1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/bitMap.inline.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/heapRegion.hpp"
  42 #endif // INCLUDE_ALL_GCS
  43 #ifdef TRACE_HAVE_INTRINSICS
  44 #include "trace/traceMacros.hpp"
  45 #endif
  46 
  47 #ifdef ASSERT
  48 #define __ gen()->lir(__FILE__, __LINE__)->
  49 #else
  50 #define __ gen()->lir()->
  51 #endif
  52 
  53 #ifndef PATCHED_ADDR
  54 #define PATCHED_ADDR  (max_jint)
  55 #endif
  56 
  57 void PhiResolverState::reset(int max_vregs) {
  58   // Initialize array sizes
  59   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _virtual_operands.trunc_to(0);
  61   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _other_operands.trunc_to(0);
  63   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  64   _vreg_table.trunc_to(0);
  65 }
  66 
  67 
  68 
  69 //--------------------------------------------------------------
  70 // PhiResolver
  71 
  72 // Resolves cycles:
  73 //
  74 //  r1 := r2  becomes  temp := r1
  75 //  r2 := r1           r1 := r2
  76 //                     r2 := temp
  77 // and orders moves:
  78 //
  79 //  r2 := r3  becomes  r1 := r2
  80 //  r1 := r2           r2 := r3
  81 
  82 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  83  : _gen(gen)
  84  , _state(gen->resolver_state())
  85  , _temp(LIR_OprFact::illegalOpr)
  86 {
  87   // reinitialize the shared state arrays
  88   _state.reset(max_vregs);
  89 }
  90 
  91 
  92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  93   assert(src->is_valid(), "");
  94   assert(dest->is_valid(), "");
  95   __ move(src, dest);
  96 }
  97 
  98 
  99 void PhiResolver::move_temp_to(LIR_Opr dest) {
 100   assert(_temp->is_valid(), "");
 101   emit_move(_temp, dest);
 102   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 103 }
 104 
 105 
 106 void PhiResolver::move_to_temp(LIR_Opr src) {
 107   assert(_temp->is_illegal(), "");
 108   _temp = _gen->new_register(src->type());
 109   emit_move(src, _temp);
 110 }
 111 
 112 
 113 // Traverse assignment graph in depth first order and generate moves in post order
 114 // ie. two assignments: b := c, a := b start with node c:
 115 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 116 // Generates moves in this order: move b to a and move c to b
 117 // ie. cycle a := b, b := a start with node a
 118 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 119 // Generates moves in this order: move b to temp, move a to b, move temp to a
 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 121   if (!dest->visited()) {
 122     dest->set_visited();
 123     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 124       move(dest, dest->destination_at(i));
 125     }
 126   } else if (!dest->start_node()) {
 127     // cylce in graph detected
 128     assert(_loop == NULL, "only one loop valid!");
 129     _loop = dest;
 130     move_to_temp(src->operand());
 131     return;
 132   } // else dest is a start node
 133 
 134   if (!dest->assigned()) {
 135     if (_loop == dest) {
 136       move_temp_to(dest->operand());
 137       dest->set_assigned();
 138     } else if (src != NULL) {
 139       emit_move(src->operand(), dest->operand());
 140       dest->set_assigned();
 141     }
 142   }
 143 }
 144 
 145 
 146 PhiResolver::~PhiResolver() {
 147   int i;
 148   // resolve any cycles in moves from and to virtual registers
 149   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 150     ResolveNode* node = virtual_operands()[i];
 151     if (!node->visited()) {
 152       _loop = NULL;
 153       move(NULL, node);
 154       node->set_start_node();
 155       assert(_temp->is_illegal(), "move_temp_to() call missing");
 156     }
 157   }
 158 
 159   // generate move for move from non virtual register to abitrary destination
 160   for (i = other_operands().length() - 1; i >= 0; i --) {
 161     ResolveNode* node = other_operands()[i];
 162     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 163       emit_move(node->operand(), node->destination_at(j)->operand());
 164     }
 165   }
 166 }
 167 
 168 
 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 170   ResolveNode* node;
 171   if (opr->is_virtual()) {
 172     int vreg_num = opr->vreg_number();
 173     node = vreg_table().at_grow(vreg_num, NULL);
 174     assert(node == NULL || node->operand() == opr, "");
 175     if (node == NULL) {
 176       node = new ResolveNode(opr);
 177       vreg_table()[vreg_num] = node;
 178     }
 179     // Make sure that all virtual operands show up in the list when
 180     // they are used as the source of a move.
 181     if (source && !virtual_operands().contains(node)) {
 182       virtual_operands().append(node);
 183     }
 184   } else {
 185     assert(source, "");
 186     node = new ResolveNode(opr);
 187     other_operands().append(node);
 188   }
 189   return node;
 190 }
 191 
 192 
 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 194   assert(dest->is_virtual(), "");
 195   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 196   assert(src->is_valid(), "");
 197   assert(dest->is_valid(), "");
 198   ResolveNode* source = source_node(src);
 199   source->append(destination_node(dest));
 200 }
 201 
 202 
 203 //--------------------------------------------------------------
 204 // LIRItem
 205 
 206 void LIRItem::set_result(LIR_Opr opr) {
 207   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 208   value()->set_operand(opr);
 209 
 210   if (opr->is_virtual()) {
 211     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 212   }
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {
 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {
 238       _result = LIR_OprFact::value_type(value()->type());
 239     }
 240   } else if (type == T_BYTE || type == T_BOOLEAN) {
 241     load_byte_item();
 242   } else {
 243     load_item();
 244   }
 245 }
 246 
 247 void LIRItem::load_item_force(LIR_Opr reg) {
 248   LIR_Opr r = result();
 249   if (r != reg) {
 250 #if !defined(ARM) && !defined(E500V2)
 251     if (r->type() != reg->type()) {
 252       // moves between different types need an intervening spill slot
 253       r = _gen->force_to_spill(r, reg->type());
 254     }
 255 #endif
 256     __ move(r, reg);
 257     _result = reg;
 258   }
 259 }
 260 
 261 ciObject* LIRItem::get_jobject_constant() const {
 262   ObjectType* oc = type()->as_ObjectType();
 263   if (oc) {
 264     return oc->constant_value();
 265   }
 266   return NULL;
 267 }
 268 
 269 
 270 jint LIRItem::get_jint_constant() const {
 271   assert(is_constant() && value() != NULL, "");
 272   assert(type()->as_IntConstant() != NULL, "type check");
 273   return type()->as_IntConstant()->value();
 274 }
 275 
 276 
 277 jint LIRItem::get_address_constant() const {
 278   assert(is_constant() && value() != NULL, "");
 279   assert(type()->as_AddressConstant() != NULL, "type check");
 280   return type()->as_AddressConstant()->value();
 281 }
 282 
 283 
 284 jfloat LIRItem::get_jfloat_constant() const {
 285   assert(is_constant() && value() != NULL, "");
 286   assert(type()->as_FloatConstant() != NULL, "type check");
 287   return type()->as_FloatConstant()->value();
 288 }
 289 
 290 
 291 jdouble LIRItem::get_jdouble_constant() const {
 292   assert(is_constant() && value() != NULL, "");
 293   assert(type()->as_DoubleConstant() != NULL, "type check");
 294   return type()->as_DoubleConstant()->value();
 295 }
 296 
 297 
 298 jlong LIRItem::get_jlong_constant() const {
 299   assert(is_constant() && value() != NULL, "");
 300   assert(type()->as_LongConstant() != NULL, "type check");
 301   return type()->as_LongConstant()->value();
 302 }
 303 
 304 
 305 
 306 //--------------------------------------------------------------
 307 
 308 
 309 void LIRGenerator::init() {
 310   _bs = Universe::heap()->barrier_set();
 311 }
 312 
 313 
 314 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 315 #ifndef PRODUCT
 316   if (PrintIRWithLIR) {
 317     block->print();
 318   }
 319 #endif
 320 
 321   // set up the list of LIR instructions
 322   assert(block->lir() == NULL, "LIR list already computed for this block");
 323   _lir = new LIR_List(compilation(), block);
 324   block->set_lir(_lir);
 325 
 326   __ branch_destination(block->label());
 327 
 328   if (LIRTraceExecution &&
 329       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 330       !block->is_set(BlockBegin::exception_entry_flag)) {
 331     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 332     trace_block_entry(block);
 333   }
 334 }
 335 
 336 
 337 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 338 #ifndef PRODUCT
 339   if (PrintIRWithLIR) {
 340     tty->cr();
 341   }
 342 #endif
 343 
 344   // LIR_Opr for unpinned constants shouldn't be referenced by other
 345   // blocks so clear them out after processing the block.
 346   for (int i = 0; i < _unpinned_constants.length(); i++) {
 347     _unpinned_constants.at(i)->clear_operand();
 348   }
 349   _unpinned_constants.trunc_to(0);
 350 
 351   // clear our any registers for other local constants
 352   _constants.trunc_to(0);
 353   _reg_for_constants.trunc_to(0);
 354 }
 355 
 356 
 357 void LIRGenerator::block_do(BlockBegin* block) {
 358   CHECK_BAILOUT();
 359 
 360   block_do_prolog(block);
 361   set_block(block);
 362 
 363   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 364     if (instr->is_pinned()) do_root(instr);
 365   }
 366 
 367   set_block(NULL);
 368   block_do_epilog(block);
 369 }
 370 
 371 
 372 //-------------------------LIRGenerator-----------------------------
 373 
 374 // This is where the tree-walk starts; instr must be root;
 375 void LIRGenerator::do_root(Value instr) {
 376   CHECK_BAILOUT();
 377 
 378   InstructionMark im(compilation(), instr);
 379 
 380   assert(instr->is_pinned(), "use only with roots");
 381   assert(instr->subst() == instr, "shouldn't have missed substitution");
 382 
 383   instr->visit(this);
 384 
 385   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 386          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 387 }
 388 
 389 
 390 // This is called for each node in tree; the walk stops if a root is reached
 391 void LIRGenerator::walk(Value instr) {
 392   InstructionMark im(compilation(), instr);
 393   //stop walk when encounter a root
 394   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 395     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 396   } else {
 397     assert(instr->subst() == instr, "shouldn't have missed substitution");
 398     instr->visit(this);
 399     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 400   }
 401 }
 402 
 403 
 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 405   assert(state != NULL, "state must be defined");
 406 
 407 #ifndef PRODUCT
 408   state->verify();
 409 #endif
 410 
 411   ValueStack* s = state;
 412   for_each_state(s) {
 413     if (s->kind() == ValueStack::EmptyExceptionState) {
 414       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 415       continue;
 416     }
 417 
 418     int index;
 419     Value value;
 420     for_each_stack_value(s, index, value) {
 421       assert(value->subst() == value, "missed substitution");
 422       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 423         walk(value);
 424         assert(value->operand()->is_valid(), "must be evaluated now");
 425       }
 426     }
 427 
 428     int bci = s->bci();
 429     IRScope* scope = s->scope();
 430     ciMethod* method = scope->method();
 431 
 432     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 433     if (bci == SynchronizationEntryBCI) {
 434       if (x->as_ExceptionObject() || x->as_Throw()) {
 435         // all locals are dead on exit from the synthetic unlocker
 436         liveness.clear();
 437       } else {
 438         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 439       }
 440     }
 441     if (!liveness.is_valid()) {
 442       // Degenerate or breakpointed method.
