
1533 
1534   // allow PerfMemory to attempt cleanup of any persistent resources
1535   perfMemory_exit();
1536 
1537   // needs to remove object in file system
1538   AttachListener::abort();
1539 
1540   // flush buffered output, finish log files
1541   ostream_abort();
1542 
1543   // Check for abort hook
1544   abort_hook_t abort_hook = Arguments::abort_hook();
1545   if (abort_hook != NULL) {
1546     abort_hook();
1547   }
1548 
1549 }
1550 
1551 // Note: os::abort() might be called very early during initialization, or
1552 // called from signal handler. Before adding something to os::abort(), make
1553 // sure it is async-safe and can handle partially initialized VM.
1554 void os::abort(bool dump_core) {
1555   os::shutdown();
1556   if (dump_core) {
1557 #ifndef PRODUCT
1558     fdStream out(defaultStream::output_fd());
1559     out.print_raw("Current thread is ");
1560     char buf[16];
1561     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1562     out.print_raw_cr(buf);
1563     out.print_raw_cr("Dumping core ...");
1564 #endif
1565     ::abort(); // dump core
1566   }
1567 
1568   ::exit(1);
1569 }
1570 
1571 // Die immediately, no exit hook, no abort hook, no cleanup.
1572 void os::die() {
1573   // _exit() on LinuxThreads only kills current thread
1574   ::abort();
1575 }
1576 
1577 
1578 // This method is a copy of JDK's sysGetLastErrorString
1579 // from src/solaris/hpi/src/system_md.c
1580 
1581 size_t os::lasterror(char *buf, size_t len) {
1582 
1583   if (errno == 0)  return 0;
1584 
1585   const char *s = ::strerror(errno);
1586   size_t n = ::strlen(s);
1587   if (n >= len) {
1588     n = len - 1;
1589   }
1590   ::strncpy(buf, s, n);
1591   buf[n] = '\0';
1592   return n;
1593 }
1594 
1595 intx os::current_thread_id() { return (intx)pthread_self(); }
1596 int os::current_process_id() {
1597 
1598   // Under the old linux thread library, linux gives each thread
1599   // its own process id. Because of this each thread will return
1600   // a different pid if this method were to return the result
1601   // of getpid(2). Linux provides no api that returns the pid
1602   // of the launcher thread for the vm. This implementation
1603   // returns a unique pid, the pid of the launcher thread
1604   // that starts the vm 'process'.
1605 
1606   // Under the NPTL, getpid() returns the same pid as the
1607   // launcher thread rather than a unique pid per thread.
1608   // Use gettid() if you want the old pre NPTL behaviour.
1609 
1610   // if you are looking for the result of a call to getpid() that
1611   // returns a unique pid for the calling thread, then look at the
1612   // OSThread::thread_id() method in osThread_linux.hpp file
1613 
1614   return (int)(_initial_pid ? _initial_pid : getpid());
1615 }
1616 
1617 // DLL functions
1618 
1619 const char* os::dll_file_extension() { return ".so"; }
1620 
1621 // This must be hard coded because it's the system's temporary
1622 // directory not the java application's temp directory, ala java.io.tmpdir.
1623 const char* os::get_temp_directory() { return "/tmp"; }
1624 
1625 static bool file_exists(const char* filename) {
1626   struct stat statbuf;
1627   if (filename == NULL || strlen(filename) == 0) {
1628     return false;
1629   }
1630   return os::stat(filename, &statbuf) == 0;
1631 }
1632 
1633 bool os::dll_build_name(char* buffer, size_t buflen,
1634                         const char* pname, const char* fname) {
1635   bool retval = false;
1636   // Copied from libhpi
1637   const size_t pnamelen = pname ? strlen(pname) : 0;
1638 
1639   // Return error on buffer overflow.
1640   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1641     return retval;
1642   }
1643 
1644   if (pnamelen == 0) {
1645     snprintf(buffer, buflen, "lib%s.so", fname);
1646     retval = true;
1647   } else if (strchr(pname, *os::path_separator()) != NULL) {
1648     int n;
1649     char** pelements = split_path(pname, &n);
1650     if (pelements == NULL) {
1651       return false;
1652     }
1653     for (int i = 0 ; i < n ; i++) {
1654       // Really shouldn't be NULL, but check can't hurt
1655       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1656         continue; // skip the empty path values
1657       }
1658       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1659       if (file_exists(buffer)) {
1660         retval = true;
1661         break;
1662       }
1663     }
1664     // release the storage
1665     for (int i = 0 ; i < n ; i++) {
1666       if (pelements[i] != NULL) {
1667         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1668       }
1669     }
1670     if (pelements != NULL) {
1671       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1672     }
1673   } else {
1674     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1675     retval = true;
1676   }
1677   return retval;
1678 }
1679 
1680 // check if addr is inside libjvm.so
1681 bool os::address_is_in_vm(address addr) {
1682   static address libjvm_base_addr;
1683   Dl_info dlinfo;
1684 
1685   if (libjvm_base_addr == NULL) {
1686     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1687       libjvm_base_addr = (address)dlinfo.dli_fbase;
1688     }
1689     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1690   }
1691 
1692   if (dladdr((void *)addr, &dlinfo) != 0) {
1693     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1694   }
1695 
1696   return false;
1697 }
1698 
1699 bool os::dll_address_to_function_name(address addr, char *buf,
1700                                       int buflen, int *offset) {
1701   // buf is not optional, but offset is optional
1702   assert(buf != NULL, "sanity check");
1703 
1704   Dl_info dlinfo;
1705 
1706   if (dladdr((void*)addr, &dlinfo) != 0) {
1707     // see if we have a matching symbol
1708     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1709       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1710         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1711       }
1712       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1713       return true;
1714     }
1715     // no matching symbol so try for just file info
1716     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1717       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1718                           buf, buflen, offset, dlinfo.dli_fname)) {
1719         return true;
1720       }
1721     }
1722   }
1723 
1724   buf[0] = '\0';
1725   if (offset != NULL) *offset = -1;
1726   return false;
1727 }
1728 
1729 struct _address_to_library_name {
1730   address addr;          // input : memory address
1731   size_t  buflen;        //         size of fname
1732   char*   fname;         // output: library name
1733   address base;          //         library base addr
1734 };
1735 
1736 static int address_to_library_name_callback(struct dl_phdr_info *info,
1737                                             size_t size, void *data) {
1738   int i;
1739   bool found = false;
1740   address libbase = NULL;
1741   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1742 
1743   // iterate through all loadable segments
1744   for (i = 0; i < info->dlpi_phnum; i++) {
1745     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1746     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1747       // base address of a library is the lowest address of its loaded
1748       // segments.
1749       if (libbase == NULL || libbase > segbase) {
1750         libbase = segbase;
1751       }
1752       // see if 'addr' is within current segment
1753       if (segbase <= d->addr &&
1754           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1755         found = true;
1756       }
1757     }
1758   }
1759 
1760   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1761   // so dll_address_to_library_name() can fall through to use dladdr() which
1762   // can figure out executable name from argv[0].
1763   if (found && info->dlpi_name && info->dlpi_name[0]) {
1764     d->base = libbase;
1765     if (d->fname) {
1766       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1767     }
1768     return 1;
1769   }
1770   return 0;
1771 }
1772 
1773 bool os::dll_address_to_library_name(address addr, char* buf,
1774                                      int buflen, int* offset) {
1775   // buf is not optional, but offset is optional
1776   assert(buf != NULL, "sanity check");
1777 
1778   Dl_info dlinfo;
1779   struct _address_to_library_name data;
1780 
1781   // There is a bug in old glibc dladdr() implementation that it could resolve
1782   // to wrong library name if the .so file has a base address != NULL. Here
1783   // we iterate through the program headers of all loaded libraries to find
1784   // out which library 'addr' really belongs to. This workaround can be
1785   // removed once the minimum requirement for glibc is moved to 2.3.x.
1786   data.addr = addr;
1787   data.fname = buf;
1788   data.buflen = buflen;
1789   data.base = NULL;
1790   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1791 
1792   if (rslt) {
1793      // buf already contains library name
1794      if (offset) *offset = addr - data.base;
1795      return true;
1796   }
1797   if (dladdr((void*)addr, &dlinfo) != 0) {
1798     if (dlinfo.dli_fname != NULL) {
1799       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1800     }
1801     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1802       *offset = addr - (address)dlinfo.dli_fbase;
1803     }
1804     return true;
1805   }
1806 
1807   buf[0] = '\0';
1808   if (offset) *offset = -1;
1809   return false;
1810 }
1811 
1812   // Loads .dll/.so and
1813   // in case of error it checks if .dll/.so was built for the
1814   // same architecture as Hotspot is running on
1815 
1816 
1817 // Remember the stack's state. The Linux dynamic linker will change
1818 // the stack to 'executable' at most once, so we must safepoint only once.
1819 bool os::Linux::_stack_is_executable = false;
1820 
1821 // VM operation that loads a library.  This is necessary if stack protection
1822 // of the Java stacks can be lost during loading the library.  If we
1823 // do not stop the Java threads, they can stack overflow before the stacks
1824 // are protected again.
1825 class VM_LinuxDllLoad: public VM_Operation {
1826  private:
1827   const char *_filename;
1828   char *_ebuf;
1829   int _ebuflen;
1830   void *_lib;
1831  public:
1832   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1833     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1834   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1835   void doit() {
1836     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1837     os::Linux::_stack_is_executable = true;
1838   }
1839   void* loaded_library() { return _lib; }
1840 };
1841 
1842 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1843 {
1844   void * result = NULL;
1845   bool load_attempted = false;
1846 
1847   // Check whether the library to load might change execution rights
1848   // of the stack. If they are changed, the protection of the stack
1849   // guard pages will be lost. We need a safepoint to fix this.
1850   //
1851   // See Linux man page execstack(8) for more info.
1852   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1853     ElfFile ef(filename);
1854     if (!ef.specifies_noexecstack()) {
1855       if (!is_init_completed()) {
1856         os::Linux::_stack_is_executable = true;
1857         // This is OK - No Java threads have been created yet, and hence no
1858         // stack guard pages to fix.
1859         //
1860         // This should happen only when you are building JDK7 using a very
1861         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1862         //
1863         // Dynamic loader will make all stacks executable after
1864         // this function returns, and will not do that again.
1865         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1866       } else {
1867         warning("You have loaded library %s which might have disabled stack guard. "
1868                 "The VM will try to fix the stack guard now.\n"
1869                 "It's highly recommended that you fix the library with "
1870                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1871                 filename);
1872 
1873         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1874         JavaThread *jt = JavaThread::current();
1875         if (jt->thread_state() != _thread_in_native) {
1876           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1877           // that requires ExecStack. Cannot enter safe point. Let's give up.
1878           warning("Unable to fix stack guard. Giving up.");
1879         } else {
1880           if (!LoadExecStackDllInVMThread) {
1881             // This is for the case where the DLL has an static
1882             // constructor function that executes JNI code. We cannot
1883             // load such DLLs in the VMThread.
1884             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1885           }
1886 
1887           ThreadInVMfromNative tiv(jt);
1888           debug_only(VMNativeEntryWrapper vew;)
1889 
1890           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1891           VMThread::execute(&op);
1892           if (LoadExecStackDllInVMThread) {
1893             result = op.loaded_library();
1894           }
1895           load_attempted = true;
1896         }
1897       }
1898     }
1899   }
1900 
1901   if (!load_attempted) {
1902     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1903   }
1904 
1905   if (result != NULL) {
1906     // Successful loading
1907     return result;
1908   }
1909 
1910   Elf32_Ehdr elf_head;
1911   int diag_msg_max_length=ebuflen-strlen(ebuf);
1912   char* diag_msg_buf=ebuf+strlen(ebuf);
1913 
1914   if (diag_msg_max_length==0) {
1915     // No more space in ebuf for additional diagnostics message
1916     return NULL;
1917   }
1918 
1919 
1920   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1921 
1922   if (file_descriptor < 0) {
1923     // Can't open library, report dlerror() message
1924     return NULL;
1925   }
1926 
1927   bool failed_to_read_elf_head=
1928     (sizeof(elf_head)!=
1929         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1930 
1931   ::close(file_descriptor);
1932   if (failed_to_read_elf_head) {
1933     // file i/o error - report dlerror() msg
1934     return NULL;
1935   }
1936 
1937   typedef struct {
1938     Elf32_Half  code;         // Actual value as defined in elf.h
1939     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1940     char        elf_class;    // 32 or 64 bit
1941     char        endianess;    // MSB or LSB
1942     char*       name;         // String representation
1943   } arch_t;
1944 
1945   #ifndef EM_486
1946   #define EM_486          6               /* Intel 80486 */
1947   #endif
1948 
1949   static const arch_t arch_array[]={
1950     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1951     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1952     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1953     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1954     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1955     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1956     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1957     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1958 #if defined(VM_LITTLE_ENDIAN)
1959     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1960 #else
1961     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1962 #endif
1963     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1964     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1965     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1966     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1967     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1968     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1969     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1970   };
1971 
1972   #if  (defined IA32)
1973     static  Elf32_Half running_arch_code=EM_386;
1974   #elif   (defined AMD64)
1975     static  Elf32_Half running_arch_code=EM_X86_64;
1976   #elif  (defined IA64)
1977     static  Elf32_Half running_arch_code=EM_IA_64;
1978   #elif  (defined __sparc) && (defined _LP64)
1979     static  Elf32_Half running_arch_code=EM_SPARCV9;
1980   #elif  (defined __sparc) && (!defined _LP64)
1981     static  Elf32_Half running_arch_code=EM_SPARC;
1982   #elif  (defined __powerpc64__)
1983     static  Elf32_Half running_arch_code=EM_PPC64;
1984   #elif  (defined __powerpc__)
1985     static  Elf32_Half running_arch_code=EM_PPC;
1986   #elif  (defined ARM)
1987     static  Elf32_Half running_arch_code=EM_ARM;
1988   #elif  (defined S390)
1989     static  Elf32_Half running_arch_code=EM_S390;
1990   #elif  (defined ALPHA)
1991     static  Elf32_Half running_arch_code=EM_ALPHA;
1992   #elif  (defined MIPSEL)
1993     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1994   #elif  (defined PARISC)
1995     static  Elf32_Half running_arch_code=EM_PARISC;
1996   #elif  (defined MIPS)
1997     static  Elf32_Half running_arch_code=EM_MIPS;
1998   #elif  (defined M68K)
1999     static  Elf32_Half running_arch_code=EM_68K;
2000   #else
2001     #error Method os::dll_load requires that one of following is defined:\
2002          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2003   #endif
2004 
2005   // Identify compatability class for VM's architecture and library's architecture
2006   // Obtain string descriptions for architectures
2007 
2008   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2009   int running_arch_index=-1;
2010 
2011   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2012     if (running_arch_code == arch_array[i].code) {
2013       running_arch_index    = i;
2014     }
2015     if (lib_arch.code == arch_array[i].code) {
2016       lib_arch.compat_class = arch_array[i].compat_class;
2017       lib_arch.name         = arch_array[i].name;
2018     }
2019   }
2020 
2021   assert(running_arch_index != -1,
2022     "Didn't find running architecture code (running_arch_code) in arch_array");
2023   if (running_arch_index == -1) {
2024     // Even though running architecture detection failed
2025     // we may still continue with reporting dlerror() message
2026     return NULL;
2027   }
2028 
2029   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2030     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2031     return NULL;
2032   }
2033 
2034 #ifndef S390
2035   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2036     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2037     return NULL;
2038   }
2039 #endif // !S390
2040 
2041   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2042     if ( lib_arch.name!=NULL ) {
2043       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2044         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2045         lib_arch.name, arch_array[running_arch_index].name);
2046     } else {
2047       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2048       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2049         lib_arch.code,
2050         arch_array[running_arch_index].name);
2051     }
2052   }
2053 
2054   return NULL;
2055 }
2056 
2057 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2058   void * result = ::dlopen(filename, RTLD_LAZY);
2059   if (result == NULL) {
2060     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2061     ebuf[ebuflen-1] = '\0';
2062   }
2063   return result;
2064 }
2065 
2066 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2067   void * result = NULL;
2068   if (LoadExecStackDllInVMThread) {
2069     result = dlopen_helper(filename, ebuf, ebuflen);
2070   }
2071 
2072   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2073   // library that requires an executable stack, or which does not have this
2074   // stack attribute set, dlopen changes the stack attribute to executable. The
2075   // read protection of the guard pages gets lost.
2076   //
2077   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2078   // may have been queued at the same time.
2079 
2080   if (!_stack_is_executable) {
2081     JavaThread *jt = Threads::first();
2082 
2083     while (jt) {
2084       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2085           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2086         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2087                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2088           warning("Attempt to reguard stack yellow zone failed.");
2089         }
2090       }
2091       jt = jt->next();
2092     }
2093   }
2094 
2095   return result;
2096 }
2097 
2098 /*
2099  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2100  * chances are you might want to run the generated bits against glibc-2.0
2101  * libdl.so, so always use locking for any version of glibc.
2102  */
2103 void* os::dll_lookup(void* handle, const char* name) {
2104   pthread_mutex_lock(&dl_mutex);
2105   void* res = dlsym(handle, name);
2106   pthread_mutex_unlock(&dl_mutex);
2107   return res;
2108 }
2109 
2110 void* os::get_default_process_handle() {
2111   return (void*)::dlopen(NULL, RTLD_LAZY);
2112 }
2113 
2114 static bool _print_ascii_file(const char* filename, outputStream* st) {
2115   int fd = ::open(filename, O_RDONLY);
2116   if (fd == -1) {
2117      return false;
2118   }
2119 
2120   char buf[32];
2121   int bytes;
2122   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2123     st->print_raw(buf, bytes);
2124   }
2125 
2126   ::close(fd);
2127 
2128   return true;
2129 }
2130 
2131 void os::print_dll_info(outputStream *st) {
2132    st->print_cr("Dynamic libraries:");
2133 
2134    char fname[32];
2135    pid_t pid = os::Linux::gettid();
2136 
2137    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2138 
2139   if (!_print_ascii_file(fname, st)) {
2140     st->print("Can not get library information for pid = %d\n", pid);
2141   }
2142 }
2143 
2144 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2145   FILE *procmapsFile = NULL;
2146 
2147   // Open the procfs maps file for the current process
2148   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2149     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2150     char line[PATH_MAX + 100];
2151 
2152     // Read line by line from 'file'
2153     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2154       u8 base, top, offset, inode;
2155       char permissions[5];
2156       char device[6];
2157       char name[PATH_MAX + 1];
2158 
2159       // Parse fields from line
2160       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
2161              &base, &top, permissions, &offset, device, &inode, name);
2162 
2163       // Filter by device id '00:00' so that we only get file system mapped files.
2164       if (strcmp(device, "00:00") != 0) {
2165 
2166         // Call callback with the fields of interest
2167         if(callback(name, (address)base, (address)top, param)) {
2168           // Oops abort, callback aborted
2169           fclose(procmapsFile);
2170           return 1;
2171         }
2172       }
2173     }
2174     fclose(procmapsFile);
2175   }
2176   return 0;
2177 }
2178 
2179 void os::print_os_info_brief(outputStream* st) {
2180   os::Linux::print_distro_info(st);
2181 
2182   os::Posix::print_uname_info(st);
2183 
2184   os::Linux::print_libversion_info(st);
2185 
2186 }
2187 
2188 void os::print_os_info(outputStream* st) {
2189   st->print("OS:");
2190 
2191   os::Linux::print_distro_info(st);
2192 
2193   os::Posix::print_uname_info(st);
2194 
2195   // Print warning if unsafe chroot environment detected
2196   if (unsafe_chroot_detected) {
2197     st->print("WARNING!! ");
2198     st->print_cr("%s", unstable_chroot_error);
2199   }
2200 
2201   os::Linux::print_libversion_info(st);
2202 
2203   os::Posix::print_rlimit_info(st);
2204 
2205   os::Posix::print_load_average(st);
2206 
2207   os::Linux::print_full_memory_info(st);
2208 
2209   os::Linux::print_container_info(st);
2210 }
2211 
2212 // Try to identify popular distros.
