1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/interfaceSupport.hpp"
  32 #include "runtime/mutexLocker.hpp"
  33 #include "runtime/objectMonitor.hpp"
  34 #include "runtime/objectMonitor.inline.hpp"
  35 #include "runtime/orderAccess.inline.hpp"
  36 #include "runtime/osThread.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/thread.inline.hpp"
  39 #include "services/threadService.hpp"
  40 #include "trace/tracing.hpp"
  41 #include "trace/traceMacros.hpp"
  42 #include "utilities/dtrace.hpp"
  43 #include "utilities/macros.hpp"
  44 #include "utilities/preserveException.hpp"
  45 #ifdef TARGET_OS_FAMILY_linux
  46 # include "os_linux.inline.hpp"
  47 #endif
  48 #ifdef TARGET_OS_FAMILY_solaris
  49 # include "os_solaris.inline.hpp"
  50 #endif
  51 #ifdef TARGET_OS_FAMILY_windows
  52 # include "os_windows.inline.hpp"
  53 #endif
  54 #ifdef TARGET_OS_FAMILY_bsd
  55 # include "os_bsd.inline.hpp"
  56 #endif
  57 
  58 #if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
  59   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  60   #define ATTR __attribute__((noinline))
  61 #else
  62   #define ATTR
  63 #endif
  64 
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 
  72 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  73   char* bytes = NULL;                                                      \
  74   int len = 0;                                                             \
  75   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  76   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  77   if (klassname != NULL) {                                                 \
  78     bytes = (char*)klassname->bytes();                                     \
  79     len = klassname->utf8_length();                                        \
  80   }
  81 
  82 #ifndef USDT2
  83 
  84 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  85   jlong, uintptr_t, char*, int);
  86 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  87   jlong, uintptr_t, char*, int);
  88 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  89   jlong, uintptr_t, char*, int);
  90 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  91   jlong, uintptr_t, char*, int);
  92 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  93   jlong, uintptr_t, char*, int);
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
  96   {                                                                        \
  97     if (DTraceMonitorProbes) {                                            \
  98       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
  99       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
 100                        (monitor), bytes, len, (millis));                   \
 101     }                                                                      \
 102   }
 103 
 104 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
 105   {                                                                        \
 106     if (DTraceMonitorProbes) {                                            \
 107       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
 108       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
 109                        (uintptr_t)(monitor), bytes, len);                  \
 110     }                                                                      \
 111   }
 112 
 113 #else /* USDT2 */
 114 
 115 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 116   {                                                                        \
 117     if (DTraceMonitorProbes) {                                            \
 118       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 119       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 120                        (monitor), bytes, len, (millis));                   \
 121     }                                                                      \
 122   }
 123 
 124 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
 125 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
 126 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
 127 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
 128 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 129 
 130 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 131   {                                                                        \
 132     if (DTraceMonitorProbes) {                                            \
 133       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 134       HOTSPOT_MONITOR_##probe(jtid,                                               \
 135                        (uintptr_t)(monitor), bytes, len);                  \
 136     }                                                                      \
 137   }
 138 
 139 #endif /* USDT2 */
 140 #else //  ndef DTRACE_ENABLED
 141 
 142 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 143 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 144 
 145 #endif // ndef DTRACE_ENABLED
 146 
 147 // Tunables ...
 148 // The knob* variables are effectively final.  Once set they should
 149 // never be modified hence.  Consider using __read_mostly with GCC.
 150 
 151 int ObjectMonitor::Knob_Verbose    = 0 ;
 152 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
 153 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
 154 static int Knob_HandOff            = 0 ;
 155 static int Knob_ReportSettings     = 0 ;
 156 
 157 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
 158 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
 159 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 160 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 161 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 162 static int Knob_SpinEarly          = 1 ;
 163 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 164 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 165 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 166 static int Knob_Bonus              = 100 ;     // spin success bonus
 167 static int Knob_BonusB             = 100 ;     // spin success bonus
 168 static int Knob_Penalty            = 200 ;     // spin failure penalty
 169 static int Knob_Poverty            = 1000 ;
 170 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 171 static int Knob_FixedSpin          = 0 ;
 172 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 173 static int Knob_UsePause           = 1 ;
 174 static int Knob_ExitPolicy         = 0 ;
 175 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 176 static int Knob_ResetEvent         = 0 ;
 177 static int BackOffMask             = 0 ;
 178 
 179 static int Knob_FastHSSEC          = 0 ;
 180 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 181 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 182 static volatile int InitDone       = 0 ;
 183 
 184 #define TrySpin TrySpin_VaryDuration
 185 
 186 // -----------------------------------------------------------------------------
 187 // Theory of operations -- Monitors lists, thread residency, etc:
 188 //
 189 // * A thread acquires ownership of a monitor by successfully
 190 //   CAS()ing the _owner field from null to non-null.
 191 //
 192 // * Invariant: A thread appears on at most one monitor list --
 193 //   cxq, EntryList or WaitSet -- at any one time.
 194 //
 195 // * Contending threads "push" themselves onto the cxq with CAS
 196 //   and then spin/park.
 197 //
 198 // * After a contending thread eventually acquires the lock it must
 199 //   dequeue itself from either the EntryList or the cxq.
 200 //
 201 // * The exiting thread identifies and unparks an "heir presumptive"
 202 //   tentative successor thread on the EntryList.  Critically, the
 203 //   exiting thread doesn't unlink the successor thread from the EntryList.
 204 //   After having been unparked, the wakee will recontend for ownership of
 205 //   the monitor.   The successor (wakee) will either acquire the lock or
 206 //   re-park itself.
 207 //
 208 //   Succession is provided for by a policy of competitive handoff.
 209 //   The exiting thread does _not_ grant or pass ownership to the
 210 //   successor thread.  (This is also referred to as "handoff" succession").
 211 //   Instead the exiting thread releases ownership and possibly wakes
 212 //   a successor, so the successor can (re)compete for ownership of the lock.
 213 //   If the EntryList is empty but the cxq is populated the exiting
 214 //   thread will drain the cxq into the EntryList.  It does so by
 215 //   by detaching the cxq (installing null with CAS) and folding
 216 //   the threads from the cxq into the EntryList.  The EntryList is
 217 //   doubly linked, while the cxq is singly linked because of the
 218 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 219 //
 220 // * Concurrency invariants:
 221 //
 222 //   -- only the monitor owner may access or mutate the EntryList.
 223 //      The mutex property of the monitor itself protects the EntryList
 224 //      from concurrent interference.
 225 //   -- Only the monitor owner may detach the cxq.
 226 //
 227 // * The monitor entry list operations avoid locks, but strictly speaking
 228 //   they're not lock-free.  Enter is lock-free, exit is not.
 229 //   For a description of 'Methods and apparatus providing non-blocking access
 230 //   to a resource,' see U.S. Pat. No. 7844973.
 231 //
 232 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 233 //   detaching thread.  This mechanism is immune from the ABA corruption.
 234 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 235 //
 236 // * Taken together, the cxq and the EntryList constitute or form a
 237 //   single logical queue of threads stalled trying to acquire the lock.
 238 //   We use two distinct lists to improve the odds of a constant-time
 239 //   dequeue operation after acquisition (in the ::enter() epilog) and
 240 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 241 //   A key desideratum is to minimize queue & monitor metadata manipulation
 242 //   that occurs while holding the monitor lock -- that is, we want to
 243 //   minimize monitor lock holds times.  Note that even a small amount of
 244 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 245 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 246 //   locks and monitor metadata.
 247 //
 248 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 249 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 250 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 251 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 252 //
 253 //   The EntryList is ordered by the prevailing queue discipline and
 254 //   can be organized in any convenient fashion, such as a doubly-linked list or
 255 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 256 //   to operate in constant-time.  If we need a priority queue then something akin
 257 //   to Solaris' sleepq would work nicely.  Viz.,
 258 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 259 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 260 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 261 //   EntryList accordingly.
 262 //
 263 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 264 //   somewhat similar to an elevator-scan.
 265 //
 266 // * The monitor synchronization subsystem avoids the use of native
 267 //   synchronization primitives except for the narrow platform-specific
 268 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 269 //   the semantics of park-unpark.  Put another way, this monitor implementation
 270 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 271 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 272 //   underlying OS manages the READY<->RUN transitions.
 273 //
 274 // * Waiting threads reside on the WaitSet list -- wait() puts
 275 //   the caller onto the WaitSet.
 276 //
 277 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 278 //   either the EntryList or cxq.  Subsequent exit() operations will
 279 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 280 //   it's likely the notifyee would simply impale itself on the lock held
 281 //   by the notifier.
 282 //
 283 // * An interesting alternative is to encode cxq as (List,LockByte) where
 284 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 285 //   variable, like _recursions, in the scheme.  The threads or Events that form
 286 //   the list would have to be aligned in 256-byte addresses.  A thread would
 287 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 288 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 289 //   Note that is is *not* word-tearing, but it does presume that full-word
 290 //   CAS operations are coherent with intermix with STB operations.  That's true
 291 //   on most common processors.
 292 //
 293 // * See also http://blogs.sun.com/dave
 294 
 295 
 296 // -----------------------------------------------------------------------------
 297 // Enter support
 298 
 299 bool ObjectMonitor::try_enter(Thread* THREAD) {
 300   if (THREAD != _owner) {
 301     if (THREAD->is_lock_owned ((address)_owner)) {
 302        assert(_recursions == 0, "internal state error");
 303        _owner = THREAD ;
 304        _recursions = 1 ;
 305        OwnerIsThread = 1 ;
 306        return true;
 307     }
 308     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 309       return false;
 310     }
 311     return true;
 312   } else {
 313     _recursions++;
 314     return true;
 315   }
 316 }
 317 
 318 void ATTR ObjectMonitor::enter(TRAPS) {
 319   // The following code is ordered to check the most common cases first
 320   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 321   Thread * const Self = THREAD ;
 322   void * cur ;
 323 
 324   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 325   if (cur == NULL) {
 326      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 327      assert (_recursions == 0   , "invariant") ;
 328      assert (_owner      == Self, "invariant") ;
 329      // CONSIDER: set or assert OwnerIsThread == 1
 330      return ;
 331   }
 332 
 333   if (cur == Self) {
 334      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 335      _recursions ++ ;
 336      return ;
 337   }
 338 
 339   if (Self->is_lock_owned ((address)cur)) {
 340     assert (_recursions == 0, "internal state error");
 341     _recursions = 1 ;
 342     // Commute owner from a thread-specific on-stack BasicLockObject address to
 343     // a full-fledged "Thread *".
 344     _owner = Self ;
 345     OwnerIsThread = 1 ;
 346     return ;
 347   }
 348 
 349   // We've encountered genuine contention.
 350   assert (Self->_Stalled == 0, "invariant") ;
 351   Self->_Stalled = intptr_t(this) ;
 352 
 353   // Try one round of spinning *before* enqueueing Self
 354   // and before going through the awkward and expensive state
 355   // transitions.  The following spin is strictly optional ...
 356   // Note that if we acquire the monitor from an initial spin
 357   // we forgo posting JVMTI events and firing DTRACE probes.
 358   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 359      assert (_owner == Self      , "invariant") ;
 360      assert (_recursions == 0    , "invariant") ;
 361      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 362      Self->_Stalled = 0 ;
 363      return ;
 364   }
 365 
 366   assert (_owner != Self          , "invariant") ;
 367   assert (_succ  != Self          , "invariant") ;
 368   assert (Self->is_Java_thread()  , "invariant") ;
 369   JavaThread * jt = (JavaThread *) Self ;
 370   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 371   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 372   assert (this->object() != NULL  , "invariant") ;
 373   assert (_count >= 0, "invariant") ;
 374 
 375   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 376   // Ensure the object-monitor relationship remains stable while there's contention.
 377   Atomic::inc_ptr(&_count);
 378 
 379   EventJavaMonitorEnter event;
 380 
 381   { // Change java thread status to indicate blocked on monitor enter.