 443       bailout("Degenerate or breakpointed method");
 444     } else {
 445       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 446       for_each_local_value(s, index, value) {
 447         assert(value->subst() == value, "missed substition");
 448         if (liveness.at(index) && !value->type()->is_illegal()) {
 449           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 450             walk(value);
 451             assert(value->operand()->is_valid(), "must be evaluated now");
 452           }
 453         } else {
 454           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 455           s->invalidate_local(index);
 456         }
 457       }
 458     }
 459   }
 460 
 461   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 462 }
 463 
 464 
 465 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 466   return state_for(x, x->exception_state());
 467 }
 468 
 469 
 470 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 471   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 472    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 473    * the class. */
 474   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 475     assert(info != NULL, "info must be set if class is not loaded");
 476     __ klass2reg_patch(NULL, r, info);
 477   } else {
 478     // no patching needed
 479     __ metadata2reg(obj->constant_encoding(), r);
 480   }
 481 }
 482 
 483 
 484 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 485                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 486   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 487   if (index->is_constant()) {
 488     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 489                 index->as_jint(), null_check_info);
 490     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 491   } else {
 492     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 493                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 494     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 495   }
 496 }
 497 
 498 
 499 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 500   CodeStub* stub = new RangeCheckStub(info, index, true);
 501   if (index->is_constant()) {
 502     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 503     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 504   } else {
 505     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 506                 java_nio_Buffer::limit_offset(), T_INT, info);
 507     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 508   }
 509   __ move(index, result);
 510 }
 511 
 512 
 513 
 514 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 515   LIR_Opr result_op = result;
 516   LIR_Opr left_op   = left;
 517   LIR_Opr right_op  = right;
 518 
 519   if (TwoOperandLIRForm && left_op != result_op) {
 520     assert(right_op != result_op, "malformed");
 521     __ move(left_op, result_op);
 522     left_op = result_op;
 523   }
 524 
 525   switch(code) {
 526     case Bytecodes::_dadd:
 527     case Bytecodes::_fadd:
 528     case Bytecodes::_ladd:
 529     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 530     case Bytecodes::_fmul:
 531     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 532 
 533     case Bytecodes::_dmul:
 534       {
 535         if (is_strictfp) {
 536           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 537         } else {
 538           __ mul(left_op, right_op, result_op); break;
 539         }
 540       }
 541       break;
 542 
 543     case Bytecodes::_imul:
 544       {
 545         bool    did_strength_reduce = false;
 546 
 547         if (right->is_constant()) {
 548           int c = right->as_jint();
 549           if (is_power_of_2(c)) {
 550             // do not need tmp here
 551             __ shift_left(left_op, exact_log2(c), result_op);
 552             did_strength_reduce = true;
 553           } else {
 554             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 555           }
 556         }
 557         // we couldn't strength reduce so just emit the multiply
 558         if (!did_strength_reduce) {
 559           __ mul(left_op, right_op, result_op);
 560         }
 561       }
 562       break;
 563 
 564     case Bytecodes::_dsub:
 565     case Bytecodes::_fsub:
 566     case Bytecodes::_lsub:
 567     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 568 
 569     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 570     // ldiv and lrem are implemented with a direct runtime call
 571 
 572     case Bytecodes::_ddiv:
 573       {
 574         if (is_strictfp) {
 575           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 576         } else {
 577           __ div (left_op, right_op, result_op); break;
 578         }
 579       }
 580       break;
 581 
 582     case Bytecodes::_drem:
 583     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 584 
 585     default: ShouldNotReachHere();
 586   }
 587 }
 588 
 589 
 590 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 591   arithmetic_op(code, result, left, right, false, tmp);
 592 }
 593 
 594 
 595 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 596   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 597 }
 598 
 599 
 600 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 601   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 602 }
 603 
 604 
 605 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 606   if (TwoOperandLIRForm && value != result_op) {
 607     assert(count != result_op, "malformed");
 608     __ move(value, result_op);
 609     value = result_op;
 610   }
 611 
 612   assert(count->is_constant() || count->is_register(), "must be");
 613   switch(code) {
 614   case Bytecodes::_ishl:
 615   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 616   case Bytecodes::_ishr:
 617   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 618   case Bytecodes::_iushr:
 619   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 620   default: ShouldNotReachHere();
 621   }
 622 }
 623 
 624 
 625 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 626   if (TwoOperandLIRForm && left_op != result_op) {
 627     assert(right_op != result_op, "malformed");
 628     __ move(left_op, result_op);
 629     left_op = result_op;
 630   }
 631 
 632   switch(code) {
 633     case Bytecodes::_iand:
 634     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 635 
 636     case Bytecodes::_ior:
 637     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 638 
 639     case Bytecodes::_ixor:
 640     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 641 
 642     default: ShouldNotReachHere();
 643   }
 644 }
 645 
 646 
 647 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src_objarray)
 796     flags &= ~LIR_OpArrayCopy::src_objarray;
 797   if (!dst_objarray)
 798     flags &= ~LIR_OpArrayCopy::dst_objarray;
 799 
 800   if (!x->arg_needs_null_check(0))
 801     flags &= ~LIR_OpArrayCopy::src_null_check;
 802   if (!x->arg_needs_null_check(2))
 803     flags &= ~LIR_OpArrayCopy::dst_null_check;
 804 
 805 
 806   if (expected_type != NULL) {
 807     Value length_limit = NULL;
 808 
 809     IfOp* ifop = length->as_IfOp();
 810     if (ifop != NULL) {
 811       // look for expressions like min(v, a.length) which ends up as
 812       //   x > y ? y : x  or  x >= y ? y : x
 813       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 814           ifop->x() == ifop->fval() &&
 815           ifop->y() == ifop->tval()) {
 816         length_limit = ifop->y();
 817       }
 818     }
 819 
 820     // try to skip null checks and range checks
 821     NewArray* src_array = src->as_NewArray();
 822     if (src_array != NULL) {
 823       flags &= ~LIR_OpArrayCopy::src_null_check;
 824       if (length_limit != NULL &&
 825           src_array->length() == length_limit &&
 826           is_constant_zero(src_pos)) {
 827         flags &= ~LIR_OpArrayCopy::src_range_check;
 828       }
 829     }
 830 
 831     NewArray* dst_array = dst->as_NewArray();
 832     if (dst_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::dst_null_check;
 834       if (length_limit != NULL &&
 835           dst_array->length() == length_limit &&
 836           is_constant_zero(dst_pos)) {
 837         flags &= ~LIR_OpArrayCopy::dst_range_check;
 838       }
 839     }
 840 
 841     // check from incoming constant values
 842     if (positive_constant(src_pos))
 843       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 844     if (positive_constant(dst_pos))
 845       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 846     if (positive_constant(length))
 847       flags &= ~LIR_OpArrayCopy::length_positive_check;
 848 
 849     // see if the range check can be elided, which might also imply
 850     // that src or dst is non-null.
 851     ArrayLength* al = length->as_ArrayLength();
 852     if (al != NULL) {
 853       if (al->array() == src) {
 854         // it's the length of the source array
 855         flags &= ~LIR_OpArrayCopy::length_positive_check;
 856         flags &= ~LIR_OpArrayCopy::src_null_check;
 857         if (is_constant_zero(src_pos))
 858           flags &= ~LIR_OpArrayCopy::src_range_check;
 859       }
 860       if (al->array() == dst) {
 861         // it's the length of the destination array
 862         flags &= ~LIR_OpArrayCopy::length_positive_check;
 863         flags &= ~LIR_OpArrayCopy::dst_null_check;
 864         if (is_constant_zero(dst_pos))
 865           flags &= ~LIR_OpArrayCopy::dst_range_check;
 866       }
 867     }
 868     if (is_exact) {
 869       flags &= ~LIR_OpArrayCopy::type_check;
 870     }
 871   }
 872 
 873   IntConstant* src_int = src_pos->type()->as_IntConstant();
 874   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 875   if (src_int && dst_int) {
 876     int s_offs = src_int->value();
 877     int d_offs = dst_int->value();
 878     if (src_int->value() >= dst_int->value()) {
 879       flags &= ~LIR_OpArrayCopy::overlapping;
 880     }
 881     if (expected_type != NULL) {
 882       BasicType t = expected_type->element_type()->basic_type();
 883       int element_size = type2aelembytes(t);
 884       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 885           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 886         flags &= ~LIR_OpArrayCopy::unaligned;
 887       }
 888     }
 889   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 890     // src and dest positions are the same, or dst is zero so assume
 891     // nonoverlapping copy.
 892     flags &= ~LIR_OpArrayCopy::overlapping;
 893   }
 894 
 895   if (src == dst) {
 896     // moving within a single array so no type checks are needed
 897     if (flags & LIR_OpArrayCopy::type_check) {
 898       flags &= ~LIR_OpArrayCopy::type_check;
 899     }
 900   }
 901   *flagsp = flags;
 902   *expected_typep = (ciArrayKlass*)expected_type;
 903 }
 904 
 905 
 906 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 907   assert(opr->is_register(), "why spill if item is not register?");
 908 
 909   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 910     LIR_Opr result = new_register(T_FLOAT);
 911     set_vreg_flag(result, must_start_in_memory);
 912     assert(opr->is_register(), "only a register can be spilled");
 913     assert(opr->value_type()->is_float(), "rounding only for floats available");
 914     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 915     return result;
 916   }
 917   return opr;
 918 }
 919 
 920 
 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 922   assert(type2size[t] == type2size[value->type()],
 923          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_METADATA);
 958     __ metadata2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     LIR_Opr operand = cur_val->operand();
1000     if (cur_val->operand()->is_illegal()) {
1001       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002              "these can be produced lazily");
1003       operand = operand_for_instruction(cur_val);
1004     }
1005     resolver->move(operand, operand_for_instruction(phi));
1006   }
1007 }
1008 
1009 
1010 // Moves all stack values into their PHI position
1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012   BlockBegin* bb = block();
1013   if (bb->number_of_sux() == 1) {
1014     BlockBegin* sux = bb->sux_at(0);
1015     assert(sux->number_of_preds() > 0, "invalid CFG");
1016 
1017     // a block with only one predecessor never has phi functions
1018     if (sux->number_of_preds() > 1) {
1019       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1020       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1021 
1022       ValueStack* sux_state = sux->state();
1023       Value sux_value;
1024       int index;
1025 
1026       assert(cur_state->scope() == sux_state->scope(), "not matching");
1027       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1028       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1029 
1030       for_each_stack_value(sux_state, index, sux_value) {
1031         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1032       }
1033 
1034       for_each_local_value(sux_state, index, sux_value) {
1035         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1036       }
1037 
1038       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1039     }
1040   }
1041 }
1042 
1043 
1044 LIR_Opr LIRGenerator::new_register(BasicType type) {
1045   int vreg = _virtual_register_number;
1046   // add a little fudge factor for the bailout, since the bailout is
1047   // only checked periodically.  This gives a few extra registers to
1048   // hand out before we really run out, which helps us keep from
1049   // tripping over assertions.
1050   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1051     bailout("out of virtual registers");
1052     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1053       // wrap it around
1054       _virtual_register_number = LIR_OprDesc::vreg_base;
1055     }
1056   }
1057   _virtual_register_number += 1;
1058   return LIR_OprFact::virtual_register(vreg, type);
1059 }
1060 
1061 
1062 // Try to lock using register in hint
1063 LIR_Opr LIRGenerator::rlock(Value instr) {
1064   return new_register(instr->type());
1065 }
1066 
1067 
1068 // does an rlock and sets result
1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
1070   LIR_Opr reg = rlock(x);
1071   set_result(x, reg);
1072   return reg;
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078   LIR_Opr reg;
1079   switch (type) {
1080   case T_BYTE:
1081   case T_BOOLEAN:
1082     reg = rlock_byte(type);
1083     break;
1084   default:
1085     reg = rlock(x);
1086     break;
1087   }
1088 
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 //---------------------------------------------------------------------
1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096   ObjectType* oc = value->type()->as_ObjectType();
1097   if (oc) {
1098     return oc->constant_value();
1099   }
1100   return NULL;
1101 }
1102 
1103 
1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107 
1108   // no moves are created for phi functions at the begin of exception
1109   // handlers, so assign operands manually here
1110   for_each_phi_fun(block(), phi,
1111                    operand_for_instruction(phi));
1112 
1113   LIR_Opr thread_reg = getThreadPointer();
1114   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115                exceptionOopOpr());
1116   __ move_wide(LIR_OprFact::oopConst(NULL),
1117                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118   __ move_wide(LIR_OprFact::oopConst(NULL),
1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120 
1121   LIR_Opr result = new_register(T_OBJECT);
1122   __ move(exceptionOopOpr(), result);
1123   set_result(x, result);
1124 }
1125 
1126 
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //                        visitor functions
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 
1137 void LIRGenerator::do_Phi(Phi* x) {
1138   // phi functions are never visited directly
1139   ShouldNotReachHere();
1140 }
1141 
1142 
1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144 void LIRGenerator::do_Constant(Constant* x) {
1145   if (x->state_before() != NULL) {
1146     // Any constant with a ValueStack requires patching so emit the patch here
1147     LIR_Opr reg = rlock_result(x);
1148     CodeEmitInfo* info = state_for(x, x->state_before());
1149     __ oop2reg_patch(NULL, reg, info);
1150   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151     if (!x->is_pinned()) {
1152       // unpinned constants are handled specially so that they can be
1153       // put into registers when they are used multiple times within a
1154       // block.  After the block completes their operand will be
1155       // cleared so that other blocks can't refer to that register.
1156       set_result(x, load_constant(x));
1157     } else {
1158       LIR_Opr res = x->operand();
1159       if (!res->is_valid()) {
1160         res = LIR_OprFact::value_type(x->type());
1161       }
1162       if (res->is_constant()) {
1163         LIR_Opr reg = rlock_result(x);
1164         __ move(res, reg);
1165       } else {
1166         set_result(x, res);
1167       }
1168     }
1169   } else {
1170     set_result(x, LIR_OprFact::value_type(x->type()));
1171   }
1172 }
1173 
1174 
1175 void LIRGenerator::do_Local(Local* x) {
1176   // operand_for_instruction has the side effect of setting the result
1177   // so there's no need to do it here.
