1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/symbol.hpp"
  39 #include "runtime/compilationPolicy.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/interfaceSupport.hpp"
  43 #include "runtime/mutexLocker.hpp"
  44 #include "runtime/orderAccess.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/safepoint.hpp"
  47 #include "runtime/signature.hpp"
  48 #include "runtime/stubCodeGenerator.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/sweeper.hpp"
  51 #include "runtime/synchronizer.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "services/runtimeService.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/macros.hpp"
  56 #ifdef TARGET_ARCH_x86
  57 # include "nativeInst_x86.hpp"
  58 # include "vmreg_x86.inline.hpp"
  59 #endif
  60 #ifdef TARGET_ARCH_sparc
  61 # include "nativeInst_sparc.hpp"
  62 # include "vmreg_sparc.inline.hpp"
  63 #endif
  64 #ifdef TARGET_ARCH_zero
  65 # include "nativeInst_zero.hpp"
  66 # include "vmreg_zero.inline.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_arm
  69 # include "nativeInst_arm.hpp"
  70 # include "vmreg_arm.inline.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_ppc
  73 # include "nativeInst_ppc.hpp"
  74 # include "vmreg_ppc.inline.hpp"
  75 #endif
  76 #if INCLUDE_ALL_GCS
  77 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  78 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
  79 #endif // INCLUDE_ALL_GCS
  80 #ifdef COMPILER1
  81 #include "c1/c1_globals.hpp"
  82 #endif
  83 
  84 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  85 
  86 // --------------------------------------------------------------------------------------------------
  87 // Implementation of Safepoint begin/end
  88 
  89 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  90 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  91 volatile int SafepointSynchronize::_safepoint_counter = 0;
  92 int SafepointSynchronize::_current_jni_active_count = 0;
  93 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  94 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  95 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  96 static bool timeout_error_printed = false;
  97 
  98 // Roll all threads forward to a safepoint and suspend them all
  99 void SafepointSynchronize::begin() {
 100   EventSafepointBegin begin_event;
 101 
 102   Thread* myThread = Thread::current();
 103   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 104 
 105   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 106     _safepoint_begin_time = os::javaTimeNanos();
 107     _ts_of_current_safepoint = tty->time_stamp().seconds();
 108   }
 109 
 110 #if INCLUDE_ALL_GCS
 111   if (UseConcMarkSweepGC) {
 112     // In the future we should investigate whether CMS can use the
 113     // more-general mechanism below.  DLD (01/05).
 114     ConcurrentMarkSweepThread::synchronize(false);
 115   } else if (UseG1GC) {
 116     SuspendibleThreadSet::synchronize();
 117   }
 118 #endif // INCLUDE_ALL_GCS
 119 
 120   // By getting the Threads_lock, we assure that no threads are about to start or
 121   // exit. It is released again in SafepointSynchronize::end().
 122   Threads_lock->lock();
 123 
 124   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 125 
 126   int nof_threads = Threads::number_of_threads();
 127 
 128   if (TraceSafepoint) {
 129     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
 130   }
 131 
 132   RuntimeService::record_safepoint_begin();
 133 
 134   MutexLocker mu(Safepoint_lock);
 135 
 136   // Reset the count of active JNI critical threads
 137   _current_jni_active_count = 0;
 138 
 139   // Set number of threads to wait for, before we initiate the callbacks
 140   _waiting_to_block = nof_threads;
 141   TryingToBlock     = 0 ;
 142   int still_running = nof_threads;
 143 
 144   // Save the starting time, so that it can be compared to see if this has taken
 145   // too long to complete.
 146   jlong safepoint_limit_time = 0;
 147   timeout_error_printed = false;
 148 
 149   // PrintSafepointStatisticsTimeout can be specified separately. When
 150   // specified, PrintSafepointStatistics will be set to true in
 151   // deferred_initialize_stat method. The initialization has to be done
 152   // early enough to avoid any races. See bug 6880029 for details.
 153   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 154     deferred_initialize_stat();
 155   }
 156 
 157   // Begin the process of bringing the system to a safepoint.
 158   // Java threads can be in several different states and are
 159   // stopped by different mechanisms:
 160   //
 161   //  1. Running interpreted
 162   //     The interpeter dispatch table is changed to force it to
 163   //     check for a safepoint condition between bytecodes.
 164   //  2. Running in native code
 165   //     When returning from the native code, a Java thread must check
 166   //     the safepoint _state to see if we must block.  If the
 167   //     VM thread sees a Java thread in native, it does
 168   //     not wait for this thread to block.  The order of the memory
 169   //     writes and reads of both the safepoint state and the Java
 170   //     threads state is critical.  In order to guarantee that the
 171   //     memory writes are serialized with respect to each other,
 172   //     the VM thread issues a memory barrier instruction
 173   //     (on MP systems).  In order to avoid the overhead of issuing
 174   //     a memory barrier for each Java thread making native calls, each Java
 175   //     thread performs a write to a single memory page after changing
 176   //     the thread state.  The VM thread performs a sequence of
 177   //     mprotect OS calls which forces all previous writes from all
 178   //     Java threads to be serialized.  This is done in the
 179   //     os::serialize_thread_states() call.  This has proven to be
 180   //     much more efficient than executing a membar instruction
 181   //     on every call to native code.
 182   //  3. Running compiled Code
 183   //     Compiled code reads a global (Safepoint Polling) page that
 184   //     is set to fault if we are trying to get to a safepoint.
 185   //  4. Blocked
 186   //     A thread which is blocked will not be allowed to return from the
 187   //     block condition until the safepoint operation is complete.
 188   //  5. In VM or Transitioning between states
 189   //     If a Java thread is currently running in the VM or transitioning
 190   //     between states, the safepointing code will wait for the thread to
 191   //     block itself when it attempts transitions to a new state.