 382     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 383 
 384     Self->set_current_pending_monitor(this);
 385 
 386     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 387     if (JvmtiExport::should_post_monitor_contended_enter()) {
 388       JvmtiExport::post_monitor_contended_enter(jt, this);
 389 
 390       // The current thread does not yet own the monitor and does not
 391       // yet appear on any queues that would get it made the successor.
 392       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 393       // handler cannot accidentally consume an unpark() meant for the
 394       // ParkEvent associated with this ObjectMonitor.
 395     }
 396 
 397     OSThreadContendState osts(Self->osthread());
 398     ThreadBlockInVM tbivm(jt);
 399 
 400     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 401     for (;;) {
 402       jt->set_suspend_equivalent();
 403       // cleared by handle_special_suspend_equivalent_condition()
 404       // or java_suspend_self()
 405 
 406       EnterI (THREAD) ;
 407 
 408       if (!ExitSuspendEquivalent(jt)) break ;
 409 
 410       //
 411       // We have acquired the contended monitor, but while we were
 412       // waiting another thread suspended us. We don't want to enter
 413       // the monitor while suspended because that would surprise the
 414       // thread that suspended us.
 415       //
 416           _recursions = 0 ;
 417       _succ = NULL ;
 418       exit (false, Self) ;
 419 
 420       jt->java_suspend_self();
 421     }
 422     Self->set_current_pending_monitor(NULL);
 423 
 424     // We cleared the pending monitor info since we've just gotten past
 425     // the enter-check-for-suspend dance and we now own the monitor free
 426     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 427     // destructor can go to a safepoint at the end of this block. If we
 428     // do a thread dump during that safepoint, then this thread will show
 429     // as having "-locked" the monitor, but the OS and java.lang.Thread
 430     // states will still report that the thread is blocked trying to
 431     // acquire it.
 432   }
 433 
 434   Atomic::dec_ptr(&_count);
 435   assert (_count >= 0, "invariant") ;
 436   Self->_Stalled = 0 ;
 437 
 438   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 439   assert (_recursions == 0     , "invariant") ;
 440   assert (_owner == Self       , "invariant") ;
 441   assert (_succ  != Self       , "invariant") ;
 442   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 443 
 444   // The thread -- now the owner -- is back in vm mode.
 445   // Report the glorious news via TI,DTrace and jvmstat.
 446   // The probe effect is non-trivial.  All the reportage occurs
 447   // while we hold the monitor, increasing the length of the critical
 448   // section.  Amdahl's parallel speedup law comes vividly into play.
 449   //
 450   // Another option might be to aggregate the events (thread local or
 451   // per-monitor aggregation) and defer reporting until a more opportune
 452   // time -- such as next time some thread encounters contention but has
 453   // yet to acquire the lock.  While spinning that thread could
 454   // spinning we could increment JVMStat counters, etc.
 455 
 456   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 457   if (JvmtiExport::should_post_monitor_contended_entered()) {
 458     JvmtiExport::post_monitor_contended_entered(jt, this);
 459 
 460     // The current thread already owns the monitor and is not going to
 461     // call park() for the remainder of the monitor enter protocol. So
 462     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 463     // event handler consumed an unpark() issued by the thread that
 464     // just exited the monitor.
 465   }
 466 
 467   if (event.should_commit()) {
 468     event.set_klass(((oop)this->object())->klass());
 469     event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
 470     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 471     event.commit();
 472   }
 473 
 474   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 475      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 476   }
 477 }
 478 
 479 
 480 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 481 // Callers must compensate as needed.
 482 
 483 int ObjectMonitor::TryLock (Thread * Self) {
 484    for (;;) {
 485       void * own = _owner ;
 486       if (own != NULL) return 0 ;
 487       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 488          // Either guarantee _recursions == 0 or set _recursions = 0.
 489          assert (_recursions == 0, "invariant") ;
 490          assert (_owner == Self, "invariant") ;
 491          // CONSIDER: set or assert that OwnerIsThread == 1
 492          return 1 ;
 493       }
 494       // The lock had been free momentarily, but we lost the race to the lock.
 495       // Interference -- the CAS failed.
 496       // We can either return -1 or retry.
 497       // Retry doesn't make as much sense because the lock was just acquired.
 498       if (true) return -1 ;
 499    }
 500 }
 501 
 502 void ATTR ObjectMonitor::EnterI (TRAPS) {
 503     Thread * Self = THREAD ;
 504     assert (Self->is_Java_thread(), "invariant") ;
 505     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 506 
 507     // Try the lock - TATAS
 508     if (TryLock (Self) > 0) {
 509         assert (_succ != Self              , "invariant") ;
 510         assert (_owner == Self             , "invariant") ;
 511         assert (_Responsible != Self       , "invariant") ;
 512         return ;
 513     }
 514 
 515     DeferredInitialize () ;
 516 
 517     // We try one round of spinning *before* enqueueing Self.
 518     //
 519     // If the _owner is ready but OFFPROC we could use a YieldTo()
 520     // operation to donate the remainder of this thread's quantum
 521     // to the owner.  This has subtle but beneficial affinity
 522     // effects.
 523 
 524     if (TrySpin (Self) > 0) {
 525         assert (_owner == Self        , "invariant") ;
 526         assert (_succ != Self         , "invariant") ;
 527         assert (_Responsible != Self  , "invariant") ;
 528         return ;
 529     }
 530 
 531     // The Spin failed -- Enqueue and park the thread ...
 532     assert (_succ  != Self            , "invariant") ;
 533     assert (_owner != Self            , "invariant") ;
 534     assert (_Responsible != Self      , "invariant") ;
 535 
 536     // Enqueue "Self" on ObjectMonitor's _cxq.
 537     //
 538     // Node acts as a proxy for Self.
 539     // As an aside, if were to ever rewrite the synchronization code mostly
 540     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 541     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 542     // as well as eliminate a subset of ABA issues.
 543     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 544     //
 545 
 546     ObjectWaiter node(Self) ;
 547     Self->_ParkEvent->reset() ;
 548     node._prev   = (ObjectWaiter *) 0xBAD ;
 549     node.TState  = ObjectWaiter::TS_CXQ ;
 550 
 551     // Push "Self" onto the front of the _cxq.
 552     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 553     // Note that spinning tends to reduce the rate at which threads
 554     // enqueue and dequeue on EntryList|cxq.
 555     ObjectWaiter * nxt ;
 556     for (;;) {
 557         node._next = nxt = _cxq ;
 558         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 559 
 560         // Interference - the CAS failed because _cxq changed.  Just retry.
 561         // As an optional optimization we retry the lock.
 562         if (TryLock (Self) > 0) {
 563             assert (_succ != Self         , "invariant") ;
 564             assert (_owner == Self        , "invariant") ;
 565             assert (_Responsible != Self  , "invariant") ;
 566             return ;
 567         }
 568     }
 569 
 570     // Check for cxq|EntryList edge transition to non-null.  This indicates
 571     // the onset of contention.  While contention persists exiting threads
 572     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 573     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 574     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 575     // arrange for one of the contending thread to use a timed park() operations
 576     // to detect and recover from the race.  (Stranding is form of progress failure
 577     // where the monitor is unlocked but all the contending threads remain parked).
 578     // That is, at least one of the contended threads will periodically poll _owner.
 579     // One of the contending threads will become the designated "Responsible" thread.
 580     // The Responsible thread uses a timed park instead of a normal indefinite park
 581     // operation -- it periodically wakes and checks for and recovers from potential
 582     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 583     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 584     // be responsible for a monitor.
 585     //
 586     // Currently, one of the contended threads takes on the added role of "Responsible".
 587     // A viable alternative would be to use a dedicated "stranding checker" thread
 588     // that periodically iterated over all the threads (or active monitors) and unparked
 589     // successors where there was risk of stranding.  This would help eliminate the
 590     // timer scalability issues we see on some platforms as we'd only have one thread
 591     // -- the checker -- parked on a timer.
 592 
 593     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 594         // Try to assume the role of responsible thread for the monitor.
 595         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 596         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 597     }
 598 
 599     // The lock have been released while this thread was occupied queueing
 600     // itself onto _cxq.  To close the race and avoid "stranding" and
 601     // progress-liveness failure we must resample-retry _owner before parking.
 602     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 603     // In this case the ST-MEMBAR is accomplished with CAS().
 604     //
 605     // TODO: Defer all thread state transitions until park-time.
 606     // Since state transitions are heavy and inefficient we'd like
 607     // to defer the state transitions until absolutely necessary,
 608     // and in doing so avoid some transitions ...
 609 
 610     TEVENT (Inflated enter - Contention) ;
 611     int nWakeups = 0 ;
 612     int RecheckInterval = 1 ;
 613 
 614     for (;;) {
 615 
 616         if (TryLock (Self) > 0) break ;
 617         assert (_owner != Self, "invariant") ;
 618 
 619         if ((SyncFlags & 2) && _Responsible == NULL) {
 620            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 621         }
 622 
 623         // park self
 624         if (_Responsible == Self || (SyncFlags & 1)) {
 625             TEVENT (Inflated enter - park TIMED) ;
 626             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 627             // Increase the RecheckInterval, but clamp the value.
 628             RecheckInterval *= 8 ;
 629             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 630         } else {
 631             TEVENT (Inflated enter - park UNTIMED) ;
 632             Self->_ParkEvent->park() ;
 633         }
 634 
 635         if (TryLock(Self) > 0) break ;
 636 
 637         // The lock is still contested.
 638         // Keep a tally of the # of futile wakeups.
 639         // Note that the counter is not protected by a lock or updated by atomics.
 640         // That is by design - we trade "lossy" counters which are exposed to
 641         // races during updates for a lower probe effect.
 642         TEVENT (Inflated enter - Futile wakeup) ;
 643         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 644            ObjectMonitor::_sync_FutileWakeups->inc() ;
 645         }
 646         ++ nWakeups ;
 647 
 648         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 649         // We can defer clearing _succ until after the spin completes
 650         // TrySpin() must tolerate being called with _succ == Self.
 651         // Try yet another round of adaptive spinning.
 652         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 653 
 654         // We can find that we were unpark()ed and redesignated _succ while
 655         // we were spinning.  That's harmless.  If we iterate and call park(),
 656         // park() will consume the event and return immediately and we'll
 657         // just spin again.  This pattern can repeat, leaving _succ to simply
 658         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 659         // Alternately, we can sample fired() here, and if set, forgo spinning
 660         // in the next iteration.
 661 
 662         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 663            Self->_ParkEvent->reset() ;
 664            OrderAccess::fence() ;
 665         }
 666         if (_succ == Self) _succ = NULL ;
 667 
 668         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 669         OrderAccess::fence() ;
 670     }
 671 
 672     // Egress :
 673     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 674     // Normally we'll find Self on the EntryList .
 675     // From the perspective of the lock owner (this thread), the
 676     // EntryList is stable and cxq is prepend-only.
 677     // The head of cxq is volatile but the interior is stable.
 678     // In addition, Self.TState is stable.
 679 
 680     assert (_owner == Self      , "invariant") ;
 681     assert (object() != NULL    , "invariant") ;
 682     // I'd like to write:
 683     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 684     // but as we're at a safepoint that's not safe.
 685 
 686     UnlinkAfterAcquire (Self, &node) ;
 687     if (_succ == Self) _succ = NULL ;
 688 
 689     assert (_succ != Self, "invariant") ;
 690     if (_Responsible == Self) {
 691         _Responsible = NULL ;
 692         OrderAccess::fence(); // Dekker pivot-point
 693 
 694         // We may leave threads on cxq|EntryList without a designated
 695         // "Responsible" thread.  This is benign.  When this thread subsequently
 696         // exits the monitor it can "see" such preexisting "old" threads --
 697         // threads that arrived on the cxq|EntryList before the fence, above --
 698         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 699         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 700         // non-null and elect a new "Responsible" timer thread.
