1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/orderAccess.inline.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/thread.inline.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/threadLocalStorage.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "runtime/vm_operations.hpp"
  76 #include "services/attachListener.hpp"
  77 #include "services/management.hpp"
  78 #include "services/memTracker.hpp"
  79 #include "services/threadService.hpp"
  80 #include "trace/tracing.hpp"
  81 #include "trace/traceMacros.hpp"
  82 #include "utilities/defaultStream.hpp"
  83 #include "utilities/dtrace.hpp"
  84 #include "utilities/events.hpp"
  85 #include "utilities/preserveException.hpp"
  86 #include "utilities/macros.hpp"
  87 #ifdef TARGET_OS_FAMILY_linux
  88 # include "os_linux.inline.hpp"
  89 #endif
  90 #ifdef TARGET_OS_FAMILY_solaris
  91 # include "os_solaris.inline.hpp"
  92 #endif
  93 #ifdef TARGET_OS_FAMILY_windows
  94 # include "os_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 #endif
  99 #if INCLUDE_ALL_GCS
 100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #ifdef COMPILER1
 105 #include "c1/c1_Compiler.hpp"
 106 #endif
 107 #ifdef COMPILER2
 108 #include "opto/c2compiler.hpp"
 109 #include "opto/idealGraphPrinter.hpp"
 110 #endif
 111 #if INCLUDE_RTM_OPT
 112 #include "runtime/rtmLocking.hpp"
 113 #endif
 114 
 115 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 116 
 117 #ifdef DTRACE_ENABLED
 118 
 119 // Only bother with this argument setup if dtrace is available
 120 
 121 #ifndef USDT2
 122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 123 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 124 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 125   intptr_t, intptr_t, bool);
 126 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 127   intptr_t, intptr_t, bool);
 128 
 129 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 130   {                                                                        \
 131     ResourceMark rm(this);                                                 \
 132     int len = 0;                                                           \
 133     const char* name = (javathread)->get_thread_name();                    \
 134     len = strlen(name);                                                    \
 135     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 136       name, len,                                                           \
 137       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 138       (javathread)->osthread()->thread_id(),                               \
 139       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 140   }
 141 
 142 #else /* USDT2 */
 143 
 144 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 145 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 146 
 147 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 148   {                                                                        \
 149     ResourceMark rm(this);                                                 \
 150     int len = 0;                                                           \
 151     const char* name = (javathread)->get_thread_name();                    \
 152     len = strlen(name);                                                    \
 153     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 154       (char *) name, len,                                                           \
 155       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 156       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 157       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 158   }
 159 
 160 #endif /* USDT2 */
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164 #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 
 169 // Class hierarchy
 170 // - Thread
 171 //   - VMThread
 172 //   - WatcherThread
 173 //   - ConcurrentMarkSweepThread
 174 //   - JavaThread
 175 //     - CompilerThread
 176 
 177 // ======= Thread ========
 178 // Support for forcing alignment of thread objects for biased locking
 179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 180   if (UseBiasedLocking) {
 181     const int alignment = markOopDesc::biased_lock_alignment;
 182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 185                                               AllocFailStrategy::RETURN_NULL);
 186     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 189            "JavaThread alignment code overflowed allocated storage");
 190     if (TraceBiasedLocking) {
 191       if (aligned_addr != real_malloc_addr)
 192         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 193                       real_malloc_addr, aligned_addr);
 194     }
 195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 196     return aligned_addr;
 197   } else {
 198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 200   }
 201 }
 202 
 203 void Thread::operator delete(void* p) {
 204   if (UseBiasedLocking) {
 205     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 206     FreeHeap(real_malloc_addr, mtThread);
 207   } else {
 208     FreeHeap(p, mtThread);
 209   }
 210 }
 211 
 212 
 213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 214 // JavaThread
 215 
 216 
 217 Thread::Thread() {
 218   // stack and get_thread
 219   set_stack_base(NULL);
 220   set_stack_size(0);
 221   set_self_raw_id(0);
 222   set_lgrp_id(-1);
 223 
 224   // allocated data structures
 225   set_osthread(NULL);
 226   set_resource_area(new (mtThread)ResourceArea());
 227   DEBUG_ONLY(_current_resource_mark = NULL;)
 228   set_handle_area(new (mtThread) HandleArea(NULL));
 229   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 230   set_active_handles(NULL);
 231   set_free_handle_block(NULL);
 232   set_last_handle_mark(NULL);
 233 
 234   // This initial value ==> never claimed.