1178   operand_for_instruction(x);
1179 }
1180 
1181 
1182 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1183   Unimplemented();
1184 }
1185 
1186 
1187 void LIRGenerator::do_Return(Return* x) {
1188   if (compilation()->env()->dtrace_method_probes()) {
1189     BasicTypeList signature;
1190     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1191     signature.append(T_METADATA); // Method*
1192     LIR_OprList* args = new LIR_OprList();
1193     args->append(getThreadPointer());
1194     LIR_Opr meth = new_register(T_METADATA);
1195     __ metadata2reg(method()->constant_encoding(), meth);
1196     args->append(meth);
1197     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1198   }
1199 
1200   if (x->type()->is_void()) {
1201     __ return_op(LIR_OprFact::illegalOpr);
1202   } else {
1203     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1204     LIRItem result(x->result(), this);
1205 
1206     result.load_item_force(reg);
1207     __ return_op(result.result());
1208   }
1209   set_no_result(x);
1210 }
1211 
1212 // Examble: ref.get()
1213 // Combination of LoadField and g1 pre-write barrier
1214 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1215 
1216   const int referent_offset = java_lang_ref_Reference::referent_offset;
1217   guarantee(referent_offset > 0, "referent offset not initialized");
1218 
1219   assert(x->number_of_arguments() == 1, "wrong type");
1220 
1221   LIRItem reference(x->argument_at(0), this);
1222   reference.load_item();
1223 
1224   // need to perform the null check on the reference objecy
1225   CodeEmitInfo* info = NULL;
1226   if (x->needs_null_check()) {
1227     info = state_for(x);
1228   }
1229 
1230   LIR_Address* referent_field_adr =
1231     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1232 
1233   LIR_Opr result = rlock_result(x);
1234 
1235   __ load(referent_field_adr, result, info);
1236 
1237   // Register the value in the referent field with the pre-barrier
1238   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1239               result /* pre_val */,
1240               false  /* do_load */,
1241               false  /* patch */,
1242               NULL   /* info */);
1243 }
1244 
1245 // Example: clazz.isInstance(object)
1246 void LIRGenerator::do_isInstance(Intrinsic* x) {
1247   assert(x->number_of_arguments() == 2, "wrong type");
1248 
1249   // TODO could try to substitute this node with an equivalent InstanceOf
1250   // if clazz is known to be a constant Class. This will pick up newly found
1251   // constants after HIR construction. I'll leave this to a future change.
1252 
1253   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1254   // could follow the aastore example in a future change.
1255 
1256   LIRItem clazz(x->argument_at(0), this);
1257   LIRItem object(x->argument_at(1), this);
1258   clazz.load_item();
1259   object.load_item();
1260   LIR_Opr result = rlock_result(x);
1261 
1262   // need to perform null check on clazz
1263   if (x->needs_null_check()) {
1264     CodeEmitInfo* info = state_for(x);
1265     __ null_check(clazz.result(), info);
1266   }
1267 
1268   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1269                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1270                                      x->type(),
1271                                      NULL); // NULL CodeEmitInfo results in a leaf call
1272   __ move(call_result, result);
1273 }
1274 
1275 // Example: object.getClass ()
1276 void LIRGenerator::do_getClass(Intrinsic* x) {
1277   assert(x->number_of_arguments() == 1, "wrong type");
1278 
1279   LIRItem rcvr(x->argument_at(0), this);
1280   rcvr.load_item();
1281   LIR_Opr temp = new_register(T_METADATA);
1282   LIR_Opr result = rlock_result(x);
1283 
1284   // need to perform the null check on the rcvr
1285   CodeEmitInfo* info = NULL;
1286   if (x->needs_null_check()) {
1287     info = state_for(x);
1288   }
1289 
1290   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1291   // meaning of these two is mixed up (see JDK-8026837).
1292   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1293   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1294 }
1295 
1296 
1297 // Example: Thread.currentThread()
1298 void LIRGenerator::do_currentThread(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 0, "wrong type");
1300   LIR_Opr reg = rlock_result(x);
1301   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1302 }
1303 
1304 
1305 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1306   assert(x->number_of_arguments() == 1, "wrong type");
1307   LIRItem receiver(x->argument_at(0), this);
1308 
1309   receiver.load_item();
1310   BasicTypeList signature;
1311   signature.append(T_OBJECT); // receiver
1312   LIR_OprList* args = new LIR_OprList();
1313   args->append(receiver.result());
1314   CodeEmitInfo* info = state_for(x, x->state());
1315   call_runtime(&signature, args,
1316                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1317                voidType, info);
1318 
1319   set_no_result(x);
1320 }
1321 
1322 
1323 //------------------------local access--------------------------------------
1324 
1325 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1326   if (x->operand()->is_illegal()) {
1327     Constant* c = x->as_Constant();
1328     if (c != NULL) {
1329       x->set_operand(LIR_OprFact::value_type(c->type()));
1330     } else {
1331       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1332       // allocate a virtual register for this local or phi
1333       x->set_operand(rlock(x));
1334       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1335     }
1336   }
1337   return x->operand();
1338 }
1339 
1340 
1341 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1342   if (opr->is_virtual()) {
1343     return instruction_for_vreg(opr->vreg_number());
1344   }
1345   return NULL;
1346 }
1347 
1348 
1349 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1350   if (reg_num < _instruction_for_operand.length()) {
1351     return _instruction_for_operand.at(reg_num);
1352   }
1353   return NULL;
1354 }
1355 
1356 
1357 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1358   if (_vreg_flags.size_in_bits() == 0) {
1359     BitMap2D temp(100, num_vreg_flags);
1360     temp.clear();
1361     _vreg_flags = temp;
1362   }
1363   _vreg_flags.at_put_grow(vreg_num, f, true);
1364 }
1365 
1366 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1367   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1368     return false;
1369   }
1370   return _vreg_flags.at(vreg_num, f);
1371 }
1372 
1373 
1374 // Block local constant handling.  This code is useful for keeping
1375 // unpinned constants and constants which aren't exposed in the IR in
1376 // registers.  Unpinned Constant instructions have their operands
1377 // cleared when the block is finished so that other blocks can't end
1378 // up referring to their registers.
1379 
1380 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1381   assert(!x->is_pinned(), "only for unpinned constants");
1382   _unpinned_constants.append(x);
1383   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1384 }
1385 
1386 
1387 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1388   BasicType t = c->type();
1389   for (int i = 0; i < _constants.length(); i++) {
1390     LIR_Const* other = _constants.at(i);
1391     if (t == other->type()) {
1392       switch (t) {
1393       case T_INT:
1394       case T_FLOAT:
1395         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1396         break;
1397       case T_LONG:
1398       case T_DOUBLE:
1399         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1400         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1401         break;
1402       case T_OBJECT:
1403         if (c->as_jobject() != other->as_jobject()) continue;
1404         break;
1405       }
1406       return _reg_for_constants.at(i);
1407     }
1408   }
1409 
1410   LIR_Opr result = new_register(t);
1411   __ move((LIR_Opr)c, result);
1412   _constants.append(c);
1413   _reg_for_constants.append(result);
1414   return result;
1415 }
1416 
1417 // Various barriers
1418 
1419 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1420                                bool do_load, bool patch, CodeEmitInfo* info) {
1421   // Do the pre-write barrier, if any.
1422   switch (_bs->kind()) {
1423 #if INCLUDE_ALL_GCS
1424     case BarrierSet::G1SATBCT:
1425     case BarrierSet::G1SATBCTLogging:
1426       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1427       break;
1428 #endif // INCLUDE_ALL_GCS
1429     case BarrierSet::CardTableModRef:
1430     case BarrierSet::CardTableExtension:
1431       // No pre barriers
1432       break;
1433     case BarrierSet::ModRef:
1434     case BarrierSet::Other:
1435       // No pre barriers
1436       break;
1437     default      :
1438       ShouldNotReachHere();
1439 
1440   }
1441 }
1442 
1443 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1444   switch (_bs->kind()) {
1445 #if INCLUDE_ALL_GCS
1446     case BarrierSet::G1SATBCT:
1447     case BarrierSet::G1SATBCTLogging:
1448       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1449       break;
1450 #endif // INCLUDE_ALL_GCS
1451     case BarrierSet::CardTableModRef:
1452     case BarrierSet::CardTableExtension:
1453       CardTableModRef_post_barrier(addr,  new_val);
1454       break;
1455     case BarrierSet::ModRef:
1456     case BarrierSet::Other:
1457       // No post barriers
1458       break;
1459     default      :
1460       ShouldNotReachHere();
1461     }
1462 }
1463 
1464 ////////////////////////////////////////////////////////////////////////
1465 #if INCLUDE_ALL_GCS
1466 
1467 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1468                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1469   // First we test whether marking is in progress.
1470   BasicType flag_type;
1471   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1472     flag_type = T_INT;
1473   } else {
1474     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1475               "Assumption");
1476     flag_type = T_BYTE;
1477   }
1478   LIR_Opr thrd = getThreadPointer();
1479   LIR_Address* mark_active_flag_addr =
1480     new LIR_Address(thrd,
1481                     in_bytes(JavaThread::satb_mark_queue_offset() +
1482                              PtrQueue::byte_offset_of_active()),
1483                     flag_type);
1484   // Read the marking-in-progress flag.
1485   LIR_Opr flag_val = new_register(T_INT);
1486   __ load(mark_active_flag_addr, flag_val);
1487   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1488 
1489   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1490 
1491   CodeStub* slow;
1492 
1493   if (do_load) {
1494     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1495     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1496 
1497     if (patch)
1498       pre_val_patch_code = lir_patch_normal;
1499 
1500     pre_val = new_register(T_OBJECT);
1501 
1502     if (!addr_opr->is_address()) {
1503       assert(addr_opr->is_register(), "must be");
1504       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1505     }
1506     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1507   } else {
1508     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1509     assert(pre_val->is_register(), "must be");
1510     assert(pre_val->type() == T_OBJECT, "must be an object");
1511     assert(info == NULL, "sanity");
1512 
1513     slow = new G1PreBarrierStub(pre_val);
1514   }
1515 
1516   __ branch(lir_cond_notEqual, T_INT, slow);
1517   __ branch_destination(slow->continuation());
1518 }
1519 
1520 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1521   // If the "new_val" is a constant NULL, no barrier is necessary.
1522   if (new_val->is_constant() &&
1523       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1524 
1525   if (!new_val->is_register()) {
1526     LIR_Opr new_val_reg = new_register(T_OBJECT);
1527     if (new_val->is_constant()) {
1528       __ move(new_val, new_val_reg);
1529     } else {
1530       __ leal(new_val, new_val_reg);
1531     }
1532     new_val = new_val_reg;
1533   }
1534   assert(new_val->is_register(), "must be a register at this point");
1535 
1536   if (addr->is_address()) {
1537     LIR_Address* address = addr->as_address_ptr();
1538     LIR_Opr ptr = new_pointer_register();
1539     if (!address->index()->is_valid() && address->disp() == 0) {
1540       __ move(address->base(), ptr);
1541     } else {
1542       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1543       __ leal(addr, ptr);
1544     }
1545     addr = ptr;
1546   }
1547   assert(addr->is_register(), "must be a register at this point");
1548 
1549   LIR_Opr xor_res = new_pointer_register();
1550   LIR_Opr xor_shift_res = new_pointer_register();
1551   if (TwoOperandLIRForm ) {
1552     __ move(addr, xor_res);
1553     __ logical_xor(xor_res, new_val, xor_res);
1554     __ move(xor_res, xor_shift_res);
1555     __ unsigned_shift_right(xor_shift_res,
1556                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1557                             xor_shift_res,
1558                             LIR_OprDesc::illegalOpr());
1559   } else {
1560     __ logical_xor(addr, new_val, xor_res);
1561     __ unsigned_shift_right(xor_res,
1562                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1563                             xor_shift_res,
1564                             LIR_OprDesc::illegalOpr());
1565   }
1566 
1567   if (!new_val->is_register()) {
1568     LIR_Opr new_val_reg = new_register(T_OBJECT);
1569     __ leal(new_val, new_val_reg);
1570     new_val = new_val_reg;
1571   }
1572   assert(new_val->is_register(), "must be a register at this point");
1573 
1574   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1575 
1576   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1577   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1578   __ branch_destination(slow->continuation());
1579 }
1580 
1581 #endif // INCLUDE_ALL_GCS
1582 ////////////////////////////////////////////////////////////////////////
1583 
1584 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1585 
1586   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1587   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1588   if (addr->is_address()) {
1589     LIR_Address* address = addr->as_address_ptr();
1590     // ptr cannot be an object because we use this barrier for array card marks
1591     // and addr can point in the middle of an array.
1592     LIR_Opr ptr = new_pointer_register();
1593     if (!address->index()->is_valid() && address->disp() == 0) {
1594       __ move(address->base(), ptr);
1595     } else {
1596       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1597       __ leal(addr, ptr);
1598     }
1599     addr = ptr;
1600   }
1601   assert(addr->is_register(), "must be a register at this point");
1602 
1603 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1604   CardTableModRef_post_barrier_helper(addr, card_table_base);
1605 #else
1606   LIR_Opr tmp = new_pointer_register();
1607   if (TwoOperandLIRForm) {
1608     __ move(addr, tmp);
1609     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1610   } else {
1611     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1612   }
1613   if (can_inline_as_constant(card_table_base)) {
1614     __ move(LIR_OprFact::intConst(0),
1615               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1616   } else {
1617     __ move(LIR_OprFact::intConst(0),
1618               new LIR_Address(tmp, load_constant(card_table_base),
1619                               T_BYTE));
1620   }
1621 #endif
1622 }
1623 
1624 
1625 //------------------------field access--------------------------------------
1626 
1627 // Comment copied form templateTable_i486.cpp
1628 // ----------------------------------------------------------------------------
1629 // Volatile variables demand their effects be made known to all CPU's in
1630 // order.  Store buffers on most chips allow reads & writes to reorder; the
1631 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1632 // memory barrier (i.e., it's not sufficient that the interpreter does not
1633 // reorder volatile references, the hardware also must not reorder them).