 192   //
 193   EventSafepointStateSynchronization sync_event;
 194   int initial_running = 0;
 195   _state            = _synchronizing;
 196   OrderAccess::fence();
 197 
 198   // Flush all thread states to memory
 199   if (!UseMembar) {
 200     os::serialize_thread_states();
 201   }
 202 
 203   // Make interpreter safepoint aware
 204   Interpreter::notice_safepoints();
 205 
 206   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 207     // Make polling safepoint aware
 208     guarantee (PageArmed == 0, "invariant") ;
 209     PageArmed = 1 ;
 210     os::make_polling_page_unreadable();
 211   }
 212 
 213   // Consider using active_processor_count() ... but that call is expensive.
 214   int ncpus = os::processor_count() ;
 215 
 216 #ifdef ASSERT
 217   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 218     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 219     // Clear the visited flag to ensure that the critical counts are collected properly.
 220     cur->set_visited_for_critical_count(false);
 221   }
 222 #endif // ASSERT
 223 
 224   if (SafepointTimeout)
 225     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 226 
 227   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 228   unsigned int iterations = 0;
 229   int steps = 0 ;
 230   while(still_running > 0) {
 231     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 232       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 233       ThreadSafepointState *cur_state = cur->safepoint_state();
 234       if (cur_state->is_running()) {
 235         cur_state->examine_state_of_thread();
 236         if (!cur_state->is_running()) {
 237            still_running--;
 238            // consider adjusting steps downward:
 239            //   steps = 0
 240            //   steps -= NNN
 241            //   steps >>= 1
 242            //   steps = MIN(steps, 2000-100)
 243            //   if (iterations != 0) steps -= NNN
 244         }
 245         if (TraceSafepoint && Verbose) cur_state->print();
 246       }
 247     }
 248 
 249     if (iterations == 0) {
 250       initial_running = still_running;
 251       if (PrintSafepointStatistics) {
 252         begin_statistics(nof_threads, still_running);
 253       }
 254     }
 255 
 256     if (still_running > 0) {
 257       // Check for if it takes to long
 258       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 259         print_safepoint_timeout(_spinning_timeout);
 260       }
 261 
 262       // Spin to avoid context switching.
 263       // There's a tension between allowing the mutators to run (and rendezvous)
 264       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 265       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 266       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 267       // Blocking or yielding incur their own penalties in the form of context switching
 268       // and the resultant loss of $ residency.
 269       //
 270       // Further complicating matters is that yield() does not work as naively expected
 271       // on many platforms -- yield() does not guarantee that any other ready threads
 272       // will run.   As such we revert yield_all() after some number of iterations.
 273       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 274       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 275       // can actually increase the time it takes the VM thread to detect that a system-wide
 276       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 277       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 278       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 279       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 280       // will eventually wake up and detect that all mutators are safe, at which point
 281       // we'll again make progress.
 282       //
 283       // Beware too that that the VMThread typically runs at elevated priority.
 284       // Its default priority is higher than the default mutator priority.
 285       // Obviously, this complicates spinning.
 286       //
 287       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 288       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 289       //
 290       // See the comments in synchronizer.cpp for additional remarks on spinning.
 291       //
 292       // In the future we might:
 293       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
 294       //    This is tricky as the path used by a thread exiting the JVM (say on
 295       //    on JNI call-out) simply stores into its state field.  The burden
 296       //    is placed on the VM thread, which must poll (spin).
 297       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 298       //    we might aggressively scan the stacks of threads that are already safe.
 299       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 300       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 301       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 302       // 5. Check system saturation.  If the system is not fully saturated then
 303       //    simply spin and avoid sleep/yield.
 304       // 6. As still-running mutators rendezvous they could unpark the sleeping
 305       //    VMthread.  This works well for still-running mutators that become
 306       //    safe.  The VMthread must still poll for mutators that call-out.
 307       // 7. Drive the policy on time-since-begin instead of iterations.
 308       // 8. Consider making the spin duration a function of the # of CPUs:
 309       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 310       //    Alternately, instead of counting iterations of the outer loop
 311       //    we could count the # of threads visited in the inner loop, above.
 312       // 9. On windows consider using the return value from SwitchThreadTo()
 313       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 314 
 315       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 316          guarantee (PageArmed == 0, "invariant") ;
 317          PageArmed = 1 ;
 318          os::make_polling_page_unreadable();
 319       }
 320 
 321       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 322       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 323       ++steps ;
 324       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 325         SpinPause() ;     // MP-Polite spin
 326       } else
 327       if (steps < DeferThrSuspendLoopCount) {
 328         os::NakedYield() ;
 329       } else {
 330         os::yield_all(steps) ;
 331         // Alternately, the VM thread could transiently depress its scheduling priority or
 332         // transiently increase the priority of the tardy mutator(s).