 701         //
 702         // This thread executes:
 703         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
 704         //    LD cxq|EntryList               (in subsequent exit)
 705         //
 706         // Entering threads in the slow/contended path execute:
 707         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 708         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 709         //
 710         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 711         // exit operation from floating above the ST Responsible=null.
 712     }
 713 
 714     // We've acquired ownership with CAS().
 715     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 716     // But since the CAS() this thread may have also stored into _succ,
 717     // EntryList, cxq or Responsible.  These meta-data updates must be
 718     // visible __before this thread subsequently drops the lock.
 719     // Consider what could occur if we didn't enforce this constraint --
 720     // STs to monitor meta-data and user-data could reorder with (become
 721     // visible after) the ST in exit that drops ownership of the lock.
 722     // Some other thread could then acquire the lock, but observe inconsistent
 723     // or old monitor meta-data and heap data.  That violates the JMM.
 724     // To that end, the 1-0 exit() operation must have at least STST|LDST
 725     // "release" barrier semantics.  Specifically, there must be at least a
 726     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 727     // the lock.   The barrier ensures that changes to monitor meta-data and data
 728     // protected by the lock will be visible before we release the lock, and
 729     // therefore before some other thread (CPU) has a chance to acquire the lock.
 730     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 731     //
 732     // Critically, any prior STs to _succ or EntryList must be visible before
 733     // the ST of null into _owner in the *subsequent* (following) corresponding
 734     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 735     // execute a serializing instruction.
 736 
 737     if (SyncFlags & 8) {
 738        OrderAccess::fence() ;
 739     }
 740     return ;
 741 }
 742 
 743 // ReenterI() is a specialized inline form of the latter half of the
 744 // contended slow-path from EnterI().  We use ReenterI() only for
 745 // monitor reentry in wait().
 746 //
 747 // In the future we should reconcile EnterI() and ReenterI(), adding
 748 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 749 // loop accordingly.
 750 
 751 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 752     assert (Self != NULL                , "invariant") ;
 753     assert (SelfNode != NULL            , "invariant") ;
 754     assert (SelfNode->_thread == Self   , "invariant") ;
 755     assert (_waiters > 0                , "invariant") ;
 756     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 757     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 758     JavaThread * jt = (JavaThread *) Self ;
 759 
 760     int nWakeups = 0 ;
 761     for (;;) {
 762         ObjectWaiter::TStates v = SelfNode->TState ;
 763         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 764         assert    (_owner != Self, "invariant") ;
 765 
 766         if (TryLock (Self) > 0) break ;
 767         if (TrySpin (Self) > 0) break ;
 768 
 769         TEVENT (Wait Reentry - parking) ;
 770 
 771         // State transition wrappers around park() ...
 772         // ReenterI() wisely defers state transitions until
 773         // it's clear we must park the thread.
 774         {
 775            OSThreadContendState osts(Self->osthread());
 776            ThreadBlockInVM tbivm(jt);
 777 
 778            // cleared by handle_special_suspend_equivalent_condition()
 779            // or java_suspend_self()
 780            jt->set_suspend_equivalent();
 781            if (SyncFlags & 1) {
 782               Self->_ParkEvent->park ((jlong)1000) ;
 783            } else {
 784               Self->_ParkEvent->park () ;
 785            }
 786 
 787            // were we externally suspended while we were waiting?
 788            for (;;) {
 789               if (!ExitSuspendEquivalent (jt)) break ;
 790               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 791               jt->java_suspend_self();
 792               jt->set_suspend_equivalent();
 793            }
 794         }
 795 
 796         // Try again, but just so we distinguish between futile wakeups and
 797         // successful wakeups.  The following test isn't algorithmically
 798         // necessary, but it helps us maintain sensible statistics.
 799         if (TryLock(Self) > 0) break ;
 800 
 801         // The lock is still contested.
 802         // Keep a tally of the # of futile wakeups.
 803         // Note that the counter is not protected by a lock or updated by atomics.
 804         // That is by design - we trade "lossy" counters which are exposed to
 805         // races during updates for a lower probe effect.
 806         TEVENT (Wait Reentry - futile wakeup) ;
 807         ++ nWakeups ;
 808 
 809         // Assuming this is not a spurious wakeup we'll normally
 810         // find that _succ == Self.
 811         if (_succ == Self) _succ = NULL ;
 812 
 813         // Invariant: after clearing _succ a contending thread
 814         // *must* retry  _owner before parking.
 815         OrderAccess::fence() ;
 816 
 817         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 818           ObjectMonitor::_sync_FutileWakeups->inc() ;
 819         }
 820     }
 821 
 822     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 823     // Normally we'll find Self on the EntryList.
 824     // Unlinking from the EntryList is constant-time and atomic-free.
 825     // From the perspective of the lock owner (this thread), the
 826     // EntryList is stable and cxq is prepend-only.
 827     // The head of cxq is volatile but the interior is stable.
 828     // In addition, Self.TState is stable.
 829 
 830     assert (_owner == Self, "invariant") ;
 831     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 832     UnlinkAfterAcquire (Self, SelfNode) ;
 833     if (_succ == Self) _succ = NULL ;
 834     assert (_succ != Self, "invariant") ;
 835     SelfNode->TState = ObjectWaiter::TS_RUN ;
 836     OrderAccess::fence() ;      // see comments at the end of EnterI()
 837 }
 838 
 839 // after the thread acquires the lock in ::enter().  Equally, we could defer
 840 // unlinking the thread until ::exit()-time.
 841 
 842 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 843 {
 844     assert (_owner == Self, "invariant") ;
 845     assert (SelfNode->_thread == Self, "invariant") ;
 846 
 847     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 848         // Normal case: remove Self from the DLL EntryList .
 849         // This is a constant-time operation.
 850         ObjectWaiter * nxt = SelfNode->_next ;
 851         ObjectWaiter * prv = SelfNode->_prev ;
 852         if (nxt != NULL) nxt->_prev = prv ;
 853         if (prv != NULL) prv->_next = nxt ;
 854         if (SelfNode == _EntryList ) _EntryList = nxt ;
 855         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 856         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 857         TEVENT (Unlink from EntryList) ;
 858     } else {
 859         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 860         // Inopportune interleaving -- Self is still on the cxq.
 861         // This usually means the enqueue of self raced an exiting thread.
 862         // Normally we'll find Self near the front of the cxq, so
 863         // dequeueing is typically fast.  If needbe we can accelerate
 864         // this with some MCS/CHL-like bidirectional list hints and advisory
 865         // back-links so dequeueing from the interior will normally operate
 866         // in constant-time.
 867         // Dequeue Self from either the head (with CAS) or from the interior
 868         // with a linear-time scan and normal non-atomic memory operations.
 869         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 870         // and then unlink Self from EntryList.  We have to drain eventually,
 871         // so it might as well be now.
 872 
 873         ObjectWaiter * v = _cxq ;
 874         assert (v != NULL, "invariant") ;
 875         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 876             // The CAS above can fail from interference IFF a "RAT" arrived.
 877             // In that case Self must be in the interior and can no longer be
 878             // at the head of cxq.
 879             if (v == SelfNode) {
 880                 assert (_cxq != v, "invariant") ;
 881                 v = _cxq ;          // CAS above failed - start scan at head of list
 882             }
 883             ObjectWaiter * p ;
 884             ObjectWaiter * q = NULL ;
 885             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 886                 q = p ;
 887                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 888             }
 889             assert (v != SelfNode,  "invariant") ;
 890             assert (p == SelfNode,  "Node not found on cxq") ;
 891             assert (p != _cxq,      "invariant") ;
 892             assert (q != NULL,      "invariant") ;
 893             assert (q->_next == p,  "invariant") ;
 894             q->_next = p->_next ;
 895         }
 896         TEVENT (Unlink from cxq) ;
 897     }
 898 
 899     // Diagnostic hygiene ...
 900     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 901     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 902     SelfNode->TState = ObjectWaiter::TS_RUN ;
 903 }
 904 
 905 // -----------------------------------------------------------------------------
 906 // Exit support
 907 //
 908 // exit()
 909 // ~~~~~~
 910 // Note that the collector can't reclaim the objectMonitor or deflate
 911 // the object out from underneath the thread calling ::exit() as the
 912 // thread calling ::exit() never transitions to a stable state.
 913 // This inhibits GC, which in turn inhibits asynchronous (and
 914 // inopportune) reclamation of "this".
 915 //
 916 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 917 // There's one exception to the claim above, however.  EnterI() can call
 918 // exit() to drop a lock if the acquirer has been externally suspended.
 919 // In that case exit() is called with _thread_state as _thread_blocked,
 920 // but the monitor's _count field is > 0, which inhibits reclamation.
 921 //
 922 // 1-0 exit
 923 // ~~~~~~~~
 924 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 925 // the fast-path operators have been optimized so the common ::exit()
 926 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 927 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 928 // greatly improves latency -- MEMBAR and CAS having considerable local
 929 // latency on modern processors -- but at the cost of "stranding".  Absent the
 930 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 931 // ::enter() path, resulting in the entering thread being stranding
 932 // and a progress-liveness failure.   Stranding is extremely rare.
 933 // We use timers (timed park operations) & periodic polling to detect
 934 // and recover from stranding.  Potentially stranded threads periodically
 935 // wake up and poll the lock.  See the usage of the _Responsible variable.
 936 //
 937 // The CAS() in enter provides for safety and exclusion, while the CAS or
 938 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 939 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 940 // We detect and recover from stranding with timers.
 941 //
 942 // If a thread transiently strands it'll park until (a) another
 943 // thread acquires the lock and then drops the lock, at which time the
 944 // exiting thread will notice and unpark the stranded thread, or, (b)
 945 // the timer expires.  If the lock is high traffic then the stranding latency
 946 // will be low due to (a).  If the lock is low traffic then the odds of
 947 // stranding are lower, although the worst-case stranding latency
 948 // is longer.  Critically, we don't want to put excessive load in the
 949 // platform's timer subsystem.  We want to minimize both the timer injection
 950 // rate (timers created/sec) as well as the number of timers active at
 951 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 952 // the integral of the # of active timers at any instant over time).
 953 // Both impinge on OS scalability.  Given that, at most one thread parked on
 954 // a monitor will use a timer.
 955 
 956 void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
 957    Thread * Self = THREAD ;
 958    if (THREAD != _owner) {
 959      if (THREAD->is_lock_owned((address) _owner)) {
 960        // Transmute _owner from a BasicLock pointer to a Thread address.
 961        // We don't need to hold _mutex for this transition.
 962        // Non-null to Non-null is safe as long as all readers can
 963        // tolerate either flavor.
 964        assert (_recursions == 0, "invariant") ;
 965        _owner = THREAD ;
 966        _recursions = 0 ;
 967        OwnerIsThread = 1 ;
 968      } else {
 969        // NOTE: we need to handle unbalanced monitor enter/exit
 970        // in native code by throwing an exception.
 971        // TODO: Throw an IllegalMonitorStateException ?
 972        TEVENT (Exit - Throw IMSX) ;
 973        assert(false, "Non-balanced monitor enter/exit!");
 974        if (false) {
 975           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 976        }
 977        return;
 978      }
 979    }
 980 
 981    if (_recursions != 0) {
 982      _recursions--;        // this is simple recursive enter
 983      TEVENT (Inflated exit - recursive) ;
 984      return ;
 985    }
 986 
 987    // Invariant: after setting Responsible=null an thread must execute
 988    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 989    if ((SyncFlags & 4) == 0) {
 990       _Responsible = NULL ;
 991    }
 992 
 993 #if INCLUDE_TRACE
 994    // get the owner's thread id for the MonitorEnter event
 995    // if it is enabled and the thread isn't suspended
 996    if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 997      _previous_owner_tid = SharedRuntime::get_java_tid(Self);
 998    }
 999 #endif
1000 
1001    for (;;) {
1002       assert (THREAD == _owner, "invariant") ;
1003 
1004 
1005       if (Knob_ExitPolicy == 0) {
1006          // release semantics: prior loads and stores from within the critical section
1007          // must not float (reorder) past the following store that drops the lock.