 235   _oops_do_parity = 0;
 236 
 237   _metadata_on_stack_buffer = NULL;
 238 
 239   // the handle mark links itself to last_handle_mark
 240   new HandleMark(this);
 241 
 242   // plain initialization
 243   debug_only(_owned_locks = NULL;)
 244   debug_only(_allow_allocation_count = 0;)
 245   NOT_PRODUCT(_allow_safepoint_count = 0;)
 246   NOT_PRODUCT(_skip_gcalot = false;)
 247   _jvmti_env_iteration_count = 0;
 248   set_allocated_bytes(0);
 249   _vm_operation_started_count = 0;
 250   _vm_operation_completed_count = 0;
 251   _current_pending_monitor = NULL;
 252   _current_pending_monitor_is_from_java = true;
 253   _current_waiting_monitor = NULL;
 254   _num_nested_signal = 0;
 255   omFreeList = NULL ;
 256   omFreeCount = 0 ;
 257   omFreeProvision = 32 ;
 258   omInUseList = NULL ;
 259   omInUseCount = 0 ;
 260 
 261 #ifdef ASSERT
 262   _visited_for_critical_count = false;
 263 #endif
 264 
 265   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 266   _suspend_flags = 0;
 267 
 268   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 269   _hashStateX = os::random() ;
 270   _hashStateY = 842502087 ;
 271   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 272   _hashStateW = 273326509 ;
 273 
 274   _OnTrap   = 0 ;
 275   _schedctl = NULL ;
 276   _Stalled  = 0 ;
 277   _TypeTag  = 0x2BAD ;
 278 
 279   // Many of the following fields are effectively final - immutable
 280   // Note that nascent threads can't use the Native Monitor-Mutex
 281   // construct until the _MutexEvent is initialized ...
 282   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 283   // we might instead use a stack of ParkEvents that we could provision on-demand.
 284   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 285   // and ::Release()
 286   _ParkEvent   = ParkEvent::Allocate (this) ;
 287   _SleepEvent  = ParkEvent::Allocate (this) ;
 288   _MutexEvent  = ParkEvent::Allocate (this) ;
 289   _MuxEvent    = ParkEvent::Allocate (this) ;
 290 
 291 #ifdef CHECK_UNHANDLED_OOPS
 292   if (CheckUnhandledOops) {
 293     _unhandled_oops = new UnhandledOops(this);
 294   }
 295 #endif // CHECK_UNHANDLED_OOPS
 296 #ifdef ASSERT
 297   if (UseBiasedLocking) {
 298     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 299     assert(this == _real_malloc_address ||
 300            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 301            "bug in forced alignment of thread objects");
 302   }
 303 #endif /* ASSERT */
 304 }
 305 
 306 void Thread::initialize_thread_local_storage() {
 307   // Note: Make sure this method only calls
 308   // non-blocking operations. Otherwise, it might not work
 309   // with the thread-startup/safepoint interaction.
 310 
 311   // During Java thread startup, safepoint code should allow this
 312   // method to complete because it may need to allocate memory to
 313   // store information for the new thread.
 314 
 315   // initialize structure dependent on thread local storage
 316   ThreadLocalStorage::set_thread(this);
 317 }
 318 
 319 void Thread::record_stack_base_and_size() {
 320   set_stack_base(os::current_stack_base());
 321   set_stack_size(os::current_stack_size());
 322   if (is_Java_thread()) {
 323     ((JavaThread*) this)->set_stack_overflow_limit();
 324   }
 325   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 326   // in initialize_thread(). Without the adjustment, stack size is
 327   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 328   // So far, only Solaris has real implementation of initialize_thread().