 333       }
 334 
 335       iterations ++ ;
 336     }
 337     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 338   }
 339   assert(still_running == 0, "sanity check");
 340 
 341   if (PrintSafepointStatistics) {
 342     update_statistics_on_spin_end();
 343   }
 344 
 345   if (sync_event.should_commit()) {
 346     // Group this event together with the ones committed after the counter is increased
 347     sync_event.set_safepointId(safepoint_counter() + 1);
 348     sync_event.set_initialThreadCount(initial_running);
 349     sync_event.set_runningThreadCount(_waiting_to_block);
 350     sync_event.set_iterations(iterations);
 351     sync_event.commit();
 352   }
 353 
 354   EventSafepointWaitBlocked wait_blocked_event;
 355   int initial_waiting_to_block = _waiting_to_block;
 356   // wait until all threads are stopped
 357   while (_waiting_to_block > 0) {
 358     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 359     if (!SafepointTimeout || timeout_error_printed) {
 360       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 361     } else {
 362       // Compute remaining time
 363       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 364 
 365       // If there is no remaining time, then there is an error
 366       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 367         print_safepoint_timeout(_blocking_timeout);
 368       }
 369     }
 370   }
 371   assert(_waiting_to_block == 0, "sanity check");
 372 
 373 #ifndef PRODUCT
 374   if (SafepointTimeout) {
 375     jlong current_time = os::javaTimeNanos();
 376     if (safepoint_limit_time < current_time) {
 377       tty->print_cr("# SafepointSynchronize: Finished after "
 378                     INT64_FORMAT_W(6) " ms",
 379                     ((current_time - safepoint_limit_time) / MICROUNITS +
 380                      SafepointTimeoutDelay));
 381     }
 382   }
 383 #endif
 384 
 385   assert((_safepoint_counter & 0x1) == 0, "must be even");
 386   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 387   _safepoint_counter ++;
 388 
 389   // Record state
 390   _state = _synchronized;
 391 
 392   OrderAccess::fence();
 393 
 394   if (wait_blocked_event.should_commit()) {
 395     wait_blocked_event.set_safepointId(safepoint_counter());
 396     wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 397     wait_blocked_event.commit();
 398   }
 399 
 400 #ifdef ASSERT
 401   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 402     // make sure all the threads were visited
 403     assert(cur->was_visited_for_critical_count(), "missed a thread");
 404   }
 405 #endif // ASSERT
 406 
 407   // Update the count of active JNI critical regions
 408   GC_locker::set_jni_lock_count(_current_jni_active_count);
 409 
 410   if (TraceSafepoint) {
 411     VM_Operation *op = VMThread::vm_operation();
 412     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 413   }
 414 
 415   RuntimeService::record_safepoint_synchronized();
 416   if (PrintSafepointStatistics) {
 417     update_statistics_on_sync_end(os::javaTimeNanos());
 418   }
 419 
 420   // Call stuff that needs to be run when a safepoint is just about to be completed
 421   EventSafepointCleanup cleanup_event;
 422   do_cleanup_tasks();
 423 
 424   if (cleanup_event.should_commit()) {
 425     cleanup_event.set_safepointId(safepoint_counter());
 426     cleanup_event.commit();
 427   }
 428 
 429   if (PrintSafepointStatistics) {
 430     // Record how much time spend on the above cleanup tasks
 431     update_statistics_on_cleanup_end(os::javaTimeNanos());
 432   }
 433 
 434   if (begin_event.should_commit()) {
 435     begin_event.set_safepointId(safepoint_counter());
 436     begin_event.set_totalThreadCount(nof_threads);
 437     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 438     begin_event.commit();
 439   }
 440 }
 441 
 442 // Wake up all threads, so they are ready to resume execution after the safepoint
 443 // operation has been carried out
 444 void SafepointSynchronize::end() {
 445   EventSafepointEnd event;
 446   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 447 
 448   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 449   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 450   _safepoint_counter ++;
 451   // memory fence isn't required here since an odd _safepoint_counter
 452   // value can do no harm and a fence is issued below anyway.
 453 
 454   DEBUG_ONLY(Thread* myThread = Thread::current();)
 455   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 456 
 457   if (PrintSafepointStatistics) {
 458     end_statistics(os::javaTimeNanos());
 459   }
 460 
 461 #ifdef ASSERT
 462   // A pending_exception cannot be installed during a safepoint.  The threads
 463   // may install an async exception after they come back from a safepoint into
 464   // pending_exception after they unblock.  But that should happen later.
 465   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 466     assert (!(cur->has_pending_exception() &&
 467               cur->safepoint_state()->is_at_poll_safepoint()),
 468             "safepoint installed a pending exception");
 469   }
 470 #endif // ASSERT
 471 
 472   if (PageArmed) {
 473     // Make polling safepoint aware
 474     os::make_polling_page_readable();
 475     PageArmed = 0 ;
 476   }
 477 
 478   // Remove safepoint check from interpreter
 479   Interpreter::ignore_safepoints();
 480 
 481   {
 482     MutexLocker mu(Safepoint_lock);
 483 
 484     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 485 
 486     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 487     // when they get restarted.
 488     _state = _not_synchronized;
 489     OrderAccess::fence();
 490 
 491     if (TraceSafepoint) {
 492        tty->print_cr("Leaving safepoint region");
 493     }
 494 
 495     // Start suspended threads
 496     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 497       // A problem occurring on Solaris is when attempting to restart threads
 498       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 499       // to the next one (since it has been running the longest).  We then have
 500       // to wait for a cpu to become available before we can continue restarting
 501       // threads.
 502       // FIXME: This causes the performance of the VM to degrade when active and with
 503       // large numbers of threads.  Apparently this is due to the synchronous nature
 504       // of suspending threads.
 505       //
 506       // TODO-FIXME: the comments above are vestigial and no longer apply.
 507       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 508       if (VMThreadHintNoPreempt) {
 509         os::hint_no_preempt();
 510       }
 511       ThreadSafepointState* cur_state = current->safepoint_state();
 512       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 513       cur_state->restart();
 514       assert(cur_state->is_running(), "safepoint state has not been reset");
 515     }
 516 
 517     RuntimeService::record_safepoint_end();
 518 
 519     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 520     // blocked in signal_thread_blocked
 521     Threads_lock->unlock();
 522 
 523   }
 524 #if INCLUDE_ALL_GCS
 525   // If there are any concurrent GC threads resume them.
 526   if (UseConcMarkSweepGC) {
 527     ConcurrentMarkSweepThread::desynchronize(false);
 528   } else if (UseG1GC) {
 529     SuspendibleThreadSet::desynchronize();
 530   }
 531 #endif // INCLUDE_ALL_GCS
 532   // record this time so VMThread can keep track how much time has elasped
 533   // since last safepoint.