1008          // On SPARC that requires MEMBAR #loadstore|#storestore.
1009          // But of course in TSO #loadstore|#storestore is not required.
1010          // I'd like to write one of the following:
1011          // A.  OrderAccess::release() ; _owner = NULL
1012          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
1013          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
1014          // store into a _dummy variable.  That store is not needed, but can result
1015          // in massive wasteful coherency traffic on classic SMP systems.
1016          // Instead, I use release_store(), which is implemented as just a simple
1017          // ST on x64, x86 and SPARC.
1018          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1019          OrderAccess::storeload() ;                         // See if we need to wake a successor
1020          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1021             TEVENT (Inflated exit - simple egress) ;
1022             return ;
1023          }
1024          TEVENT (Inflated exit - complex egress) ;
1025 
1026          // Normally the exiting thread is responsible for ensuring succession,
1027          // but if other successors are ready or other entering threads are spinning
1028          // then this thread can simply store NULL into _owner and exit without
1029          // waking a successor.  The existence of spinners or ready successors
1030          // guarantees proper succession (liveness).  Responsibility passes to the
1031          // ready or running successors.  The exiting thread delegates the duty.
1032          // More precisely, if a successor already exists this thread is absolved
1033          // of the responsibility of waking (unparking) one.
1034          //
1035          // The _succ variable is critical to reducing futile wakeup frequency.
1036          // _succ identifies the "heir presumptive" thread that has been made
1037          // ready (unparked) but that has not yet run.  We need only one such
1038          // successor thread to guarantee progress.
1039          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1040          // section 3.3 "Futile Wakeup Throttling" for details.
1041          //
1042          // Note that spinners in Enter() also set _succ non-null.
1043          // In the current implementation spinners opportunistically set
1044          // _succ so that exiting threads might avoid waking a successor.
1045          // Another less appealing alternative would be for the exiting thread
1046          // to drop the lock and then spin briefly to see if a spinner managed
1047          // to acquire the lock.  If so, the exiting thread could exit
1048          // immediately without waking a successor, otherwise the exiting
1049          // thread would need to dequeue and wake a successor.
1050          // (Note that we'd need to make the post-drop spin short, but no
1051          // shorter than the worst-case round-trip cache-line migration time.
1052          // The dropped lock needs to become visible to the spinner, and then
1053          // the acquisition of the lock by the spinner must become visible to
1054          // the exiting thread).
1055          //
1056 
1057          // It appears that an heir-presumptive (successor) must be made ready.
1058          // Only the current lock owner can manipulate the EntryList or
1059          // drain _cxq, so we need to reacquire the lock.  If we fail
1060          // to reacquire the lock the responsibility for ensuring succession
1061          // falls to the new owner.
1062          //
1063          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1064             return ;
1065          }
1066          TEVENT (Exit - Reacquired) ;
1067       } else {
1068          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1069             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
1070             OrderAccess::storeload() ;
1071             // Ratify the previously observed values.
1072             if (_cxq == NULL || _succ != NULL) {
1073                 TEVENT (Inflated exit - simple egress) ;
1074                 return ;
1075             }
1076 
1077             // inopportune interleaving -- the exiting thread (this thread)
1078             // in the fast-exit path raced an entering thread in the slow-enter
1079             // path.
1080             // We have two choices:
1081             // A.  Try to reacquire the lock.
1082             //     If the CAS() fails return immediately, otherwise
1083             //     we either restart/rerun the exit operation, or simply
1084             //     fall-through into the code below which wakes a successor.
1085             // B.  If the elements forming the EntryList|cxq are TSM
1086             //     we could simply unpark() the lead thread and return
1087             //     without having set _succ.
1088             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1089                TEVENT (Inflated exit - reacquired succeeded) ;
1090                return ;
1091             }
1092             TEVENT (Inflated exit - reacquired failed) ;
1093          } else {
1094             TEVENT (Inflated exit - complex egress) ;
1095          }
1096       }
1097 
1098       guarantee (_owner == THREAD, "invariant") ;
1099 
1100       ObjectWaiter * w = NULL ;
1101       int QMode = Knob_QMode ;
1102 
1103       if (QMode == 2 && _cxq != NULL) {
1104           // QMode == 2 : cxq has precedence over EntryList.
1105           // Try to directly wake a successor from the cxq.
1106           // If successful, the successor will need to unlink itself from cxq.
1107           w = _cxq ;
1108           assert (w != NULL, "invariant") ;
1109           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1110           ExitEpilog (Self, w) ;
1111           return ;
1112       }
1113 
1114       if (QMode == 3 && _cxq != NULL) {
1115           // Aggressively drain cxq into EntryList at the first opportunity.
1116           // This policy ensure that recently-run threads live at the head of EntryList.
1117           // Drain _cxq into EntryList - bulk transfer.
1118           // First, detach _cxq.
1119           // The following loop is tantamount to: w = swap (&cxq, NULL)
1120           w = _cxq ;
1121           for (;;) {
1122              assert (w != NULL, "Invariant") ;
1123              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1124              if (u == w) break ;
1125              w = u ;
1126           }
1127           assert (w != NULL              , "invariant") ;
1128 
1129           ObjectWaiter * q = NULL ;
1130           ObjectWaiter * p ;
1131           for (p = w ; p != NULL ; p = p->_next) {
1132               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1133               p->TState = ObjectWaiter::TS_ENTER ;
1134               p->_prev = q ;
1135               q = p ;
1136           }
1137 
1138           // Append the RATs to the EntryList
1139           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1140           ObjectWaiter * Tail ;
1141           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1142           if (Tail == NULL) {
1143               _EntryList = w ;
1144           } else {
1145               Tail->_next = w ;
1146               w->_prev = Tail ;
1147           }
1148 
1149           // Fall thru into code that tries to wake a successor from EntryList
1150       }
1151 
1152       if (QMode == 4 && _cxq != NULL) {
1153           // Aggressively drain cxq into EntryList at the first opportunity.
1154           // This policy ensure that recently-run threads live at the head of EntryList.
1155 
1156           // Drain _cxq into EntryList - bulk transfer.
1157           // First, detach _cxq.
1158           // The following loop is tantamount to: w = swap (&cxq, NULL)
1159           w = _cxq ;
1160           for (;;) {
1161              assert (w != NULL, "Invariant") ;
1162              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1163              if (u == w) break ;
1164              w = u ;
1165           }
1166           assert (w != NULL              , "invariant") ;
1167 
1168           ObjectWaiter * q = NULL ;
1169           ObjectWaiter * p ;
1170           for (p = w ; p != NULL ; p = p->_next) {
1171               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1172               p->TState = ObjectWaiter::TS_ENTER ;
1173               p->_prev = q ;
1174               q = p ;
1175           }
1176 
1177           // Prepend the RATs to the EntryList
1178           if (_EntryList != NULL) {
1179               q->_next = _EntryList ;
1180               _EntryList->_prev = q ;
1181           }
1182           _EntryList = w ;
1183 
1184           // Fall thru into code that tries to wake a successor from EntryList
1185       }
1186 
1187       w = _EntryList  ;
1188       if (w != NULL) {
1189           // I'd like to write: guarantee (w->_thread != Self).
1190           // But in practice an exiting thread may find itself on the EntryList.
1191           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1192           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1193           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1194           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1195           // release the lock "O".  T2 resumes immediately after the ST of null into
1196           // _owner, above.  T2 notices that the EntryList is populated, so it
1197           // reacquires the lock and then finds itself on the EntryList.
1198           // Given all that, we have to tolerate the circumstance where "w" is
1199           // associated with Self.
1200           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1201           ExitEpilog (Self, w) ;
1202           return ;
1203       }
1204 
1205       // If we find that both _cxq and EntryList are null then just
1206       // re-run the exit protocol from the top.
1207       w = _cxq ;
1208       if (w == NULL) continue ;
1209 
1210       // Drain _cxq into EntryList - bulk transfer.
1211       // First, detach _cxq.
1212       // The following loop is tantamount to: w = swap (&cxq, NULL)
1213       for (;;) {
1214           assert (w != NULL, "Invariant") ;
1215           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1216           if (u == w) break ;
1217           w = u ;
1218       }
1219       TEVENT (Inflated exit - drain cxq into EntryList) ;
1220 
1221       assert (w != NULL              , "invariant") ;
1222       assert (_EntryList  == NULL    , "invariant") ;
1223 
1224       // Convert the LIFO SLL anchored by _cxq into a DLL.
1225       // The list reorganization step operates in O(LENGTH(w)) time.
1226       // It's critical that this step operate quickly as
1227       // "Self" still holds the outer-lock, restricting parallelism
1228       // and effectively lengthening the critical section.
1229       // Invariant: s chases t chases u.
1230       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1231       // we have faster access to the tail.
1232 
1233       if (QMode == 1) {
1234          // QMode == 1 : drain cxq to EntryList, reversing order
1235          // We also reverse the order of the list.
1236          ObjectWaiter * s = NULL ;
1237          ObjectWaiter * t = w ;
1238          ObjectWaiter * u = NULL ;
1239          while (t != NULL) {
1240              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1241              t->TState = ObjectWaiter::TS_ENTER ;
1242              u = t->_next ;
1243              t->_prev = u ;
1244              t->_next = s ;
1245              s = t;
1246              t = u ;
1247          }
1248          _EntryList  = s ;
1249          assert (s != NULL, "invariant") ;
1250       } else {
1251          // QMode == 0 or QMode == 2
1252          _EntryList = w ;
1253          ObjectWaiter * q = NULL ;
1254          ObjectWaiter * p ;
1255          for (p = w ; p != NULL ; p = p->_next) {
1256              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1257              p->TState = ObjectWaiter::TS_ENTER ;
1258              p->_prev = q ;
1259              q = p ;
1260          }
1261       }
1262 
1263       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1264       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1265 
1266       // See if we can abdicate to a spinner instead of waking a thread.
1267       // A primary goal of the implementation is to reduce the
1268       // context-switch rate.
1269       if (_succ != NULL) continue;
1270 
1271       w = _EntryList  ;
1272       if (w != NULL) {
1273           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1274           ExitEpilog (Self, w) ;
1275           return ;
1276       }
1277    }
1278 }
1279 
1280 // ExitSuspendEquivalent:
1281 // A faster alternate to handle_special_suspend_equivalent_condition()
1282 //
1283 // handle_special_suspend_equivalent_condition() unconditionally
1284 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1285 // operations have high latency.  Note that in ::enter() we call HSSEC
1286 // while holding the monitor, so we effectively lengthen the critical sections.
1287 //
1288 // There are a number of possible solutions:
1289 //
1290 // A.  To ameliorate the problem we might also defer state transitions
1291 //     to as late as possible -- just prior to parking.
1292 //     Given that, we'd call HSSEC after having returned from park(),
1293 //     but before attempting to acquire the monitor.  This is only a
1294 //     partial solution.  It avoids calling HSSEC while holding the
1295 //     monitor (good), but it still increases successor reacquisition latency --
1296 //     the interval between unparking a successor and the time the successor
1297 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1298 //     If we use this technique we can also avoid EnterI()-exit() loop
1299 //     in ::enter() where we iteratively drop the lock and then attempt
1300 //     to reacquire it after suspending.
1301 //
1302 // B.  In the future we might fold all the suspend bits into a
1303 //     composite per-thread suspend flag and then update it with CAS().