1634 //
1635 // According to the new Java Memory Model (JMM):
1636 // (1) All volatiles are serialized wrt to each other.
1637 // ALSO reads & writes act as aquire & release, so:
1638 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1639 // the read float up to before the read.  It's OK for non-volatile memory refs
1640 // that happen before the volatile read to float down below it.
1641 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1642 // that happen BEFORE the write float down to after the write.  It's OK for
1643 // non-volatile memory refs that happen after the volatile write to float up
1644 // before it.
1645 //
1646 // We only put in barriers around volatile refs (they are expensive), not
1647 // _between_ memory refs (that would require us to track the flavor of the
1648 // previous memory refs).  Requirements (2) and (3) require some barriers
1649 // before volatile stores and after volatile loads.  These nearly cover
1650 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1651 // case is placed after volatile-stores although it could just as well go
1652 // before volatile-loads.
1653 
1654 
1655 void LIRGenerator::do_StoreField(StoreField* x) {
1656   bool needs_patching = x->needs_patching();
1657   bool is_volatile = x->field()->is_volatile();
1658   BasicType field_type = x->field_type();
1659   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1660 
1661   CodeEmitInfo* info = NULL;
1662   if (needs_patching) {
1663     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1664     info = state_for(x, x->state_before());
1665   } else if (x->needs_null_check()) {
1666     NullCheck* nc = x->explicit_null_check();
1667     if (nc == NULL) {
1668       info = state_for(x);
1669     } else {
1670       info = state_for(nc);
1671     }
1672   }
1673 
1674 
1675   LIRItem object(x->obj(), this);
1676   LIRItem value(x->value(),  this);
1677 
1678   object.load_item();
1679 
1680   if (is_volatile || needs_patching) {
1681     // load item if field is volatile (fewer special cases for volatiles)
1682     // load item if field not initialized
1683     // load item if field not constant
1684     // because of code patching we cannot inline constants
1685     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1686       value.load_byte_item();
1687     } else  {
1688       value.load_item();
1689     }
1690   } else {
1691     value.load_for_store(field_type);
1692   }
1693 
1694   set_no_result(x);
1695 
1696 #ifndef PRODUCT
1697   if (PrintNotLoaded && needs_patching) {
1698     tty->print_cr("   ###class not loaded at store_%s bci %d",
1699                   x->is_static() ?  "static" : "field", x->printable_bci());
1700   }
1701 #endif
1702 
1703   if (x->needs_null_check() &&
1704       (needs_patching ||
1705        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1706     // Emit an explicit null check because the offset is too large.
1707     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1708     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1709     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1710   }
1711 
1712   LIR_Address* address;
1713   if (needs_patching) {
1714     // we need to patch the offset in the instruction so don't allow
1715     // generate_address to try to be smart about emitting the -1.
1716     // Otherwise the patching code won't know how to find the
1717     // instruction to patch.
1718     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1719   } else {
1720     address = generate_address(object.result(), x->offset(), field_type);
1721   }
1722 
1723   if (is_volatile && os::is_MP()) {
1724     __ membar_release();
1725   }
1726 
1727   if (is_oop) {
1728     // Do the pre-write barrier, if any.
1729     pre_barrier(LIR_OprFact::address(address),
1730                 LIR_OprFact::illegalOpr /* pre_val */,
1731                 true /* do_load*/,
1732                 needs_patching,
1733                 (info ? new CodeEmitInfo(info) : NULL));
1734   }
1735 
1736   if (is_volatile && !needs_patching) {
1737     volatile_field_store(value.result(), address, info);
1738   } else {
1739     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1740     __ store(value.result(), address, info, patch_code);
1741   }
1742 
1743   if (is_oop) {
1744     // Store to object so mark the card of the header
1745     post_barrier(object.result(), value.result());
1746   }
1747 
1748   if (is_volatile && os::is_MP()) {
1749     __ membar();
1750   }
1751 }
1752 
1753 
1754 void LIRGenerator::do_LoadField(LoadField* x) {
1755   bool needs_patching = x->needs_patching();
1756   bool is_volatile = x->field()->is_volatile();
1757   BasicType field_type = x->field_type();
1758 
1759   CodeEmitInfo* info = NULL;
1760   if (needs_patching) {
1761     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1762     info = state_for(x, x->state_before());
1763   } else if (x->needs_null_check()) {
1764     NullCheck* nc = x->explicit_null_check();
1765     if (nc == NULL) {
1766       info = state_for(x);
1767     } else {
1768       info = state_for(nc);
1769     }
1770   }
1771 
1772   LIRItem object(x->obj(), this);
1773 
1774   object.load_item();
1775 
1776 #ifndef PRODUCT
1777   if (PrintNotLoaded && needs_patching) {
1778     tty->print_cr("   ###class not loaded at load_%s bci %d",
1779                   x->is_static() ?  "static" : "field", x->printable_bci());
1780   }
1781 #endif
1782 
1783   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1784   if (x->needs_null_check() &&
1785       (needs_patching ||
1786        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1787        stress_deopt)) {
1788     LIR_Opr obj = object.result();
1789     if (stress_deopt) {
1790       obj = new_register(T_OBJECT);
1791       __ move(LIR_OprFact::oopConst(NULL), obj);
1792     }
1793     // Emit an explicit null check because the offset is too large.
1794     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1795     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1796     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1797   }
1798 
1799   LIR_Opr reg = rlock_result(x, field_type);
1800   LIR_Address* address;
1801   if (needs_patching) {
1802     // we need to patch the offset in the instruction so don't allow
1803     // generate_address to try to be smart about emitting the -1.
1804     // Otherwise the patching code won't know how to find the
1805     // instruction to patch.
1806     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1807   } else {
1808     address = generate_address(object.result(), x->offset(), field_type);
1809   }
1810 
1811   if (is_volatile && !needs_patching) {
1812     volatile_field_load(address, reg, info);
1813   } else {
1814     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1815     __ load(address, reg, info, patch_code);
1816   }
1817 
1818   if (is_volatile && os::is_MP()) {
1819     __ membar_acquire();
1820   }
1821 }
1822 
1823 
1824 //------------------------java.nio.Buffer.checkIndex------------------------
1825 
1826 // int java.nio.Buffer.checkIndex(int)
1827 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1828   // NOTE: by the time we are in checkIndex() we are guaranteed that
1829   // the buffer is non-null (because checkIndex is package-private and
1830   // only called from within other methods in the buffer).
1831   assert(x->number_of_arguments() == 2, "wrong type");
1832   LIRItem buf  (x->argument_at(0), this);
1833   LIRItem index(x->argument_at(1), this);
1834   buf.load_item();
1835   index.load_item();
1836 
1837   LIR_Opr result = rlock_result(x);
1838   if (GenerateRangeChecks) {
1839     CodeEmitInfo* info = state_for(x);
1840     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1841     if (index.result()->is_constant()) {
1842       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1843       __ branch(lir_cond_belowEqual, T_INT, stub);
1844     } else {
1845       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1846                   java_nio_Buffer::limit_offset(), T_INT, info);
1847       __ branch(lir_cond_aboveEqual, T_INT, stub);
1848     }
1849     __ move(index.result(), result);
1850   } else {
1851     // Just load the index into the result register
1852     __ move(index.result(), result);
1853   }
1854 }
1855 
1856 
1857 //------------------------array access--------------------------------------
1858 
1859 
1860 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1861   LIRItem array(x->array(), this);
1862   array.load_item();
1863   LIR_Opr reg = rlock_result(x);
1864 
1865   CodeEmitInfo* info = NULL;
1866   if (x->needs_null_check()) {
1867     NullCheck* nc = x->explicit_null_check();
1868     if (nc == NULL) {
1869       info = state_for(x);
1870     } else {
1871       info = state_for(nc);
1872     }
1873     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1874       LIR_Opr obj = new_register(T_OBJECT);
1875       __ move(LIR_OprFact::oopConst(NULL), obj);
1876       __ null_check(obj, new CodeEmitInfo(info));
1877     }
1878   }
1879   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1880 }
1881 
1882 
1883 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1884   bool use_length = x->length() != NULL;
1885   LIRItem array(x->array(), this);
1886   LIRItem index(x->index(), this);
1887   LIRItem length(this);
1888   bool needs_range_check = x->compute_needs_range_check();
1889 
1890   if (use_length && needs_range_check) {
1891     length.set_instruction(x->length());
1892     length.load_item();
1893   }
1894 
1895   array.load_item();
1896   if (index.is_constant() && can_inline_as_constant(x->index())) {
1897     // let it be a constant
1898     index.dont_load_item();
1899   } else {
1900     index.load_item();
1901   }
1902 
1903   CodeEmitInfo* range_check_info = state_for(x);
1904   CodeEmitInfo* null_check_info = NULL;
1905   if (x->needs_null_check()) {
1906     NullCheck* nc = x->explicit_null_check();
1907     if (nc != NULL) {
1908       null_check_info = state_for(nc);
1909     } else {
1910       null_check_info = range_check_info;
1911     }
1912     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1913       LIR_Opr obj = new_register(T_OBJECT);
1914       __ move(LIR_OprFact::oopConst(NULL), obj);
1915       __ null_check(obj, new CodeEmitInfo(null_check_info));
1916     }
1917   }
1918 
1919   // emit array address setup early so it schedules better
1920   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1921 
1922   if (GenerateRangeChecks && needs_range_check) {
1923     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1924       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1925     } else if (use_length) {
1926       // TODO: use a (modified) version of array_range_check that does not require a
1927       //       constant length to be loaded to a register
1928       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1929       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1930     } else {
1931       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1932       // The range check performs the null check, so clear it out for the load
1933       null_check_info = NULL;
1934     }
1935   }
1936 
1937   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1938 }
1939 
1940 
1941 void LIRGenerator::do_NullCheck(NullCheck* x) {
1942   if (x->can_trap()) {
1943     LIRItem value(x->obj(), this);
1944     value.load_item();
1945     CodeEmitInfo* info = state_for(x);
1946     __ null_check(value.result(), info);
1947   }
1948 }
1949 
1950 
1951 void LIRGenerator::do_TypeCast(TypeCast* x) {
1952   LIRItem value(x->obj(), this);
1953   value.load_item();
1954   // the result is the same as from the node we are casting
1955   set_result(x, value.result());
1956 }
1957 
1958 
1959 void LIRGenerator::do_Throw(Throw* x) {
1960   LIRItem exception(x->exception(), this);
1961   exception.load_item();
1962   set_no_result(x);
1963   LIR_Opr exception_opr = exception.result();
1964   CodeEmitInfo* info = state_for(x, x->state());
1965 
1966 #ifndef PRODUCT
1967   if (PrintC1Statistics) {
1968     increment_counter(Runtime1::throw_count_address(), T_INT);
1969   }
1970 #endif
1971 
1972   // check if the instruction has an xhandler in any of the nested scopes
1973   bool unwind = false;
1974   if (info->exception_handlers()->length() == 0) {
1975     // this throw is not inside an xhandler
1976     unwind = true;
1977   } else {
1978     // get some idea of the throw type
1979     bool type_is_exact = true;
1980     ciType* throw_type = x->exception()->exact_type();
1981     if (throw_type == NULL) {
1982       type_is_exact = false;
1983       throw_type = x->exception()->declared_type();
1984     }
1985     if (throw_type != NULL && throw_type->is_instance_klass()) {
1986       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1987       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1988     }
1989   }
1990 
1991   // do null check before moving exception oop into fixed register
1992   // to avoid a fixed interval with an oop during the null check.
1993   // Use a copy of the CodeEmitInfo because debug information is
1994   // different for null_check and throw.
1995   if (GenerateCompilerNullChecks &&
1996       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1997     // if the exception object wasn't created using new then it might be null.