 534   _end_of_last_safepoint = os::javaTimeMillis();
 535 
 536   if (event.should_commit()) {
 537     event.set_safepointId(safepoint_id);
 538     event.commit();
 539   }
 540 }
 541 
 542 bool SafepointSynchronize::is_cleanup_needed() {
 543   // Need a safepoint if some inline cache buffers is non-empty
 544   if (!InlineCacheBuffer::is_empty()) return true;
 545   return false;
 546 }
 547 
 548 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 549   if (event.should_commit()) {
 550     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 551     event.set_name(name);
 552     event.commit();
 553   }
 554 }
 555 
 556 // Various cleaning tasks that should be done periodically at safepoints
 557 void SafepointSynchronize::do_cleanup_tasks() {
 558   {
 559     const char* name = "deflating idle monitors";
 560     EventSafepointCleanupTask event;
 561     TraceTime t1(name, TraceSafepointCleanupTime);
 562     ObjectSynchronizer::deflate_idle_monitors();
 563     event_safepoint_cleanup_task_commit(event, name);
 564   }
 565 
 566   {
 567     const char* name = "updating inline caches";
 568     EventSafepointCleanupTask event;
 569     TraceTime t2(name, TraceSafepointCleanupTime);
 570     InlineCacheBuffer::update_inline_caches();
 571     event_safepoint_cleanup_task_commit(event, name);
 572   }
 573   {
 574     const char* name = "compilation policy safepoint handler";
 575     EventSafepointCleanupTask event;
 576     TraceTime t3(name, TraceSafepointCleanupTime);
 577     CompilationPolicy::policy()->do_safepoint_work();
 578     event_safepoint_cleanup_task_commit(event, name);
 579   }
 580 
 581   {
 582     const char* name = "mark nmethods";
 583     EventSafepointCleanupTask event;
 584     TraceTime t4(name, TraceSafepointCleanupTime);
 585     NMethodSweeper::mark_active_nmethods();
 586     event_safepoint_cleanup_task_commit(event, name);
 587   }
 588 
 589   if (SymbolTable::needs_rehashing()) {
 590     const char* name = "rehashing symbol table";
 591     EventSafepointCleanupTask event;
 592     TraceTime t5(name, TraceSafepointCleanupTime);
 593     SymbolTable::rehash_table();
 594     event_safepoint_cleanup_task_commit(event, name);
 595   }
 596 
 597   if (StringTable::needs_rehashing()) {
 598     const char* name = "rehashing string table";
 599     EventSafepointCleanupTask event;
 600     TraceTime t6(name, TraceSafepointCleanupTime);
 601     StringTable::rehash_table();
 602     event_safepoint_cleanup_task_commit(event, name);
 603   }
 604 
 605   // rotate log files?
 606   if (UseGCLogFileRotation) {
 607     const char* name = "rotate gc log";
 608     EventSafepointCleanupTask event;
 609     gclog_or_tty->rotate_log(false);
 610     event_safepoint_cleanup_task_commit(event, name);
 611   }
 612 
 613   {
 614     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 615     // make sure concurrent sweep is done
 616     const char* name = "purging class loader data graph";
 617     EventSafepointCleanupTask event;
 618     TraceTime t7(name, TraceSafepointCleanupTime);
 619     ClassLoaderDataGraph::purge_if_needed();
 620     event_safepoint_cleanup_task_commit(event, name);
 621   }
 622 }
 623 
 624 
 625 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 626   switch(state) {
 627   case _thread_in_native:
 628     // native threads are safe if they have no java stack or have walkable stack
 629     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 630 
 631    // blocked threads should have already have walkable stack
 632   case _thread_blocked:
 633     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 634     return true;
 635 
 636   default:
 637     return false;
 638   }
 639 }
 640 
 641 
 642 // See if the thread is running inside a lazy critical native and
 643 // update the thread critical count if so.  Also set a suspend flag to
 644 // cause the native wrapper to return into the JVM to do the unlock
 645 // once the native finishes.
 646 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 647   if (state == _thread_in_native &&
 648       thread->has_last_Java_frame() &&
 649       thread->frame_anchor()->walkable()) {
 650     // This thread might be in a critical native nmethod so look at
 651     // the top of the stack and increment the critical count if it
 652     // is.
 653     frame wrapper_frame = thread->last_frame();
 654     CodeBlob* stub_cb = wrapper_frame.cb();
 655     if (stub_cb != NULL &&
 656         stub_cb->is_nmethod() &&
 657         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 658       // A thread could potentially be in a critical native across
 659       // more than one safepoint, so only update the critical state on
 660       // the first one.  When it returns it will perform the unlock.
 661       if (!thread->do_critical_native_unlock()) {
 662 #ifdef ASSERT
 663         if (!thread->in_critical()) {
 664           GC_locker::increment_debug_jni_lock_count();
 665         }
 666 #endif
 667         thread->enter_critical();
 668         // Make sure the native wrapper calls back on return to
 669         // perform the needed critical unlock.
 670         thread->set_critical_native_unlock();
 671       }
 672     }
 673   }
 674 }
 675 
 676 
 677 
 678 // -------------------------------------------------------------------------------------------------------
 679 // Implementation of Safepoint callback point
 680 
 681 void SafepointSynchronize::block(JavaThread *thread) {
 682   assert(thread != NULL, "thread must be set");
 683   assert(thread->is_Java_thread(), "not a Java thread");
 684 
 685   // Threads shouldn't block if they are in the middle of printing, but...
 686   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 687 
 688   // Only bail from the block() call if the thread is gone from the
 689   // thread list; starting to exit should still block.