2213 // Most Linux distributions have a /etc/XXX-release file, which contains
2214 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2215 // file that also contains the OS version string. Some have more than one
2216 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2217 // /etc/redhat-release.), so the order is important.
2218 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2219 // their own specific XXX-release file as well as a redhat-release file.
2220 // Because of this the XXX-release file needs to be searched for before the
2221 // redhat-release file.
2222 // Since Red Hat has a lsb-release file that is not very descriptive the
2223 // search for redhat-release needs to be before lsb-release.
2224 // Since the lsb-release file is the new standard it needs to be searched
2225 // before the older style release files.
2226 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2227 // next to last resort.  The os-release file is a new standard that contains
2228 // distribution information and the system-release file seems to be an old
2229 // standard that has been replaced by the lsb-release and os-release files.
2230 // Searching for the debian_version file is the last resort.  It contains
2231 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2232 // "Debian " is printed before the contents of the debian_version file.
2233 void os::Linux::print_distro_info(outputStream* st) {
2234    if (!_print_ascii_file("/etc/oracle-release", st) &&
2235        !_print_ascii_file("/etc/mandriva-release", st) &&
2236        !_print_ascii_file("/etc/mandrake-release", st) &&
2237        !_print_ascii_file("/etc/sun-release", st) &&
2238        !_print_ascii_file("/etc/redhat-release", st) &&
2239        !_print_ascii_file("/etc/lsb-release", st) &&
2240        !_print_ascii_file("/etc/SuSE-release", st) &&
2241        !_print_ascii_file("/etc/turbolinux-release", st) &&
2242        !_print_ascii_file("/etc/gentoo-release", st) &&
2243        !_print_ascii_file("/etc/ltib-release", st) &&
2244        !_print_ascii_file("/etc/angstrom-version", st) &&
2245        !_print_ascii_file("/etc/system-release", st) &&
2246        !_print_ascii_file("/etc/os-release", st)) {
2247 
2248        if (file_exists("/etc/debian_version")) {
2249          st->print("Debian ");
2250          _print_ascii_file("/etc/debian_version", st);
2251        } else {
2252          st->print("Linux");
2253        }
2254    }
2255    st->cr();
2256 }
2257 
2258 void os::Linux::print_libversion_info(outputStream* st) {
2259   // libc, pthread
2260   st->print("libc:");
2261   st->print("%s ", os::Linux::glibc_version());
2262   st->print("%s ", os::Linux::libpthread_version());
2263   if (os::Linux::is_LinuxThreads()) {
2264      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2265   }
2266   st->cr();
2267 }
2268 
2269 void os::Linux::print_full_memory_info(outputStream* st) {
2270    st->print("\n/proc/meminfo:\n");
2271    _print_ascii_file("/proc/meminfo", st);
2272    st->cr();
2273 }
2274 
2275 void os::Linux::print_container_info(outputStream* st) {
2276 if (!OSContainer::is_containerized()) {
2277     return;
2278   }
2279 
2280   st->print("container (cgroup) information:\n");
2281 
2282   const char *p_ct = OSContainer::container_type();
2283   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2284 
2285   char *p = OSContainer::cpu_cpuset_cpus();
2286   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2287   free(p);
2288 
2289   p = OSContainer::cpu_cpuset_memory_nodes();
2290   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2291   free(p);
2292 
2293   int i = OSContainer::active_processor_count();
2294   if (i > 0) {
2295     st->print("active_processor_count: %d\n", i);
2296   } else {
2297     st->print("active_processor_count: failed\n");
2298   }
2299 
2300   i = OSContainer::cpu_quota();
2301   st->print("cpu_quota: %d\n", i);
2302 
2303   i = OSContainer::cpu_period();
2304   st->print("cpu_period: %d\n", i);
2305 
2306   i = OSContainer::cpu_shares();
2307   st->print("cpu_shares: %d\n", i);
2308 
2309   jlong j = OSContainer::memory_limit_in_bytes();
2310   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2311 
2312   j = OSContainer::memory_and_swap_limit_in_bytes();
2313   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2314 
2315   j = OSContainer::memory_soft_limit_in_bytes();
2316   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2317 
2318   j = OSContainer::OSContainer::memory_usage_in_bytes();
2319   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2320 
2321   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2322   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2323   st->cr();
2324 }
2325 
2326 void os::print_memory_info(outputStream* st) {
2327 
2328   st->print("Memory:");
2329   st->print(" %dk page", os::vm_page_size()>>10);
2330 
2331   // values in struct sysinfo are "unsigned long"
2332   struct sysinfo si;
2333   sysinfo(&si);
2334 
2335   st->print(", physical " UINT64_FORMAT "k",
2336             os::physical_memory() >> 10);
2337   st->print("(" UINT64_FORMAT "k free)",
2338             os::available_memory() >> 10);
2339   st->print(", swap " UINT64_FORMAT "k",
2340             ((jlong)si.totalswap * si.mem_unit) >> 10);
2341   st->print("(" UINT64_FORMAT "k free)",
2342             ((jlong)si.freeswap * si.mem_unit) >> 10);
2343   st->cr();
2344 }
2345 
2346 void os::pd_print_cpu_info(outputStream* st) {
2347   st->print("\n/proc/cpuinfo:\n");
2348   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2349     st->print("  <Not Available>");
2350   }
2351   st->cr();
2352 }
2353 
2354 void os::print_siginfo(outputStream* st, void* siginfo) {
2355   const siginfo_t* si = (const siginfo_t*)siginfo;
2356 
2357   os::Posix::print_siginfo_brief(st, si);
2358 #if INCLUDE_CDS
2359   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2360       UseSharedSpaces) {
2361     FileMapInfo* mapinfo = FileMapInfo::current_info();
2362     if (mapinfo->is_in_shared_space(si->si_addr)) {
2363       st->print("\n\nError accessing class data sharing archive."   \
2364                 " Mapped file inaccessible during execution, "      \
2365                 " possible disk/network problem.");
2366     }
2367   }
2368 #endif
2369   st->cr();
2370 }
2371 
2372 
2373 static void print_signal_handler(outputStream* st, int sig,
2374                                  char* buf, size_t buflen);
2375 
2376 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2377   st->print_cr("Signal Handlers:");
2378   print_signal_handler(st, SIGSEGV, buf, buflen);
2379   print_signal_handler(st, SIGBUS , buf, buflen);
2380   print_signal_handler(st, SIGFPE , buf, buflen);
2381   print_signal_handler(st, SIGPIPE, buf, buflen);
2382   print_signal_handler(st, SIGXFSZ, buf, buflen);
2383   print_signal_handler(st, SIGILL , buf, buflen);
2384   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2385   print_signal_handler(st, SR_signum, buf, buflen);
2386   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2387   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2388   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2389   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2390 #if defined(PPC64)
2391   print_signal_handler(st, SIGTRAP, buf, buflen);
2392 #endif
2393 }
2394 
2395 static char saved_jvm_path[MAXPATHLEN] = {0};
2396 
2397 // Find the full path to the current module, libjvm.so
2398 void os::jvm_path(char *buf, jint buflen) {
2399   // Error checking.
2400   if (buflen < MAXPATHLEN) {
2401     assert(false, "must use a large-enough buffer");
2402     buf[0] = '\0';
2403     return;
2404   }
2405   // Lazy resolve the path to current module.
2406   if (saved_jvm_path[0] != 0) {
2407     strcpy(buf, saved_jvm_path);
2408     return;
2409   }
2410 
2411   char dli_fname[MAXPATHLEN];
2412   bool ret = dll_address_to_library_name(
2413                 CAST_FROM_FN_PTR(address, os::jvm_path),
2414                 dli_fname, sizeof(dli_fname), NULL);
2415   assert(ret, "cannot locate libjvm");
2416   char *rp = NULL;
2417   if (ret && dli_fname[0] != '\0') {
2418     rp = realpath(dli_fname, buf);
2419   }
2420   if (rp == NULL)
2421     return;
2422 
2423   if (Arguments::created_by_gamma_launcher()) {
2424     // Support for the gamma launcher.  Typical value for buf is
2425     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2426     // the right place in the string, then assume we are installed in a JDK and
2427     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2428     // up the path so it looks like libjvm.so is installed there (append a
2429     // fake suffix hotspot/libjvm.so).
2430     const char *p = buf + strlen(buf) - 1;
2431     for (int count = 0; p > buf && count < 5; ++count) {
2432       for (--p; p > buf && *p != '/'; --p)
2433         /* empty */ ;
2434     }
2435 
2436     if (strncmp(p, "/jre/lib/", 9) != 0) {
2437       // Look for JAVA_HOME in the environment.
2438       char* java_home_var = ::getenv("JAVA_HOME");
2439       if (java_home_var != NULL && java_home_var[0] != 0) {
2440         char* jrelib_p;
2441         int len;
2442 
2443         // Check the current module name "libjvm.so".
2444         p = strrchr(buf, '/');
2445         assert(strstr(p, "/libjvm") == p, "invalid library name");
2446 
2447         rp = realpath(java_home_var, buf);
2448         if (rp == NULL)
2449           return;
2450 
2451         // determine if this is a legacy image or modules image
2452         // modules image doesn't have "jre" subdirectory
2453         len = strlen(buf);
2454         assert(len < buflen, "Ran out of buffer room");
2455         jrelib_p = buf + len;
2456         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2457         if (0 != access(buf, F_OK)) {
2458           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2459         }
2460 
2461         if (0 == access(buf, F_OK)) {
2462           // Use current module name "libjvm.so"
2463           len = strlen(buf);
2464           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2465         } else {
2466           // Go back to path of .so
2467           rp = realpath(dli_fname, buf);
2468           if (rp == NULL)
2469             return;
2470         }
2471       }
2472     }
2473   }
2474 
2475   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2476 }
2477 
2478 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2479   // no prefix required, not even "_"
2480 }
2481 
2482 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2483   // no suffix required
2484 }
2485 
2486 ////////////////////////////////////////////////////////////////////////////////
2487 // sun.misc.Signal support
2488 
2489 static volatile jint sigint_count = 0;
2490 
2491 static void
2492 UserHandler(int sig, void *siginfo, void *context) {
2493   // 4511530 - sem_post is serialized and handled by the manager thread. When
2494   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2495   // don't want to flood the manager thread with sem_post requests.
2496   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2497       return;
2498 
2499   // Ctrl-C is pressed during error reporting, likely because the error
2500   // handler fails to abort. Let VM die immediately.
2501   if (sig == SIGINT && is_error_reported()) {
2502      os::die();
2503   }
2504 
2505   os::signal_notify(sig);
2506 }
2507 
2508 void* os::user_handler() {
2509   return CAST_FROM_FN_PTR(void*, UserHandler);
2510 }
2511 
2512 class Semaphore : public StackObj {
2513   public:
2514     Semaphore();
2515     ~Semaphore();
2516     void signal();
2517     void wait();
2518     bool trywait();
2519     bool timedwait(unsigned int sec, int nsec);
2520   private:
2521     sem_t _semaphore;
2522 };
2523 
2524 Semaphore::Semaphore() {
2525   sem_init(&_semaphore, 0, 0);
2526 }
2527 
2528 Semaphore::~Semaphore() {
2529   sem_destroy(&_semaphore);
2530 }
2531 
2532 void Semaphore::signal() {
2533   sem_post(&_semaphore);
2534 }
2535 
2536 void Semaphore::wait() {
2537   sem_wait(&_semaphore);
2538 }
2539 
2540 bool Semaphore::trywait() {
2541   return sem_trywait(&_semaphore) == 0;
2542 }
2543 
2544 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2545 
2546   struct timespec ts;
2547   // Semaphore's are always associated with CLOCK_REALTIME
2548   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2549   // see unpackTime for discussion on overflow checking
2550   if (sec >= MAX_SECS) {
2551     ts.tv_sec += MAX_SECS;
2552     ts.tv_nsec = 0;
2553   } else {
2554     ts.tv_sec += sec;
2555     ts.tv_nsec += nsec;
2556     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2557       ts.tv_nsec -= NANOSECS_PER_SEC;
2558       ++ts.tv_sec; // note: this must be <= max_secs
2559     }
2560   }
2561 
2562   while (1) {
2563     int result = sem_timedwait(&_semaphore, &ts);
2564     if (result == 0) {
2565       return true;
2566     } else if (errno == EINTR) {
2567       continue;
2568     } else if (errno == ETIMEDOUT) {
2569       return false;
2570     } else {
2571       return false;
2572     }
2573   }
2574 }
2575 
2576 extern "C" {
2577   typedef void (*sa_handler_t)(int);
2578   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2579 }
2580 
2581 void* os::signal(int signal_number, void* handler) {
2582   struct sigaction sigAct, oldSigAct;
2583 
2584   sigfillset(&(sigAct.sa_mask));
2585   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2586   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2587 
2588   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2589     // -1 means registration failed
2590     return (void *)-1;
2591   }
2592 
2593   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2594 }
2595 
2596 void os::signal_raise(int signal_number) {
2597   ::raise(signal_number);
2598 }
2599 
2600 /*
2601  * The following code is moved from os.cpp for making this
2602  * code platform specific, which it is by its very nature.
2603  */
2604 
2605 // Will be modified when max signal is changed to be dynamic
2606 int os::sigexitnum_pd() {
2607   return NSIG;
2608 }
2609 
2610 // a counter for each possible signal value
2611 static volatile jint pending_signals[NSIG+1] = { 0 };
2612 
2613 // Linux(POSIX) specific hand shaking semaphore.
2614 static sem_t sig_sem;
2615 static Semaphore sr_semaphore;
2616 
2617 void os::signal_init_pd() {
2618   // Initialize signal structures
2619   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2620 
2621   // Initialize signal semaphore
2622   ::sem_init(&sig_sem, 0, 0);
2623 }
2624 
2625 void os::signal_notify(int sig) {
2626   Atomic::inc(&pending_signals[sig]);
2627   ::sem_post(&sig_sem);
2628 }
2629 
2630 static int check_pending_signals(bool wait) {
2631   Atomic::store(0, &sigint_count);
2632   for (;;) {
2633     for (int i = 0; i < NSIG + 1; i++) {
2634       jint n = pending_signals[i];
2635       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2636         return i;
2637       }
2638     }
2639     if (!wait) {
2640       return -1;
2641     }
2642     JavaThread *thread = JavaThread::current();
2643     ThreadBlockInVM tbivm(thread);
2644 
2645     bool threadIsSuspended;
2646     do {
2647       thread->set_suspend_equivalent();
2648       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2649       ::sem_wait(&sig_sem);
2650 
2651       // were we externally suspended while we were waiting?
2652       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2653       if (threadIsSuspended) {
2654         //
2655         // The semaphore has been incremented, but while we were waiting
2656         // another thread suspended us. We don't want to continue running
2657         // while suspended because that would surprise the thread that
2658         // suspended us.
2659         //
2660         ::sem_post(&sig_sem);
2661 
2662         thread->java_suspend_self();
2663       }
2664     } while (threadIsSuspended);
2665   }
2666 }
2667 
2668 int os::signal_lookup() {
2669   return check_pending_signals(false);
2670 }
2671 
2672 int os::signal_wait() {
2673   return check_pending_signals(true);
2674 }
2675 
2676 ////////////////////////////////////////////////////////////////////////////////
2677 // Virtual Memory
2678 
2679 int os::vm_page_size() {
2680   // Seems redundant as all get out
2681   assert(os::Linux::page_size() != -1, "must call os::init");
2682   return os::Linux::page_size();
2683 }
2684 
2685 // Solaris allocates memory by pages.
2686 int os::vm_allocation_granularity() {
2687   assert(os::Linux::page_size() != -1, "must call os::init");
2688   return os::Linux::page_size();
2689 }
2690 
2691 // Rationale behind this function:
2692 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2693 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2694 //  samples for JITted code. Here we create private executable mapping over the code cache
2695 //  and then we can use standard (well, almost, as mapping can change) way to provide
2696 //  info for the reporting script by storing timestamp and location of symbol
2697 void linux_wrap_code(char* base, size_t size) {
2698   static volatile jint cnt = 0;
2699 
2700   if (!UseOprofile) {
2701     return;
2702   }
2703 
2704   char buf[PATH_MAX+1];
2705   int num = Atomic::add(1, &cnt);
2706 
2707   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2708            os::get_temp_directory(), os::current_process_id(), num);
2709   unlink(buf);
2710 
2711   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2712 
2713   if (fd != -1) {
2714     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2715     if (rv != (off_t)-1) {
2716       if (::write(fd, "", 1) == 1) {
2717         mmap(base, size,
2718              PROT_READ|PROT_WRITE|PROT_EXEC,
2719              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2720       }
2721     }
2722     ::close(fd);
2723     unlink(buf);
2724   }
2725 }
2726 
2727 static bool recoverable_mmap_error(int err) {
2728   // See if the error is one we can let the caller handle. This
2729   // list of errno values comes from JBS-6843484. I can't find a
2730   // Linux man page that documents this specific set of errno
2731   // values so while this list currently matches Solaris, it may
2732   // change as we gain experience with this failure mode.
2733   switch (err) {
2734   case EBADF:
2735   case EINVAL:
2736   case ENOTSUP:
2737     // let the caller deal with these errors
2738     return true;
2739 
2740   default:
2741     // Any remaining errors on this OS can cause our reserved mapping
2742     // to be lost. That can cause confusion where different data
2743     // structures think they have the same memory mapped. The worst
2744     // scenario is if both the VM and a library think they have the
2745     // same memory mapped.
2746     return false;
2747   }
2748 }
2749 
2750 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2751                                     int err) {
2752   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2753           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2754           strerror(err), err);
2755 }
2756 
2757 static void warn_fail_commit_memory(char* addr, size_t size,
2758                                     size_t alignment_hint, bool exec,
2759                                     int err) {
2760   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2761           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2762           alignment_hint, exec, strerror(err), err);
2763 }
2764 
2765 // NOTE: Linux kernel does not really reserve the pages for us.
2766 //       All it does is to check if there are enough free pages
2767 //       left at the time of mmap(). This could be a potential
2768 //       problem.