1998     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1999   }
2000 
2001   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2002     // we need to go through the exception lookup path to get JVMTI
2003     // notification done
2004     unwind = false;
2005   }
2006 
2007   // move exception oop into fixed register
2008   __ move(exception_opr, exceptionOopOpr());
2009 
2010   if (unwind) {
2011     __ unwind_exception(exceptionOopOpr());
2012   } else {
2013     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2014   }
2015 }
2016 
2017 
2018 void LIRGenerator::do_RoundFP(RoundFP* x) {
2019   LIRItem input(x->input(), this);
2020   input.load_item();
2021   LIR_Opr input_opr = input.result();
2022   assert(input_opr->is_register(), "why round if value is not in a register?");
2023   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2024   if (input_opr->is_single_fpu()) {
2025     set_result(x, round_item(input_opr)); // This code path not currently taken
2026   } else {
2027     LIR_Opr result = new_register(T_DOUBLE);
2028     set_vreg_flag(result, must_start_in_memory);
2029     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2030     set_result(x, result);
2031   }
2032 }
2033 
2034 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2035 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2036 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2037   LIRItem base(x->base(), this);
2038   LIRItem idx(this);
2039 
2040   base.load_item();
2041   if (x->has_index()) {
2042     idx.set_instruction(x->index());
2043     idx.load_nonconstant();
2044   }
2045 
2046   LIR_Opr reg = rlock_result(x, x->basic_type());
2047 
2048   int   log2_scale = 0;
2049   if (x->has_index()) {
2050     log2_scale = x->log2_scale();
2051   }
2052 
2053   assert(!x->has_index() || idx.value() == x->index(), "should match");
2054 
2055   LIR_Opr base_op = base.result();
2056   LIR_Opr index_op = idx.result();
2057 #ifndef _LP64
2058   if (base_op->type() == T_LONG) {
2059     base_op = new_register(T_INT);
2060     __ convert(Bytecodes::_l2i, base.result(), base_op);
2061   }
2062   if (x->has_index()) {
2063     if (index_op->type() == T_LONG) {
2064       LIR_Opr long_index_op = index_op;
2065       if (index_op->is_constant()) {
2066         long_index_op = new_register(T_LONG);
2067         __ move(index_op, long_index_op);
2068       }
2069       index_op = new_register(T_INT);
2070       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2071     } else {
2072       assert(x->index()->type()->tag() == intTag, "must be");
2073     }
2074   }
2075   // At this point base and index should be all ints.
2076   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2077   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2078 #else
2079   if (x->has_index()) {
2080     if (index_op->type() == T_INT) {
2081       if (!index_op->is_constant()) {
2082         index_op = new_register(T_LONG);
2083         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2084       }
2085     } else {
2086       assert(index_op->type() == T_LONG, "must be");
2087       if (index_op->is_constant()) {
2088         index_op = new_register(T_LONG);
2089         __ move(idx.result(), index_op);
2090       }
2091     }
2092   }
2093   // At this point base is a long non-constant
2094   // Index is a long register or a int constant.
2095   // We allow the constant to stay an int because that would allow us a more compact encoding by
2096   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2097   // move it into a register first.
2098   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2099   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2100                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2101 #endif
2102 
2103   BasicType dst_type = x->basic_type();
2104 
2105   LIR_Address* addr;
2106   if (index_op->is_constant()) {
2107     assert(log2_scale == 0, "must not have a scale");
2108     assert(index_op->type() == T_INT, "only int constants supported");
2109     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2110   } else {
2111 #ifdef X86
2112     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2113 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2114     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2115 #else
2116     if (index_op->is_illegal() || log2_scale == 0) {
2117       addr = new LIR_Address(base_op, index_op, dst_type);
2118     } else {
2119       LIR_Opr tmp = new_pointer_register();
2120       __ shift_left(index_op, log2_scale, tmp);
2121       addr = new LIR_Address(base_op, tmp, dst_type);
2122     }
2123 #endif
2124   }
2125 
2126   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2127     __ unaligned_move(addr, reg);
2128   } else {
2129     if (dst_type == T_OBJECT && x->is_wide()) {
2130       __ move_wide(addr, reg);
2131     } else {
2132       __ move(addr, reg);
2133     }
2134   }
2135 }
2136 
2137 
2138 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2139   int  log2_scale = 0;
2140   BasicType type = x->basic_type();
2141 
2142   if (x->has_index()) {
2143     log2_scale = x->log2_scale();
2144   }
2145 
2146   LIRItem base(x->base(), this);
2147   LIRItem value(x->value(), this);
2148   LIRItem idx(this);
2149 
2150   base.load_item();
2151   if (x->has_index()) {
2152     idx.set_instruction(x->index());
2153     idx.load_item();
2154   }
2155 
2156   if (type == T_BYTE || type == T_BOOLEAN) {
2157     value.load_byte_item();
2158   } else {
2159     value.load_item();
2160   }
2161 
2162   set_no_result(x);
2163 
2164   LIR_Opr base_op = base.result();
2165   LIR_Opr index_op = idx.result();
2166 
2167 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2168   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2169 #else
2170 #ifndef _LP64
2171   if (base_op->type() == T_LONG) {
2172     base_op = new_register(T_INT);
2173     __ convert(Bytecodes::_l2i, base.result(), base_op);
2174   }
2175   if (x->has_index()) {
2176     if (index_op->type() == T_LONG) {
2177       index_op = new_register(T_INT);
2178       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2179     }
2180   }
2181   // At this point base and index should be all ints and not constants
2182   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2183   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2184 #else
2185   if (x->has_index()) {
2186     if (index_op->type() == T_INT) {
2187       index_op = new_register(T_LONG);
2188       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2189     }
2190   }
2191   // At this point base and index are long and non-constant
2192   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2193   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2194 #endif
2195 
2196   if (log2_scale != 0) {
2197     // temporary fix (platform dependent code without shift on Intel would be better)
2198     // TODO: ARM also allows embedded shift in the address
2199     LIR_Opr tmp = new_pointer_register();
2200     if (TwoOperandLIRForm) {
2201       __ move(index_op, tmp);
2202       index_op = tmp;
2203     }
2204     __ shift_left(index_op, log2_scale, tmp);
2205     if (!TwoOperandLIRForm) {
2206       index_op = tmp;
2207     }
2208   }
2209 
2210   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2211 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2212   __ move(value.result(), addr);
2213 }
2214 
2215 
2216 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2217   BasicType type = x->basic_type();
2218   LIRItem src(x->object(), this);
2219   LIRItem off(x->offset(), this);
2220 
2221   off.load_item();
2222   src.load_item();
2223 
2224   LIR_Opr value = rlock_result(x, x->basic_type());
2225 
2226   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2227 
2228 #if INCLUDE_ALL_GCS
2229   // We might be reading the value of the referent field of a
2230   // Reference object in order to attach it back to the live
2231   // object graph. If G1 is enabled then we need to record
2232   // the value that is being returned in an SATB log buffer.
2233   //
2234   // We need to generate code similar to the following...
2235   //
2236   // if (offset == java_lang_ref_Reference::referent_offset) {
2237   //   if (src != NULL) {
2238   //     if (klass(src)->reference_type() != REF_NONE) {
2239   //       pre_barrier(..., value, ...);
2240   //     }
2241   //   }
2242   // }
2243 
2244   if (UseG1GC && type == T_OBJECT) {
2245     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2246     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2247     bool gen_source_check = true;    // Assume we need to check the src object for null.
2248     bool gen_type_check = true;      // Assume we need to check the reference_type.
2249 
2250     if (off.is_constant()) {
2251       jlong off_con = (off.type()->is_int() ?
2252                         (jlong) off.get_jint_constant() :
2253                         off.get_jlong_constant());
2254 
2255 
2256       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2257         // The constant offset is something other than referent_offset.
2258         // We can skip generating/checking the remaining guards and
2259         // skip generation of the code stub.
2260         gen_pre_barrier = false;
2261       } else {
2262         // The constant offset is the same as referent_offset -
2263         // we do not need to generate a runtime offset check.
2264         gen_offset_check = false;
2265       }
2266     }
2267 
2268     // We don't need to generate stub if the source object is an array
2269     if (gen_pre_barrier && src.type()->is_array()) {
2270       gen_pre_barrier = false;
2271     }
2272 
2273     if (gen_pre_barrier) {
2274       // We still need to continue with the checks.
2275       if (src.is_constant()) {
2276         ciObject* src_con = src.get_jobject_constant();
2277         guarantee(src_con != NULL, "no source constant");
2278 
2279         if (src_con->is_null_object()) {
2280           // The constant src object is null - We can skip
2281           // generating the code stub.
2282           gen_pre_barrier = false;
2283         } else {
2284           // Non-null constant source object. We still have to generate
2285           // the slow stub - but we don't need to generate the runtime
2286           // null object check.
2287           gen_source_check = false;
2288         }
2289       }
2290     }
2291     if (gen_pre_barrier && !PatchALot) {
2292       // Can the klass of object be statically determined to be
2293       // a sub-class of Reference?
2294       ciType* type = src.value()->declared_type();
2295       if ((type != NULL) && type->is_loaded()) {
2296         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2297           gen_type_check = false;
2298         } else if (type->is_klass() &&
2299                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2300           // Not Reference and not Object klass.
2301           gen_pre_barrier = false;
2302         }
2303       }
2304     }
2305 
2306     if (gen_pre_barrier) {
2307       LabelObj* Lcont = new LabelObj();
2308 
2309       // We can have generate one runtime check here. Let's start with
2310       // the offset check.
2311       if (gen_offset_check) {
2312         // if (offset != referent_offset) -> continue
2313         // If offset is an int then we can do the comparison with the
2314         // referent_offset constant; otherwise we need to move
2315         // referent_offset into a temporary register and generate
2316         // a reg-reg compare.
2317 
2318         LIR_Opr referent_off;
2319 
2320         if (off.type()->is_int()) {
2321           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2322         } else {
2323           assert(off.type()->is_long(), "what else?");
2324           referent_off = new_register(T_LONG);
2325           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2326         }
2327         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2328         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2329       }
2330       if (gen_source_check) {
2331         // offset is a const and equals referent offset
2332         // if (source == null) -> continue
2333         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2334         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2335       }
2336       LIR_Opr src_klass = new_register(T_OBJECT);
2337       if (gen_type_check) {
2338         // We have determined that offset == referent_offset && src != null.
2339         // if (src->_klass->_reference_type == REF_NONE) -> continue
2340         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2341         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2342         LIR_Opr reference_type = new_register(T_INT);
2343         __ move(reference_type_addr, reference_type);
2344         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2345         __ branch(lir_cond_equal, T_INT, Lcont->label());
2346       }
2347       {
2348         // We have determined that src->_klass->_reference_type != REF_NONE
2349         // so register the value in the referent field with the pre-barrier.