 690   if (thread->is_terminated()) {
 691      // block current thread if we come here from native code when VM is gone
 692      thread->block_if_vm_exited();
 693 
 694      // otherwise do nothing
 695      return;
 696   }
 697 
 698   JavaThreadState state = thread->thread_state();
 699   thread->frame_anchor()->make_walkable(thread);
 700 
 701   // Check that we have a valid thread_state at this point
 702   switch(state) {
 703     case _thread_in_vm_trans:
 704     case _thread_in_Java:        // From compiled code
 705 
 706       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 707       // we pretend we are still in the VM.
 708       thread->set_thread_state(_thread_in_vm);
 709 
 710       if (is_synchronizing()) {
 711          Atomic::inc (&TryingToBlock) ;
 712       }
 713 
 714       // We will always be holding the Safepoint_lock when we are examine the state
 715       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 716       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 717       Safepoint_lock->lock_without_safepoint_check();
 718       if (is_synchronizing()) {
 719         // Decrement the number of threads to wait for and signal vm thread
 720         assert(_waiting_to_block > 0, "sanity check");
 721         _waiting_to_block--;
 722         thread->safepoint_state()->set_has_called_back(true);
 723 
 724         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 725         if (thread->in_critical()) {
 726           // Notice that this thread is in a critical section
 727           increment_jni_active_count();
 728         }
 729 
 730         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 731         if (_waiting_to_block == 0) {
 732           Safepoint_lock->notify_all();
 733         }
 734       }
 735 
 736       // We transition the thread to state _thread_blocked here, but
 737       // we can't do our usual check for external suspension and then
 738       // self-suspend after the lock_without_safepoint_check() call
 739       // below because we are often called during transitions while
 740       // we hold different locks. That would leave us suspended while
 741       // holding a resource which results in deadlocks.
 742       thread->set_thread_state(_thread_blocked);
 743       Safepoint_lock->unlock();
 744 
 745       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 746       // the entire safepoint, the threads will all line up here during the safepoint.
 747       Threads_lock->lock_without_safepoint_check();
 748       // restore original state. This is important if the thread comes from compiled code, so it
 749       // will continue to execute with the _thread_in_Java state.
 750       thread->set_thread_state(state);
 751       Threads_lock->unlock();
 752       break;
 753 
 754     case _thread_in_native_trans:
 755     case _thread_blocked_trans:
 756     case _thread_new_trans:
 757       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 758         thread->print_thread_state();
 759         fatal("Deadlock in safepoint code.  "
 760               "Should have called back to the VM before blocking.");
 761       }
 762 
 763       // We transition the thread to state _thread_blocked here, but
 764       // we can't do our usual check for external suspension and then
 765       // self-suspend after the lock_without_safepoint_check() call
 766       // below because we are often called during transitions while
 767       // we hold different locks. That would leave us suspended while
 768       // holding a resource which results in deadlocks.
 769       thread->set_thread_state(_thread_blocked);
 770 
 771       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 772       // the safepoint code might still be waiting for it to block. We need to change the state here,
 773       // so it can see that it is at a safepoint.
 774 
 775       // Block until the safepoint operation is completed.
 776       Threads_lock->lock_without_safepoint_check();
 777 
 778       // Restore state
 779       thread->set_thread_state(state);
 780 
 781       Threads_lock->unlock();
 782       break;
 783 
 784     default:
 785      fatal(err_msg("Illegal threadstate encountered: %d", state));
 786   }
 787 
 788   // Check for pending. async. exceptions or suspends - except if the
 789   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 790   // is called last since it grabs a lock and we only want to do that when
 791   // we must.
 792   //
 793   // Note: we never deliver an async exception at a polling point as the
 794   // compiler may not have an exception handler for it. The polling
 795   // code will notice the async and deoptimize and the exception will
 796   // be delivered. (Polling at a return point is ok though). Sure is
 797   // a lot of bother for a deprecated feature...
 798   //
 799   // We don't deliver an async exception if the thread state is
 800   // _thread_in_native_trans so JNI functions won't be called with
 801   // a surprising pending exception. If the thread state is going back to java,
 802   // async exception is checked in check_special_condition_for_native_trans().
 803 
 804   if (state != _thread_blocked_trans &&
 805       state != _thread_in_vm_trans &&
 806       thread->has_special_runtime_exit_condition()) {
 807     thread->handle_special_runtime_exit_condition(
 808       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 809   }
 810 }
 811 
 812 // ------------------------------------------------------------------------------------------------------
 813 // Exception handlers
 814 
 815 
 816 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 817   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 818   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 819   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 820 
 821   if (ShowSafepointMsgs) {
 822     tty->print("handle_polling_page_exception: ");
 823   }
 824 
 825   if (PrintSafepointStatistics) {
 826     inc_page_trap_count();
 827   }
 828 
 829   ThreadSafepointState* state = thread->safepoint_state();
 830 
 831   state->handle_polling_page_exception();
 832 }
 833 
 834 
 835 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 836   if (!timeout_error_printed) {
 837     timeout_error_printed = true;
 838     // Print out the thread infor which didn't reach the safepoint for debugging
 839     // purposes (useful when there are lots of threads in the debugger).
 840     tty->cr();
 841     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 842     if (reason ==  _spinning_timeout) {
 843       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 844     } else if (reason == _blocking_timeout) {
 845       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 846     }
 847 
 848     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 849     ThreadSafepointState *cur_state;
 850     ResourceMark rm;
 851     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 852         cur_thread = cur_thread->next()) {
 853       cur_state = cur_thread->safepoint_state();
 854 
 855       if (cur_thread->thread_state() != _thread_blocked &&
 856           ((reason == _spinning_timeout && cur_state->is_running()) ||
 857            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 858         tty->print("# ");
 859         cur_thread->print();
 860         tty->cr();
 861       }
 862     }
 863     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 864   }
 865 
 866   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 867   // ShowMessageBoxOnError.