2769 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2770   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2771   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2772                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2773   if (res != (uintptr_t) MAP_FAILED) {
2774     if (UseNUMAInterleaving) {
2775       numa_make_global(addr, size);
2776     }
2777     return 0;
2778   }
2779 
2780   int err = errno;  // save errno from mmap() call above
2781 
2782   if (!recoverable_mmap_error(err)) {
2783     warn_fail_commit_memory(addr, size, exec, err);
2784     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2785   }
2786 
2787   return err;
2788 }
2789 
2790 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2791   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2792 }
2793 
2794 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2795                                   const char* mesg) {
2796   assert(mesg != NULL, "mesg must be specified");
2797   int err = os::Linux::commit_memory_impl(addr, size, exec);
2798   if (err != 0) {
2799     // the caller wants all commit errors to exit with the specified mesg:
2800     warn_fail_commit_memory(addr, size, exec, err);
2801     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2802   }
2803 }
2804 
2805 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2806 #ifndef MAP_HUGETLB
2807 #define MAP_HUGETLB 0x40000
2808 #endif
2809 
2810 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2811 #ifndef MADV_HUGEPAGE
2812 #define MADV_HUGEPAGE 14
2813 #endif
2814 
2815 int os::Linux::commit_memory_impl(char* addr, size_t size,
2816                                   size_t alignment_hint, bool exec) {
2817   int err = os::Linux::commit_memory_impl(addr, size, exec);
2818   if (err == 0) {
2819     realign_memory(addr, size, alignment_hint);
2820   }
2821   return err;
2822 }
2823 
2824 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2825                           bool exec) {
2826   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2827 }
2828 
2829 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2830                                   size_t alignment_hint, bool exec,
2831                                   const char* mesg) {
2832   assert(mesg != NULL, "mesg must be specified");
2833   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2834   if (err != 0) {
2835     // the caller wants all commit errors to exit with the specified mesg:
2836     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2837     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2838   }
2839 }
2840 
2841 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2842   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2843     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2844     // be supported or the memory may already be backed by huge pages.
2845     ::madvise(addr, bytes, MADV_HUGEPAGE);
2846   }
2847 }
2848 
2849 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2850   // This method works by doing an mmap over an existing mmaping and effectively discarding
2851   // the existing pages. However it won't work for SHM-based large pages that cannot be
2852   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2853   // small pages on top of the SHM segment. This method always works for small pages, so we
2854   // allow that in any case.
2855   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2856     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2857   }
2858 }
2859 
2860 void os::numa_make_global(char *addr, size_t bytes) {
2861   Linux::numa_interleave_memory(addr, bytes);
2862 }
2863 
2864 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2865 // bind policy to MPOL_PREFERRED for the current thread.
2866 #define USE_MPOL_PREFERRED 0
2867 
2868 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2869   // To make NUMA and large pages more robust when both enabled, we need to ease
2870   // the requirements on where the memory should be allocated. MPOL_BIND is the
2871   // default policy and it will force memory to be allocated on the specified
2872   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2873   // the specified node, but will not force it. Using this policy will prevent
2874   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2875   // free large pages.
2876   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2877   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2878 }
2879 
2880 bool os::numa_topology_changed()   { return false; }
2881 
2882 size_t os::numa_get_groups_num() {
2883   // Return just the number of nodes in which it's possible to allocate memory
2884   // (in numa terminology, configured nodes).
2885   return Linux::numa_num_configured_nodes();
2886 }
2887 
2888 int os::numa_get_group_id() {
2889   int cpu_id = Linux::sched_getcpu();
2890   if (cpu_id != -1) {
2891     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2892     if (lgrp_id != -1) {
2893       return lgrp_id;
2894     }
2895   }
2896   return 0;
2897 }
2898 
2899 int os::Linux::get_existing_num_nodes() {
2900   size_t node;
2901   size_t highest_node_number = Linux::numa_max_node();
2902   int num_nodes = 0;
2903 
2904   // Get the total number of nodes in the system including nodes without memory.
2905   for (node = 0; node <= highest_node_number; node++) {
2906     if (isnode_in_existing_nodes(node)) {
2907       num_nodes++;
2908     }
2909   }
2910   return num_nodes;
2911 }
2912 
2913 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2914   size_t highest_node_number = Linux::numa_max_node();
2915   size_t i = 0;
2916 
2917   // Map all node ids in which is possible to allocate memory. Also nodes are
2918   // not always consecutively available, i.e. available from 0 to the highest
2919   // node number.
2920   for (size_t node = 0; node <= highest_node_number; node++) {
2921     if (Linux::isnode_in_configured_nodes(node)) {
2922       ids[i++] = node;
2923     }
2924   }
2925   return i;
2926 }
2927 
2928 bool os::get_page_info(char *start, page_info* info) {
2929   return false;
2930 }
2931 
2932 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2933   return end;
2934 }
2935 
2936 
2937 int os::Linux::sched_getcpu_syscall(void) {
2938   unsigned int cpu = 0;
2939   int retval = -1;
2940 
2941 #if defined(IA32)
2942 # ifndef SYS_getcpu
2943 # define SYS_getcpu 318
2944 # endif
2945   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2946 #elif defined(AMD64)
2947 // Unfortunately we have to bring all these macros here from vsyscall.h
2948 // to be able to compile on old linuxes.
2949 # define __NR_vgetcpu 2
2950 # define VSYSCALL_START (-10UL << 20)
2951 # define VSYSCALL_SIZE 1024
2952 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2953   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2954   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2955   retval = vgetcpu(&cpu, NULL, NULL);
2956 #endif
2957 
2958   return (retval == -1) ? retval : cpu;
2959 }
2960 
2961 // Something to do with the numa-aware allocator needs these symbols
2962 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2963 extern "C" JNIEXPORT void numa_error(char *where) { }
2964 extern "C" JNIEXPORT int fork1() { return fork(); }
2965 
2966 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2967 // load symbol from base version instead.
2968 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2969   void *f = dlvsym(handle, name, "libnuma_1.1");
2970   if (f == NULL) {
2971     f = dlsym(handle, name);
2972   }
2973   return f;
2974 }
2975 
2976 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2977 // Return NULL if the symbol is not defined in this particular version.
2978 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2979   return dlvsym(handle, name, "libnuma_1.2");
2980 }
2981 
2982 bool os::Linux::libnuma_init() {
2983   // sched_getcpu() should be in libc.
2984   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2985                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2986 
2987   // If it's not, try a direct syscall.
2988   if (sched_getcpu() == -1)
2989     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2990 
2991   if (sched_getcpu() != -1) { // Does it work?
2992     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2993     if (handle != NULL) {
2994       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2995                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2996       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2997                                        libnuma_dlsym(handle, "numa_max_node")));
2998       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2999                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3000       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3001                                         libnuma_dlsym(handle, "numa_available")));
3002       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3003                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3004       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3005                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3006       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3007                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3008       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3009                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3010       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3011                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3012       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3013                                        libnuma_dlsym(handle, "numa_distance")));
3014 
3015       if (numa_available() != -1) {
3016         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3017         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3018         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3019         // Create an index -> node mapping, since nodes are not always consecutive
3020         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3021         rebuild_nindex_to_node_map();
3022         // Create a cpu -> node mapping
3023         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3024         rebuild_cpu_to_node_map();
3025         return true;
3026       }
3027     }
3028   }
3029   return false;
3030 }
3031 
3032 void os::Linux::rebuild_nindex_to_node_map() {
3033   int highest_node_number = Linux::numa_max_node();
3034 
3035   nindex_to_node()->clear();
3036   for (int node = 0; node <= highest_node_number; node++) {
3037     if (Linux::isnode_in_existing_nodes(node)) {
3038       nindex_to_node()->append(node);
3039     }
3040   }
3041 }
3042 
3043 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3044 // The table is later used in get_node_by_cpu().
3045 void os::Linux::rebuild_cpu_to_node_map() {
3046   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3047                               // in libnuma (possible values are starting from 16,
3048                               // and continuing up with every other power of 2, but less
3049                               // than the maximum number of CPUs supported by kernel), and
3050                               // is a subject to change (in libnuma version 2 the requirements
3051                               // are more reasonable) we'll just hardcode the number they use
3052                               // in the library.
3053   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3054 
3055   size_t cpu_num = processor_count();
3056   size_t cpu_map_size = NCPUS / BitsPerCLong;
3057   size_t cpu_map_valid_size =
3058     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3059 
3060   cpu_to_node()->clear();
3061   cpu_to_node()->at_grow(cpu_num - 1);
3062 
3063   size_t node_num = get_existing_num_nodes();
3064 
3065   int distance = 0;
3066   int closest_distance = INT_MAX;
3067   int closest_node = 0;
3068   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3069   for (size_t i = 0; i < node_num; i++) {
3070     // Check if node is configured (not a memory-less node). If it is not, find
3071     // the closest configured node.
3072     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3073       closest_distance = INT_MAX;
3074       // Check distance from all remaining nodes in the system. Ignore distance
3075       // from itself and from another non-configured node.
3076       for (size_t m = 0; m < node_num; m++) {
3077         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3078           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3079           // If a closest node is found, update. There is always at least one
3080           // configured node in the system so there is always at least one node
3081           // close.
3082           if (distance != 0 && distance < closest_distance) {
3083             closest_distance = distance;
3084             closest_node = nindex_to_node()->at(m);
3085           }
3086         }
3087       }
3088      } else {
3089        // Current node is already a configured node.
3090        closest_node = nindex_to_node()->at(i);
3091      }
3092 
3093     // Get cpus from the original node and map them to the closest node. If node
3094     // is a configured node (not a memory-less node), then original node and
3095     // closest node are the same.
3096     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3097       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3098         if (cpu_map[j] != 0) {
3099           for (size_t k = 0; k < BitsPerCLong; k++) {
3100             if (cpu_map[j] & (1UL << k)) {
3101               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3102             }
3103           }
3104         }
3105       }
3106     }
3107   }
3108   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
3109 }
3110 
3111 int os::Linux::get_node_by_cpu(int cpu_id) {
3112   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3113     return cpu_to_node()->at(cpu_id);
3114   }
3115   return -1;
3116 }
3117 
3118 GrowableArray<int>* os::Linux::_cpu_to_node;
3119 GrowableArray<int>* os::Linux::_nindex_to_node;
3120 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3121 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3122 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3123 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3124 os::Linux::numa_available_func_t os::Linux::_numa_available;
3125 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3126 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3127 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3128 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3129 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3130 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3131 unsigned long* os::Linux::_numa_all_nodes;
3132 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3133 struct bitmask* os::Linux::_numa_nodes_ptr;
3134 
3135 bool os::pd_uncommit_memory(char* addr, size_t size) {
3136   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3137                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3138   return res  != (uintptr_t) MAP_FAILED;
3139 }
3140 
3141 static
3142 address get_stack_commited_bottom(address bottom, size_t size) {
3143   address nbot = bottom;
3144   address ntop = bottom + size;
3145 
3146   size_t page_sz = os::vm_page_size();
3147   unsigned pages = size / page_sz;
3148 
3149   unsigned char vec[1];
3150   unsigned imin = 1, imax = pages + 1, imid;
3151   int mincore_return_value = 0;
3152 
3153   assert(imin <= imax, "Unexpected page size");
3154 
3155   while (imin < imax) {
3156     imid = (imax + imin) / 2;
3157     nbot = ntop - (imid * page_sz);
3158 
3159     // Use a trick with mincore to check whether the page is mapped or not.
3160     // mincore sets vec to 1 if page resides in memory and to 0 if page
3161     // is swapped output but if page we are asking for is unmapped
3162     // it returns -1,ENOMEM
3163     mincore_return_value = mincore(nbot, page_sz, vec);
3164 
3165     if (mincore_return_value == -1) {
3166       // Page is not mapped go up
3167       // to find first mapped page
3168       if (errno != EAGAIN) {
3169         assert(errno == ENOMEM, "Unexpected mincore errno");
3170         imax = imid;
3171       }
3172     } else {
3173       // Page is mapped go down
3174       // to find first not mapped page
3175       imin = imid + 1;
3176     }
3177   }
3178 
3179   nbot = nbot + page_sz;
3180 
3181   // Adjust stack bottom one page up if last checked page is not mapped
3182   if (mincore_return_value == -1) {
3183     nbot = nbot + page_sz;
3184   }
3185 
3186   return nbot;
3187 }
3188 
3189 
3190 // Linux uses a growable mapping for the stack, and if the mapping for
3191 // the stack guard pages is not removed when we detach a thread the
3192 // stack cannot grow beyond the pages where the stack guard was
3193 // mapped.  If at some point later in the process the stack expands to
3194 // that point, the Linux kernel cannot expand the stack any further
3195 // because the guard pages are in the way, and a segfault occurs.
3196 //
3197 // However, it's essential not to split the stack region by unmapping
3198 // a region (leaving a hole) that's already part of the stack mapping,
3199 // so if the stack mapping has already grown beyond the guard pages at
3200 // the time we create them, we have to truncate the stack mapping.
3201 // So, we need to know the extent of the stack mapping when
3202 // create_stack_guard_pages() is called.
3203 
3204 // We only need this for stacks that are growable: at the time of
3205 // writing thread stacks don't use growable mappings (i.e. those
3206 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3207 // only applies to the main thread.
3208 
3209 // If the (growable) stack mapping already extends beyond the point
3210 // where we're going to put our guard pages, truncate the mapping at
3211 // that point by munmap()ping it.  This ensures that when we later
3212 // munmap() the guard pages we don't leave a hole in the stack
3213 // mapping. This only affects the main/primordial thread
3214 
3215 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3216 
3217   if (os::is_primordial_thread()) {
3218     // As we manually grow stack up to bottom inside create_attached_thread(),
3219     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3220     // we don't need to do anything special.
3221     // Check it first, before calling heavy function.
3222     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3223     unsigned char vec[1];
3224 
3225     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3226       // Fallback to slow path on all errors, including EAGAIN
3227       stack_extent = (uintptr_t) get_stack_commited_bottom(
3228                                     os::Linux::initial_thread_stack_bottom(),
3229                                     (size_t)addr - stack_extent);
3230     }
3231 
3232     if (stack_extent < (uintptr_t)addr) {
3233       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3234     }
3235   }
3236 
3237   return os::commit_memory(addr, size, !ExecMem);
3238 }
3239 
3240 // If this is a growable mapping, remove the guard pages entirely by
3241 // munmap()ping them.  If not, just call uncommit_memory(). This only
3242 // affects the main/primordial thread, but guard against future OS changes.
3243 // It's safe to always unmap guard pages for primordial thread because we
3244 // always place it right after end of the mapped region.
3245 
3246 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3247   uintptr_t stack_extent, stack_base;
3248 
3249   if (os::is_primordial_thread()) {
3250     return ::munmap(addr, size) == 0;
3251   }
3252 
3253   return os::uncommit_memory(addr, size);
3254 }
3255 
3256 static address _highest_vm_reserved_address = NULL;
3257 
3258 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3259 // at 'requested_addr'. If there are existing memory mappings at the same
3260 // location, however, they will be overwritten. If 'fixed' is false,
3261 // 'requested_addr' is only treated as a hint, the return value may or
3262 // may not start from the requested address. Unlike Linux mmap(), this
3263 // function returns NULL to indicate failure.
3264 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3265   char * addr;
3266   int flags;
3267 
3268   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3269   if (fixed) {
3270     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3271     flags |= MAP_FIXED;
3272   }
3273 
3274   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3275   // touch an uncommitted page. Otherwise, the read/write might
3276   // succeed if we have enough swap space to back the physical page.
3277   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3278                        flags, -1, 0);
3279 
3280   if (addr != MAP_FAILED) {
3281     // anon_mmap() should only get called during VM initialization,
3282     // don't need lock (actually we can skip locking even it can be called
3283     // from multiple threads, because _highest_vm_reserved_address is just a
3284     // hint about the upper limit of non-stack memory regions.)
3285     if ((address)addr + bytes > _highest_vm_reserved_address) {
3286       _highest_vm_reserved_address = (address)addr + bytes;
3287     }
3288   }
3289 
3290   return addr == MAP_FAILED ? NULL : addr;
3291 }
3292 
3293 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3294 //   (req_addr != NULL) or with a given alignment.
3295 //  - bytes shall be a multiple of alignment.
3296 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3297 //  - alignment sets the alignment at which memory shall be allocated.
3298 //     It must be a multiple of allocation granularity.
3299 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3300 //  req_addr or NULL.
3301 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3302 
3303   size_t extra_size = bytes;
3304   if (req_addr == NULL && alignment > 0) {
3305     extra_size += alignment;
3306   }
3307 
3308   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3309     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3310     -1, 0);
3311   if (start == MAP_FAILED) {
3312     start = NULL;
3313   } else {
3314     if (req_addr != NULL) {
3315       if (start != req_addr) {
3316         ::munmap(start, extra_size);
3317         start = NULL;
3318       }
3319     } else {
3320       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3321       char* const end_aligned = start_aligned + bytes;
3322       char* const end = start + extra_size;
3323       if (start_aligned > start) {
3324         ::munmap(start, start_aligned - start);
3325       }
3326       if (end_aligned < end) {
3327         ::munmap(end_aligned, end - end_aligned);
3328       }
3329       start = start_aligned;
3330     }
3331   }
3332   return start;
3333 }
3334 
3335 // Don't update _highest_vm_reserved_address, because there might be memory
3336 // regions above addr + size. If so, releasing a memory region only creates
3337 // a hole in the address space, it doesn't help prevent heap-stack collision.
3338 //
3339 static int anon_munmap(char * addr, size_t size) {
3340   return ::munmap(addr, size) == 0;
3341 }
3342 
3343 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3344                          size_t alignment_hint) {
3345   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3346 }
3347 
3348 bool os::pd_release_memory(char* addr, size_t size) {
3349   return anon_munmap(addr, size);
3350 }
3351 
3352 static address highest_vm_reserved_address() {
3353   return _highest_vm_reserved_address;
3354 }
3355 
3356 static bool linux_mprotect(char* addr, size_t size, int prot) {
3357   // Linux wants the mprotect address argument to be page aligned.
3358   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3359 
3360   // According to SUSv3, mprotect() should only be used with mappings
3361   // established by mmap(), and mmap() always maps whole pages. Unaligned
3362   // 'addr' likely indicates problem in the VM (e.g. trying to change
3363   // protection of malloc'ed or statically allocated memory). Check the
3364   // caller if you hit this assert.
3365   assert(addr == bottom, "sanity check");
3366 
3367   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3368   return ::mprotect(bottom, size, prot) == 0;
3369 }
3370 
3371 // Set protections specified
3372 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3373                         bool is_committed) {
3374   unsigned int p = 0;
3375   switch (prot) {
3376   case MEM_PROT_NONE: p = PROT_NONE; break;
3377   case MEM_PROT_READ: p = PROT_READ; break;
3378   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3379   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3380   default:
3381     ShouldNotReachHere();
3382   }
3383   // is_committed is unused.
3384   return linux_mprotect(addr, bytes, p);
3385 }
3386 
3387 bool os::guard_memory(char* addr, size_t size) {
3388   return linux_mprotect(addr, size, PROT_NONE);
3389 }
3390 
3391 bool os::unguard_memory(char* addr, size_t size) {
3392   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3393 }
3394 
3395 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3396   bool result = false;
3397   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3398                  MAP_ANONYMOUS|MAP_PRIVATE,
3399                  -1, 0);
3400   if (p != MAP_FAILED) {
3401     void *aligned_p = align_ptr_up(p, page_size);
3402 
3403     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3404 
3405     munmap(p, page_size * 2);
3406   }
3407 
3408   if (warn && !result) {
3409     warning("TransparentHugePages is not supported by the operating system.");
3410   }
3411 
3412   return result;
3413 }
3414 
3415 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3416   bool result = false;
3417   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3418                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3419                  -1, 0);
3420 
3421   if (p != MAP_FAILED) {
3422     // We don't know if this really is a huge page or not.