2350         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2351                     value  /* pre_val */,
2352                     false  /* do_load */,
2353                     false  /* patch */,
2354                     NULL   /* info */);
2355       }
2356       __ branch_destination(Lcont->label());
2357     }
2358   }
2359 #endif // INCLUDE_ALL_GCS
2360 
2361   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2362 }
2363 
2364 
2365 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2366   BasicType type = x->basic_type();
2367   LIRItem src(x->object(), this);
2368   LIRItem off(x->offset(), this);
2369   LIRItem data(x->value(), this);
2370 
2371   src.load_item();
2372   if (type == T_BOOLEAN || type == T_BYTE) {
2373     data.load_byte_item();
2374   } else {
2375     data.load_item();
2376   }
2377   off.load_item();
2378 
2379   set_no_result(x);
2380 
2381   if (x->is_volatile() && os::is_MP()) __ membar_release();
2382   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2383   if (x->is_volatile() && os::is_MP()) __ membar();
2384 }
2385 
2386 
2387 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2388   LIRItem src(x->object(), this);
2389   LIRItem off(x->offset(), this);
2390 
2391   src.load_item();
2392   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2393     // let it be a constant
2394     off.dont_load_item();
2395   } else {
2396     off.load_item();
2397   }
2398 
2399   set_no_result(x);
2400 
2401   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2402   __ prefetch(addr, is_store);
2403 }
2404 
2405 
2406 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2407   do_UnsafePrefetch(x, false);
2408 }
2409 
2410 
2411 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2412   do_UnsafePrefetch(x, true);
2413 }
2414 
2415 
2416 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2417   int lng = x->length();
2418 
2419   for (int i = 0; i < lng; i++) {
2420     SwitchRange* one_range = x->at(i);
2421     int low_key = one_range->low_key();
2422     int high_key = one_range->high_key();
2423     BlockBegin* dest = one_range->sux();
2424     if (low_key == high_key) {
2425       __ cmp(lir_cond_equal, value, low_key);
2426       __ branch(lir_cond_equal, T_INT, dest);
2427     } else if (high_key - low_key == 1) {
2428       __ cmp(lir_cond_equal, value, low_key);
2429       __ branch(lir_cond_equal, T_INT, dest);
2430       __ cmp(lir_cond_equal, value, high_key);
2431       __ branch(lir_cond_equal, T_INT, dest);
2432     } else {
2433       LabelObj* L = new LabelObj();
2434       __ cmp(lir_cond_less, value, low_key);
2435       __ branch(lir_cond_less, T_INT, L->label());
2436       __ cmp(lir_cond_lessEqual, value, high_key);
2437       __ branch(lir_cond_lessEqual, T_INT, dest);
2438       __ branch_destination(L->label());
2439     }
2440   }
2441   __ jump(default_sux);
2442 }
2443 
2444 
2445 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2446   SwitchRangeList* res = new SwitchRangeList();
2447   int len = x->length();
2448   if (len > 0) {
2449     BlockBegin* sux = x->sux_at(0);
2450     int key = x->lo_key();
2451     BlockBegin* default_sux = x->default_sux();
2452     SwitchRange* range = new SwitchRange(key, sux);
2453     for (int i = 0; i < len; i++, key++) {
2454       BlockBegin* new_sux = x->sux_at(i);
2455       if (sux == new_sux) {
2456         // still in same range
2457         range->set_high_key(key);
2458       } else {
2459         // skip tests which explicitly dispatch to the default
2460         if (sux != default_sux) {
2461           res->append(range);
2462         }
2463         range = new SwitchRange(key, new_sux);
2464       }
2465       sux = new_sux;
2466     }
2467     if (res->length() == 0 || res->last() != range)  res->append(range);
2468   }
2469   return res;
2470 }
2471 
2472 
2473 // we expect the keys to be sorted by increasing value
2474 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2475   SwitchRangeList* res = new SwitchRangeList();
2476   int len = x->length();
2477   if (len > 0) {
2478     BlockBegin* default_sux = x->default_sux();
2479     int key = x->key_at(0);
2480     BlockBegin* sux = x->sux_at(0);
2481     SwitchRange* range = new SwitchRange(key, sux);
2482     for (int i = 1; i < len; i++) {
2483       int new_key = x->key_at(i);
2484       BlockBegin* new_sux = x->sux_at(i);
2485       if (key+1 == new_key && sux == new_sux) {
2486         // still in same range
2487         range->set_high_key(new_key);
2488       } else {
2489         // skip tests which explicitly dispatch to the default
2490         if (range->sux() != default_sux) {
2491           res->append(range);
2492         }
2493         range = new SwitchRange(new_key, new_sux);
2494       }
2495       key = new_key;
2496       sux = new_sux;
2497     }
2498     if (res->length() == 0 || res->last() != range)  res->append(range);
2499   }
2500   return res;
2501 }
2502 
2503 
2504 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2505   LIRItem tag(x->tag(), this);
2506   tag.load_item();
2507   set_no_result(x);
2508 
2509   if (x->is_safepoint()) {
2510     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2511   }
2512 
2513   // move values into phi locations
2514   move_to_phi(x->state());
2515 
2516   int lo_key = x->lo_key();
2517   int hi_key = x->hi_key();
2518   int len = x->length();
2519   LIR_Opr value = tag.result();
2520   if (UseTableRanges) {
2521     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2522   } else {
2523     for (int i = 0; i < len; i++) {
2524       __ cmp(lir_cond_equal, value, i + lo_key);
2525       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2526     }
2527     __ jump(x->default_sux());
2528   }
2529 }
2530 
2531 
2532 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2533   LIRItem tag(x->tag(), this);
2534   tag.load_item();
2535   set_no_result(x);
2536 
2537   if (x->is_safepoint()) {
2538     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2539   }
2540 
2541   // move values into phi locations
2542   move_to_phi(x->state());
2543 
2544   LIR_Opr value = tag.result();
2545   if (UseTableRanges) {
2546     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2547   } else {
2548     int len = x->length();
2549     for (int i = 0; i < len; i++) {
2550       __ cmp(lir_cond_equal, value, x->key_at(i));
2551       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2552     }
2553     __ jump(x->default_sux());
2554   }
2555 }
2556 
2557 
2558 void LIRGenerator::do_Goto(Goto* x) {
2559   set_no_result(x);
2560 
2561   if (block()->next()->as_OsrEntry()) {
2562     // need to free up storage used for OSR entry point
2563     LIR_Opr osrBuffer = block()->next()->operand();
2564     BasicTypeList signature;
2565     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2566     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2567     __ move(osrBuffer, cc->args()->at(0));
2568     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2569                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2570   }
2571 
2572   if (x->is_safepoint()) {
2573     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2574 
2575     // increment backedge counter if needed
2576     CodeEmitInfo* info = state_for(x, state);
2577     increment_backedge_counter(info, x->profiled_bci());
2578     CodeEmitInfo* safepoint_info = state_for(x, state);
2579     __ safepoint(safepoint_poll_register(), safepoint_info);
2580   }
2581 
2582   // Gotos can be folded Ifs, handle this case.
2583   if (x->should_profile()) {
2584     ciMethod* method = x->profiled_method();
2585     assert(method != NULL, "method should be set if branch is profiled");
2586     ciMethodData* md = method->method_data_or_null();
2587     assert(md != NULL, "Sanity");
2588     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2589     assert(data != NULL, "must have profiling data");
2590     int offset;
2591     if (x->direction() == Goto::taken) {
2592       assert(data->is_BranchData(), "need BranchData for two-way branches");
2593       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2594     } else if (x->direction() == Goto::not_taken) {
2595       assert(data->is_BranchData(), "need BranchData for two-way branches");
2596       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2597     } else {
2598       assert(data->is_JumpData(), "need JumpData for branches");
2599       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2600     }
2601     LIR_Opr md_reg = new_register(T_METADATA);
2602     __ metadata2reg(md->constant_encoding(), md_reg);
2603 
2604     increment_counter(new LIR_Address(md_reg, offset,
2605                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2606   }
2607 
2608   // emit phi-instruction move after safepoint since this simplifies
2609   // describing the state as the safepoint.
2610   move_to_phi(x->state());
2611 
2612   __ jump(x->default_sux());
2613 }
2614 
2615 /**
2616  * Emit profiling code if needed for arguments, parameters, return value types
2617  *
2618  * @param md                    MDO the code will update at runtime
2619  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2620  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2621  * @param profiled_k            current profile
2622  * @param obj                   IR node for the object to be profiled
2623  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2624  *                              Set once we find an update to make and use for next ones.
2625  * @param not_null              true if we know obj cannot be null
2626  * @param signature_at_call_k   signature at call for obj
2627  * @param callee_signature_k    signature of callee for obj
2628  *                              at call and callee signatures differ at method handle call
2629  * @return                      the only klass we know will ever be seen at this profile point
2630  */
2631 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2632                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2633                                     ciKlass* callee_signature_k) {
2634   ciKlass* result = NULL;
2635   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2636   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2637   // known not to be null or null bit already set and already set to
2638   // unknown: nothing we can do to improve profiling
2639   if (!do_null && !do_update) {
2640     return result;
2641   }
2642 
2643   ciKlass* exact_klass = NULL;
2644   Compilation* comp = Compilation::current();
2645   if (do_update) {
2646     // try to find exact type, using CHA if possible, so that loading
2647     // the klass from the object can be avoided
2648     ciType* type = obj->exact_type();
2649     if (type == NULL) {
2650       type = obj->declared_type();
2651       type = comp->cha_exact_type(type);
2652     }
2653     assert(type == NULL || type->is_klass(), "type should be class");
2654     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2655 
2656     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2657   }
2658 
2659   if (!do_null && !do_update) {
2660     return result;
2661   }
2662 
2663   ciKlass* exact_signature_k = NULL;
2664   if (do_update) {
2665     // Is the type from the signature exact (the only one possible)?
2666     exact_signature_k = signature_at_call_k->exact_klass();
2667     if (exact_signature_k == NULL) {
2668       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2669     } else {
2670       result = exact_signature_k;
2671       // Known statically. No need to emit any code: prevent
2672       // LIR_Assembler::emit_profile_type() from emitting useless code
2673       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2674     }
2675     // exact_klass and exact_signature_k can be both non NULL but
2676     // different if exact_klass is loaded after the ciObject for
2677     // exact_signature_k is created.
2678     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2679       // sometimes the type of the signature is better than the best type
2680       // the compiler has
2681       exact_klass = exact_signature_k;
2682     }
2683     if (callee_signature_k != NULL &&
2684         callee_signature_k != signature_at_call_k) {
2685       ciKlass* improved_klass = callee_signature_k->exact_klass();
2686       if (improved_klass == NULL) {
2687         improved_klass = comp->cha_exact_type(callee_signature_k);
2688       }
2689       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2690         exact_klass = exact_signature_k;
2691       }
2692     }
2693     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2694   }
2695 
2696   if (!do_null && !do_update) {
2697     return result;
2698   }
2699 
2700   if (mdp == LIR_OprFact::illegalOpr) {
2701     mdp = new_register(T_METADATA);
2702     __ metadata2reg(md->constant_encoding(), mdp);
2703     if (md_base_offset != 0) {
2704       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2705       mdp = new_pointer_register();
2706       __ leal(LIR_OprFact::address(base_type_address), mdp);
2707     }
2708   }
2709   LIRItem value(obj, this);
2710   value.load_item();
2711   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2712                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2713   return result;
2714 }
2715 
2716 // profile parameters on entry to the root of the compilation
2717 void LIRGenerator::profile_parameters(Base* x) {
2718   if (compilation()->profile_parameters()) {
2719     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2720     ciMethodData* md = scope()->method()->method_data_or_null();
2721     assert(md != NULL, "Sanity");
2722 
2723     if (md->parameters_type_data() != NULL) {
2724       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2725       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2726       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2727       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2728         LIR_Opr src = args->at(i);
2729         assert(!src->is_illegal(), "check");
2730         BasicType t = src->type();
2731         if (t == T_OBJECT || t == T_ARRAY) {
2732           intptr_t profiled_k = parameters->type(j);
2733           Local* local = x->state()->local_at(java_index)->as_Local();
2734           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2735                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2736                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2737           // If the profile is known statically set it once for all and do not emit any code
2738           if (exact != NULL) {
2739             md->set_parameter_type(j, exact);
2740           }
2741           j++;
2742         }
2743         java_index += type2size[t];
2744       }
2745     }
2746   }
2747 }
2748 
2749 void LIRGenerator::do_Base(Base* x) {
2750   __ std_entry(LIR_OprFact::illegalOpr);
2751   // Emit moves from physical registers / stack slots to virtual registers
2752   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2753   IRScope* irScope = compilation()->hir()->top_scope();
2754   int java_index = 0;
2755   for (int i = 0; i < args->length(); i++) {
2756     LIR_Opr src = args->at(i);
2757     assert(!src->is_illegal(), "check");
2758     BasicType t = src->type();
2759 
2760     // Types which are smaller than int are passed as int, so
2761     // correct the type which passed.
2762     switch (t) {
2763     case T_BYTE:
2764     case T_BOOLEAN:
2765     case T_SHORT:
2766     case T_CHAR:
2767       t = T_INT;
2768       break;
2769     }
2770 
2771     LIR_Opr dest = new_register(t);
2772     __ move(src, dest);
2773 
2774     // Assign new location to Local instruction for this local
2775     Local* local = x->state()->local_at(java_index)->as_Local();
2776     assert(local != NULL, "Locals for incoming arguments must have been created");
2777 #ifndef __SOFTFP__
2778     // The java calling convention passes double as long and float as int.
2779     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2780 #endif // __SOFTFP__
2781     local->set_operand(dest);
2782     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2783     java_index += type2size[t];
2784   }
2785 
2786   if (compilation()->env()->dtrace_method_probes()) {
2787     BasicTypeList signature;
2788     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2789     signature.append(T_METADATA); // Method*
2790     LIR_OprList* args = new LIR_OprList();
2791     args->append(getThreadPointer());
2792     LIR_Opr meth = new_register(T_METADATA);
2793     __ metadata2reg(method()->constant_encoding(), meth);
2794     args->append(meth);
2795     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2796   }
2797 
2798   if (method()->is_synchronized()) {
2799     LIR_Opr obj;
2800     if (method()->is_static()) {
2801       obj = new_register(T_OBJECT);
2802       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2803     } else {
2804       Local* receiver = x->state()->local_at(0)->as_Local();
2805       assert(receiver != NULL, "must already exist");
2806       obj = receiver->operand();
2807     }
2808     assert(obj->is_valid(), "must be valid");
2809 
2810     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2811       LIR_Opr lock = new_register(T_INT);
2812       __ load_stack_address_monitor(0, lock);
2813 
2814       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2815       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2816 
2817       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2818       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2819     }
2820   }
2821 
2822   // increment invocation counters if needed
2823   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2824     profile_parameters(x);
2825     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2826     increment_invocation_counter(info);
2827   }
2828 
2829   // all blocks with a successor must end with an unconditional jump
2830   // to the successor even if they are consecutive
2831   __ jump(x->default_sux());
2832 }
2833 
2834 
2835 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2836   // construct our frame and model the production of incoming pointer
2837   // to the OSR buffer.