 868   if (DieOnSafepointTimeout) {
 869     char msg[1024];
 870     VM_Operation *op = VMThread::vm_operation();
 871     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 872             SafepointTimeoutDelay,
 873             op != NULL ? op->name() : "no vm operation");
 874     fatal(msg);
 875   }
 876 }
 877 
 878 
 879 // -------------------------------------------------------------------------------------------------------
 880 // Implementation of ThreadSafepointState
 881 
 882 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 883   _thread = thread;
 884   _type   = _running;
 885   _has_called_back = false;
 886   _at_poll_safepoint = false;
 887 }
 888 
 889 void ThreadSafepointState::create(JavaThread *thread) {
 890   ThreadSafepointState *state = new ThreadSafepointState(thread);
 891   thread->set_safepoint_state(state);
 892 }
 893 
 894 void ThreadSafepointState::destroy(JavaThread *thread) {
 895   if (thread->safepoint_state()) {
 896     delete(thread->safepoint_state());
 897     thread->set_safepoint_state(NULL);
 898   }
 899 }
 900 
 901 void ThreadSafepointState::examine_state_of_thread() {
 902   assert(is_running(), "better be running or just have hit safepoint poll");
 903 
 904   JavaThreadState state = _thread->thread_state();
 905 
 906   // Save the state at the start of safepoint processing.
 907   _orig_thread_state = state;
 908 
 909   // Check for a thread that is suspended. Note that thread resume tries
 910   // to grab the Threads_lock which we own here, so a thread cannot be
 911   // resumed during safepoint synchronization.
 912 
 913   // We check to see if this thread is suspended without locking to
 914   // avoid deadlocking with a third thread that is waiting for this
 915   // thread to be suspended. The third thread can notice the safepoint
 916   // that we're trying to start at the beginning of its SR_lock->wait()
 917   // call. If that happens, then the third thread will block on the
 918   // safepoint while still holding the underlying SR_lock. We won't be
 919   // able to get the SR_lock and we'll deadlock.
 920   //
 921   // We don't need to grab the SR_lock here for two reasons:
 922   // 1) The suspend flags are both volatile and are set with an
 923   //    Atomic::cmpxchg() call so we should see the suspended
 924   //    state right away.
 925   // 2) We're being called from the safepoint polling loop; if
 926   //    we don't see the suspended state on this iteration, then
 927   //    we'll come around again.
 928   //
 929   bool is_suspended = _thread->is_ext_suspended();
 930   if (is_suspended) {
 931     roll_forward(_at_safepoint);
 932     return;
 933   }
 934 
 935   // Some JavaThread states have an initial safepoint state of
 936   // running, but are actually at a safepoint. We will happily
 937   // agree and update the safepoint state here.
 938   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 939     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 940     roll_forward(_at_safepoint);
 941     return;
 942   }
 943 
 944   if (state == _thread_in_vm) {
 945     roll_forward(_call_back);
 946     return;
 947   }
 948 
 949   // All other thread states will continue to run until they
 950   // transition and self-block in state _blocked
 951   // Safepoint polling in compiled code causes the Java threads to do the same.
 952   // Note: new threads may require a malloc so they must be allowed to finish
 953 
 954   assert(is_running(), "examine_state_of_thread on non-running thread");
 955   return;
 956 }
 957 
 958 // Returns true is thread could not be rolled forward at present position.
 959 void ThreadSafepointState::roll_forward(suspend_type type) {
 960   _type = type;
 961 
 962   switch(_type) {
 963     case _at_safepoint:
 964       SafepointSynchronize::signal_thread_at_safepoint();
 965       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 966       if (_thread->in_critical()) {
 967         // Notice that this thread is in a critical section
 968         SafepointSynchronize::increment_jni_active_count();
 969       }
 970       break;
 971 
 972     case _call_back:
 973       set_has_called_back(false);
 974       break;
 975 
 976     case _running:
 977     default:
 978       ShouldNotReachHere();
 979   }
 980 }
 981 
 982 void ThreadSafepointState::restart() {
 983   switch(type()) {
 984     case _at_safepoint:
 985     case _call_back:
 986       break;
 987 
 988     case _running:
 989     default:
 990        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
 991                       _thread, _type);
 992        _thread->print();
 993       ShouldNotReachHere();
 994   }
 995   _type = _running;
 996   set_has_called_back(false);
 997 }
 998 
 999 
1000 void ThreadSafepointState::print_on(outputStream *st) const {
1001   const char *s = NULL;
1002 
1003   switch(_type) {
1004     case _running                : s = "_running";              break;
1005     case _at_safepoint           : s = "_at_safepoint";         break;
1006     case _call_back              : s = "_call_back";            break;
1007     default:
1008       ShouldNotReachHere();
1009   }
1010 
1011   st->print_cr("Thread: " INTPTR_FORMAT
1012               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1013                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
1014                _at_poll_safepoint);
1015 
1016   _thread->print_thread_state_on(st);
1017 }
1018 
1019 
1020 // ---------------------------------------------------------------------------------------------------------------------
1021 
1022 // Block the thread at the safepoint poll or poll return.
1023 void ThreadSafepointState::handle_polling_page_exception() {
1024 
1025   // Check state.  block() will set thread state to thread_in_vm which will
1026   // cause the safepoint state _type to become _call_back.