3423     FILE *fp = fopen("/proc/self/maps", "r");
3424     if (fp) {
3425       while (!feof(fp)) {
3426         char chars[257];
3427         long x = 0;
3428         if (fgets(chars, sizeof(chars), fp)) {
3429           if (sscanf(chars, "%lx-%*x", &x) == 1
3430               && x == (long)p) {
3431             if (strstr (chars, "hugepage")) {
3432               result = true;
3433               break;
3434             }
3435           }
3436         }
3437       }
3438       fclose(fp);
3439     }
3440     munmap(p, page_size);
3441   }
3442 
3443   if (warn && !result) {
3444     warning("HugeTLBFS is not supported by the operating system.");
3445   }
3446 
3447   return result;
3448 }
3449 
3450 /*
3451 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3452 *
3453 * From the coredump_filter documentation:
3454 *
3455 * - (bit 0) anonymous private memory
3456 * - (bit 1) anonymous shared memory
3457 * - (bit 2) file-backed private memory
3458 * - (bit 3) file-backed shared memory
3459 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3460 *           effective only if the bit 2 is cleared)
3461 * - (bit 5) hugetlb private memory
3462 * - (bit 6) hugetlb shared memory
3463 */
3464 static void set_coredump_filter(void) {
3465   FILE *f;
3466   long cdm;
3467 
3468   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3469     return;
3470   }
3471 
3472   if (fscanf(f, "%lx", &cdm) != 1) {
3473     fclose(f);
3474     return;
3475   }
3476 
3477   rewind(f);
3478 
3479   if ((cdm & LARGEPAGES_BIT) == 0) {
3480     cdm |= LARGEPAGES_BIT;
3481     fprintf(f, "%#lx", cdm);
3482   }
3483 
3484   fclose(f);
3485 }
3486 
3487 // Large page support
3488 
3489 static size_t _large_page_size = 0;
3490 
3491 size_t os::Linux::find_large_page_size() {
3492   size_t large_page_size = 0;
3493 
3494   // large_page_size on Linux is used to round up heap size. x86 uses either
3495   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3496   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3497   // page as large as 256M.
3498   //
3499   // Here we try to figure out page size by parsing /proc/meminfo and looking
3500   // for a line with the following format:
3501   //    Hugepagesize:     2048 kB
3502   //
3503   // If we can't determine the value (e.g. /proc is not mounted, or the text
3504   // format has been changed), we'll use the largest page size supported by
3505   // the processor.
3506 
3507 #ifndef ZERO
3508   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3509                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3510 #endif // ZERO
3511 
3512   FILE *fp = fopen("/proc/meminfo", "r");
3513   if (fp) {
3514     while (!feof(fp)) {
3515       int x = 0;
3516       char buf[16];
3517       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3518         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3519           large_page_size = x * K;
3520           break;
3521         }
3522       } else {
3523         // skip to next line
3524         for (;;) {
3525           int ch = fgetc(fp);
3526           if (ch == EOF || ch == (int)'\n') break;
3527         }
3528       }
3529     }
3530     fclose(fp);
3531   }
3532 
3533   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3534     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3535         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3536         proper_unit_for_byte_size(large_page_size));
3537   }
3538 
3539   return large_page_size;
3540 }
3541 
3542 size_t os::Linux::setup_large_page_size() {
3543   _large_page_size = Linux::find_large_page_size();
3544   const size_t default_page_size = (size_t)Linux::page_size();
3545   if (_large_page_size > default_page_size) {
3546     _page_sizes[0] = _large_page_size;
3547     _page_sizes[1] = default_page_size;
3548     _page_sizes[2] = 0;
3549   }
3550 
3551   return _large_page_size;
3552 }
3553 
3554 bool os::Linux::setup_large_page_type(size_t page_size) {
3555   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3556       FLAG_IS_DEFAULT(UseSHM) &&
3557       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3558 
3559     // The type of large pages has not been specified by the user.
3560 
3561     // Try UseHugeTLBFS and then UseSHM.
3562     UseHugeTLBFS = UseSHM = true;
3563 
3564     // Don't try UseTransparentHugePages since there are known
3565     // performance issues with it turned on. This might change in the future.
3566     UseTransparentHugePages = false;
3567   }
3568 
3569   if (UseTransparentHugePages) {
3570     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3571     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3572       UseHugeTLBFS = false;
3573       UseSHM = false;
3574       return true;
3575     }
3576     UseTransparentHugePages = false;
3577   }
3578 
3579   if (UseHugeTLBFS) {
3580     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3581     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3582       UseSHM = false;
3583       return true;
3584     }
3585     UseHugeTLBFS = false;
3586   }
3587 
3588   return UseSHM;
3589 }
3590 
3591 void os::large_page_init() {
3592   if (!UseLargePages &&
3593       !UseTransparentHugePages &&
3594       !UseHugeTLBFS &&
3595       !UseSHM) {
3596     // Not using large pages.
3597     return;
3598   }
3599 
3600   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3601     // The user explicitly turned off large pages.
3602     // Ignore the rest of the large pages flags.
3603     UseTransparentHugePages = false;
3604     UseHugeTLBFS = false;
3605     UseSHM = false;
3606     return;
3607   }
3608 
3609   size_t large_page_size = Linux::setup_large_page_size();
3610   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3611 
3612   set_coredump_filter();
3613 }
3614 
3615 #ifndef SHM_HUGETLB
3616 #define SHM_HUGETLB 04000
3617 #endif
3618 
3619 #define shm_warning_format(format, ...)              \
3620   do {                                               \
3621     if (UseLargePages &&                             \
3622         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3623          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3624          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3625       warning(format, __VA_ARGS__);                  \
3626     }                                                \
3627   } while (0)
3628 
3629 #define shm_warning(str) shm_warning_format("%s", str)
3630 
3631 #define shm_warning_with_errno(str)                \
3632   do {                                             \
3633     int err = errno;                               \
3634     shm_warning_format(str " (error = %d)", err);  \
3635   } while (0)
3636 
3637 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3638   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3639 
3640   if (!is_size_aligned(alignment, SHMLBA)) {
3641     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3642     return NULL;
3643   }
3644 
3645   // To ensure that we get 'alignment' aligned memory from shmat,
3646   // we pre-reserve aligned virtual memory and then attach to that.
3647 
3648   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3649   if (pre_reserved_addr == NULL) {
3650     // Couldn't pre-reserve aligned memory.
3651     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3652     return NULL;
3653   }
3654 
3655   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3656   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3657 
3658   if ((intptr_t)addr == -1) {
3659     int err = errno;
3660     shm_warning_with_errno("Failed to attach shared memory.");
3661 
3662     assert(err != EACCES, "Unexpected error");
3663     assert(err != EIDRM,  "Unexpected error");
3664     assert(err != EINVAL, "Unexpected error");
3665 
3666     // Since we don't know if the kernel unmapped the pre-reserved memory area
3667     // we can't unmap it, since that would potentially unmap memory that was
3668     // mapped from other threads.
3669     return NULL;
3670   }
3671 
3672   return addr;
3673 }
3674 
3675 static char* shmat_at_address(int shmid, char* req_addr) {
3676   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3677     assert(false, "Requested address needs to be SHMLBA aligned");
3678     return NULL;
3679   }
3680 
3681   char* addr = (char*)shmat(shmid, req_addr, 0);
3682 
3683   if ((intptr_t)addr == -1) {
3684     shm_warning_with_errno("Failed to attach shared memory.");
3685     return NULL;
3686   }
3687 
3688   return addr;
3689 }
3690 
3691 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3692   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3693   if (req_addr != NULL) {
3694     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3695     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3696     return shmat_at_address(shmid, req_addr);
3697   }
3698 
3699   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3700   // return large page size aligned memory addresses when req_addr == NULL.
3701   // However, if the alignment is larger than the large page size, we have
3702   // to manually ensure that the memory returned is 'alignment' aligned.
3703   if (alignment > os::large_page_size()) {
3704     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3705     return shmat_with_alignment(shmid, bytes, alignment);
3706   } else {
3707     return shmat_at_address(shmid, NULL);
3708   }
3709 }
3710 
3711 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3712   // "exec" is passed in but not used.  Creating the shared image for
3713   // the code cache doesn't have an SHM_X executable permission to check.
3714   assert(UseLargePages && UseSHM, "only for SHM large pages");
3715   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3716   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3717 
3718   if (!is_size_aligned(bytes, os::large_page_size())) {
3719     return NULL; // Fallback to small pages.
3720   }
3721 
3722   // Create a large shared memory region to attach to based on size.
3723   // Currently, size is the total size of the heap.
3724   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3725   if (shmid == -1) {
3726     // Possible reasons for shmget failure:
3727     // 1. shmmax is too small for Java heap.
3728     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3729     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3730     // 2. not enough large page memory.
3731     //    > check available large pages: cat /proc/meminfo
3732     //    > increase amount of large pages:
3733     //          echo new_value > /proc/sys/vm/nr_hugepages
3734     //      Note 1: different Linux may use different name for this property,
3735     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3736     //      Note 2: it's possible there's enough physical memory available but
3737     //            they are so fragmented after a long run that they can't
3738     //            coalesce into large pages. Try to reserve large pages when
3739     //            the system is still "fresh".
3740     shm_warning_with_errno("Failed to reserve shared memory.");
3741     return NULL;
3742   }
3743 
3744   // Attach to the region.
3745   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3746 
3747   // Remove shmid. If shmat() is successful, the actual shared memory segment
3748   // will be deleted when it's detached by shmdt() or when the process
3749   // terminates. If shmat() is not successful this will remove the shared
3750   // segment immediately.
3751   shmctl(shmid, IPC_RMID, NULL);
3752 
3753   return addr;
3754 }
3755 
3756 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3757   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3758 
3759   bool warn_on_failure = UseLargePages &&
3760       (!FLAG_IS_DEFAULT(UseLargePages) ||
3761        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3762        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3763 
3764   if (warn_on_failure) {
3765     char msg[128];
3766     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3767         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3768     warning("%s", msg);
3769   }
3770 }
3771 
3772 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3773   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3774   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3775   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3776 
3777   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3778   char* addr = (char*)::mmap(req_addr, bytes, prot,
3779                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3780                              -1, 0);
3781 
3782   if (addr == MAP_FAILED) {
3783     warn_on_large_pages_failure(req_addr, bytes, errno);
3784     return NULL;
3785   }
3786 
3787   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3788 
3789   return addr;
3790 }
3791 
3792 // Reserve memory using mmap(MAP_HUGETLB).
3793 //  - bytes shall be a multiple of alignment.
3794 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3795 //  - alignment sets the alignment at which memory shall be allocated.
3796 //     It must be a multiple of allocation granularity.
3797 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3798 //  req_addr or NULL.
3799 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3800   size_t large_page_size = os::large_page_size();
3801   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3802 
3803   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3804   assert(is_size_aligned(bytes, alignment), "Must be");
3805 
3806   // First reserve - but not commit - the address range in small pages.
3807   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3808 
3809   if (start == NULL) {
3810     return NULL;
3811   }
3812 
3813   assert(is_ptr_aligned(start, alignment), "Must be");
3814 
3815   char* end = start + bytes;
3816 
3817   // Find the regions of the allocated chunk that can be promoted to large pages.
3818   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3819   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3820 
3821   size_t lp_bytes = lp_end - lp_start;
3822 
3823   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3824 
3825   if (lp_bytes == 0) {
3826     // The mapped region doesn't even span the start and the end of a large page.
3827     // Fall back to allocate a non-special area.
3828     ::munmap(start, end - start);
3829     return NULL;
3830   }
3831 
3832   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3833 
3834   void* result;
3835 
3836   // Commit small-paged leading area.
3837   if (start != lp_start) {
3838     result = ::mmap(start, lp_start - start, prot,
3839                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3840                     -1, 0);
3841     if (result == MAP_FAILED) {
3842       ::munmap(lp_start, end - lp_start);
3843       return NULL;
3844     }
3845   }
3846 
3847   // Commit large-paged area.
3848   result = ::mmap(lp_start, lp_bytes, prot,
3849                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3850                   -1, 0);
3851   if (result == MAP_FAILED) {
3852     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3853     // If the mmap above fails, the large pages region will be unmapped and we
3854     // have regions before and after with small pages. Release these regions.
3855     //
3856     // |  mapped  |  unmapped  |  mapped  |
3857     // ^          ^            ^          ^
3858     // start      lp_start     lp_end     end
3859     //
3860     ::munmap(start, lp_start - start);
3861     ::munmap(lp_end, end - lp_end);
3862     return NULL;
3863   }
3864 
3865   // Commit small-paged trailing area.
3866   if (lp_end != end) {
3867       result = ::mmap(lp_end, end - lp_end, prot,
3868                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3869                       -1, 0);
3870     if (result == MAP_FAILED) {
3871       ::munmap(start, lp_end - start);
3872       return NULL;
3873     }
3874   }
3875 
3876   return start;
3877 }
3878 
3879 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3880   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3881   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3882   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3883   assert(is_power_of_2(os::large_page_size()), "Must be");
3884   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3885 
3886   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3887     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3888   } else {
3889     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3890   }
3891 }
3892 
3893 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3894   assert(UseLargePages, "only for large pages");
3895 
3896   char* addr;
3897   if (UseSHM) {
3898     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3899   } else {
3900     assert(UseHugeTLBFS, "must be");
3901     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3902   }
3903 
3904   if (addr != NULL) {
3905     if (UseNUMAInterleaving) {
3906       numa_make_global(addr, bytes);
3907     }
3908 
3909     // The memory is committed
3910     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3911   }
3912 
3913   return addr;
3914 }
3915 
3916 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3917   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3918   return shmdt(base) == 0;
3919 }
3920 
3921 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3922   return pd_release_memory(base, bytes);
3923 }
3924 
3925 bool os::release_memory_special(char* base, size_t bytes) {
3926   bool res;
3927   if (MemTracker::tracking_level() > NMT_minimal) {
3928     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3929     res = os::Linux::release_memory_special_impl(base, bytes);
3930     if (res) {
3931       tkr.record((address)base, bytes);
3932     }
3933 
3934   } else {
3935     res = os::Linux::release_memory_special_impl(base, bytes);
3936   }
3937   return res;
3938 }
3939 
3940 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3941   assert(UseLargePages, "only for large pages");
3942   bool res;
3943 
3944   if (UseSHM) {
3945     res = os::Linux::release_memory_special_shm(base, bytes);
3946   } else {
3947     assert(UseHugeTLBFS, "must be");
3948     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3949   }
3950   return res;
3951 }
3952 
3953 size_t os::large_page_size() {
3954   return _large_page_size;
3955 }
3956 
3957 // With SysV SHM the entire memory region must be allocated as shared
3958 // memory.
3959 // HugeTLBFS allows application to commit large page memory on demand.
3960 // However, when committing memory with HugeTLBFS fails, the region
3961 // that was supposed to be committed will lose the old reservation
3962 // and allow other threads to steal that memory region. Because of this
3963 // behavior we can't commit HugeTLBFS memory.
3964 bool os::can_commit_large_page_memory() {
3965   return UseTransparentHugePages;
3966 }
3967 
3968 bool os::can_execute_large_page_memory() {
3969   return UseTransparentHugePages || UseHugeTLBFS;
3970 }
3971 
3972 // Reserve memory at an arbitrary address, only if that area is
3973 // available (and not reserved for something else).
3974 
3975 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3976   const int max_tries = 10;
3977   char* base[max_tries];
3978   size_t size[max_tries];
3979   const size_t gap = 0x000000;
3980 
3981   // Assert only that the size is a multiple of the page size, since
3982   // that's all that mmap requires, and since that's all we really know
3983   // about at this low abstraction level.  If we need higher alignment,
3984   // we can either pass an alignment to this method or verify alignment
3985   // in one of the methods further up the call chain.  See bug 5044738.
3986   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3987 
3988   // Repeatedly allocate blocks until the block is allocated at the
3989   // right spot. Give up after max_tries. Note that reserve_memory() will
3990   // automatically update _highest_vm_reserved_address if the call is
3991   // successful. The variable tracks the highest memory address every reserved
3992   // by JVM. It is used to detect heap-stack collision if running with
3993   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3994   // space than needed, it could confuse the collision detecting code. To
3995   // solve the problem, save current _highest_vm_reserved_address and
3996   // calculate the correct value before return.
3997   address old_highest = _highest_vm_reserved_address;
3998 
3999   // Linux mmap allows caller to pass an address as hint; give it a try first,
4000   // if kernel honors the hint then we can return immediately.
4001   char * addr = anon_mmap(requested_addr, bytes, false);
4002   if (addr == requested_addr) {
4003      return requested_addr;
4004   }
4005 
4006   if (addr != NULL) {
4007      // mmap() is successful but it fails to reserve at the requested address
4008      anon_munmap(addr, bytes);
4009   }
4010 
4011   int i;
4012   for (i = 0; i < max_tries; ++i) {
4013     base[i] = reserve_memory(bytes);
4014 
4015     if (base[i] != NULL) {
4016       // Is this the block we wanted?
4017       if (base[i] == requested_addr) {
4018         size[i] = bytes;
4019         break;
4020       }
4021 
4022       // Does this overlap the block we wanted? Give back the overlapped
4023       // parts and try again.
4024 
4025       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
4026       if (top_overlap >= 0 && top_overlap < bytes) {
4027         unmap_memory(base[i], top_overlap);
4028         base[i] += top_overlap;
4029         size[i] = bytes - top_overlap;
4030       } else {
4031         size_t bottom_overlap = base[i] + bytes - requested_addr;
4032         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
4033           unmap_memory(requested_addr, bottom_overlap);
4034           size[i] = bytes - bottom_overlap;
4035         } else {
4036           size[i] = bytes;
4037         }
4038       }
4039     }
4040   }
4041 
4042   // Give back the unused reserved pieces.
4043 
4044   for (int j = 0; j < i; ++j) {
4045     if (base[j] != NULL) {
4046       unmap_memory(base[j], size[j]);
4047     }
4048   }
4049 
4050   if (i < max_tries) {
4051     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
4052     return requested_addr;
4053   } else {
4054     _highest_vm_reserved_address = old_highest;
4055     return NULL;
4056   }
4057 }
4058 
4059 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4060   return ::read(fd, buf, nBytes);
4061 }
4062 
4063 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4064   return ::pread(fd, buf, nBytes, offset);
4065 }
4066 
4067 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
4068 // Solaris uses poll(), linux uses park().
4069 // Poll() is likely a better choice, assuming that Thread.interrupt()
4070 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
4071 // SIGSEGV, see 4355769.
4072 
4073 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
4074   assert(thread == Thread::current(),  "thread consistency check");
4075 
4076   ParkEvent * const slp = thread->_SleepEvent ;
4077   slp->reset() ;
4078   OrderAccess::fence() ;
4079 
4080   if (interruptible) {
4081     jlong prevtime = javaTimeNanos();
4082 
4083     for (;;) {
4084       if (os::is_interrupted(thread, true)) {
4085         return OS_INTRPT;
4086       }
4087 
4088       jlong newtime = javaTimeNanos();
4089 
4090       if (newtime - prevtime < 0) {
4091         // time moving backwards, should only happen if no monotonic clock
4092         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4093         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4094       } else {
4095         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4096       }
4097 
4098       if(millis <= 0) {
4099         return OS_OK;
4100       }
4101 
4102       prevtime = newtime;
4103 
4104       {
4105         assert(thread->is_Java_thread(), "sanity check");
4106         JavaThread *jt = (JavaThread *) thread;
4107         ThreadBlockInVM tbivm(jt);
4108         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
4109 
4110         jt->set_suspend_equivalent();
4111         // cleared by handle_special_suspend_equivalent_condition() or
4112         // java_suspend_self() via check_and_wait_while_suspended()
4113 
4114         slp->park(millis);
4115 
4116         // were we externally suspended while we were waiting?
4117         jt->check_and_wait_while_suspended();
4118       }
4119     }
4120   } else {
4121     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4122     jlong prevtime = javaTimeNanos();
4123 
4124     for (;;) {
4125       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
4126       // the 1st iteration ...