1304 //     Alternately, a Dekker-like mechanism with multiple variables
1305 //     would suffice:
1306 //       ST Self->_suspend_equivalent = false
1307 //       MEMBAR
1308 //       LD Self_>_suspend_flags
1309 //
1310 
1311 
1312 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1313    int Mode = Knob_FastHSSEC ;
1314    if (Mode && !jSelf->is_external_suspend()) {
1315       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1316       jSelf->clear_suspend_equivalent() ;
1317       if (2 == Mode) OrderAccess::storeload() ;
1318       if (!jSelf->is_external_suspend()) return false ;
1319       // We raced a suspension -- fall thru into the slow path
1320       TEVENT (ExitSuspendEquivalent - raced) ;
1321       jSelf->set_suspend_equivalent() ;
1322    }
1323    return jSelf->handle_special_suspend_equivalent_condition() ;
1324 }
1325 
1326 
1327 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1328    assert (_owner == Self, "invariant") ;
1329 
1330    // Exit protocol:
1331    // 1. ST _succ = wakee
1332    // 2. membar #loadstore|#storestore;
1333    // 2. ST _owner = NULL
1334    // 3. unpark(wakee)
1335 
1336    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1337    ParkEvent * Trigger = Wakee->_event ;
1338 
1339    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1340    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1341    // out-of-scope (non-extant).
1342    Wakee  = NULL ;
1343 
1344    // Drop the lock
1345    OrderAccess::release_store_ptr (&_owner, NULL) ;
1346    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1347 
1348    if (SafepointSynchronize::do_call_back()) {
1349       TEVENT (unpark before SAFEPOINT) ;
1350    }
1351 
1352    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1353    Trigger->unpark() ;
1354 
1355    // Maintain stats and report events to JVMTI
1356    if (ObjectMonitor::_sync_Parks != NULL) {
1357       ObjectMonitor::_sync_Parks->inc() ;
1358    }
1359 }
1360 
1361 
1362 // -----------------------------------------------------------------------------
1363 // Class Loader deadlock handling.
1364 //
1365 // complete_exit exits a lock returning recursion count
1366 // complete_exit/reenter operate as a wait without waiting
1367 // complete_exit requires an inflated monitor
1368 // The _owner field is not always the Thread addr even with an
1369 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1370 // thread due to contention.
1371 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1372    Thread * const Self = THREAD;
1373    assert(Self->is_Java_thread(), "Must be Java thread!");
1374    JavaThread *jt = (JavaThread *)THREAD;
1375 
1376    DeferredInitialize();
1377 
1378    if (THREAD != _owner) {
1379     if (THREAD->is_lock_owned ((address)_owner)) {
1380        assert(_recursions == 0, "internal state error");
1381        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1382        _recursions = 0 ;
1383        OwnerIsThread = 1 ;
1384     }
1385    }
1386 
1387    guarantee(Self == _owner, "complete_exit not owner");
1388    intptr_t save = _recursions; // record the old recursion count
1389    _recursions = 0;        // set the recursion level to be 0
1390    exit (true, Self) ;           // exit the monitor
1391    guarantee (_owner != Self, "invariant");
1392    return save;
1393 }
1394 
1395 // reenter() enters a lock and sets recursion count
1396 // complete_exit/reenter operate as a wait without waiting
1397 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1398    Thread * const Self = THREAD;
1399    assert(Self->is_Java_thread(), "Must be Java thread!");
1400    JavaThread *jt = (JavaThread *)THREAD;
1401 
1402    guarantee(_owner != Self, "reenter already owner");
1403    enter (THREAD);       // enter the monitor
1404    guarantee (_recursions == 0, "reenter recursion");
1405    _recursions = recursions;
1406    return;
1407 }
1408 
1409 
1410 // -----------------------------------------------------------------------------
1411 // A macro is used below because there may already be a pending
1412 // exception which should not abort the execution of the routines
1413 // which use this (which is why we don't put this into check_slow and
1414 // call it with a CHECK argument).
1415 
1416 #define CHECK_OWNER()                                                             \
1417   do {                                                                            \
1418     if (THREAD != _owner) {                                                       \
1419       if (THREAD->is_lock_owned((address) _owner)) {                              \
1420         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1421         _recursions = 0;                                                          \
1422         OwnerIsThread = 1 ;                                                       \
1423       } else {                                                                    \
1424         TEVENT (Throw IMSX) ;                                                     \
1425         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1426       }                                                                           \
1427     }                                                                             \
1428   } while (false)
1429 
1430 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1431 // TODO-FIXME: remove check_slow() -- it's likely dead.
1432 
1433 void ObjectMonitor::check_slow(TRAPS) {
1434   TEVENT (check_slow - throw IMSX) ;
1435   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1436   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1437 }
1438 
1439 static int Adjust (volatile int * adr, int dx) {
1440   int v ;
1441   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1442   return v ;
1443 }
1444 
1445 // helper method for posting a monitor wait event
1446 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1447                                                            jlong notifier_tid,
1448                                                            jlong timeout,
1449                                                            bool timedout) {
1450   event->set_klass(((oop)this->object())->klass());
1451   event->set_timeout((TYPE_ULONG)timeout);
1452   event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
1453   event->set_notifier((TYPE_OSTHREAD)notifier_tid);
1454   event->set_timedOut((TYPE_BOOLEAN)timedout);
1455   event->commit();
1456 }
1457 
1458 // -----------------------------------------------------------------------------
1459 // Wait/Notify/NotifyAll
1460 //
1461 // Note: a subset of changes to ObjectMonitor::wait()
1462 // will need to be replicated in complete_exit above
1463 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1464    Thread * const Self = THREAD ;
1465    assert(Self->is_Java_thread(), "Must be Java thread!");
1466    JavaThread *jt = (JavaThread *)THREAD;
1467 
1468    DeferredInitialize () ;
1469 
1470    // Throw IMSX or IEX.
1471    CHECK_OWNER();
1472 
1473    EventJavaMonitorWait event;
1474 
1475    // check for a pending interrupt
1476    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1477      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1478      if (JvmtiExport::should_post_monitor_waited()) {
1479         // Note: 'false' parameter is passed here because the
1480         // wait was not timed out due to thread interrupt.
1481         JvmtiExport::post_monitor_waited(jt, this, false);
1482 
1483         // In this short circuit of the monitor wait protocol, the
1484         // current thread never drops ownership of the monitor and
1485         // never gets added to the wait queue so the current thread
1486         // cannot be made the successor. This means that the
1487         // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1488         // consume an unpark() meant for the ParkEvent associated with
1489         // this ObjectMonitor.
1490      }
1491      if (event.should_commit()) {
1492        post_monitor_wait_event(&event, 0, millis, false);
1493      }
1494      TEVENT (Wait - Throw IEX) ;
1495      THROW(vmSymbols::java_lang_InterruptedException());
1496      return ;
1497    }
1498 
1499    TEVENT (Wait) ;
1500 
1501    assert (Self->_Stalled == 0, "invariant") ;
1502    Self->_Stalled = intptr_t(this) ;
1503    jt->set_current_waiting_monitor(this);
1504 
1505    // create a node to be put into the queue
1506    // Critically, after we reset() the event but prior to park(), we must check
1507    // for a pending interrupt.
1508    ObjectWaiter node(Self);
1509    node.TState = ObjectWaiter::TS_WAIT ;
1510    Self->_ParkEvent->reset() ;
1511    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1512 
1513    // Enter the waiting queue, which is a circular doubly linked list in this case
1514    // but it could be a priority queue or any data structure.
1515    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1516    // by the the owner of the monitor *except* in the case where park()
1517    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1518    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1519 
1520    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1521    AddWaiter (&node) ;
1522    Thread::SpinRelease (&_WaitSetLock) ;
1523 
1524    if ((SyncFlags & 4) == 0) {
1525       _Responsible = NULL ;
1526    }
1527    intptr_t save = _recursions; // record the old recursion count
1528    _waiters++;                  // increment the number of waiters
1529    _recursions = 0;             // set the recursion level to be 1
1530    exit (true, Self) ;                    // exit the monitor
1531    guarantee (_owner != Self, "invariant") ;
1532 
1533    // The thread is on the WaitSet list - now park() it.
1534    // On MP systems it's conceivable that a brief spin before we park
1535    // could be profitable.
1536    //
1537    // TODO-FIXME: change the following logic to a loop of the form
1538    //   while (!timeout && !interrupted && _notified == 0) park()
1539 
1540    int ret = OS_OK ;
1541    int WasNotified = 0 ;
1542    { // State transition wrappers
1543      OSThread* osthread = Self->osthread();
1544      OSThreadWaitState osts(osthread, true);
1545      {
1546        ThreadBlockInVM tbivm(jt);
1547        // Thread is in thread_blocked state and oop access is unsafe.
1548        jt->set_suspend_equivalent();
1549 
1550        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1551            // Intentionally empty
1552        } else
1553        if (node._notified == 0) {
1554          if (millis <= 0) {
1555             Self->_ParkEvent->park () ;
1556          } else {
1557             ret = Self->_ParkEvent->park (millis) ;
1558          }
1559        }
1560 
1561        // were we externally suspended while we were waiting?
1562        if (ExitSuspendEquivalent (jt)) {
1563           // TODO-FIXME: add -- if succ == Self then succ = null.
1564           jt->java_suspend_self();
1565        }
1566 
1567      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1568 
1569 
1570      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1571      // from the WaitSet to the EntryList.
1572      // See if we need to remove Node from the WaitSet.
1573      // We use double-checked locking to avoid grabbing _WaitSetLock
1574      // if the thread is not on the wait queue.
1575      //
1576      // Note that we don't need a fence before the fetch of TState.
1577      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1578      // written by the is thread. (perhaps the fetch might even be satisfied
1579      // by a look-aside into the processor's own store buffer, although given
1580      // the length of the code path between the prior ST and this load that's
1581      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1582      // then we'll acquire the lock and then re-fetch a fresh TState value.
1583      // That is, we fail toward safety.
1584 
1585      if (node.TState == ObjectWaiter::TS_WAIT) {
1586          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1587          if (node.TState == ObjectWaiter::TS_WAIT) {
1588             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1589             assert(node._notified == 0, "invariant");
1590             node.TState = ObjectWaiter::TS_RUN ;
1591          }
1592          Thread::SpinRelease (&_WaitSetLock) ;
1593      }
1594 
1595      // The thread is now either on off-list (TS_RUN),
1596      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1597      // The Node's TState variable is stable from the perspective of this thread.
1598      // No other threads will asynchronously modify TState.
1599      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1600      OrderAccess::loadload() ;
1601      if (_succ == Self) _succ = NULL ;
1602      WasNotified = node._notified ;
1603 
1604      // Reentry phase -- reacquire the monitor.
1605      // re-enter contended monitor after object.wait().
1606      // retain OBJECT_WAIT state until re-enter successfully completes
1607      // Thread state is thread_in_vm and oop access is again safe,
1608      // although the raw address of the object may have changed.
1609      // (Don't cache naked oops over safepoints, of course).
1610 
1611      // post monitor waited event. Note that this is past-tense, we are done waiting.
1612      if (JvmtiExport::should_post_monitor_waited()) {
1613        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1614 
1615        if (node._notified != 0 && _succ == Self) {
1616          // In this part of the monitor wait-notify-reenter protocol it
1617          // is possible (and normal) for another thread to do a fastpath
1618          // monitor enter-exit while this thread is still trying to get
1619          // to the reenter portion of the protocol.
1620          //
1621          // The ObjectMonitor was notified and the current thread is
1622          // the successor which also means that an unpark() has already
1623          // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1624          // consume the unpark() that was done when the successor was
1625          // set because the same ParkEvent is shared between Java
1626          // monitors and JVM/TI RawMonitors (for now).
1627          //
1628          // We redo the unpark() to ensure forward progress, i.e., we
1629          // don't want all pending threads hanging (parked) with none
1630          // entering the unlocked monitor.