1027   assert(type() == ThreadSafepointState::_running,
1028          "polling page exception on thread not running state");
1029 
1030   // Step 1: Find the nmethod from the return address
1031   if (ShowSafepointMsgs && Verbose) {
1032     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
1033   }
1034   address real_return_addr = thread()->saved_exception_pc();
1035 
1036   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1037   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
1038   nmethod* nm = (nmethod*)cb;
1039 
1040   // Find frame of caller
1041   frame stub_fr = thread()->last_frame();
1042   CodeBlob* stub_cb = stub_fr.cb();
1043   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1044   RegisterMap map(thread(), true);
1045   frame caller_fr = stub_fr.sender(&map);
1046 
1047   // Should only be poll_return or poll
1048   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1049 
1050   // This is a poll immediately before a return. The exception handling code
1051   // has already had the effect of causing the return to occur, so the execution
1052   // will continue immediately after the call. In addition, the oopmap at the
1053   // return point does not mark the return value as an oop (if it is), so
1054   // it needs a handle here to be updated.
1055   if( nm->is_at_poll_return(real_return_addr) ) {
1056     // See if return type is an oop.
1057     bool return_oop = nm->method()->is_returning_oop();
1058     Handle return_value;
1059     if (return_oop) {
1060       // The oop result has been saved on the stack together with all
1061       // the other registers. In order to preserve it over GCs we need
1062       // to keep it in a handle.
1063       oop result = caller_fr.saved_oop_result(&map);
1064       assert(result == NULL || result->is_oop(), "must be oop");
1065       return_value = Handle(thread(), result);
1066       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1067     }
1068 
1069     // Block the thread
1070     SafepointSynchronize::block(thread());
1071 
1072     // restore oop result, if any
1073     if (return_oop) {
1074       caller_fr.set_saved_oop_result(&map, return_value());
1075     }
1076   }
1077 
1078   // This is a safepoint poll. Verify the return address and block.
1079   else {
1080     set_at_poll_safepoint(true);
1081 
1082     // verify the blob built the "return address" correctly
1083     assert(real_return_addr == caller_fr.pc(), "must match");
1084 
1085     // Block the thread
1086     SafepointSynchronize::block(thread());
1087     set_at_poll_safepoint(false);
1088 
1089     // If we have a pending async exception deoptimize the frame
1090     // as otherwise we may never deliver it.
1091     if (thread()->has_async_condition()) {
1092       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1093       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1094     }
1095 
1096     // If an exception has been installed we must check for a pending deoptimization
1097     // Deoptimize frame if exception has been thrown.
1098 
1099     if (thread()->has_pending_exception() ) {
1100       RegisterMap map(thread(), true);
1101       frame caller_fr = stub_fr.sender(&map);
1102       if (caller_fr.is_deoptimized_frame()) {
1103         // The exception patch will destroy registers that are still
1104         // live and will be needed during deoptimization. Defer the
1105         // Async exception should have defered the exception until the
1106         // next safepoint which will be detected when we get into
1107         // the interpreter so if we have an exception now things
1108         // are messed up.
1109 
1110         fatal("Exception installed and deoptimization is pending");
1111       }
1112     }
1113   }
1114 }
1115 
1116 
1117 //
1118 //                     Statistics & Instrumentations
1119 //
1120 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1121 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1122 int    SafepointSynchronize::_cur_stat_index = 0;
1123 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1124 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1125 jlong  SafepointSynchronize::_max_sync_time = 0;
1126 jlong  SafepointSynchronize::_max_vmop_time = 0;
1127 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1128 
1129 static jlong  cleanup_end_time = 0;
1130 static bool   need_to_track_page_armed_status = false;
1131 static bool   init_done = false;
1132 
1133 // Helper method to print the header.
1134 static void print_header() {
1135   tty->print("         vmop                    "
1136              "[threads: total initially_running wait_to_block]    ");
1137   tty->print("[time: spin block sync cleanup vmop] ");
1138 
1139   // no page armed status printed out if it is always armed.
1140   if (need_to_track_page_armed_status) {
1141     tty->print("page_armed ");
1142   }
1143 
1144   tty->print_cr("page_trap_count");
1145 }
1146 
1147 void SafepointSynchronize::deferred_initialize_stat() {
1148   if (init_done) return;
1149 
1150   if (PrintSafepointStatisticsCount <= 0) {
1151     fatal("Wrong PrintSafepointStatisticsCount");
1152   }
1153 
1154   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1155   // be printed right away, in which case, _safepoint_stats will regress to
1156   // a single element array. Otherwise, it is a circular ring buffer with default
1157   // size of PrintSafepointStatisticsCount.
1158   int stats_array_size;
1159   if (PrintSafepointStatisticsTimeout > 0) {
1160     stats_array_size = 1;
1161     PrintSafepointStatistics = true;
1162   } else {
1163     stats_array_size = PrintSafepointStatisticsCount;
1164   }
1165   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1166                                                  * sizeof(SafepointStats), mtInternal);
1167   guarantee(_safepoint_stats != NULL,
1168             "not enough memory for safepoint instrumentation data");
1169 
1170   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1171     need_to_track_page_armed_status = true;
1172   }
1173   init_done = true;
1174 }
1175 
1176 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1177   assert(init_done, "safepoint statistics array hasn't been initialized");
1178   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1179 
1180   spstat->_time_stamp = _ts_of_current_safepoint;
1181 
1182   VM_Operation *op = VMThread::vm_operation();
1183   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1184   if (op != NULL) {
1185     _safepoint_reasons[spstat->_vmop_type]++;
1186   }
1187 
1188   spstat->_nof_total_threads = nof_threads;
1189   spstat->_nof_initial_running_threads = nof_running;
1190   spstat->_nof_threads_hit_page_trap = 0;
1191 
1192   // Records the start time of spinning. The real time spent on spinning
1193   // will be adjusted when spin is done. Same trick is applied for time
1194   // spent on waiting for threads to block.