4127       jlong newtime = javaTimeNanos();
4128 
4129       if (newtime - prevtime < 0) {
4130         // time moving backwards, should only happen if no monotonic clock
4131         // not a guarantee() because JVM should not abort on kernel/glibc bugs
4132         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
4133       } else {
4134         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
4135       }
4136 
4137       if(millis <= 0) break ;
4138 
4139       prevtime = newtime;
4140       slp->park(millis);
4141     }
4142     return OS_OK ;
4143   }
4144 }
4145 
4146 //
4147 // Short sleep, direct OS call.
4148 //
4149 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4150 // sched_yield(2) will actually give up the CPU:
4151 //
4152 //   * Alone on this pariticular CPU, keeps running.
4153 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4154 //     (pre 2.6.39).
4155 //
4156 // So calling this with 0 is an alternative.
4157 //
4158 void os::naked_short_sleep(jlong ms) {
4159   struct timespec req;
4160 
4161   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4162   req.tv_sec = 0;
4163   if (ms > 0) {
4164     req.tv_nsec = (ms % 1000) * 1000000;
4165   }
4166   else {
4167     req.tv_nsec = 1;
4168   }
4169 
4170   nanosleep(&req, NULL);
4171 
4172   return;
4173 }
4174 
4175 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4176 void os::infinite_sleep() {
4177   while (true) {    // sleep forever ...
4178     ::sleep(100);   // ... 100 seconds at a time
4179   }
4180 }
4181 
4182 // Used to convert frequent JVM_Yield() to nops
4183 bool os::dont_yield() {
4184   return DontYieldALot;
4185 }
4186 
4187 void os::yield() {
4188   sched_yield();
4189 }
4190 
4191 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
4192 
4193 void os::yield_all(int attempts) {
4194   // Yields to all threads, including threads with lower priorities
4195   // Threads on Linux are all with same priority. The Solaris style
4196   // os::yield_all() with nanosleep(1ms) is not necessary.
4197   sched_yield();
4198 }
4199 
4200 // Called from the tight loops to possibly influence time-sharing heuristics
4201 void os::loop_breaker(int attempts) {
4202   os::yield_all(attempts);
4203 }
4204 
4205 ////////////////////////////////////////////////////////////////////////////////
4206 // thread priority support
4207 
4208 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4209 // only supports dynamic priority, static priority must be zero. For real-time
4210 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4211 // However, for large multi-threaded applications, SCHED_RR is not only slower
4212 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4213 // of 5 runs - Sep 2005).
4214 //
4215 // The following code actually changes the niceness of kernel-thread/LWP. It
4216 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4217 // not the entire user process, and user level threads are 1:1 mapped to kernel
4218 // threads. It has always been the case, but could change in the future. For
4219 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4220 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4221 
4222 int os::java_to_os_priority[CriticalPriority + 1] = {
4223   19,              // 0 Entry should never be used
4224 
4225    4,              // 1 MinPriority
4226    3,              // 2
4227    2,              // 3
4228 
4229    1,              // 4
4230    0,              // 5 NormPriority
4231   -1,              // 6
4232 
4233   -2,              // 7
4234   -3,              // 8
4235   -4,              // 9 NearMaxPriority
4236 
4237   -5,              // 10 MaxPriority
4238 
4239   -5               // 11 CriticalPriority
4240 };
4241 
4242 static int prio_init() {
4243   if (ThreadPriorityPolicy == 1) {
4244     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4245     // if effective uid is not root. Perhaps, a more elegant way of doing
4246     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4247     if (geteuid() != 0) {
4248       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4249         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4250       }
4251       ThreadPriorityPolicy = 0;
4252     }
4253   }
4254   if (UseCriticalJavaThreadPriority) {
4255     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4256   }
4257   return 0;
4258 }
4259 
4260 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4261   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4262 
4263   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4264   return (ret == 0) ? OS_OK : OS_ERR;
4265 }
4266 
4267 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4268   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4269     *priority_ptr = java_to_os_priority[NormPriority];
4270     return OS_OK;
4271   }
4272 
4273   errno = 0;
4274   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4275   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4276 }
4277 
4278 // Hint to the underlying OS that a task switch would not be good.
4279 // Void return because it's a hint and can fail.
4280 void os::hint_no_preempt() {}
4281 
4282 ////////////////////////////////////////////////////////////////////////////////
4283 // suspend/resume support
4284 
4285 //  the low-level signal-based suspend/resume support is a remnant from the
4286 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4287 //  within hotspot. Now there is a single use-case for this:
4288 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4289 //      that runs in the watcher thread.
4290 //  The remaining code is greatly simplified from the more general suspension
4291 //  code that used to be used.
4292 //
4293 //  The protocol is quite simple:
4294 //  - suspend:
4295 //      - sends a signal to the target thread
4296 //      - polls the suspend state of the osthread using a yield loop
4297 //      - target thread signal handler (SR_handler) sets suspend state
4298 //        and blocks in sigsuspend until continued
4299 //  - resume:
4300 //      - sets target osthread state to continue
4301 //      - sends signal to end the sigsuspend loop in the SR_handler
4302 //
4303 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4304 //
4305 
4306 static void resume_clear_context(OSThread *osthread) {
4307   osthread->set_ucontext(NULL);
4308   osthread->set_siginfo(NULL);
4309 }
4310 
4311 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4312   osthread->set_ucontext(context);
4313   osthread->set_siginfo(siginfo);
4314 }
4315 
4316 //
4317 // Handler function invoked when a thread's execution is suspended or
4318 // resumed. We have to be careful that only async-safe functions are
4319 // called here (Note: most pthread functions are not async safe and
4320 // should be avoided.)
4321 //
4322 // Note: sigwait() is a more natural fit than sigsuspend() from an
4323 // interface point of view, but sigwait() prevents the signal hander
4324 // from being run. libpthread would get very confused by not having
4325 // its signal handlers run and prevents sigwait()'s use with the
4326 // mutex granting granting signal.
4327 //
4328 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4329 //
4330 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4331   // Save and restore errno to avoid confusing native code with EINTR
4332   // after sigsuspend.
4333   int old_errno = errno;
4334 
4335   Thread* thread = Thread::current();
4336   OSThread* osthread = thread->osthread();
4337   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4338 
4339   os::SuspendResume::State current = osthread->sr.state();
4340   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4341     suspend_save_context(osthread, siginfo, context);
4342 
4343     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4344     os::SuspendResume::State state = osthread->sr.suspended();
4345     if (state == os::SuspendResume::SR_SUSPENDED) {
4346       sigset_t suspend_set;  // signals for sigsuspend()
4347 
4348       // get current set of blocked signals and unblock resume signal
4349       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4350       sigdelset(&suspend_set, SR_signum);
4351 
4352       sr_semaphore.signal();
4353       // wait here until we are resumed
4354       while (1) {
4355         sigsuspend(&suspend_set);
4356 
4357         os::SuspendResume::State result = osthread->sr.running();
4358         if (result == os::SuspendResume::SR_RUNNING) {
4359           sr_semaphore.signal();
4360           break;
4361         }
4362       }
4363 
4364     } else if (state == os::SuspendResume::SR_RUNNING) {
4365       // request was cancelled, continue
4366     } else {
4367       ShouldNotReachHere();
4368     }
4369 
4370     resume_clear_context(osthread);
4371   } else if (current == os::SuspendResume::SR_RUNNING) {
4372     // request was cancelled, continue
4373   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4374     // ignore
4375   } else {
4376     // ignore
4377   }
4378 
4379   errno = old_errno;
4380 }
4381 
4382 
4383 static int SR_initialize() {
4384   struct sigaction act;
4385   char *s;
4386   /* Get signal number to use for suspend/resume */
4387   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4388     int sig = ::strtol(s, 0, 10);
4389     if (sig > 0 || sig < _NSIG) {
4390         SR_signum = sig;
4391     }
4392   }
4393 
4394   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4395         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4396 
4397   sigemptyset(&SR_sigset);
4398   sigaddset(&SR_sigset, SR_signum);
4399 
4400   /* Set up signal handler for suspend/resume */
4401   act.sa_flags = SA_RESTART|SA_SIGINFO;
4402   act.sa_handler = (void (*)(int)) SR_handler;
4403 
4404   // SR_signum is blocked by default.
4405   // 4528190 - We also need to block pthread restart signal (32 on all
4406   // supported Linux platforms). Note that LinuxThreads need to block
4407   // this signal for all threads to work properly. So we don't have
4408   // to use hard-coded signal number when setting up the mask.
4409   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4410 
4411   if (sigaction(SR_signum, &act, 0) == -1) {
4412     return -1;
4413   }
4414 
4415   // Save signal flag
4416   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4417   return 0;
4418 }
4419 
4420 static int sr_notify(OSThread* osthread) {
4421   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4422   assert_status(status == 0, status, "pthread_kill");
4423   return status;
4424 }
4425 
4426 // "Randomly" selected value for how long we want to spin
4427 // before bailing out on suspending a thread, also how often
4428 // we send a signal to a thread we want to resume
4429 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4430 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4431 
4432 // returns true on success and false on error - really an error is fatal
4433 // but this seems the normal response to library errors
4434 static bool do_suspend(OSThread* osthread) {
4435   assert(osthread->sr.is_running(), "thread should be running");
4436   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4437 
4438   // mark as suspended and send signal
4439   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4440     // failed to switch, state wasn't running?
4441     ShouldNotReachHere();
4442     return false;
4443   }
4444 
4445   if (sr_notify(osthread) != 0) {
4446     ShouldNotReachHere();
4447   }
4448 
4449   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4450   while (true) {
4451     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4452       break;
4453     } else {
4454       // timeout
4455       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4456       if (cancelled == os::SuspendResume::SR_RUNNING) {
4457         return false;
4458       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4459         // make sure that we consume the signal on the semaphore as well
4460         sr_semaphore.wait();
4461         break;
4462       } else {
4463         ShouldNotReachHere();
4464         return false;
4465       }
4466     }
4467   }
4468 
4469   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4470   return true;
4471 }
4472 
4473 static void do_resume(OSThread* osthread) {
4474   assert(osthread->sr.is_suspended(), "thread should be suspended");
4475   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4476 
4477   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4478     // failed to switch to WAKEUP_REQUEST
4479     ShouldNotReachHere();
4480     return;
4481   }
4482 
4483   while (true) {
4484     if (sr_notify(osthread) == 0) {
4485       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4486         if (osthread->sr.is_running()) {
4487           return;
4488         }
4489       }
4490     } else {
4491       ShouldNotReachHere();
4492     }
4493   }
4494 
4495   guarantee(osthread->sr.is_running(), "Must be running!");
4496 }
4497 
4498 ////////////////////////////////////////////////////////////////////////////////
4499 // interrupt support
4500 
4501 void os::interrupt(Thread* thread) {
4502   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4503     "possibility of dangling Thread pointer");
4504 
4505   OSThread* osthread = thread->osthread();
4506 
4507   if (!osthread->interrupted()) {
4508     osthread->set_interrupted(true);
4509     // More than one thread can get here with the same value of osthread,
4510     // resulting in multiple notifications.  We do, however, want the store
4511     // to interrupted() to be visible to other threads before we execute unpark().
4512     OrderAccess::fence();
4513     ParkEvent * const slp = thread->_SleepEvent ;
4514     if (slp != NULL) slp->unpark() ;
4515   }
4516 
4517   // For JSR166. Unpark even if interrupt status already was set
4518   if (thread->is_Java_thread())
4519     ((JavaThread*)thread)->parker()->unpark();
4520 
4521   ParkEvent * ev = thread->_ParkEvent ;
4522   if (ev != NULL) ev->unpark() ;
4523 
4524 }
4525 
4526 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4527   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4528     "possibility of dangling Thread pointer");
4529 
4530   OSThread* osthread = thread->osthread();
4531 
4532   bool interrupted = osthread->interrupted();
4533 
4534   if (interrupted && clear_interrupted) {
4535     osthread->set_interrupted(false);
4536     // consider thread->_SleepEvent->reset() ... optional optimization
4537   }
4538 
4539   return interrupted;
4540 }
4541 
4542 ///////////////////////////////////////////////////////////////////////////////////
4543 // signal handling (except suspend/resume)
4544 
4545 // This routine may be used by user applications as a "hook" to catch signals.
4546 // The user-defined signal handler must pass unrecognized signals to this
4547 // routine, and if it returns true (non-zero), then the signal handler must
4548 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4549 // routine will never retun false (zero), but instead will execute a VM panic
4550 // routine kill the process.
4551 //
4552 // If this routine returns false, it is OK to call it again.  This allows
4553 // the user-defined signal handler to perform checks either before or after
4554 // the VM performs its own checks.  Naturally, the user code would be making
4555 // a serious error if it tried to handle an exception (such as a null check
4556 // or breakpoint) that the VM was generating for its own correct operation.
4557 //
4558 // This routine may recognize any of the following kinds of signals:
4559 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4560 // It should be consulted by handlers for any of those signals.
4561 //
4562 // The caller of this routine must pass in the three arguments supplied
4563 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4564 // field of the structure passed to sigaction().  This routine assumes that
4565 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4566 //
4567 // Note that the VM will print warnings if it detects conflicting signal
4568 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4569 //
4570 extern "C" JNIEXPORT int
4571 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4572                         void* ucontext, int abort_if_unrecognized);
4573 
4574 void signalHandler(int sig, siginfo_t* info, void* uc) {
4575   assert(info != NULL && uc != NULL, "it must be old kernel");
4576   int orig_errno = errno;  // Preserve errno value over signal handler.
4577   JVM_handle_linux_signal(sig, info, uc, true);
4578   errno = orig_errno;
4579 }
4580 
4581 
4582 // This boolean allows users to forward their own non-matching signals
4583 // to JVM_handle_linux_signal, harmlessly.
4584 bool os::Linux::signal_handlers_are_installed = false;
4585 
4586 // For signal-chaining
4587 struct sigaction os::Linux::sigact[MAXSIGNUM];
4588 unsigned int os::Linux::sigs = 0;
4589 bool os::Linux::libjsig_is_loaded = false;
4590 typedef struct sigaction *(*get_signal_t)(int);
4591 get_signal_t os::Linux::get_signal_action = NULL;
4592 
4593 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4594   struct sigaction *actp = NULL;
4595 
4596   if (libjsig_is_loaded) {
4597     // Retrieve the old signal handler from libjsig
4598     actp = (*get_signal_action)(sig);
4599   }
4600   if (actp == NULL) {
4601     // Retrieve the preinstalled signal handler from jvm
4602     actp = get_preinstalled_handler(sig);
4603   }
4604 
4605   return actp;
4606 }
4607 
4608 static bool call_chained_handler(struct sigaction *actp, int sig,
4609                                  siginfo_t *siginfo, void *context) {
4610   // Call the old signal handler
4611   if (actp->sa_handler == SIG_DFL) {
4612     // It's more reasonable to let jvm treat it as an unexpected exception
4613     // instead of taking the default action.
4614     return false;
4615   } else if (actp->sa_handler != SIG_IGN) {
4616     if ((actp->sa_flags & SA_NODEFER) == 0) {
4617       // automaticlly block the signal
4618       sigaddset(&(actp->sa_mask), sig);
4619     }
4620 
4621     sa_handler_t hand = NULL;
4622     sa_sigaction_t sa = NULL;
4623     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4624     // retrieve the chained handler
4625     if (siginfo_flag_set) {
4626       sa = actp->sa_sigaction;
4627     } else {
4628       hand = actp->sa_handler;
4629     }
4630 
4631     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4632       actp->sa_handler = SIG_DFL;
4633     }
4634 
4635     // try to honor the signal mask
4636     sigset_t oset;
4637     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4638 
4639     // call into the chained handler
4640     if (siginfo_flag_set) {
4641       (*sa)(sig, siginfo, context);
4642     } else {
4643       (*hand)(sig);
4644     }
4645 
4646     // restore the signal mask
4647     pthread_sigmask(SIG_SETMASK, &oset, 0);
4648   }
4649   // Tell jvm's signal handler the signal is taken care of.
4650   return true;
4651 }
4652 
4653 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4654   bool chained = false;
4655   // signal-chaining
4656   if (UseSignalChaining) {
4657     struct sigaction *actp = get_chained_signal_action(sig);
4658     if (actp != NULL) {
4659       chained = call_chained_handler(actp, sig, siginfo, context);
4660     }
4661   }
4662   return chained;
4663 }
4664 
4665 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4666   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4667     return &sigact[sig];
4668   }
4669   return NULL;
4670 }
4671 
4672 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4673   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4674   sigact[sig] = oldAct;
4675   sigs |= (unsigned int)1 << sig;
4676 }
4677 
4678 // for diagnostic
4679 int os::Linux::sigflags[MAXSIGNUM];
4680 
4681 int os::Linux::get_our_sigflags(int sig) {
4682   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4683   return sigflags[sig];
4684 }
4685 
4686 void os::Linux::set_our_sigflags(int sig, int flags) {
4687   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4688   sigflags[sig] = flags;
4689 }
4690 
4691 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4692   // Check for overwrite.
4693   struct sigaction oldAct;
4694   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4695 
4696   void* oldhand = oldAct.sa_sigaction
4697                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4698                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4699   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4700       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4701       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4702     if (AllowUserSignalHandlers || !set_installed) {
4703       // Do not overwrite; user takes responsibility to forward to us.
4704       return;
4705     } else if (UseSignalChaining) {
4706       // save the old handler in jvm
4707       save_preinstalled_handler(sig, oldAct);
4708       // libjsig also interposes the sigaction() call below and saves the
4709       // old sigaction on it own.
4710     } else {
4711       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4712                     "%#lx for signal %d.", (long)oldhand, sig));
4713     }
4714   }
4715 
4716   struct sigaction sigAct;
4717   sigfillset(&(sigAct.sa_mask));
4718   sigAct.sa_handler = SIG_DFL;
4719   if (!set_installed) {
4720     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4721   } else {
4722     sigAct.sa_sigaction = signalHandler;
4723     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4724   }
4725   // Save flags, which are set by ours
4726   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4727   sigflags[sig] = sigAct.sa_flags;
4728 
4729   int ret = sigaction(sig, &sigAct, &oldAct);
4730   assert(ret == 0, "check");
4731 
4732   void* oldhand2  = oldAct.sa_sigaction
4733                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4734                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4735   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4736 }
4737 
4738 // install signal handlers for signals that HotSpot needs to
4739 // handle in order to support Java-level exception handling.
4740 
4741 void os::Linux::install_signal_handlers() {
4742   if (!signal_handlers_are_installed) {
4743     signal_handlers_are_installed = true;
4744 
4745     // signal-chaining
4746     typedef void (*signal_setting_t)();
4747     signal_setting_t begin_signal_setting = NULL;
4748     signal_setting_t end_signal_setting = NULL;
4749     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4750                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4751     if (begin_signal_setting != NULL) {
4752       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4753                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4754       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4755                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4756       libjsig_is_loaded = true;
4757       assert(UseSignalChaining, "should enable signal-chaining");
4758     }
4759     if (libjsig_is_loaded) {
4760       // Tell libjsig jvm is setting signal handlers
4761       (*begin_signal_setting)();
4762     }
4763 
4764     set_signal_handler(SIGSEGV, true);
4765     set_signal_handler(SIGPIPE, true);
4766     set_signal_handler(SIGBUS, true);
4767     set_signal_handler(SIGILL, true);
4768     set_signal_handler(SIGFPE, true);
4769 #if defined(PPC64)
4770     set_signal_handler(SIGTRAP, true);
4771 #endif
4772     set_signal_handler(SIGXFSZ, true);
4773 
4774     if (libjsig_is_loaded) {
4775       // Tell libjsig jvm finishes setting signal handlers
4776       (*end_signal_setting)();
4777     }
4778 
4779     // We don't activate signal checker if libjsig is in place, we trust ourselves
4780     // and if UserSignalHandler is installed all bets are off.