2838   __ osr_entry(LIR_Assembler::osrBufferPointer());
2839   LIR_Opr result = rlock_result(x);
2840   __ move(LIR_Assembler::osrBufferPointer(), result);
2841 }
2842 
2843 
2844 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2845   assert(args->length() == arg_list->length(),
2846          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2847   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2848     LIRItem* param = args->at(i);
2849     LIR_Opr loc = arg_list->at(i);
2850     if (loc->is_register()) {
2851       param->load_item_force(loc);
2852     } else {
2853       LIR_Address* addr = loc->as_address_ptr();
2854       param->load_for_store(addr->type());
2855       if (addr->type() == T_OBJECT) {
2856         __ move_wide(param->result(), addr);
2857       } else
2858         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2859           __ unaligned_move(param->result(), addr);
2860         } else {
2861           __ move(param->result(), addr);
2862         }
2863     }
2864   }
2865 
2866   if (x->has_receiver()) {
2867     LIRItem* receiver = args->at(0);
2868     LIR_Opr loc = arg_list->at(0);
2869     if (loc->is_register()) {
2870       receiver->load_item_force(loc);
2871     } else {
2872       assert(loc->is_address(), "just checking");
2873       receiver->load_for_store(T_OBJECT);
2874       __ move_wide(receiver->result(), loc->as_address_ptr());
2875     }
2876   }
2877 }
2878 
2879 
2880 // Visits all arguments, returns appropriate items without loading them
2881 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2882   LIRItemList* argument_items = new LIRItemList();
2883   if (x->has_receiver()) {
2884     LIRItem* receiver = new LIRItem(x->receiver(), this);
2885     argument_items->append(receiver);
2886   }
2887   for (int i = 0; i < x->number_of_arguments(); i++) {
2888     LIRItem* param = new LIRItem(x->argument_at(i), this);
2889     argument_items->append(param);
2890   }
2891   return argument_items;
2892 }
2893 
2894 
2895 // The invoke with receiver has following phases:
2896 //   a) traverse and load/lock receiver;
2897 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2898 //   c) push receiver on stack
2899 //   d) load each of the items and push on stack
2900 //   e) unlock receiver
2901 //   f) move receiver into receiver-register %o0
2902 //   g) lock result registers and emit call operation
2903 //
2904 // Before issuing a call, we must spill-save all values on stack
2905 // that are in caller-save register. "spill-save" moves those registers
2906 // either in a free callee-save register or spills them if no free
2907 // callee save register is available.
2908 //
2909 // The problem is where to invoke spill-save.
2910 // - if invoked between e) and f), we may lock callee save
2911 //   register in "spill-save" that destroys the receiver register
2912 //   before f) is executed
2913 // - if we rearrange f) to be earlier (by loading %o0) it
2914 //   may destroy a value on the stack that is currently in %o0
2915 //   and is waiting to be spilled
2916 // - if we keep the receiver locked while doing spill-save,
2917 //   we cannot spill it as it is spill-locked
2918 //
2919 void LIRGenerator::do_Invoke(Invoke* x) {
2920   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2921 
2922   LIR_OprList* arg_list = cc->args();
2923   LIRItemList* args = invoke_visit_arguments(x);
2924   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2925 
2926   // setup result register
2927   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2928   if (x->type() != voidType) {
2929     result_register = result_register_for(x->type());
2930   }
2931 
2932   CodeEmitInfo* info = state_for(x, x->state());
2933 
2934   invoke_load_arguments(x, args, arg_list);
2935 
2936   if (x->has_receiver()) {
2937     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2938     receiver = args->at(0)->result();
2939   }
2940 
2941   // emit invoke code
2942   bool optimized = x->target_is_loaded() && x->target_is_final();
2943   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2944 
2945   // JSR 292
2946   // Preserve the SP over MethodHandle call sites, if needed.
2947   ciMethod* target = x->target();
2948   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2949                                   target->is_method_handle_intrinsic() ||
2950                                   target->is_compiled_lambda_form());
2951   if (is_method_handle_invoke) {
2952     info->set_is_method_handle_invoke(true);
2953     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2954         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2955     }
2956   }
2957 
2958   switch (x->code()) {
2959     case Bytecodes::_invokestatic:
2960       __ call_static(target, result_register,
2961                      SharedRuntime::get_resolve_static_call_stub(),
2962                      arg_list, info);
2963       break;
2964     case Bytecodes::_invokespecial:
2965     case Bytecodes::_invokevirtual:
2966     case Bytecodes::_invokeinterface:
2967       // for final target we still produce an inline cache, in order
2968       // to be able to call mixed mode
2969       if (x->code() == Bytecodes::_invokespecial || optimized) {
2970         __ call_opt_virtual(target, receiver, result_register,
2971                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2972                             arg_list, info);
2973       } else if (x->vtable_index() < 0) {
2974         __ call_icvirtual(target, receiver, result_register,
2975                           SharedRuntime::get_resolve_virtual_call_stub(),
2976                           arg_list, info);
2977       } else {
2978         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2979         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2980         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2981       }
2982       break;
2983     case Bytecodes::_invokedynamic: {
2984       __ call_dynamic(target, receiver, result_register,
2985                       SharedRuntime::get_resolve_static_call_stub(),
2986                       arg_list, info);
2987       break;
2988     }
2989     default:
2990       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2991       break;
2992   }
2993 
2994   // JSR 292
2995   // Restore the SP after MethodHandle call sites, if needed.
2996   if (is_method_handle_invoke
2997       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2998     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2999   }
3000 
3001   if (x->type()->is_float() || x->type()->is_double()) {
3002     // Force rounding of results from non-strictfp when in strictfp
3003     // scope (or when we don't know the strictness of the callee, to
3004     // be safe.)
3005     if (method()->is_strict()) {
3006       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3007         result_register = round_item(result_register);
3008       }
3009     }
3010   }
3011 
3012   if (result_register->is_valid()) {
3013     LIR_Opr result = rlock_result(x);
3014     __ move(result_register, result);
3015   }
3016 }
3017 
3018 
3019 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3020   assert(x->number_of_arguments() == 1, "wrong type");
3021   LIRItem value       (x->argument_at(0), this);
3022   LIR_Opr reg = rlock_result(x);
3023   value.load_item();
3024   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3025   __ move(tmp, reg);
3026 }
3027 
3028 
3029 
3030 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3031 void LIRGenerator::do_IfOp(IfOp* x) {
3032 #ifdef ASSERT
3033   {
3034     ValueTag xtag = x->x()->type()->tag();
3035     ValueTag ttag = x->tval()->type()->tag();
3036     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3037     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3038     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3039   }
3040 #endif
3041 
3042   LIRItem left(x->x(), this);
3043   LIRItem right(x->y(), this);
3044   left.load_item();
3045   if (can_inline_as_constant(right.value())) {
3046     right.dont_load_item();
3047   } else {
3048     right.load_item();
3049   }
3050 
3051   LIRItem t_val(x->tval(), this);
3052   LIRItem f_val(x->fval(), this);
3053   t_val.dont_load_item();
3054   f_val.dont_load_item();
3055   LIR_Opr reg = rlock_result(x);
3056 
3057   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3058   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3059 }
3060 
3061 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3062     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3063     LIR_Opr reg = result_register_for(x->type());
3064     __ call_runtime_leaf(routine, getThreadTemp(),
3065                          reg, new LIR_OprList());
3066     LIR_Opr result = rlock_result(x);
3067     __ move(reg, result);
3068 }
3069 
3070 #ifdef TRACE_HAVE_INTRINSICS
3071 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3072   CodeEmitInfo* info = state_for(x);
3073   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3074 
3075   assert(info != NULL, "must have info");
3076   LIRItem arg(x->argument_at(0), this);
3077 
3078   arg.load_item();
3079   LIR_Opr klass = new_register(T_METADATA);
3080   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3081   LIR_Opr id = new_register(T_LONG);
3082   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3083   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3084 
3085   __ move(trace_id_addr, id);
3086   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3087   __ store(id, trace_id_addr);
3088 
3089 #ifdef TRACE_ID_META_BITS
3090   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3091 #endif
3092 #ifdef TRACE_ID_CLASS_SHIFT
3093   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3094 #endif
3095 
3096   __ move(id, rlock_result(x));
3097 }
3098 
3099 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3100   LabelObj* L_end = new LabelObj();
3101 
3102   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3103                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3104                                            T_OBJECT);
3105   LIR_Opr result = rlock_result(x);
3106   __ move_wide(jobj_addr, result);
3107   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3108   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3109   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3110 
3111   __ branch_destination(L_end->label());
3112 }
3113 #endif
3114 
3115 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3116   switch (x->id()) {
3117   case vmIntrinsics::_intBitsToFloat      :
3118   case vmIntrinsics::_doubleToRawLongBits :
3119   case vmIntrinsics::_longBitsToDouble    :
3120   case vmIntrinsics::_floatToRawIntBits   : {
3121     do_FPIntrinsics(x);
3122     break;
3123   }
3124 
3125 #ifdef TRACE_HAVE_INTRINSICS
3126   case vmIntrinsics::_getClassId:
3127     if (EnableJFR) {
3128       do_ClassIDIntrinsic(x);
3129     }
3130     break;
3131   case vmIntrinsics::_getEventWriter:
3132     if (EnableJFR) {
3133       do_getEventWriter(x);
3134     }
3135     break;
3136   case vmIntrinsics::_counterTime:
3137     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3138     break;
3139 #endif
3140 
3141   case vmIntrinsics::_currentTimeMillis:
3142     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3143     break;
3144 
3145   case vmIntrinsics::_nanoTime:
3146     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3147     break;
3148 
3149   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3150   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3151   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3152   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3153 
3154   case vmIntrinsics::_dlog:           // fall through
3155   case vmIntrinsics::_dlog10:         // fall through
3156   case vmIntrinsics::_dabs:           // fall through
3157   case vmIntrinsics::_dsqrt:          // fall through
3158   case vmIntrinsics::_dtan:           // fall through
3159   case vmIntrinsics::_dsin :          // fall through
3160   case vmIntrinsics::_dcos :          // fall through
3161   case vmIntrinsics::_dexp :          // fall through
3162   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3163   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3164 
3165   // java.nio.Buffer.checkIndex
3166   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3167 
3168   case vmIntrinsics::_compareAndSwapObject:
3169     do_CompareAndSwap(x, objectType);
3170     break;
3171   case vmIntrinsics::_compareAndSwapInt:
3172     do_CompareAndSwap(x, intType);
3173     break;
3174   case vmIntrinsics::_compareAndSwapLong:
3175     do_CompareAndSwap(x, longType);
3176     break;
3177 
3178   case vmIntrinsics::_loadFence :
3179     if (os::is_MP()) __ membar_acquire();
3180     break;
3181   case vmIntrinsics::_storeFence:
3182     if (os::is_MP()) __ membar_release();
3183     break;
3184   case vmIntrinsics::_fullFence :
3185     if (os::is_MP()) __ membar();
3186     break;
3187 
3188   case vmIntrinsics::_Reference_get:
3189     do_Reference_get(x);
3190     break;
3191 
3192   case vmIntrinsics::_updateCRC32:
3193   case vmIntrinsics::_updateBytesCRC32:
3194   case vmIntrinsics::_updateByteBufferCRC32:
3195     do_update_CRC32(x);
3196     break;
3197 
3198   default: ShouldNotReachHere(); break;
3199   }
3200 }
3201 
3202 void LIRGenerator::profile_arguments(ProfileCall* x) {
3203   if (compilation()->profile_arguments()) {
3204     int bci = x->bci_of_invoke();
3205     ciMethodData* md = x->method()->method_data_or_null();
3206     ciProfileData* data = md->bci_to_data(bci);
3207     if (data != NULL) {
3208       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3209           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3210         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3211         int base_offset = md->byte_offset_of_slot(data, extra);
3212         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3213         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3214 
3215         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3216         int start = 0;
3217         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3218         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3219           // first argument is not profiled at call (method handle invoke)
3220           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3221           start = 1;
3222         }
3223         ciSignature* callee_signature = x->callee()->signature();
3224         // method handle call to virtual method
3225         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3226         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3227 
3228         bool ignored_will_link;
3229         ciSignature* signature_at_call = NULL;
3230         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3231         ciSignatureStream signature_at_call_stream(signature_at_call);
3232 
3233         // if called through method handle invoke, some arguments may have been popped
3234         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3235           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3236           ciKlass* exact = profile_type(md, base_offset, off,
3237               args->type(i), x->profiled_arg_at(i+start), mdp,
3238               !x->arg_needs_null_check(i+start),
3239               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3240           if (exact != NULL) {
3241             md->set_argument_type(bci, i, exact);
3242           }
3243         }
3244       } else {
3245 #ifdef ASSERT
3246         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3247         int n = x->nb_profiled_args();
3248         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3249             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3250             "only at JSR292 bytecodes");
3251 #endif
3252       }
3253     }
3254   }
3255 }
3256 
3257 // profile parameters on entry to an inlined method
3258 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3259   if (compilation()->profile_parameters() && x->inlined()) {
3260     ciMethodData* md = x->callee()->method_data_or_null();
3261     if (md != NULL) {
3262       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3263       if (parameters_type_data != NULL) {
3264         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3265         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3266         bool has_receiver = !x->callee()->is_static();
3267         ciSignature* sig = x->callee()->signature();
3268         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3269         int i = 0; // to iterate on the Instructions
3270         Value arg = x->recv();
3271         bool not_null = false;
3272         int bci = x->bci_of_invoke();
3273         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3274         // The first parameter is the receiver so that's what we start
3275         // with if it exists. One exception is method handle call to
3276         // virtual method: the receiver is in the args list
3277         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3278           i = 1;
3279           arg = x->profiled_arg_at(0);
3280           not_null = !x->arg_needs_null_check(0);
3281         }
3282         int k = 0; // to iterate on the profile data
3283         for (;;) {
3284           intptr_t profiled_k = parameters->type(k);
3285           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3286                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3287                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3288           // If the profile is known statically set it once for all and do not emit any code
3289           if (exact != NULL) {
3290             md->set_parameter_type(k, exact);
3291           }
3292           k++;
3293           if (k >= parameters_type_data->number_of_parameters()) {
3294 #ifdef ASSERT
3295             int extra = 0;
3296             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3297                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3298                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3299               extra += 1;
3300             }
3301             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3302 #endif
3303             break;
3304           }
3305           arg = x->profiled_arg_at(i);
3306           not_null = !x->arg_needs_null_check(i);
3307           i++;
3308         }
3309       }
3310     }
3311   }
3312 }
3313 
3314 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3315   // Need recv in a temporary register so it interferes with the other temporaries
3316   LIR_Opr recv = LIR_OprFact::illegalOpr;
3317   LIR_Opr mdo = new_register(T_OBJECT);
3318   // tmp is used to hold the counters on SPARC
3319   LIR_Opr tmp = new_pointer_register();
3320 
3321   if (x->nb_profiled_args() > 0) {
3322     profile_arguments(x);
3323   }
3324 
3325   // profile parameters on inlined method entry including receiver
3326   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3327     profile_parameters_at_call(x);
3328   }
3329 
3330   if (x->recv() != NULL) {
3331     LIRItem value(x->recv(), this);
3332     value.load_item();
3333     recv = new_register(T_OBJECT);
3334     __ move(value.result(), recv);
3335   }
3336   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3337 }
3338 
3339 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3340   int bci = x->bci_of_invoke();
3341   ciMethodData* md = x->method()->method_data_or_null();
3342   ciProfileData* data = md->bci_to_data(bci);
3343   if (data != NULL) {
3344     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3345     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3346     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3347 
3348     bool ignored_will_link;
3349     ciSignature* signature_at_call = NULL;
3350     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3351 
3352     // The offset within the MDO of the entry to update may be too large
3353     // to be used in load/store instructions on some platforms. So have
3354     // profile_type() compute the address of the profile in a register.