1631          node._event->unpark();
1632        }
1633      }
1634 
1635      if (event.should_commit()) {
1636        post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1637      }
1638 
1639      OrderAccess::fence() ;
1640 
1641      assert (Self->_Stalled != 0, "invariant") ;
1642      Self->_Stalled = 0 ;
1643 
1644      assert (_owner != Self, "invariant") ;
1645      ObjectWaiter::TStates v = node.TState ;
1646      if (v == ObjectWaiter::TS_RUN) {
1647          enter (Self) ;
1648      } else {
1649          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1650          ReenterI (Self, &node) ;
1651          node.wait_reenter_end(this);
1652      }
1653 
1654      // Self has reacquired the lock.
1655      // Lifecycle - the node representing Self must not appear on any queues.
1656      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1657      // want residual elements associated with this thread left on any lists.
1658      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1659      assert    (_owner == Self, "invariant") ;
1660      assert    (_succ != Self , "invariant") ;
1661    } // OSThreadWaitState()
1662 
1663    jt->set_current_waiting_monitor(NULL);
1664 
1665    guarantee (_recursions == 0, "invariant") ;
1666    _recursions = save;     // restore the old recursion count
1667    _waiters--;             // decrement the number of waiters
1668 
1669    // Verify a few postconditions
1670    assert (_owner == Self       , "invariant") ;
1671    assert (_succ  != Self       , "invariant") ;
1672    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1673 
1674    if (SyncFlags & 32) {
1675       OrderAccess::fence() ;
1676    }
1677 
1678    // check if the notification happened
1679    if (!WasNotified) {
1680      // no, it could be timeout or Thread.interrupt() or both
1681      // check for interrupt event, otherwise it is timeout
1682      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1683        TEVENT (Wait - throw IEX from epilog) ;
1684        THROW(vmSymbols::java_lang_InterruptedException());
1685      }
1686    }
1687 
1688    // NOTE: Spurious wake up will be consider as timeout.
1689    // Monitor notify has precedence over thread interrupt.
1690 }
1691 
1692 
1693 // Consider:
1694 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1695 // then instead of transferring a thread from the WaitSet to the EntryList
1696 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1697 
1698 void ObjectMonitor::notify(TRAPS) {
1699   CHECK_OWNER();
1700   if (_WaitSet == NULL) {
1701      TEVENT (Empty-Notify) ;
1702      return ;
1703   }
1704   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1705 
1706   int Policy = Knob_MoveNotifyee ;
1707 
1708   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1709   ObjectWaiter * iterator = DequeueWaiter() ;
1710   if (iterator != NULL) {
1711      TEVENT (Notify1 - Transfer) ;
1712      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1713      guarantee (iterator->_notified == 0, "invariant") ;
1714      if (Policy != 4) {
1715         iterator->TState = ObjectWaiter::TS_ENTER ;
1716      }
1717      iterator->_notified = 1 ;
1718      Thread * Self = THREAD;
1719      iterator->_notifier_tid = Self->osthread()->thread_id();
1720 
1721      ObjectWaiter * List = _EntryList ;
1722      if (List != NULL) {
1723         assert (List->_prev == NULL, "invariant") ;
1724         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1725         assert (List != iterator, "invariant") ;
1726      }
1727 
1728      if (Policy == 0) {       // prepend to EntryList
1729          if (List == NULL) {
1730              iterator->_next = iterator->_prev = NULL ;
1731              _EntryList = iterator ;
1732          } else {
1733              List->_prev = iterator ;
1734              iterator->_next = List ;
1735              iterator->_prev = NULL ;
1736              _EntryList = iterator ;
1737         }
1738      } else
1739      if (Policy == 1) {      // append to EntryList
1740          if (List == NULL) {
1741              iterator->_next = iterator->_prev = NULL ;
1742              _EntryList = iterator ;
1743          } else {
1744             // CONSIDER:  finding the tail currently requires a linear-time walk of
1745             // the EntryList.  We can make tail access constant-time by converting to
1746             // a CDLL instead of using our current DLL.
1747             ObjectWaiter * Tail ;
1748             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1749             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1750             Tail->_next = iterator ;
1751             iterator->_prev = Tail ;
1752             iterator->_next = NULL ;
1753         }
1754      } else
1755      if (Policy == 2) {      // prepend to cxq
1756          // prepend to cxq
1757          if (List == NULL) {
1758              iterator->_next = iterator->_prev = NULL ;
1759              _EntryList = iterator ;
1760          } else {
1761             iterator->TState = ObjectWaiter::TS_CXQ ;
1762             for (;;) {
1763                 ObjectWaiter * Front = _cxq ;
1764                 iterator->_next = Front ;
1765                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1766                     break ;
1767                 }
1768             }
1769          }
1770      } else
1771      if (Policy == 3) {      // append to cxq
1772         iterator->TState = ObjectWaiter::TS_CXQ ;
1773         for (;;) {
1774             ObjectWaiter * Tail ;
1775             Tail = _cxq ;
1776             if (Tail == NULL) {
1777                 iterator->_next = NULL ;
1778                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1779                    break ;
1780                 }
1781             } else {
1782                 while (Tail->_next != NULL) Tail = Tail->_next ;
1783                 Tail->_next = iterator ;
1784                 iterator->_prev = Tail ;
1785                 iterator->_next = NULL ;
1786                 break ;
1787             }
1788         }
1789      } else {
1790         ParkEvent * ev = iterator->_event ;
1791         iterator->TState = ObjectWaiter::TS_RUN ;
1792         OrderAccess::fence() ;
1793         ev->unpark() ;
1794      }
1795 
1796      if (Policy < 4) {
1797        iterator->wait_reenter_begin(this);
1798      }
1799 
1800      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1801      // move the add-to-EntryList operation, above, outside the critical section
1802      // protected by _WaitSetLock.  In practice that's not useful.  With the
1803      // exception of  wait() timeouts and interrupts the monitor owner
1804      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1805      // on _WaitSetLock so it's not profitable to reduce the length of the
1806      // critical section.
1807   }
1808 
1809   Thread::SpinRelease (&_WaitSetLock) ;
1810 
1811   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1812      ObjectMonitor::_sync_Notifications->inc() ;
1813   }
1814 }
1815 
1816 
1817 void ObjectMonitor::notifyAll(TRAPS) {
1818   CHECK_OWNER();
1819   ObjectWaiter* iterator;
1820   if (_WaitSet == NULL) {
1821       TEVENT (Empty-NotifyAll) ;
1822       return ;
1823   }
1824   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1825 
1826   int Policy = Knob_MoveNotifyee ;
1827   int Tally = 0 ;
1828   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1829 
1830   for (;;) {
1831      iterator = DequeueWaiter () ;
1832      if (iterator == NULL) break ;
1833      TEVENT (NotifyAll - Transfer1) ;
1834      ++Tally ;
1835 
1836      // Disposition - what might we do with iterator ?
1837      // a.  add it directly to the EntryList - either tail or head.
1838      // b.  push it onto the front of the _cxq.
1839      // For now we use (a).
1840 
1841      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1842      guarantee (iterator->_notified == 0, "invariant") ;
1843      iterator->_notified = 1 ;
1844      Thread * Self = THREAD;
1845      iterator->_notifier_tid = Self->osthread()->thread_id();
1846      if (Policy != 4) {
1847         iterator->TState = ObjectWaiter::TS_ENTER ;
1848      }
1849 
1850      ObjectWaiter * List = _EntryList ;
1851      if (List != NULL) {
1852         assert (List->_prev == NULL, "invariant") ;
1853         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1854         assert (List != iterator, "invariant") ;
1855      }
1856 
1857      if (Policy == 0) {       // prepend to EntryList
1858          if (List == NULL) {
1859              iterator->_next = iterator->_prev = NULL ;
1860              _EntryList = iterator ;
1861          } else {
1862              List->_prev = iterator ;
1863              iterator->_next = List ;
1864              iterator->_prev = NULL ;
1865              _EntryList = iterator ;
1866         }
1867      } else
1868      if (Policy == 1) {      // append to EntryList
1869          if (List == NULL) {
1870              iterator->_next = iterator->_prev = NULL ;
1871              _EntryList = iterator ;
1872          } else {
1873             // CONSIDER:  finding the tail currently requires a linear-time walk of
1874             // the EntryList.  We can make tail access constant-time by converting to
1875             // a CDLL instead of using our current DLL.
1876             ObjectWaiter * Tail ;
1877             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1878             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1879             Tail->_next = iterator ;
1880             iterator->_prev = Tail ;
1881             iterator->_next = NULL ;
1882         }
1883      } else
1884      if (Policy == 2) {      // prepend to cxq
1885          // prepend to cxq
1886          iterator->TState = ObjectWaiter::TS_CXQ ;
1887          for (;;) {
1888              ObjectWaiter * Front = _cxq ;
1889              iterator->_next = Front ;
1890              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1891                  break ;
1892              }
1893          }
1894      } else
1895      if (Policy == 3) {      // append to cxq
1896         iterator->TState = ObjectWaiter::TS_CXQ ;
1897         for (;;) {
1898             ObjectWaiter * Tail ;
1899             Tail = _cxq ;
1900             if (Tail == NULL) {
1901                 iterator->_next = NULL ;
1902                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1903                    break ;
1904                 }
1905             } else {
1906                 while (Tail->_next != NULL) Tail = Tail->_next ;
1907                 Tail->_next = iterator ;
1908                 iterator->_prev = Tail ;
1909                 iterator->_next = NULL ;
1910                 break ;
1911             }
1912         }
1913      } else {
1914         ParkEvent * ev = iterator->_event ;
1915         iterator->TState = ObjectWaiter::TS_RUN ;
1916         OrderAccess::fence() ;
1917         ev->unpark() ;
1918      }
1919 
1920      if (Policy < 4) {
1921        iterator->wait_reenter_begin(this);
1922      }
1923 
1924      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1925      // move the add-to-EntryList operation, above, outside the critical section
1926      // protected by _WaitSetLock.  In practice that's not useful.  With the
1927      // exception of  wait() timeouts and interrupts the monitor owner
1928      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1929      // on _WaitSetLock so it's not profitable to reduce the length of the
1930      // critical section.
1931   }
1932 
1933   Thread::SpinRelease (&_WaitSetLock) ;
1934 
1935   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1936      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1937   }
1938 }
1939 
1940 // -----------------------------------------------------------------------------
1941 // Adaptive Spinning Support
1942 //
1943 // Adaptive spin-then-block - rational spinning
1944 //
1945 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1946 // algorithm.  On high order SMP systems it would be better to start with
1947 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1948 // a contending thread could enqueue itself on the cxq and then spin locally
1949 // on a thread-specific variable such as its ParkEvent._Event flag.
1950 // That's left as an exercise for the reader.  Note that global spinning is
1951 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1952 // low latency and massive bandwidth.
1953 //
1954 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1955 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1956 // (duration) or we can fix the count at approximately the duration of
1957 // a context switch and vary the frequency.   Of course we could also
1958 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1959 // For a description of 'Adaptive spin-then-block mutual exclusion in
1960 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1961 //
1962 // This implementation varies the duration "D", where D varies with
1963 // the success rate of recent spin attempts. (D is capped at approximately
1964 // length of a round-trip context switch).  The success rate for recent
1965 // spin attempts is a good predictor of the success rate of future spin
1966 // attempts.  The mechanism adapts automatically to varying critical
1967 // section length (lock modality), system load and degree of parallelism.
1968 // D is maintained per-monitor in _SpinDuration and is initialized
1969 // optimistically.  Spin frequency is fixed at 100%.
1970 //
1971 // Note that _SpinDuration is volatile, but we update it without locks
1972 // or atomics.  The code is designed so that _SpinDuration stays within
1973 // a reasonable range even in the presence of races.  The arithmetic
1974 // operations on _SpinDuration are closed over the domain of legal values,
1975 // so at worst a race will install and older but still legal value.
1976 // At the very worst this introduces some apparent non-determinism.
1977 // We might spin when we shouldn't or vice-versa, but since the spin
1978 // count are relatively short, even in the worst case, the effect is harmless.