4781     // Log that signal checking is off only if -verbose:jni is specified.
4782     if (CheckJNICalls) {
4783       if (libjsig_is_loaded) {
4784         if (PrintJNIResolving) {
4785           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4786         }
4787         check_signals = false;
4788       }
4789       if (AllowUserSignalHandlers) {
4790         if (PrintJNIResolving) {
4791           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4792         }
4793         check_signals = false;
4794       }
4795     }
4796   }
4797 }
4798 
4799 // This is the fastest way to get thread cpu time on Linux.
4800 // Returns cpu time (user+sys) for any thread, not only for current.
4801 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4802 // It might work on 2.6.10+ with a special kernel/glibc patch.
4803 // For reference, please, see IEEE Std 1003.1-2004:
4804 //   http://www.unix.org/single_unix_specification
4805 
4806 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4807   struct timespec tp;
4808   int rc = os::Linux::clock_gettime(clockid, &tp);
4809   assert(rc == 0, "clock_gettime is expected to return 0 code");
4810 
4811   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4812 }
4813 
4814 /////
4815 // glibc on Linux platform uses non-documented flag
4816 // to indicate, that some special sort of signal
4817 // trampoline is used.
4818 // We will never set this flag, and we should
4819 // ignore this flag in our diagnostic
4820 #ifdef SIGNIFICANT_SIGNAL_MASK
4821 #undef SIGNIFICANT_SIGNAL_MASK
4822 #endif
4823 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4824 
4825 static const char* get_signal_handler_name(address handler,
4826                                            char* buf, int buflen) {
4827   int offset = 0;
4828   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4829   if (found) {
4830     // skip directory names
4831     const char *p1, *p2;
4832     p1 = buf;
4833     size_t len = strlen(os::file_separator());
4834     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4835     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4836   } else {
4837     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4838   }
4839   return buf;
4840 }
4841 
4842 static void print_signal_handler(outputStream* st, int sig,
4843                                  char* buf, size_t buflen) {
4844   struct sigaction sa;
4845 
4846   sigaction(sig, NULL, &sa);
4847 
4848   // See comment for SIGNIFICANT_SIGNAL_MASK define
4849   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4850 
4851   st->print("%s: ", os::exception_name(sig, buf, buflen));
4852 
4853   address handler = (sa.sa_flags & SA_SIGINFO)
4854     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4855     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4856 
4857   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4858     st->print("SIG_DFL");
4859   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4860     st->print("SIG_IGN");
4861   } else {
4862     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4863   }
4864 
4865   st->print(", sa_mask[0]=");
4866   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4867 
4868   address rh = VMError::get_resetted_sighandler(sig);
4869   // May be, handler was resetted by VMError?
4870   if(rh != NULL) {
4871     handler = rh;
4872     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4873   }
4874 
4875   st->print(", sa_flags=");
4876   os::Posix::print_sa_flags(st, sa.sa_flags);
4877 
4878   // Check: is it our handler?
4879   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4880      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4881     // It is our signal handler
4882     // check for flags, reset system-used one!
4883     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4884       st->print(
4885                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4886                 os::Linux::get_our_sigflags(sig));
4887     }
4888   }
4889   st->cr();
4890 }
4891 
4892 
4893 #define DO_SIGNAL_CHECK(sig) \
4894   if (!sigismember(&check_signal_done, sig)) \
4895     os::Linux::check_signal_handler(sig)
4896 
4897 // This method is a periodic task to check for misbehaving JNI applications
4898 // under CheckJNI, we can add any periodic checks here
4899 
4900 void os::run_periodic_checks() {
4901 
4902   if (check_signals == false) return;
4903 
4904   // SEGV and BUS if overridden could potentially prevent
4905   // generation of hs*.log in the event of a crash, debugging
4906   // such a case can be very challenging, so we absolutely
4907   // check the following for a good measure:
4908   DO_SIGNAL_CHECK(SIGSEGV);
4909   DO_SIGNAL_CHECK(SIGILL);
4910   DO_SIGNAL_CHECK(SIGFPE);
4911   DO_SIGNAL_CHECK(SIGBUS);
4912   DO_SIGNAL_CHECK(SIGPIPE);
4913   DO_SIGNAL_CHECK(SIGXFSZ);
4914 #if defined(PPC64)
4915   DO_SIGNAL_CHECK(SIGTRAP);
4916 #endif
4917 
4918   // ReduceSignalUsage allows the user to override these handlers
4919   // see comments at the very top and jvm_solaris.h
4920   if (!ReduceSignalUsage) {
4921     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4922     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4923     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4924     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4925   }
4926 
4927   DO_SIGNAL_CHECK(SR_signum);
4928   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4929 }
4930 
4931 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4932 
4933 static os_sigaction_t os_sigaction = NULL;
4934 
4935 void os::Linux::check_signal_handler(int sig) {
4936   char buf[O_BUFLEN];
4937   address jvmHandler = NULL;
4938 
4939 
4940   struct sigaction act;
4941   if (os_sigaction == NULL) {
4942     // only trust the default sigaction, in case it has been interposed
4943     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4944     if (os_sigaction == NULL) return;
4945   }
4946 
4947   os_sigaction(sig, (struct sigaction*)NULL, &act);
4948 
4949 
4950   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4951 
4952   address thisHandler = (act.sa_flags & SA_SIGINFO)
4953     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4954     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4955 
4956 
4957   switch(sig) {
4958   case SIGSEGV:
4959   case SIGBUS:
4960   case SIGFPE:
4961   case SIGPIPE:
4962   case SIGILL:
4963   case SIGXFSZ:
4964     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4965     break;
4966 
4967   case SHUTDOWN1_SIGNAL:
4968   case SHUTDOWN2_SIGNAL:
4969   case SHUTDOWN3_SIGNAL:
4970   case BREAK_SIGNAL:
4971     jvmHandler = (address)user_handler();
4972     break;
4973 
4974   case INTERRUPT_SIGNAL:
4975     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4976     break;
4977 
4978   default:
4979     if (sig == SR_signum) {
4980       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4981     } else {
4982       return;
4983     }
4984     break;
4985   }
4986 
4987   if (thisHandler != jvmHandler) {
4988     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4989     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4990     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4991     // No need to check this sig any longer
4992     sigaddset(&check_signal_done, sig);
4993     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4994     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4995       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4996                     exception_name(sig, buf, O_BUFLEN));
4997     }
4998   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4999     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5000     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
5001     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
5002     // No need to check this sig any longer
5003     sigaddset(&check_signal_done, sig);
5004   }
5005 
5006   // Dump all the signal
5007   if (sigismember(&check_signal_done, sig)) {
5008     print_signal_handlers(tty, buf, O_BUFLEN);
5009   }
5010 }
5011 
5012 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
5013 
5014 extern bool signal_name(int signo, char* buf, size_t len);
5015 
5016 const char* os::exception_name(int exception_code, char* buf, size_t size) {
5017   if (0 < exception_code && exception_code <= SIGRTMAX) {
5018     // signal
5019     if (!signal_name(exception_code, buf, size)) {
5020       jio_snprintf(buf, size, "SIG%d", exception_code);
5021     }
5022     return buf;
5023   } else {
5024     return NULL;
5025   }
5026 }
5027 
5028 // this is called _before_ most of the global arguments have been parsed
5029 void os::init(void) {
5030   char dummy;   /* used to get a guess on initial stack address */
5031 
5032   // With LinuxThreads the JavaMain thread pid (primordial thread)
5033   // is different than the pid of the java launcher thread.
5034   // So, on Linux, the launcher thread pid is passed to the VM
5035   // via the sun.java.launcher.pid property.
5036   // Use this property instead of getpid() if it was correctly passed.
5037   // See bug 6351349.
5038   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
5039 
5040   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
5041 
5042   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5043 
5044   init_random(1234567);
5045 
5046   ThreadCritical::initialize();
5047 
5048   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5049   if (Linux::page_size() == -1) {
5050     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
5051                   strerror(errno)));
5052   }
5053   init_page_sizes((size_t) Linux::page_size());
5054 
5055   Linux::initialize_system_info();
5056 
5057   // _main_thread points to the thread that created/loaded the JVM.
5058   Linux::_main_thread = pthread_self();
5059 
5060   Linux::clock_init();
5061   initial_time_count = javaTimeNanos();
5062 
5063   // pthread_condattr initialization for monotonic clock
5064   int status;
5065   pthread_condattr_t* _condattr = os::Linux::condAttr();
5066   if ((status = pthread_condattr_init(_condattr)) != 0) {
5067     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
5068   }
5069   // Only set the clock if CLOCK_MONOTONIC is available
5070   if (Linux::supports_monotonic_clock()) {
5071     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
5072       if (status == EINVAL) {
5073         warning("Unable to use monotonic clock with relative timed-waits" \
5074                 " - changes to the time-of-day clock may have adverse affects");
5075       } else {
5076         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
5077       }
5078     }
5079   }
5080   // else it defaults to CLOCK_REALTIME
5081 
5082   pthread_mutex_init(&dl_mutex, NULL);
5083 
5084   // If the pagesize of the VM is greater than 8K determine the appropriate
5085   // number of initial guard pages.  The user can change this with the
5086   // command line arguments, if needed.
5087   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
5088     StackYellowPages = 1;
5089     StackRedPages = 1;
5090     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
5091   }
5092 }
5093 
5094 // To install functions for atexit system call
5095 extern "C" {
5096   static void perfMemory_exit_helper() {
5097     perfMemory_exit();
5098   }
5099 }
5100 
5101 void os::pd_init_container_support() {
5102   OSContainer::init();
5103 }
5104 
5105 // this is called _after_ the global arguments have been parsed
5106 jint os::init_2(void)
5107 {
5108   Linux::fast_thread_clock_init();
5109 
5110   // Allocate a single page and mark it as readable for safepoint polling
5111   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5112   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
5113 
5114   os::set_polling_page( polling_page );
5115 
5116 #ifndef PRODUCT
5117   if(Verbose && PrintMiscellaneous)
5118     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
5119 #endif
5120 
5121   if (!UseMembar) {
5122     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
5123     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
5124     os::set_memory_serialize_page( mem_serialize_page );
5125 
5126 #ifndef PRODUCT
5127     if(Verbose && PrintMiscellaneous)
5128       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
5129 #endif
5130   }
5131 
5132   // initialize suspend/resume support - must do this before signal_sets_init()
5133   if (SR_initialize() != 0) {
5134     perror("SR_initialize failed");
5135     return JNI_ERR;
5136   }
5137 
5138   Linux::signal_sets_init();
5139   Linux::install_signal_handlers();
5140 
5141   // Check minimum allowable stack size for thread creation and to initialize
5142   // the java system classes, including StackOverflowError - depends on page
5143   // size.  Add a page for compiler2 recursion in main thread.
5144   // Add in 2*BytesPerWord times page size to account for VM stack during
5145   // class initialization depending on 32 or 64 bit VM.
5146   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
5147             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
5148                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
5149 
5150   size_t threadStackSizeInBytes = ThreadStackSize * K;
5151   if (threadStackSizeInBytes != 0 &&
5152       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
5153         tty->print_cr("\nThe stack size specified is too small, "
5154                       "Specify at least %dk",
5155                       os::Linux::min_stack_allowed/ K);
5156         return JNI_ERR;
5157   }
5158 
5159   // Make the stack size a multiple of the page size so that
5160   // the yellow/red zones can be guarded.
5161   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5162         vm_page_size()));
5163 
5164   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5165 
5166 #if defined(IA32)
5167   workaround_expand_exec_shield_cs_limit();
5168 #endif
5169 
5170   Linux::libpthread_init();
5171   if (PrintMiscellaneous && (Verbose || WizardMode)) {
5172      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
5173           Linux::glibc_version(), Linux::libpthread_version(),
5174           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
5175   }
5176 
5177   if (UseNUMA) {
5178     if (!Linux::libnuma_init()) {
5179       UseNUMA = false;
5180     } else {
5181       if ((Linux::numa_max_node() < 1)) {
5182         // There's only one node(they start from 0), disable NUMA.
5183         UseNUMA = false;
5184       }
5185     }
5186     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5187     // we can make the adaptive lgrp chunk resizing work. If the user specified
5188     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
5189     // disable adaptive resizing.
5190     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5191       if (FLAG_IS_DEFAULT(UseNUMA)) {
5192         UseNUMA = false;
5193       } else {
5194         if (FLAG_IS_DEFAULT(UseLargePages) &&
5195             FLAG_IS_DEFAULT(UseSHM) &&
5196             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
5197           UseLargePages = false;
5198         } else {
5199           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
5200           UseAdaptiveSizePolicy = false;
5201           UseAdaptiveNUMAChunkSizing = false;
5202         }
5203       }
5204     }
5205     if (!UseNUMA && ForceNUMA) {
5206       UseNUMA = true;
5207     }
5208   }
5209 
5210   if (MaxFDLimit) {
5211     // set the number of file descriptors to max. print out error
5212     // if getrlimit/setrlimit fails but continue regardless.
5213     struct rlimit nbr_files;
5214     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5215     if (status != 0) {
5216       if (PrintMiscellaneous && (Verbose || WizardMode))
5217         perror("os::init_2 getrlimit failed");
5218     } else {
5219       nbr_files.rlim_cur = nbr_files.rlim_max;
5220       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5221       if (status != 0) {
5222         if (PrintMiscellaneous && (Verbose || WizardMode))
5223           perror("os::init_2 setrlimit failed");
5224       }
5225     }
5226   }
5227 
5228   // Initialize lock used to serialize thread creation (see os::create_thread)
5229   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5230 
5231   // at-exit methods are called in the reverse order of their registration.
5232   // atexit functions are called on return from main or as a result of a
5233   // call to exit(3C). There can be only 32 of these functions registered
5234   // and atexit() does not set errno.
5235 
5236   if (PerfAllowAtExitRegistration) {
5237     // only register atexit functions if PerfAllowAtExitRegistration is set.
5238     // atexit functions can be delayed until process exit time, which
5239     // can be problematic for embedded VM situations. Embedded VMs should
5240     // call DestroyJavaVM() to assure that VM resources are released.
5241 
5242     // note: perfMemory_exit_helper atexit function may be removed in
5243     // the future if the appropriate cleanup code can be added to the
5244     // VM_Exit VMOperation's doit method.
5245     if (atexit(perfMemory_exit_helper) != 0) {
5246       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5247     }
5248   }
5249 
5250   // initialize thread priority policy
5251   prio_init();
5252 
5253   return JNI_OK;
5254 }
5255 
5256 // Mark the polling page as unreadable
5257 void os::make_polling_page_unreadable(void) {
5258   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5259     fatal("Could not disable polling page");
5260 };
5261 
5262 // Mark the polling page as readable
5263 void os::make_polling_page_readable(void) {
5264   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5265     fatal("Could not enable polling page");
5266   }
5267 };
5268 
5269 static int os_cpu_count(const cpu_set_t* cpus) {
5270   int count = 0;
5271   // only look up to the number of configured processors
5272   for (int i = 0; i < os::processor_count(); i++) {
5273     if (CPU_ISSET(i, cpus)) {
5274       count++;
5275     }
5276   }
5277   return count;
5278 }
5279 
5280 // Get the current number of available processors for this process.
5281 // This value can change at any time during a process's lifetime.
5282 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5283 // If anything goes wrong we fallback to returning the number of online
5284 // processors - which can be greater than the number available to the process.
5285 int os::Linux::active_processor_count() {
5286   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5287   int cpus_size = sizeof(cpu_set_t);
5288   int cpu_count = 0;
5289 
5290   // pid 0 means the current thread - which we have to assume represents the process
5291   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
5292     cpu_count = os_cpu_count(&cpus);
5293     if (PrintActiveCpus) {
5294       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5295     }
5296   }
5297   else {
5298     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5299     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5300             "which may exceed available processors", strerror(errno), cpu_count);
5301   }
5302 
5303   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5304   return cpu_count;
5305 }
5306 
5307 // Determine the active processor count from one of
5308 // three different sources:
5309 //
5310 // 1. User option -XX:ActiveProcessorCount
5311 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5312 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5313 //
5314 // Option 1, if specified, will always override.
5315 // If the cgroup subsystem is active and configured, we
5316 // will return the min of the cgroup and option 2 results.
5317 // This is required since tools, such as numactl, that
5318 // alter cpu affinity do not update cgroup subsystem
5319 // cpuset configuration files.
5320 int os::active_processor_count() {
5321   // User has overridden the number of active processors
5322   if (ActiveProcessorCount > 0) {
5323     if (PrintActiveCpus) {
5324       tty->print_cr("active_processor_count: "
5325                     "active processor count set by user : %d",
5326                     ActiveProcessorCount);
5327     }
5328     return ActiveProcessorCount;
5329   }
5330 
5331   int active_cpus;
5332   if (OSContainer::is_containerized()) {
5333     active_cpus = OSContainer::active_processor_count();
5334     if (PrintActiveCpus) {
5335       tty->print_cr("active_processor_count: determined by OSContainer: %d",
5336                      active_cpus);
5337     }
5338   } else {
5339     active_cpus = os::Linux::active_processor_count();
5340   }
5341 
5342   return active_cpus;
5343 }
5344 
5345 void os::set_native_thread_name(const char *name) {
5346   // Not yet implemented.
5347   return;
5348 }
5349 
5350 bool os::distribute_processes(uint length, uint* distribution) {
5351   // Not yet implemented.
5352   return false;
5353 }
5354 
5355 bool os::bind_to_processor(uint processor_id) {
5356   // Not yet implemented.
5357   return false;
5358 }
5359 
5360 ///
5361 
5362 void os::SuspendedThreadTask::internal_do_task() {
5363   if (do_suspend(_thread->osthread())) {
5364     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5365     do_task(context);
5366     do_resume(_thread->osthread());
5367   }
5368 }
5369 
5370 class PcFetcher : public os::SuspendedThreadTask {
5371 public:
5372   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5373   ExtendedPC result();
5374 protected:
5375   void do_task(const os::SuspendedThreadTaskContext& context);
5376 private:
5377   ExtendedPC _epc;
5378 };
5379 
5380 ExtendedPC PcFetcher::result() {
5381   guarantee(is_done(), "task is not done yet.");
5382   return _epc;
5383 }
5384 
5385 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5386   Thread* thread = context.thread();
5387   OSThread* osthread = thread->osthread();
5388   if (osthread->ucontext() != NULL) {
5389     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5390   } else {
5391     // NULL context is unexpected, double-check this is the VMThread
5392     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5393   }
5394 }
5395 
5396 // Suspends the target using the signal mechanism and then grabs the PC before
5397 // resuming the target. Used by the flat-profiler only
5398 ExtendedPC os::get_thread_pc(Thread* thread) {
5399   // Make sure that it is called by the watcher for the VMThread
5400   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5401   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5402 
5403   PcFetcher fetcher(thread);
5404   fetcher.run();
5405   return fetcher.result();
5406 }
5407 
5408 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5409 {
5410    if (is_NPTL()) {
5411       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5412    } else {
5413       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5414       // word back to default 64bit precision if condvar is signaled. Java
5415       // wants 53bit precision.  Save and restore current value.