3355     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3356         ret->type(), x->ret(), mdp,
3357         !x->needs_null_check(),
3358         signature_at_call->return_type()->as_klass(),
3359         x->callee()->signature()->return_type()->as_klass());
3360     if (exact != NULL) {
3361       md->set_return_type(bci, exact);
3362     }
3363   }
3364 }
3365 
3366 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3367   // We can safely ignore accessors here, since c2 will inline them anyway,
3368   // accessors are also always mature.
3369   if (!x->inlinee()->is_accessor()) {
3370     CodeEmitInfo* info = state_for(x, x->state(), true);
3371     // Notify the runtime very infrequently only to take care of counter overflows
3372     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3373   }
3374 }
3375 
3376 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3377   int freq_log = 0;
3378   int level = compilation()->env()->comp_level();
3379   if (level == CompLevel_limited_profile) {
3380     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3381   } else if (level == CompLevel_full_profile) {
3382     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3383   } else {
3384     ShouldNotReachHere();
3385   }
3386   // Increment the appropriate invocation/backedge counter and notify the runtime.
3387   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3388 }
3389 
3390 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3391                                                 ciMethod *method, int frequency,
3392                                                 int bci, bool backedge, bool notify) {
3393   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3394   int level = _compilation->env()->comp_level();
3395   assert(level > CompLevel_simple, "Shouldn't be here");
3396 
3397   int offset = -1;
3398   LIR_Opr counter_holder = NULL;
3399   if (level == CompLevel_limited_profile) {
3400     MethodCounters* counters_adr = method->ensure_method_counters();
3401     if (counters_adr == NULL) {
3402       bailout("method counters allocation failed");
3403       return;
3404     }
3405     counter_holder = new_pointer_register();
3406     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3407     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3408                                  MethodCounters::invocation_counter_offset());
3409   } else if (level == CompLevel_full_profile) {
3410     counter_holder = new_register(T_METADATA);
3411     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3412                                  MethodData::invocation_counter_offset());
3413     ciMethodData* md = method->method_data_or_null();
3414     assert(md != NULL, "Sanity");
3415     __ metadata2reg(md->constant_encoding(), counter_holder);
3416   } else {
3417     ShouldNotReachHere();
3418   }
3419   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3420   LIR_Opr result = new_register(T_INT);
3421   __ load(counter, result);
3422   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3423   __ store(result, counter);
3424   if (notify) {
3425     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3426     LIR_Opr meth = new_register(T_METADATA);
3427     __ metadata2reg(method->constant_encoding(), meth);
3428     __ logical_and(result, mask, result);
3429     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3430     // The bci for info can point to cmp for if's we want the if bci
3431     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3432     __ branch(lir_cond_equal, T_INT, overflow);
3433     __ branch_destination(overflow->continuation());
3434   }
3435 }
3436 
3437 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3438   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3439   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3440 
3441   if (x->pass_thread()) {
3442     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3443     args->append(getThreadPointer());
3444   }
3445 
3446   for (int i = 0; i < x->number_of_arguments(); i++) {
3447     Value a = x->argument_at(i);
3448     LIRItem* item = new LIRItem(a, this);
3449     item->load_item();
3450     args->append(item->result());
3451     signature->append(as_BasicType(a->type()));
3452   }
3453 
3454   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3455   if (x->type() == voidType) {
3456     set_no_result(x);
3457   } else {
3458     __ move(result, rlock_result(x));
3459   }
3460 }
3461 
3462 #ifdef ASSERT
3463 void LIRGenerator::do_Assert(Assert *x) {
3464   ValueTag tag = x->x()->type()->tag();
3465   If::Condition cond = x->cond();
3466 
3467   LIRItem xitem(x->x(), this);
3468   LIRItem yitem(x->y(), this);
3469   LIRItem* xin = &xitem;
3470   LIRItem* yin = &yitem;
3471 
3472   assert(tag == intTag, "Only integer assertions are valid!");
3473 
3474   xin->load_item();
3475   yin->dont_load_item();
3476 
3477   set_no_result(x);
3478 
3479   LIR_Opr left = xin->result();
3480   LIR_Opr right = yin->result();
3481 
3482   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3483 }
3484 #endif
3485 
3486 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3487 
3488 
3489   Instruction *a = x->x();
3490   Instruction *b = x->y();
3491   if (!a || StressRangeCheckElimination) {
3492     assert(!b || StressRangeCheckElimination, "B must also be null");
3493 
3494     CodeEmitInfo *info = state_for(x, x->state());
3495     CodeStub* stub = new PredicateFailedStub(info);
3496 
3497     __ jump(stub);
3498   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3499     int a_int = a->type()->as_IntConstant()->value();
3500     int b_int = b->type()->as_IntConstant()->value();
3501 
3502     bool ok = false;
3503 
3504     switch(x->cond()) {
3505       case Instruction::eql: ok = (a_int == b_int); break;
3506       case Instruction::neq: ok = (a_int != b_int); break;
3507       case Instruction::lss: ok = (a_int < b_int); break;
3508       case Instruction::leq: ok = (a_int <= b_int); break;
3509       case Instruction::gtr: ok = (a_int > b_int); break;
3510       case Instruction::geq: ok = (a_int >= b_int); break;
3511       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3512       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3513       default: ShouldNotReachHere();
3514     }
3515 
3516     if (ok) {
3517 
3518       CodeEmitInfo *info = state_for(x, x->state());
3519       CodeStub* stub = new PredicateFailedStub(info);
3520 
3521       __ jump(stub);
3522     }
3523   } else {
3524 
3525     ValueTag tag = x->x()->type()->tag();
3526     If::Condition cond = x->cond();
3527     LIRItem xitem(x->x(), this);
3528     LIRItem yitem(x->y(), this);
3529     LIRItem* xin = &xitem;
3530     LIRItem* yin = &yitem;
3531 
3532     assert(tag == intTag, "Only integer deoptimizations are valid!");
3533 
3534     xin->load_item();
3535     yin->dont_load_item();
3536     set_no_result(x);
3537 
3538     LIR_Opr left = xin->result();
3539     LIR_Opr right = yin->result();
3540 
3541     CodeEmitInfo *info = state_for(x, x->state());
3542     CodeStub* stub = new PredicateFailedStub(info);
3543 
3544     __ cmp(lir_cond(cond), left, right);
3545     __ branch(lir_cond(cond), right->type(), stub);
3546   }
3547 }
3548 
3549 
3550 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3551   LIRItemList args(1);
3552   LIRItem value(arg1, this);
3553   args.append(&value);
3554   BasicTypeList signature;
3555   signature.append(as_BasicType(arg1->type()));
3556 
3557   return call_runtime(&signature, &args, entry, result_type, info);
3558 }
3559 
3560 
3561 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3562   LIRItemList args(2);
3563   LIRItem value1(arg1, this);
3564   LIRItem value2(arg2, this);
3565   args.append(&value1);
3566   args.append(&value2);
3567   BasicTypeList signature;
3568   signature.append(as_BasicType(arg1->type()));
3569   signature.append(as_BasicType(arg2->type()));
3570 
3571   return call_runtime(&signature, &args, entry, result_type, info);
3572 }
3573 
3574 
3575 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3576                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3577   // get a result register
3578   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3579   LIR_Opr result = LIR_OprFact::illegalOpr;
3580   if (result_type->tag() != voidTag) {
3581     result = new_register(result_type);
3582     phys_reg = result_register_for(result_type);
3583   }
3584 
3585   // move the arguments into the correct location
3586   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3587   assert(cc->length() == args->length(), "argument mismatch");
3588   for (int i = 0; i < args->length(); i++) {
3589     LIR_Opr arg = args->at(i);
3590     LIR_Opr loc = cc->at(i);
3591     if (loc->is_register()) {
3592       __ move(arg, loc);
3593     } else {
3594       LIR_Address* addr = loc->as_address_ptr();
3595 //           if (!can_store_as_constant(arg)) {
3596 //             LIR_Opr tmp = new_register(arg->type());
3597 //             __ move(arg, tmp);
3598 //             arg = tmp;
3599 //           }
3600       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3601         __ unaligned_move(arg, addr);
3602       } else {
3603         __ move(arg, addr);
3604       }
3605     }
3606   }
3607 
3608   if (info) {
3609     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3610   } else {
3611     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3612   }
3613   if (result->is_valid()) {
3614     __ move(phys_reg, result);
3615   }
3616   return result;
3617 }
3618 
3619 
3620 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3621                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3622   // get a result register
3623   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3624   LIR_Opr result = LIR_OprFact::illegalOpr;
3625   if (result_type->tag() != voidTag) {
3626     result = new_register(result_type);
3627     phys_reg = result_register_for(result_type);
3628   }
3629 
3630   // move the arguments into the correct location
3631   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3632 
3633   assert(cc->length() == args->length(), "argument mismatch");
3634   for (int i = 0; i < args->length(); i++) {
3635     LIRItem* arg = args->at(i);
3636     LIR_Opr loc = cc->at(i);
3637     if (loc->is_register()) {
3638       arg->load_item_force(loc);
3639     } else {
3640       LIR_Address* addr = loc->as_address_ptr();
3641       arg->load_for_store(addr->type());
3642       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3643         __ unaligned_move(arg->result(), addr);
3644       } else {
3645         __ move(arg->result(), addr);
3646       }
3647     }
3648   }
3649 
3650   if (info) {
3651     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3652   } else {
3653     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3654   }
3655   if (result->is_valid()) {
3656     __ move(phys_reg, result);
3657   }
3658   return result;
3659 }
3660 
3661 void LIRGenerator::do_MemBar(MemBar* x) {
3662   if (os::is_MP()) {
3663     LIR_Code code = x->code();
3664     switch(code) {
3665       case lir_membar_acquire   : __ membar_acquire(); break;
3666       case lir_membar_release   : __ membar_release(); break;
3667       case lir_membar           : __ membar(); break;
3668       case lir_membar_loadload  : __ membar_loadload(); break;
3669       case lir_membar_storestore: __ membar_storestore(); break;
3670       case lir_membar_loadstore : __ membar_loadstore(); break;
3671       case lir_membar_storeload : __ membar_storeload(); break;
3672       default                   : ShouldNotReachHere(); break;
3673     }
3674   }
3675 }
3676 
3677 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3678   if (x->check_boolean()) {
3679     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3680     if (TwoOperandLIRForm) {
3681       __ move(value, value_fixed);
3682       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3683     } else {
3684       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3685     }
3686     LIR_Opr klass = new_register(T_METADATA);
3687     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3688     null_check_info = NULL;
3689     LIR_Opr layout = new_register(T_INT);
3690     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3691     int diffbit = Klass::layout_helper_boolean_diffbit();
3692     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3693     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3694     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3695     value = value_fixed;
3696   }
3697   return value;
3698 }