1195   if (nof_running != 0) {
1196     spstat->_time_to_spin = os::javaTimeNanos();
1197   }  else {
1198     spstat->_time_to_spin = 0;
1199   }
1200 }
1201 
1202 void SafepointSynchronize::update_statistics_on_spin_end() {
1203   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1204 
1205   jlong cur_time = os::javaTimeNanos();
1206 
1207   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1208   if (spstat->_nof_initial_running_threads != 0) {
1209     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1210   }
1211 
1212   if (need_to_track_page_armed_status) {
1213     spstat->_page_armed = (PageArmed == 1);
1214   }
1215 
1216   // Records the start time of waiting for to block. Updated when block is done.
1217   if (_waiting_to_block != 0) {
1218     spstat->_time_to_wait_to_block = cur_time;
1219   } else {
1220     spstat->_time_to_wait_to_block = 0;
1221   }
1222 }
1223 
1224 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1225   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1226 
1227   if (spstat->_nof_threads_wait_to_block != 0) {
1228     spstat->_time_to_wait_to_block = end_time -
1229       spstat->_time_to_wait_to_block;
1230   }
1231 
1232   // Records the end time of sync which will be used to calculate the total
1233   // vm operation time. Again, the real time spending in syncing will be deducted
1234   // from the start of the sync time later when end_statistics is called.
1235   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1236   if (spstat->_time_to_sync > _max_sync_time) {
1237     _max_sync_time = spstat->_time_to_sync;
1238   }
1239 
1240   spstat->_time_to_do_cleanups = end_time;
1241 }
1242 
1243 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1244   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1245 
1246   // Record how long spent in cleanup tasks.
1247   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1248 
1249   cleanup_end_time = end_time;
1250 }
1251 
1252 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1253   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1254 
1255   // Update the vm operation time.
1256   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1257   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1258     _max_vmop_time = spstat->_time_to_exec_vmop;
1259   }
1260   // Only the sync time longer than the specified
1261   // PrintSafepointStatisticsTimeout will be printed out right away.
1262   // By default, it is -1 meaning all samples will be put into the list.
1263   if ( PrintSafepointStatisticsTimeout > 0) {
1264     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1265       print_statistics();
1266     }
1267   } else {
1268     // The safepoint statistics will be printed out when the _safepoin_stats
1269     // array fills up.
1270     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1271       print_statistics();
1272       _cur_stat_index = 0;
1273     } else {
1274       _cur_stat_index++;
1275     }
1276   }
1277 }
1278 
1279 void SafepointSynchronize::print_statistics() {
1280   SafepointStats* sstats = _safepoint_stats;
1281 
1282   for (int index = 0; index <= _cur_stat_index; index++) {
1283     if (index % 30 == 0) {
1284       print_header();
1285     }
1286     sstats = &_safepoint_stats[index];
1287     tty->print("%.3f: ", sstats->_time_stamp);
1288     tty->print("%-26s       ["
1289                INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
1290                "    ]    ",
1291                sstats->_vmop_type == -1 ? "no vm operation" :
1292                VM_Operation::name(sstats->_vmop_type),
1293                sstats->_nof_total_threads,
1294                sstats->_nof_initial_running_threads,
1295                sstats->_nof_threads_wait_to_block);
1296     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1297     tty->print("  ["
1298                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1299                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1300                INT64_FORMAT_W(6) "    ]  ",
1301                sstats->_time_to_spin / MICROUNITS,
1302                sstats->_time_to_wait_to_block / MICROUNITS,
1303                sstats->_time_to_sync / MICROUNITS,
1304                sstats->_time_to_do_cleanups / MICROUNITS,
1305                sstats->_time_to_exec_vmop / MICROUNITS);
1306 
1307     if (need_to_track_page_armed_status) {
1308       tty->print(INT32_FORMAT "         ", sstats->_page_armed);
1309     }
1310     tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
1311   }
1312 }
1313 
1314 // This method will be called when VM exits. It will first call
1315 // print_statistics to print out the rest of the sampling.  Then
1316 // it tries to summarize the sampling.
1317 void SafepointSynchronize::print_stat_on_exit() {
1318   if (_safepoint_stats == NULL) return;
1319 
1320   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1321 
1322   // During VM exit, end_statistics may not get called and in that
1323   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1324   // don't print it out.
1325   // Approximate the vm op time.
1326   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1327     os::javaTimeNanos() - cleanup_end_time;
1328 
1329   if ( PrintSafepointStatisticsTimeout < 0 ||
1330        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1331     print_statistics();
1332   }
1333   tty->cr();
1334 
1335   // Print out polling page sampling status.
1336   if (!need_to_track_page_armed_status) {
1337     if (UseCompilerSafepoints) {
1338       tty->print_cr("Polling page always armed");
1339     }
1340   } else {
1341     tty->print_cr("Defer polling page loop count = %d\n",
1342                  DeferPollingPageLoopCount);
1343   }
1344 
1345   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1346     if (_safepoint_reasons[index] != 0) {
1347       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1348                     _safepoint_reasons[index]);
1349     }
1350   }
1351 
1352   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1353                 _coalesced_vmop_count);
1354   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1355                 _max_sync_time / MICROUNITS);
1356   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1357                 INT64_FORMAT_W(5) " ms",
1358                 _max_vmop_time / MICROUNITS);
1359 }
1360 
1361 // ------------------------------------------------------------------------------------------------
1362 // Non-product code
1363 
1364 #ifndef PRODUCT
1365 
1366 void SafepointSynchronize::print_state() {
1367   if (_state == _not_synchronized) {
1368     tty->print_cr("not synchronized");
1369   } else if (_state == _synchronizing || _state == _synchronized) {
1370     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1371                   "synchronized");
1372 
1373     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1374        cur->safepoint_state()->print();
1375     }
1376   }
1377 }
1378 
1379 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1380   if (ShowSafepointMsgs) {
1381     va_list ap;
1382     va_start(ap, format);
1383     tty->vprint_cr(format, ap);
1384     va_end(ap);
1385   }
1386 }
1387 
1388 #endif // !PRODUCT