5416       int fpu = get_fpu_control_word();
5417       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5418       set_fpu_control_word(fpu);
5419       return status;
5420    }
5421 }
5422 
5423 ////////////////////////////////////////////////////////////////////////////////
5424 // debug support
5425 
5426 bool os::find(address addr, outputStream* st) {
5427   Dl_info dlinfo;
5428   memset(&dlinfo, 0, sizeof(dlinfo));
5429   if (dladdr(addr, &dlinfo) != 0) {
5430     st->print(PTR_FORMAT ": ", addr);
5431     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5432       st->print("%s+%#x", dlinfo.dli_sname,
5433                  addr - (intptr_t)dlinfo.dli_saddr);
5434     } else if (dlinfo.dli_fbase != NULL) {
5435       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5436     } else {
5437       st->print("<absolute address>");
5438     }
5439     if (dlinfo.dli_fname != NULL) {
5440       st->print(" in %s", dlinfo.dli_fname);
5441     }
5442     if (dlinfo.dli_fbase != NULL) {
5443       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5444     }
5445     st->cr();
5446 
5447     if (Verbose) {
5448       // decode some bytes around the PC
5449       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5450       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5451       address       lowest = (address) dlinfo.dli_sname;
5452       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5453       if (begin < lowest)  begin = lowest;
5454       Dl_info dlinfo2;
5455       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5456           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5457         end = (address) dlinfo2.dli_saddr;
5458       Disassembler::decode(begin, end, st);
5459     }
5460     return true;
5461   }
5462   return false;
5463 }
5464 
5465 ////////////////////////////////////////////////////////////////////////////////
5466 // misc
5467 
5468 // This does not do anything on Linux. This is basically a hook for being
5469 // able to use structured exception handling (thread-local exception filters)
5470 // on, e.g., Win32.
5471 void
5472 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5473                          JavaCallArguments* args, Thread* thread) {
5474   f(value, method, args, thread);
5475 }
5476 
5477 void os::print_statistics() {
5478 }
5479 
5480 int os::message_box(const char* title, const char* message) {
5481   int i;
5482   fdStream err(defaultStream::error_fd());
5483   for (i = 0; i < 78; i++) err.print_raw("=");
5484   err.cr();
5485   err.print_raw_cr(title);
5486   for (i = 0; i < 78; i++) err.print_raw("-");
5487   err.cr();
5488   err.print_raw_cr(message);
5489   for (i = 0; i < 78; i++) err.print_raw("=");
5490   err.cr();
5491 
5492   char buf[16];
5493   // Prevent process from exiting upon "read error" without consuming all CPU
5494   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5495 
5496   return buf[0] == 'y' || buf[0] == 'Y';
5497 }
5498 
5499 int os::stat(const char *path, struct stat *sbuf) {
5500   char pathbuf[MAX_PATH];
5501   if (strlen(path) > MAX_PATH - 1) {
5502     errno = ENAMETOOLONG;
5503     return -1;
5504   }
5505   os::native_path(strcpy(pathbuf, path));
5506   return ::stat(pathbuf, sbuf);
5507 }
5508 
5509 bool os::check_heap(bool force) {
5510   return true;
5511 }
5512 
5513 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5514   return ::vsnprintf(buf, count, format, args);
5515 }
5516 
5517 // Is a (classpath) directory empty?
5518 bool os::dir_is_empty(const char* path) {
5519   DIR *dir = NULL;
5520   struct dirent *ptr;
5521 
5522   dir = opendir(path);
5523   if (dir == NULL) return true;
5524 
5525   /* Scan the directory */
5526   bool result = true;
5527   char buf[sizeof(struct dirent) + MAX_PATH];
5528   while (result && (ptr = ::readdir(dir)) != NULL) {
5529     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5530       result = false;
5531     }
5532   }
5533   closedir(dir);
5534   return result;
5535 }
5536 
5537 // This code originates from JDK's sysOpen and open64_w
5538 // from src/solaris/hpi/src/system_md.c
5539 
5540 #ifndef O_DELETE
5541 #define O_DELETE 0x10000
5542 #endif
5543 
5544 // Open a file. Unlink the file immediately after open returns
5545 // if the specified oflag has the O_DELETE flag set.
5546 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5547 
5548 int os::open(const char *path, int oflag, int mode) {
5549 
5550   if (strlen(path) > MAX_PATH - 1) {
5551     errno = ENAMETOOLONG;
5552     return -1;
5553   }
5554   int fd;
5555   int o_delete = (oflag & O_DELETE);
5556   oflag = oflag & ~O_DELETE;
5557 
5558   fd = ::open64(path, oflag, mode);
5559   if (fd == -1) return -1;
5560 
5561   //If the open succeeded, the file might still be a directory
5562   {
5563     struct stat64 buf64;
5564     int ret = ::fstat64(fd, &buf64);
5565     int st_mode = buf64.st_mode;
5566 
5567     if (ret != -1) {
5568       if ((st_mode & S_IFMT) == S_IFDIR) {
5569         errno = EISDIR;
5570         ::close(fd);
5571         return -1;
5572       }
5573     } else {
5574       ::close(fd);
5575       return -1;
5576     }
5577   }
5578 
5579     /*
5580      * All file descriptors that are opened in the JVM and not
5581      * specifically destined for a subprocess should have the
5582      * close-on-exec flag set.  If we don't set it, then careless 3rd
5583      * party native code might fork and exec without closing all
5584      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5585      * UNIXProcess.c), and this in turn might:
5586      *
5587      * - cause end-of-file to fail to be detected on some file
5588      *   descriptors, resulting in mysterious hangs, or
5589      *
5590      * - might cause an fopen in the subprocess to fail on a system
5591      *   suffering from bug 1085341.
5592      *
5593      * (Yes, the default setting of the close-on-exec flag is a Unix
5594      * design flaw)
5595      *
5596      * See:
5597      * 1085341: 32-bit stdio routines should support file descriptors >255
5598      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5599      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5600      */
5601 #ifdef FD_CLOEXEC
5602     {
5603         int flags = ::fcntl(fd, F_GETFD);
5604         if (flags != -1)
5605             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5606     }
5607 #endif
5608 
5609   if (o_delete != 0) {
5610     ::unlink(path);
5611   }
5612   return fd;
5613 }
5614 
5615 
5616 // create binary file, rewriting existing file if required
5617 int os::create_binary_file(const char* path, bool rewrite_existing) {
5618   int oflags = O_WRONLY | O_CREAT;
5619   if (!rewrite_existing) {
5620     oflags |= O_EXCL;
5621   }
5622   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5623 }
5624 
5625 // return current position of file pointer
5626 jlong os::current_file_offset(int fd) {
5627   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5628 }
5629 
5630 // move file pointer to the specified offset
5631 jlong os::seek_to_file_offset(int fd, jlong offset) {
5632   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5633 }
5634 
5635 // This code originates from JDK's sysAvailable
5636 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5637 
5638 int os::available(int fd, jlong *bytes) {
5639   jlong cur, end;
5640   int mode;
5641   struct stat64 buf64;
5642 
5643   if (::fstat64(fd, &buf64) >= 0) {
5644     mode = buf64.st_mode;
5645     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5646       /*
5647       * XXX: is the following call interruptible? If so, this might
5648       * need to go through the INTERRUPT_IO() wrapper as for other
5649       * blocking, interruptible calls in this file.
5650       */
5651       int n;
5652       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5653         *bytes = n;
5654         return 1;
5655       }
5656     }
5657   }
5658   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5659     return 0;
5660   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5661     return 0;
5662   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5663     return 0;
5664   }
5665   *bytes = end - cur;
5666   return 1;
5667 }
5668 
5669 int os::socket_available(int fd, jint *pbytes) {
5670   // Linux doc says EINTR not returned, unlike Solaris
5671   int ret = ::ioctl(fd, FIONREAD, pbytes);
5672 
5673   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5674   // is expected to return 0 on failure and 1 on success to the jdk.
5675   return (ret < 0) ? 0 : 1;
5676 }
5677 
5678 // Map a block of memory.
5679 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5680                      char *addr, size_t bytes, bool read_only,
5681                      bool allow_exec) {
5682   int prot;
5683   int flags = MAP_PRIVATE;
5684 
5685   if (read_only) {
5686     prot = PROT_READ;
5687   } else {
5688     prot = PROT_READ | PROT_WRITE;
5689   }
5690 
5691   if (allow_exec) {
5692     prot |= PROT_EXEC;
5693   }
5694 
5695   if (addr != NULL) {
5696     flags |= MAP_FIXED;
5697   }
5698 
5699   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5700                                      fd, file_offset);
5701   if (mapped_address == MAP_FAILED) {
5702     return NULL;
5703   }
5704   return mapped_address;
5705 }
5706 
5707 
5708 // Remap a block of memory.
5709 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5710                        char *addr, size_t bytes, bool read_only,
5711                        bool allow_exec) {
5712   // same as map_memory() on this OS
5713   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5714                         allow_exec);
5715 }
5716 
5717 
5718 // Unmap a block of memory.
5719 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5720   return munmap(addr, bytes) == 0;
5721 }
5722 
5723 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5724 
5725 static clockid_t thread_cpu_clockid(Thread* thread) {
5726   pthread_t tid = thread->osthread()->pthread_id();
5727   clockid_t clockid;
5728 
5729   // Get thread clockid
5730   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5731   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5732   return clockid;
5733 }
5734 
5735 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5736 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5737 // of a thread.
5738 //
5739 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5740 // the fast estimate available on the platform.
5741 
5742 jlong os::current_thread_cpu_time() {
5743   if (os::Linux::supports_fast_thread_cpu_time()) {
5744     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5745   } else {
5746     // return user + sys since the cost is the same
5747     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5748   }
5749 }
5750 
5751 jlong os::thread_cpu_time(Thread* thread) {
5752   // consistent with what current_thread_cpu_time() returns
5753   if (os::Linux::supports_fast_thread_cpu_time()) {
5754     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5755   } else {
5756     return slow_thread_cpu_time(thread, true /* user + sys */);
5757   }
5758 }
5759 
5760 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5761   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5762     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5763   } else {
5764     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5765   }
5766 }
5767 
5768 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5769   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5770     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5771   } else {
5772     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5773   }
5774 }
5775 
5776 //
5777 //  -1 on error.
5778 //
5779 
5780 PRAGMA_DIAG_PUSH
5781 PRAGMA_FORMAT_NONLITERAL_IGNORED
5782 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5783   static bool proc_task_unchecked = true;
5784   static const char *proc_stat_path = "/proc/%d/stat";
5785   pid_t  tid = thread->osthread()->thread_id();
5786   char *s;
5787   char stat[2048];
5788   int statlen;
5789   char proc_name[64];
5790   int count;
5791   long sys_time, user_time;
5792   char cdummy;
5793   int idummy;
5794   long ldummy;
5795   FILE *fp;
5796 
5797   // The /proc/<tid>/stat aggregates per-process usage on
5798   // new Linux kernels 2.6+ where NPTL is supported.
5799   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5800   // See bug 6328462.
5801   // There possibly can be cases where there is no directory
5802   // /proc/self/task, so we check its availability.
5803   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5804     // This is executed only once
5805     proc_task_unchecked = false;
5806     fp = fopen("/proc/self/task", "r");
5807     if (fp != NULL) {
5808       proc_stat_path = "/proc/self/task/%d/stat";
5809       fclose(fp);
5810     }
5811   }
5812 
5813   sprintf(proc_name, proc_stat_path, tid);
5814   fp = fopen(proc_name, "r");
5815   if ( fp == NULL ) return -1;
5816   statlen = fread(stat, 1, 2047, fp);
5817   stat[statlen] = '\0';
5818   fclose(fp);
5819 
5820   // Skip pid and the command string. Note that we could be dealing with
5821   // weird command names, e.g. user could decide to rename java launcher
5822   // to "java 1.4.2 :)", then the stat file would look like
5823   //                1234 (java 1.4.2 :)) R ... ...
5824   // We don't really need to know the command string, just find the last
5825   // occurrence of ")" and then start parsing from there. See bug 4726580.
5826   s = strrchr(stat, ')');
5827   if (s == NULL ) return -1;
5828 
5829   // Skip blank chars
5830   do s++; while (isspace(*s));
5831 
5832   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5833                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5834                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5835                  &user_time, &sys_time);
5836   if ( count != 13 ) return -1;
5837   if (user_sys_cpu_time) {
5838     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5839   } else {
5840     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5841   }
5842 }
5843 PRAGMA_DIAG_POP
5844 
5845 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5846   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5847   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5848   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5849   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5850 }
5851 
5852 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5853   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5854   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5855   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5856   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5857 }
5858 
5859 bool os::is_thread_cpu_time_supported() {
5860   return true;
5861 }
5862 
5863 // System loadavg support.  Returns -1 if load average cannot be obtained.
5864 // Linux doesn't yet have a (official) notion of processor sets,
5865 // so just return the system wide load average.
5866 int os::loadavg(double loadavg[], int nelem) {
5867   return ::getloadavg(loadavg, nelem);
5868 }
5869 
5870 void os::pause() {
5871   char filename[MAX_PATH];
5872   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5873     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5874   } else {
5875     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5876   }
5877 
5878   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5879   if (fd != -1) {
5880     struct stat buf;
5881     ::close(fd);
5882     while (::stat(filename, &buf) == 0) {
5883       (void)::poll(NULL, 0, 100);
5884     }
5885   } else {
5886     jio_fprintf(stderr,
5887       "Could not open pause file '%s', continuing immediately.\n", filename);
5888   }
5889 }
5890 
5891 
5892 // Refer to the comments in os_solaris.cpp park-unpark.
5893 //
5894 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5895 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5896 // For specifics regarding the bug see GLIBC BUGID 261237 :
5897 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5898 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5899 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5900 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5901 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5902 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5903 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5904 // of libpthread avoids the problem, but isn't practical.
5905 //
5906 // Possible remedies:
5907 //
5908 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5909 //      This is palliative and probabilistic, however.  If the thread is preempted
5910 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5911 //      than the minimum period may have passed, and the abstime may be stale (in the
5912 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5913 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5914 //
5915 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5916 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5917 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5918 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5919 //      thread.
5920 //
5921 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5922 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5923 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5924 //      This also works well.  In fact it avoids kernel-level scalability impediments
5925 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5926 //      timers in a graceful fashion.
5927 //
5928 // 4.   When the abstime value is in the past it appears that control returns
5929 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5930 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5931 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5932 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5933 //      It may be possible to avoid reinitialization by checking the return
5934 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5935 //      condvar we must establish the invariant that cond_signal() is only called
5936 //      within critical sections protected by the adjunct mutex.  This prevents
5937 //      cond_signal() from "seeing" a condvar that's in the midst of being
5938 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5939 //      desirable signal-after-unlock optimization that avoids futile context switching.
5940 //
5941 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5942 //      structure when a condvar is used or initialized.  cond_destroy()  would
5943 //      release the helper structure.  Our reinitialize-after-timedwait fix
5944 //      put excessive stress on malloc/free and locks protecting the c-heap.
5945 //
5946 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5947 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5948 // and only enabling the work-around for vulnerable environments.
5949 
5950 // utility to compute the abstime argument to timedwait:
5951 // millis is the relative timeout time
5952 // abstime will be the absolute timeout time
5953 // TODO: replace compute_abstime() with unpackTime()
5954 
5955 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5956   if (millis < 0)  millis = 0;
5957 
5958   jlong seconds = millis / 1000;
5959   millis %= 1000;
5960   if (seconds > 50000000) { // see man cond_timedwait(3T)
5961     seconds = 50000000;
5962   }
5963 
5964   if (os::Linux::supports_monotonic_clock()) {
5965     struct timespec now;
5966     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5967     assert_status(status == 0, status, "clock_gettime");
5968     abstime->tv_sec = now.tv_sec  + seconds;
5969     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5970     if (nanos >= NANOSECS_PER_SEC) {
5971       abstime->tv_sec += 1;
5972       nanos -= NANOSECS_PER_SEC;
5973     }
5974     abstime->tv_nsec = nanos;
5975   } else {
5976     struct timeval now;
5977     int status = gettimeofday(&now, NULL);
5978     assert(status == 0, "gettimeofday");
5979     abstime->tv_sec = now.tv_sec  + seconds;
5980     long usec = now.tv_usec + millis * 1000;
5981     if (usec >= 1000000) {
5982       abstime->tv_sec += 1;
5983       usec -= 1000000;
5984     }
5985     abstime->tv_nsec = usec * 1000;
5986   }
5987   return abstime;
5988 }
5989 
5990 
5991 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5992 // Conceptually TryPark() should be equivalent to park(0).
5993 
5994 int os::PlatformEvent::TryPark() {
5995   for (;;) {
5996     const int v = _Event ;
5997     guarantee ((v == 0) || (v == 1), "invariant") ;
5998     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5999   }
6000 }
6001 
6002 void os::PlatformEvent::park() {       // AKA "down()"
6003   // Invariant: Only the thread associated with the Event/PlatformEvent
6004   // may call park().
6005   // TODO: assert that _Assoc != NULL or _Assoc == Self
6006   int v ;
6007   for (;;) {
6008       v = _Event ;
6009       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6010   }
6011   guarantee (v >= 0, "invariant") ;
6012   if (v == 0) {
6013      // Do this the hard way by blocking ...
6014      int status = pthread_mutex_lock(_mutex);
6015      assert_status(status == 0, status, "mutex_lock");
6016      guarantee (_nParked == 0, "invariant") ;
6017      ++ _nParked ;
6018      while (_Event < 0) {
6019         status = pthread_cond_wait(_cond, _mutex);
6020         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
6021         // Treat this the same as if the wait was interrupted
6022         if (status == ETIME) { status = EINTR; }
6023         assert_status(status == 0 || status == EINTR, status, "cond_wait");
6024      }
6025      -- _nParked ;
6026 
6027     _Event = 0 ;
6028      status = pthread_mutex_unlock(_mutex);
6029      assert_status(status == 0, status, "mutex_unlock");
6030     // Paranoia to ensure our locked and lock-free paths interact
6031     // correctly with each other.
6032     OrderAccess::fence();
6033   }
6034   guarantee (_Event >= 0, "invariant") ;
6035 }
6036 
6037 int os::PlatformEvent::park(jlong millis) {
6038   guarantee (_nParked == 0, "invariant") ;
6039 
6040   int v ;
6041   for (;;) {
6042       v = _Event ;
6043       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
6044   }
6045   guarantee (v >= 0, "invariant") ;
6046   if (v != 0) return OS_OK ;
6047 
6048   // We do this the hard way, by blocking the thread.
6049   // Consider enforcing a minimum timeout value.
6050   struct timespec abst;
6051   compute_abstime(&abst, millis);
6052 
6053   int ret = OS_TIMEOUT;
6054   int status = pthread_mutex_lock(_mutex);
6055   assert_status(status == 0, status, "mutex_lock");
6056   guarantee (_nParked == 0, "invariant") ;
6057   ++_nParked ;
6058 
6059   // Object.wait(timo) will return because of
6060   // (a) notification
6061   // (b) timeout
6062   // (c) thread.interrupt
6063   //
6064   // Thread.interrupt and object.notify{All} both call Event::set.
6065   // That is, we treat thread.interrupt as a special case of notification.
6066   // The underlying Solaris implementation, cond_timedwait, admits
6067   // spurious/premature wakeups, but the JLS/JVM spec prevents the
6068   // JVM from making those visible to Java code.  As such, we must
6069   // filter out spurious wakeups.  We assume all ETIME returns are valid.
6070   //
6071   // TODO: properly differentiate simultaneous notify+interrupt.
6072   // In that case, we should propagate the notify to another waiter.