1979 //
1980 // Care must be taken that a low "D" value does not become an
1981 // an absorbing state.  Transient spinning failures -- when spinning
1982 // is overall profitable -- should not cause the system to converge
1983 // on low "D" values.  We want spinning to be stable and predictable
1984 // and fairly responsive to change and at the same time we don't want
1985 // it to oscillate, become metastable, be "too" non-deterministic,
1986 // or converge on or enter undesirable stable absorbing states.
1987 //
1988 // We implement a feedback-based control system -- using past behavior
1989 // to predict future behavior.  We face two issues: (a) if the
1990 // input signal is random then the spin predictor won't provide optimal
1991 // results, and (b) if the signal frequency is too high then the control
1992 // system, which has some natural response lag, will "chase" the signal.
1993 // (b) can arise from multimodal lock hold times.  Transient preemption
1994 // can also result in apparent bimodal lock hold times.
1995 // Although sub-optimal, neither condition is particularly harmful, as
1996 // in the worst-case we'll spin when we shouldn't or vice-versa.
1997 // The maximum spin duration is rather short so the failure modes aren't bad.
1998 // To be conservative, I've tuned the gain in system to bias toward
1999 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
2000 // "rings" or oscillates between spinning and not spinning.  This happens
2001 // when spinning is just on the cusp of profitability, however, so the
2002 // situation is not dire.  The state is benign -- there's no need to add
2003 // hysteresis control to damp the transition rate between spinning and
2004 // not spinning.
2005 //
2006 
2007 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
2008 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
2009 
2010 // Spinning: Fixed frequency (100%), vary duration
2011 
2012 
2013 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
2014 
2015     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
2016     int ctr = Knob_FixedSpin ;
2017     if (ctr != 0) {
2018         while (--ctr >= 0) {
2019             if (TryLock (Self) > 0) return 1 ;
2020             SpinPause () ;
2021         }
2022         return 0 ;
2023     }
2024 
2025     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
2026       if (TryLock(Self) > 0) {
2027         // Increase _SpinDuration ...
2028         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2029         // Raising _SpurDuration to the poverty line is key.
2030         int x = _SpinDuration ;
2031         if (x < Knob_SpinLimit) {
2032            if (x < Knob_Poverty) x = Knob_Poverty ;
2033            _SpinDuration = x + Knob_BonusB ;
2034         }
2035         return 1 ;
2036       }
2037       SpinPause () ;
2038     }
2039 
2040     // Admission control - verify preconditions for spinning
2041     //
2042     // We always spin a little bit, just to prevent _SpinDuration == 0 from
2043     // becoming an absorbing state.  Put another way, we spin briefly to
2044     // sample, just in case the system load, parallelism, contention, or lock
2045     // modality changed.
2046     //
2047     // Consider the following alternative:
2048     // Periodically set _SpinDuration = _SpinLimit and try a long/full
2049     // spin attempt.  "Periodically" might mean after a tally of
2050     // the # of failed spin attempts (or iterations) reaches some threshold.
2051     // This takes us into the realm of 1-out-of-N spinning, where we
2052     // hold the duration constant but vary the frequency.
2053 
2054     ctr = _SpinDuration  ;
2055     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
2056     if (ctr <= 0) return 0 ;
2057 
2058     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
2059     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
2060        TEVENT (Spin abort - notrunnable [TOP]);
2061        return 0 ;
2062     }
2063 
2064     int MaxSpin = Knob_MaxSpinners ;
2065     if (MaxSpin >= 0) {
2066        if (_Spinner > MaxSpin) {
2067           TEVENT (Spin abort -- too many spinners) ;
2068           return 0 ;
2069        }
2070        // Slighty racy, but benign ...
2071        Adjust (&_Spinner, 1) ;
2072     }
2073 
2074     // We're good to spin ... spin ingress.
2075     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2076     // when preparing to LD...CAS _owner, etc and the CAS is likely
2077     // to succeed.
2078     int hits    = 0 ;
2079     int msk     = 0 ;
2080     int caspty  = Knob_CASPenalty ;
2081     int oxpty   = Knob_OXPenalty ;
2082     int sss     = Knob_SpinSetSucc ;
2083     if (sss && _succ == NULL ) _succ = Self ;
2084     Thread * prv = NULL ;
2085 
2086     // There are three ways to exit the following loop:
2087     // 1.  A successful spin where this thread has acquired the lock.
2088     // 2.  Spin failure with prejudice
2089     // 3.  Spin failure without prejudice
2090 
2091     while (--ctr >= 0) {
2092 
2093       // Periodic polling -- Check for pending GC
2094       // Threads may spin while they're unsafe.
2095       // We don't want spinning threads to delay the JVM from reaching
2096       // a stop-the-world safepoint or to steal cycles from GC.
2097       // If we detect a pending safepoint we abort in order that
2098       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2099       // this thread, if safe, doesn't steal cycles from GC.
2100       // This is in keeping with the "no loitering in runtime" rule.
2101       // We periodically check to see if there's a safepoint pending.
2102       if ((ctr & 0xFF) == 0) {
2103          if (SafepointSynchronize::do_call_back()) {
2104             TEVENT (Spin: safepoint) ;
2105             goto Abort ;           // abrupt spin egress
2106          }
2107          if (Knob_UsePause & 1) SpinPause () ;
2108 
2109          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
2110          if (hits > 50 && scb != NULL) {
2111             int abend = (*scb)(SpinCallbackArgument, 0) ;
2112          }
2113       }
2114 
2115       if (Knob_UsePause & 2) SpinPause() ;
2116 
2117       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
2118       // This is useful on classic SMP systems, but is of less utility on
2119       // N1-style CMT platforms.
2120       //
2121       // Trade-off: lock acquisition latency vs coherency bandwidth.
2122       // Lock hold times are typically short.  A histogram
2123       // of successful spin attempts shows that we usually acquire
2124       // the lock early in the spin.  That suggests we want to
2125       // sample _owner frequently in the early phase of the spin,
2126       // but then back-off and sample less frequently as the spin
2127       // progresses.  The back-off makes a good citizen on SMP big
2128       // SMP systems.  Oversampling _owner can consume excessive
2129       // coherency bandwidth.  Relatedly, if we _oversample _owner we
2130       // can inadvertently interfere with the the ST m->owner=null.
2131       // executed by the lock owner.
2132       if (ctr & msk) continue ;
2133       ++hits ;
2134       if ((hits & 0xF) == 0) {
2135         // The 0xF, above, corresponds to the exponent.
2136         // Consider: (msk+1)|msk
2137         msk = ((msk << 2)|3) & BackOffMask ;
2138       }
2139 
2140       // Probe _owner with TATAS
2141       // If this thread observes the monitor transition or flicker
2142       // from locked to unlocked to locked, then the odds that this
2143       // thread will acquire the lock in this spin attempt go down
2144       // considerably.  The same argument applies if the CAS fails
2145       // or if we observe _owner change from one non-null value to
2146       // another non-null value.   In such cases we might abort
2147       // the spin without prejudice or apply a "penalty" to the
2148       // spin count-down variable "ctr", reducing it by 100, say.
2149 
2150       Thread * ox = (Thread *) _owner ;
2151       if (ox == NULL) {
2152          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2153          if (ox == NULL) {
2154             // The CAS succeeded -- this thread acquired ownership
2155             // Take care of some bookkeeping to exit spin state.
2156             if (sss && _succ == Self) {
2157                _succ = NULL ;
2158             }
2159             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2160 
2161             // Increase _SpinDuration :
2162             // The spin was successful (profitable) so we tend toward
2163             // longer spin attempts in the future.
2164             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2165             // If we acquired the lock early in the spin cycle it
2166             // makes sense to increase _SpinDuration proportionally.
2167             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2168             int x = _SpinDuration ;
2169             if (x < Knob_SpinLimit) {
2170                 if (x < Knob_Poverty) x = Knob_Poverty ;
2171                 _SpinDuration = x + Knob_Bonus ;
2172             }
2173             return 1 ;
2174          }
2175 
2176          // The CAS failed ... we can take any of the following actions:
2177          // * penalize: ctr -= Knob_CASPenalty
2178          // * exit spin with prejudice -- goto Abort;
2179          // * exit spin without prejudice.
2180          // * Since CAS is high-latency, retry again immediately.
2181          prv = ox ;
2182          TEVENT (Spin: cas failed) ;
2183          if (caspty == -2) break ;
2184          if (caspty == -1) goto Abort ;
2185          ctr -= caspty ;
2186          continue ;
2187       }
2188 
2189       // Did lock ownership change hands ?
2190       if (ox != prv && prv != NULL ) {
2191           TEVENT (spin: Owner changed)
2192           if (oxpty == -2) break ;
2193           if (oxpty == -1) goto Abort ;
2194           ctr -= oxpty ;
2195       }
2196       prv = ox ;
2197 
2198       // Abort the spin if the owner is not executing.
2199       // The owner must be executing in order to drop the lock.
2200       // Spinning while the owner is OFFPROC is idiocy.
2201       // Consider: ctr -= RunnablePenalty ;
2202       if (Knob_OState && NotRunnable (Self, ox)) {
2203          TEVENT (Spin abort - notrunnable);
2204          goto Abort ;
2205       }
2206       if (sss && _succ == NULL ) _succ = Self ;
2207    }
2208 
2209    // Spin failed with prejudice -- reduce _SpinDuration.
2210    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2211    // AIMD is globally stable.
2212    TEVENT (Spin failure) ;
2213    {
2214      int x = _SpinDuration ;
2215      if (x > 0) {
2216         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2217         // This is globally sample and tends to damp the response.
2218         x -= Knob_Penalty ;
2219         if (x < 0) x = 0 ;
2220         _SpinDuration = x ;
2221      }
2222    }
2223 
2224  Abort:
2225    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2226    if (sss && _succ == Self) {
2227       _succ = NULL ;
2228       // Invariant: after setting succ=null a contending thread
2229       // must recheck-retry _owner before parking.  This usually happens
2230       // in the normal usage of TrySpin(), but it's safest
2231       // to make TrySpin() as foolproof as possible.
2232       OrderAccess::fence() ;
2233       if (TryLock(Self) > 0) return 1 ;
2234    }
2235    return 0 ;
2236 }
2237 
2238 // NotRunnable() -- informed spinning
2239 //
2240 // Don't bother spinning if the owner is not eligible to drop the lock.
2241 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2242 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2243 // The thread must be runnable in order to drop the lock in timely fashion.
2244 // If the _owner is not runnable then spinning will not likely be
2245 // successful (profitable).
2246 //
2247 // Beware -- the thread referenced by _owner could have died
2248 // so a simply fetch from _owner->_thread_state might trap.
2249 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2250 // Because of the lifecycle issues the schedctl and _thread_state values
2251 // observed by NotRunnable() might be garbage.  NotRunnable must
2252 // tolerate this and consider the observed _thread_state value
2253 // as advisory.
2254 //
2255 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2256 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2257 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2258 // with the LSB of _owner.  Another option would be to probablistically probe
2259 // the putative _owner->TypeTag value.
2260 //
2261 // Checking _thread_state isn't perfect.  Even if the thread is
2262 // in_java it might be blocked on a page-fault or have been preempted
2263 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2264 // with schedctl.sc_state gives us a good picture of what the
2265 // thread is doing, however.
2266 //
2267 // TODO: check schedctl.sc_state.
2268 // We'll need to use SafeFetch32() to read from the schedctl block.
2269 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2270 //
2271 // The return value from NotRunnable() is *advisory* -- the
2272 // result is based on sampling and is not necessarily coherent.
2273 // The caller must tolerate false-negative and false-positive errors.
2274 // Spinning, in general, is probabilistic anyway.
2275 
2276 
2277 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2278     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2279     if (!OwnerIsThread) return 0 ;
2280 
2281     if (ox == NULL) return 0 ;
2282 
2283     // Avoid transitive spinning ...