6073 
6074   while (_Event < 0) {
6075     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
6076     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6077       pthread_cond_destroy (_cond);
6078       pthread_cond_init (_cond, os::Linux::condAttr()) ;
6079     }
6080     assert_status(status == 0 || status == EINTR ||
6081                   status == ETIME || status == ETIMEDOUT,
6082                   status, "cond_timedwait");
6083     if (!FilterSpuriousWakeups) break ;                 // previous semantics
6084     if (status == ETIME || status == ETIMEDOUT) break ;
6085     // We consume and ignore EINTR and spurious wakeups.
6086   }
6087   --_nParked ;
6088   if (_Event >= 0) {
6089      ret = OS_OK;
6090   }
6091   _Event = 0 ;
6092   status = pthread_mutex_unlock(_mutex);
6093   assert_status(status == 0, status, "mutex_unlock");
6094   assert (_nParked == 0, "invariant") ;
6095   // Paranoia to ensure our locked and lock-free paths interact
6096   // correctly with each other.
6097   OrderAccess::fence();
6098   return ret;
6099 }
6100 
6101 void os::PlatformEvent::unpark() {
6102   // Transitions for _Event:
6103   //    0 :=> 1
6104   //    1 :=> 1
6105   //   -1 :=> either 0 or 1; must signal target thread
6106   //          That is, we can safely transition _Event from -1 to either
6107   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
6108   //          unpark() calls.
6109   // See also: "Semaphores in Plan 9" by Mullender & Cox
6110   //
6111   // Note: Forcing a transition from "-1" to "1" on an unpark() means
6112   // that it will take two back-to-back park() calls for the owning
6113   // thread to block. This has the benefit of forcing a spurious return
6114   // from the first park() call after an unpark() call which will help
6115   // shake out uses of park() and unpark() without condition variables.
6116 
6117   if (Atomic::xchg(1, &_Event) >= 0) return;
6118 
6119   // Wait for the thread associated with the event to vacate
6120   int status = pthread_mutex_lock(_mutex);
6121   assert_status(status == 0, status, "mutex_lock");
6122   int AnyWaiters = _nParked;
6123   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
6124   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
6125     AnyWaiters = 0;
6126     pthread_cond_signal(_cond);
6127   }
6128   status = pthread_mutex_unlock(_mutex);
6129   assert_status(status == 0, status, "mutex_unlock");
6130   if (AnyWaiters != 0) {
6131     status = pthread_cond_signal(_cond);
6132     assert_status(status == 0, status, "cond_signal");
6133   }
6134 
6135   // Note that we signal() _after dropping the lock for "immortal" Events.
6136   // This is safe and avoids a common class of  futile wakeups.  In rare
6137   // circumstances this can cause a thread to return prematurely from
6138   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
6139   // simply re-test the condition and re-park itself.
6140 }
6141 
6142 
6143 // JSR166
6144 // -------------------------------------------------------
6145 
6146 /*
6147  * The solaris and linux implementations of park/unpark are fairly
6148  * conservative for now, but can be improved. They currently use a
6149  * mutex/condvar pair, plus a a count.
6150  * Park decrements count if > 0, else does a condvar wait.  Unpark
6151  * sets count to 1 and signals condvar.  Only one thread ever waits
6152  * on the condvar. Contention seen when trying to park implies that someone
6153  * is unparking you, so don't wait. And spurious returns are fine, so there
6154  * is no need to track notifications.
6155  */
6156 
6157 /*
6158  * This code is common to linux and solaris and will be moved to a
6159  * common place in dolphin.
6160  *
6161  * The passed in time value is either a relative time in nanoseconds
6162  * or an absolute time in milliseconds. Either way it has to be unpacked
6163  * into suitable seconds and nanoseconds components and stored in the
6164  * given timespec structure.
6165  * Given time is a 64-bit value and the time_t used in the timespec is only
6166  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
6167  * overflow if times way in the future are given. Further on Solaris versions
6168  * prior to 10 there is a restriction (see cond_timedwait) that the specified
6169  * number of seconds, in abstime, is less than current_time  + 100,000,000.
6170  * As it will be 28 years before "now + 100000000" will overflow we can
6171  * ignore overflow and just impose a hard-limit on seconds using the value
6172  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
6173  * years from "now".
6174  */
6175 
6176 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
6177   assert (time > 0, "convertTime");
6178   time_t max_secs = 0;
6179 
6180   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
6181     struct timeval now;
6182     int status = gettimeofday(&now, NULL);
6183     assert(status == 0, "gettimeofday");
6184 
6185     max_secs = now.tv_sec + MAX_SECS;
6186 
6187     if (isAbsolute) {
6188       jlong secs = time / 1000;
6189       if (secs > max_secs) {
6190         absTime->tv_sec = max_secs;
6191       } else {
6192         absTime->tv_sec = secs;
6193       }
6194       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6195     } else {
6196       jlong secs = time / NANOSECS_PER_SEC;
6197       if (secs >= MAX_SECS) {
6198         absTime->tv_sec = max_secs;
6199         absTime->tv_nsec = 0;
6200       } else {
6201         absTime->tv_sec = now.tv_sec + secs;
6202         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6203         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6204           absTime->tv_nsec -= NANOSECS_PER_SEC;
6205           ++absTime->tv_sec; // note: this must be <= max_secs
6206         }
6207       }
6208     }
6209   } else {
6210     // must be relative using monotonic clock
6211     struct timespec now;
6212     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
6213     assert_status(status == 0, status, "clock_gettime");
6214     max_secs = now.tv_sec + MAX_SECS;
6215     jlong secs = time / NANOSECS_PER_SEC;
6216     if (secs >= MAX_SECS) {
6217       absTime->tv_sec = max_secs;
6218       absTime->tv_nsec = 0;
6219     } else {
6220       absTime->tv_sec = now.tv_sec + secs;
6221       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
6222       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6223         absTime->tv_nsec -= NANOSECS_PER_SEC;
6224         ++absTime->tv_sec; // note: this must be <= max_secs
6225       }
6226     }
6227   }
6228   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6229   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6230   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6231   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6232 }
6233 
6234 void Parker::park(bool isAbsolute, jlong time) {
6235   // Ideally we'd do something useful while spinning, such
6236   // as calling unpackTime().
6237 
6238   // Optional fast-path check:
6239   // Return immediately if a permit is available.
6240   // We depend on Atomic::xchg() having full barrier semantics
6241   // since we are doing a lock-free update to _counter.
6242   if (Atomic::xchg(0, &_counter) > 0) return;
6243 
6244   Thread* thread = Thread::current();
6245   assert(thread->is_Java_thread(), "Must be JavaThread");
6246   JavaThread *jt = (JavaThread *)thread;
6247 
6248   // Optional optimization -- avoid state transitions if there's an interrupt pending.
6249   // Check interrupt before trying to wait
6250   if (Thread::is_interrupted(thread, false)) {
6251     return;
6252   }
6253 
6254   // Next, demultiplex/decode time arguments
6255   timespec absTime;
6256   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6257     return;
6258   }
6259   if (time > 0) {
6260     unpackTime(&absTime, isAbsolute, time);
6261   }
6262 
6263 
6264   // Enter safepoint region
6265   // Beware of deadlocks such as 6317397.
6266   // The per-thread Parker:: mutex is a classic leaf-lock.
6267   // In particular a thread must never block on the Threads_lock while
6268   // holding the Parker:: mutex.  If safepoints are pending both the
6269   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6270   ThreadBlockInVM tbivm(jt);
6271 
6272   // Don't wait if cannot get lock since interference arises from
6273   // unblocking.  Also. check interrupt before trying wait
6274   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
6275     return;
6276   }
6277 
6278   int status ;
6279   if (_counter > 0)  { // no wait needed
6280     _counter = 0;
6281     status = pthread_mutex_unlock(_mutex);
6282     assert (status == 0, "invariant") ;
6283     // Paranoia to ensure our locked and lock-free paths interact
6284     // correctly with each other and Java-level accesses.
6285     OrderAccess::fence();
6286     return;
6287   }
6288 
6289 #ifdef ASSERT
6290   // Don't catch signals while blocked; let the running threads have the signals.
6291   // (This allows a debugger to break into the running thread.)
6292   sigset_t oldsigs;
6293   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
6294   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6295 #endif
6296 
6297   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6298   jt->set_suspend_equivalent();
6299   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6300 
6301   assert(_cur_index == -1, "invariant");
6302   if (time == 0) {
6303     _cur_index = REL_INDEX; // arbitrary choice when not timed
6304     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
6305   } else {
6306     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
6307     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
6308     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6309       pthread_cond_destroy (&_cond[_cur_index]) ;
6310       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
6311     }
6312   }
6313   _cur_index = -1;
6314   assert_status(status == 0 || status == EINTR ||
6315                 status == ETIME || status == ETIMEDOUT,
6316                 status, "cond_timedwait");
6317 
6318 #ifdef ASSERT
6319   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6320 #endif
6321 
6322   _counter = 0 ;
6323   status = pthread_mutex_unlock(_mutex) ;
6324   assert_status(status == 0, status, "invariant") ;
6325   // Paranoia to ensure our locked and lock-free paths interact
6326   // correctly with each other and Java-level accesses.
6327   OrderAccess::fence();
6328 
6329   // If externally suspended while waiting, re-suspend
6330   if (jt->handle_special_suspend_equivalent_condition()) {
6331     jt->java_suspend_self();
6332   }
6333 }
6334 
6335 void Parker::unpark() {
6336   int s, status ;
6337   status = pthread_mutex_lock(_mutex);
6338   assert (status == 0, "invariant") ;
6339   s = _counter;
6340   _counter = 1;
6341   if (s < 1) {
6342     // thread might be parked
6343     if (_cur_index != -1) {
6344       // thread is definitely parked
6345       if (WorkAroundNPTLTimedWaitHang) {
6346         status = pthread_cond_signal (&_cond[_cur_index]);
6347         assert (status == 0, "invariant");
6348         status = pthread_mutex_unlock(_mutex);
6349         assert (status == 0, "invariant");
6350       } else {
6351         // must capture correct index before unlocking
6352         int index = _cur_index;
6353         status = pthread_mutex_unlock(_mutex);
6354         assert (status == 0, "invariant");
6355         status = pthread_cond_signal (&_cond[index]);
6356         assert (status == 0, "invariant");
6357       }
6358     } else {
6359       pthread_mutex_unlock(_mutex);
6360       assert (status == 0, "invariant") ;
6361     }
6362   } else {
6363     pthread_mutex_unlock(_mutex);
6364     assert (status == 0, "invariant") ;
6365   }
6366 }
6367 
6368 
6369 extern char** environ;
6370 
6371 // Run the specified command in a separate process. Return its exit value,
6372 // or -1 on failure (e.g. can't fork a new process).
6373 // Unlike system(), this function can be called from signal handler. It
6374 // doesn't block SIGINT et al.
6375 int os::fork_and_exec(char* cmd) {
6376   const char * argv[4] = {"sh", "-c", cmd, NULL};
6377 
6378   pid_t pid = fork();
6379 
6380   if (pid < 0) {
6381     // fork failed
6382     return -1;
6383 
6384   } else if (pid == 0) {
6385     // child process
6386 
6387     execve("/bin/sh", (char* const*)argv, environ);
6388 
6389     // execve failed
6390     _exit(-1);
6391 
6392   } else  {
6393     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6394     // care about the actual exit code, for now.
6395 
6396     int status;
6397 
6398     // Wait for the child process to exit.  This returns immediately if
6399     // the child has already exited. */
6400     while (waitpid(pid, &status, 0) < 0) {
6401         switch (errno) {
6402         case ECHILD: return 0;
6403         case EINTR: break;
6404         default: return -1;
6405         }
6406     }
6407 
6408     if (WIFEXITED(status)) {
6409        // The child exited normally; get its exit code.
6410        return WEXITSTATUS(status);
6411     } else if (WIFSIGNALED(status)) {
6412        // The child exited because of a signal
6413        // The best value to return is 0x80 + signal number,
6414        // because that is what all Unix shells do, and because
6415        // it allows callers to distinguish between process exit and
6416        // process death by signal.
6417        return 0x80 + WTERMSIG(status);
6418     } else {
6419        // Unknown exit code; pass it through
6420        return status;
6421     }
6422   }
6423 }
6424 
6425 // is_headless_jre()
6426 //
6427 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6428 // in order to report if we are running in a headless jre
6429 //
6430 // Since JDK8 xawt/libmawt.so was moved into the same directory
6431 // as libawt.so, and renamed libawt_xawt.so
6432 //
6433 bool os::is_headless_jre() {
6434     struct stat statbuf;
6435     char buf[MAXPATHLEN];
6436     char libmawtpath[MAXPATHLEN];
6437     const char *xawtstr  = "/xawt/libmawt.so";
6438     const char *new_xawtstr = "/libawt_xawt.so";
6439     char *p;
6440 
6441     // Get path to libjvm.so
6442     os::jvm_path(buf, sizeof(buf));
6443 
6444     // Get rid of libjvm.so
6445     p = strrchr(buf, '/');
6446     if (p == NULL) return false;
6447     else *p = '\0';
6448 
6449     // Get rid of client or server
6450     p = strrchr(buf, '/');
6451     if (p == NULL) return false;
6452     else *p = '\0';
6453 
6454     // check xawt/libmawt.so
6455     strcpy(libmawtpath, buf);
6456     strcat(libmawtpath, xawtstr);
6457     if (::stat(libmawtpath, &statbuf) == 0) return false;
6458 
6459     // check libawt_xawt.so
6460     strcpy(libmawtpath, buf);
6461     strcat(libmawtpath, new_xawtstr);
6462     if (::stat(libmawtpath, &statbuf) == 0) return false;
6463 
6464     return true;
6465 }
6466 
6467 // Get the default path to the core file
6468 // Returns the length of the string
6469 int os::get_core_path(char* buffer, size_t bufferSize) {
6470   const char* p = get_current_directory(buffer, bufferSize);
6471 
6472   if (p == NULL) {
6473     assert(p != NULL, "failed to get current directory");
6474     return 0;
6475   }
6476 
6477   return strlen(buffer);
6478 }
6479 
6480 /////////////// Unit tests ///////////////
6481 
6482 #ifndef PRODUCT
6483 
6484 #define test_log(...) \
6485   do {\
6486     if (VerboseInternalVMTests) { \
6487       tty->print_cr(__VA_ARGS__); \
6488       tty->flush(); \
6489     }\
6490   } while (false)
6491 
6492 class TestReserveMemorySpecial : AllStatic {
6493  public:
6494   static void small_page_write(void* addr, size_t size) {
6495     size_t page_size = os::vm_page_size();
6496 
6497     char* end = (char*)addr + size;
6498     for (char* p = (char*)addr; p < end; p += page_size) {
6499       *p = 1;
6500     }
6501   }
6502 
6503   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6504     if (!UseHugeTLBFS) {
6505       return;
6506     }
6507 
6508     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6509 
6510     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6511 
6512     if (addr != NULL) {
6513       small_page_write(addr, size);
6514 
6515       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6516     }
6517   }
6518 
6519   static void test_reserve_memory_special_huge_tlbfs_only() {
6520     if (!UseHugeTLBFS) {
6521       return;
6522     }
6523 
6524     size_t lp = os::large_page_size();
6525 
6526     for (size_t size = lp; size <= lp * 10; size += lp) {
6527       test_reserve_memory_special_huge_tlbfs_only(size);
6528     }
6529   }
6530 
6531   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6532     size_t lp = os::large_page_size();
6533     size_t ag = os::vm_allocation_granularity();
6534 
6535     // sizes to test
6536     const size_t sizes[] = {
6537       lp, lp + ag, lp + lp / 2, lp * 2,
6538       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6539       lp * 10, lp * 10 + lp / 2
6540     };
6541     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6542 
6543     // For each size/alignment combination, we test three scenarios:
6544     // 1) with req_addr == NULL
6545     // 2) with a non-null req_addr at which we expect to successfully allocate
6546     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6547     //    expect the allocation to either fail or to ignore req_addr
6548 
6549     // Pre-allocate two areas; they shall be as large as the largest allocation
6550     //  and aligned to the largest alignment we will be testing.
6551     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6552     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6553       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6554       -1, 0);
6555     assert(mapping1 != MAP_FAILED, "should work");
6556 
6557     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6558       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6559       -1, 0);
6560     assert(mapping2 != MAP_FAILED, "should work");
6561 
6562     // Unmap the first mapping, but leave the second mapping intact: the first
6563     // mapping will serve as a value for a "good" req_addr (case 2). The second
6564     // mapping, still intact, as "bad" req_addr (case 3).
6565     ::munmap(mapping1, mapping_size);
6566 
6567     // Case 1
6568     test_log("%s, req_addr NULL:", __FUNCTION__);
6569     test_log("size            align           result");
6570 
6571     for (int i = 0; i < num_sizes; i++) {
6572       const size_t size = sizes[i];
6573       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6574         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6575         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6576             size, alignment, p, (p != NULL ? "" : "(failed)"));
6577         if (p != NULL) {
6578           assert(is_ptr_aligned(p, alignment), "must be");
6579           small_page_write(p, size);
6580           os::Linux::release_memory_special_huge_tlbfs(p, size);
6581         }
6582       }
6583     }
6584 
6585     // Case 2
6586     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6587     test_log("size            align           req_addr         result");
6588 
6589     for (int i = 0; i < num_sizes; i++) {
6590       const size_t size = sizes[i];
6591       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6592         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6593         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6594         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6595             size, alignment, req_addr, p,
6596             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6597         if (p != NULL) {
6598           assert(p == req_addr, "must be");
6599           small_page_write(p, size);
6600           os::Linux::release_memory_special_huge_tlbfs(p, size);
6601         }
6602       }
6603     }
6604 
6605     // Case 3
6606     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6607     test_log("size            align           req_addr         result");
6608 
6609     for (int i = 0; i < num_sizes; i++) {
6610       const size_t size = sizes[i];
6611       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6612         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6613         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6614         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6615             size, alignment, req_addr, p,
6616             ((p != NULL ? "" : "(failed)")));
6617         // as the area around req_addr contains already existing mappings, the API should always
6618         // return NULL (as per contract, it cannot return another address)
6619         assert(p == NULL, "must be");
6620       }
6621     }
6622 
6623     ::munmap(mapping2, mapping_size);
6624 
6625   }
6626 
6627   static void test_reserve_memory_special_huge_tlbfs() {
6628     if (!UseHugeTLBFS) {
6629       return;
6630     }
6631 
6632     test_reserve_memory_special_huge_tlbfs_only();
6633     test_reserve_memory_special_huge_tlbfs_mixed();
6634   }
6635 
6636   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6637     if (!UseSHM) {
6638       return;
6639     }
6640 
6641     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6642 
6643     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6644 
6645     if (addr != NULL) {
6646       assert(is_ptr_aligned(addr, alignment), "Check");
6647       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6648 
6649       small_page_write(addr, size);
6650 
6651       os::Linux::release_memory_special_shm(addr, size);
6652     }
6653   }
6654 
6655   static void test_reserve_memory_special_shm() {
6656     size_t lp = os::large_page_size();
6657     size_t ag = os::vm_allocation_granularity();
6658 
6659     for (size_t size = ag; size < lp * 3; size += ag) {
6660       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6661         test_reserve_memory_special_shm(size, alignment);
6662       }
6663     }
6664   }
6665 
6666   static void test() {
6667     test_reserve_memory_special_huge_tlbfs();
6668     test_reserve_memory_special_shm();
6669   }
6670 };
6671 
6672 void TestReserveMemorySpecial_test() {
6673   TestReserveMemorySpecial::test();
6674 }
6675 
6676 #endif