2284     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2285     // Immediately after T1 acquires L it's possible that T2, also
2286     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2287     // This occurs transiently after T1 acquired L but before
2288     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2289     // its spin in this circumstance.
2290     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2291 
2292     if (BlockedOn == 1) return 1 ;
2293     if (BlockedOn != 0) {
2294       return BlockedOn != intptr_t(this) && _owner == ox ;
2295     }
2296 
2297     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2298     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2299     // consider also: jst != _thread_in_Java -- but that's overspecific.
2300     return jst == _thread_blocked || jst == _thread_in_native ;
2301 }
2302 
2303 
2304 // -----------------------------------------------------------------------------
2305 // WaitSet management ...
2306 
2307 ObjectWaiter::ObjectWaiter(Thread* thread) {
2308   _next     = NULL;
2309   _prev     = NULL;
2310   _notified = 0;
2311   TState    = TS_RUN ;
2312   _thread   = thread;
2313   _event    = thread->_ParkEvent ;
2314   _active   = false;
2315   assert (_event != NULL, "invariant") ;
2316 }
2317 
2318 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2319   JavaThread *jt = (JavaThread *)this->_thread;
2320   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2321 }
2322 
2323 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2324   JavaThread *jt = (JavaThread *)this->_thread;
2325   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2326 }
2327 
2328 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2329   assert(node != NULL, "should not dequeue NULL node");
2330   assert(node->_prev == NULL, "node already in list");
2331   assert(node->_next == NULL, "node already in list");
2332   // put node at end of queue (circular doubly linked list)
2333   if (_WaitSet == NULL) {
2334     _WaitSet = node;
2335     node->_prev = node;
2336     node->_next = node;
2337   } else {
2338     ObjectWaiter* head = _WaitSet ;
2339     ObjectWaiter* tail = head->_prev;
2340     assert(tail->_next == head, "invariant check");
2341     tail->_next = node;
2342     head->_prev = node;
2343     node->_next = head;
2344     node->_prev = tail;
2345   }
2346 }
2347 
2348 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2349   // dequeue the very first waiter
2350   ObjectWaiter* waiter = _WaitSet;
2351   if (waiter) {
2352     DequeueSpecificWaiter(waiter);
2353   }
2354   return waiter;
2355 }
2356 
2357 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2358   assert(node != NULL, "should not dequeue NULL node");
2359   assert(node->_prev != NULL, "node already removed from list");
2360   assert(node->_next != NULL, "node already removed from list");
2361   // when the waiter has woken up because of interrupt,
2362   // timeout or other spurious wake-up, dequeue the
2363   // waiter from waiting list
2364   ObjectWaiter* next = node->_next;
2365   if (next == node) {
2366     assert(node->_prev == node, "invariant check");
2367     _WaitSet = NULL;
2368   } else {
2369     ObjectWaiter* prev = node->_prev;
2370     assert(prev->_next == node, "invariant check");
2371     assert(next->_prev == node, "invariant check");
2372     next->_prev = prev;
2373     prev->_next = next;
2374     if (_WaitSet == node) {
2375       _WaitSet = next;
2376     }
2377   }
2378   node->_next = NULL;
2379   node->_prev = NULL;
2380 }
2381 
2382 // -----------------------------------------------------------------------------
2383 // PerfData support
2384 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2385 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2386 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2387 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2388 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2389 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2390 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2391 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2392 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2393 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2394 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2395 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2396 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2397 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2398 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2399 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2400 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2401 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2402 
2403 // One-shot global initialization for the sync subsystem.
2404 // We could also defer initialization and initialize on-demand
2405 // the first time we call inflate().  Initialization would
2406 // be protected - like so many things - by the MonitorCache_lock.
2407 
2408 void ObjectMonitor::Initialize () {
2409   static int InitializationCompleted = 0 ;
2410   assert (InitializationCompleted == 0, "invariant") ;
2411   InitializationCompleted = 1 ;
2412   if (UsePerfData) {
2413       EXCEPTION_MARK ;
2414       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2415       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2416       NEWPERFCOUNTER(_sync_Inflations) ;
2417       NEWPERFCOUNTER(_sync_Deflations) ;
2418       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2419       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2420       NEWPERFCOUNTER(_sync_Parks) ;
2421       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2422       NEWPERFCOUNTER(_sync_Notifications) ;
2423       NEWPERFCOUNTER(_sync_SlowEnter) ;
2424       NEWPERFCOUNTER(_sync_SlowExit) ;
2425       NEWPERFCOUNTER(_sync_SlowNotify) ;
2426       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2427       NEWPERFCOUNTER(_sync_FailedSpins) ;
2428       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2429       NEWPERFCOUNTER(_sync_PrivateA) ;
2430       NEWPERFCOUNTER(_sync_PrivateB) ;
2431       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2432       NEWPERFCOUNTER(_sync_MonScavenged) ;
2433       NEWPERFVARIABLE(_sync_MonExtant) ;
2434       #undef NEWPERFCOUNTER
2435   }
2436 }
2437 
2438 
2439 // Compile-time asserts
2440 // When possible, it's better to catch errors deterministically at
2441 // compile-time than at runtime.  The down-side to using compile-time
2442 // asserts is that error message -- often something about negative array
2443 // indices -- is opaque.
2444 
2445 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2446 
2447 void ObjectMonitor::ctAsserts() {
2448   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2449 }
2450 
2451 
2452 static char * kvGet (char * kvList, const char * Key) {
2453     if (kvList == NULL) return NULL ;
2454     size_t n = strlen (Key) ;
2455     char * Search ;
2456     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2457         if (strncmp (Search, Key, n) == 0) {
2458             if (Search[n] == '=') return Search + n + 1 ;
2459             if (Search[n] == 0)   return (char *) "1" ;
2460         }
2461     }
2462     return NULL ;
2463 }
2464 
2465 static int kvGetInt (char * kvList, const char * Key, int Default) {
2466     char * v = kvGet (kvList, Key) ;
2467     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2468     if (Knob_ReportSettings && v != NULL) {
2469         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2470         ::fflush (stdout) ;
2471     }
2472     return rslt ;
2473 }
2474 
2475 void ObjectMonitor::DeferredInitialize () {
2476   if (InitDone > 0) return ;
2477   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2478       while (InitDone != 1) ;
2479       return ;
2480   }
2481 
2482   // One-shot global initialization ...
2483   // The initialization is idempotent, so we don't need locks.
2484   // In the future consider doing this via os::init_2().
2485   // SyncKnobs consist of <Key>=<Value> pairs in the style
2486   // of environment variables.  Start by converting ':' to NUL.
2487 
2488   if (SyncKnobs == NULL) SyncKnobs = "" ;
2489 
2490   size_t sz = strlen (SyncKnobs) ;
2491   char * knobs = (char *) malloc (sz + 2) ;
2492   if (knobs == NULL) {
2493      vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
2494      guarantee (0, "invariant") ;
2495   }
2496   strcpy (knobs, SyncKnobs) ;
2497   knobs[sz+1] = 0 ;
2498   for (char * p = knobs ; *p ; p++) {
2499      if (*p == ':') *p = 0 ;
2500   }
2501 
2502   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2503   SETKNOB(ReportSettings) ;
2504   SETKNOB(Verbose) ;
2505   SETKNOB(FixedSpin) ;
2506   SETKNOB(SpinLimit) ;
2507   SETKNOB(SpinBase) ;
2508   SETKNOB(SpinBackOff);
2509   SETKNOB(CASPenalty) ;
2510   SETKNOB(OXPenalty) ;
2511   SETKNOB(LogSpins) ;
2512   SETKNOB(SpinSetSucc) ;
2513   SETKNOB(SuccEnabled) ;
2514   SETKNOB(SuccRestrict) ;
2515   SETKNOB(Penalty) ;
2516   SETKNOB(Bonus) ;
2517   SETKNOB(BonusB) ;
2518   SETKNOB(Poverty) ;
2519   SETKNOB(SpinAfterFutile) ;
2520   SETKNOB(UsePause) ;
2521   SETKNOB(SpinEarly) ;
2522   SETKNOB(OState) ;
2523   SETKNOB(MaxSpinners) ;
2524   SETKNOB(PreSpin) ;
2525   SETKNOB(ExitPolicy) ;
2526   SETKNOB(QMode);
2527   SETKNOB(ResetEvent) ;
2528   SETKNOB(MoveNotifyee) ;
2529   SETKNOB(FastHSSEC) ;
2530   #undef SETKNOB
2531 
2532   if (Knob_Verbose) {
2533     sanity_checks();
2534   }
2535 
2536   if (os::is_MP()) {
2537      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2538      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2539      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2540   } else {
2541      Knob_SpinLimit = 0 ;
2542      Knob_SpinBase  = 0 ;
2543      Knob_PreSpin   = 0 ;
2544      Knob_FixedSpin = -1 ;
2545   }
2546 
2547   if (Knob_LogSpins == 0) {
2548      ObjectMonitor::_sync_FailedSpins = NULL ;
2549   }
2550 
2551   free (knobs) ;
2552   OrderAccess::fence() ;
2553   InitDone = 1 ;
2554 }
2555 
2556 void ObjectMonitor::sanity_checks() {
2557   int error_cnt = 0;
2558   int warning_cnt = 0;
2559   bool verbose = Knob_Verbose != 0 NOT_PRODUCT(|| VerboseInternalVMTests);
2560 
2561   if (verbose) {
2562     tty->print_cr("INFO: sizeof(ObjectMonitor)=" SIZE_FORMAT,
2563                   sizeof(ObjectMonitor));
2564   }
2565 
2566   uint cache_line_size = VM_Version::L1_data_cache_line_size();
2567   if (verbose) {
2568     tty->print_cr("INFO: L1_data_cache_line_size=%u", cache_line_size);
2569   }
2570 
2571   ObjectMonitor dummy;
2572   u_char *addr_begin  = (u_char*)&dummy;
2573   u_char *addr_header = (u_char*)&dummy._header;
2574   u_char *addr_owner  = (u_char*)&dummy._owner;
2575 
2576   uint offset_header = (uint)(addr_header - addr_begin);
2577   if (verbose) tty->print_cr("INFO: offset(_header)=%u", offset_header);
2578 
2579   uint offset_owner = (uint)(addr_owner - addr_begin);
2580   if (verbose) tty->print_cr("INFO: offset(_owner)=%u", offset_owner);
2581 
2582   if ((uint)(addr_header - addr_begin) != 0) {
2583     tty->print_cr("ERROR: offset(_header) must be zero (0).");
2584     error_cnt++;
2585   }
2586 
2587   if (cache_line_size != 0) {
2588     // We were able to determine the L1 data cache line size so
2589     // do some cache line specific sanity checks
2590 
2591     if ((offset_owner - offset_header) < cache_line_size) {
2592       tty->print_cr("WARNING: the _header and _owner fields are closer "
2593                     "than a cache line which permits false sharing.");
2594       warning_cnt++;
2595     }
2596 
2597     if ((sizeof(ObjectMonitor) % cache_line_size) != 0) {
2598       tty->print_cr("WARNING: ObjectMonitor size is not a multiple of "
2599                     "a cache line which permits false sharing.");
2600       warning_cnt++;
2601     }
2602   }
2603 
2604   ObjectSynchronizer::sanity_checks(verbose, cache_line_size, &error_cnt,
2605                                     &warning_cnt);
2606 
2607   if (verbose || error_cnt != 0 || warning_cnt != 0) {
2608     tty->print_cr("INFO: error_cnt=%d", error_cnt);
2609     tty->print_cr("INFO: warning_cnt=%d", warning_cnt);
2610   }
2611 
2612   guarantee(error_cnt == 0,
2613             "Fatal error(s) found in ObjectMonitor::sanity_checks()");
2614 }
2615 
2616 #ifndef PRODUCT
2617 void ObjectMonitor::verify() {
2618 }
2619 
2620 void ObjectMonitor::print() {
2621 }
2622 #endif