 329   //
 330   // set up any platform-specific state.
 331   os::initialize_thread(this);
 332 
 333 #if INCLUDE_NMT
 334   // record thread's native stack, stack grows downward
 335   address stack_low_addr = stack_base() - stack_size();
 336   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 337 #endif // INCLUDE_NMT
 338 }
 339 
 340 
 341 Thread::~Thread() {
 342   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 343   ObjectSynchronizer::omFlush (this) ;
 344 
 345   EVENT_THREAD_DESTRUCT(this);
 346 
 347   // stack_base can be NULL if the thread is never started or exited before
 348   // record_stack_base_and_size called. Although, we would like to ensure
 349   // that all started threads do call record_stack_base_and_size(), there is
 350   // not proper way to enforce that.
 351 #if INCLUDE_NMT
 352   if (_stack_base != NULL) {
 353     address low_stack_addr = stack_base() - stack_size();
 354     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 355 #ifdef ASSERT
 356     set_stack_base(NULL);
 357 #endif
 358   }
 359 #endif // INCLUDE_NMT
 360 
 361   // deallocate data structures
 362   delete resource_area();
 363   // since the handle marks are using the handle area, we have to deallocated the root
 364   // handle mark before deallocating the thread's handle area,
 365   assert(last_handle_mark() != NULL, "check we have an element");
 366   delete last_handle_mark();
 367   assert(last_handle_mark() == NULL, "check we have reached the end");
 368 
 369   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 370   // We NULL out the fields for good hygiene.
 371   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 372   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 373   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 374   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 375 
 376   delete handle_area();
 377   delete metadata_handles();
 378 
 379   // osthread() can be NULL, if creation of thread failed.
 380   if (osthread() != NULL) os::free_thread(osthread());
 381 
 382   delete _SR_lock;
 383 
 384   // clear thread local storage if the Thread is deleting itself
 385   if (this == Thread::current()) {
 386     ThreadLocalStorage::set_thread(NULL);
 387   } else {
 388     // In the case where we're not the current thread, invalidate all the
 389     // caches in case some code tries to get the current thread or the
 390     // thread that was destroyed, and gets stale information.
 391     ThreadLocalStorage::invalidate_all();
 392   }
 393   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 394 }
 395 
 396 // NOTE: dummy function for assertion purpose.
 397 void Thread::run() {
 398   ShouldNotReachHere();
 399 }
 400 
 401 #ifdef ASSERT
 402 // Private method to check for dangling thread pointer
 403 void check_for_dangling_thread_pointer(Thread *thread) {
 404  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 405          "possibility of dangling Thread pointer");
 406 }
 407 #endif
 408 
 409 
 410 #ifndef PRODUCT
 411 // Tracing method for basic thread operations
 412 void Thread::trace(const char* msg, const Thread* const thread) {
 413   if (!TraceThreadEvents) return;
 414   ResourceMark rm;
 415   ThreadCritical tc;
 416   const char *name = "non-Java thread";
 417   int prio = -1;
 418   if (thread->is_Java_thread()
 419       && !thread->is_Compiler_thread()) {
 420     // The Threads_lock must be held to get information about
 421     // this thread but may not be in some situations when
 422     // tracing  thread events.
 423     bool release_Threads_lock = false;
 424     if (!Threads_lock->owned_by_self()) {
 425       Threads_lock->lock();
 426       release_Threads_lock = true;
 427     }
 428     JavaThread* jt = (JavaThread *)thread;
 429     name = (char *)jt->get_thread_name();
 430     oop thread_oop = jt->threadObj();
 431     if (thread_oop != NULL) {
 432       prio = java_lang_Thread::priority(thread_oop);
 433     }
 434     if (release_Threads_lock) {
 435       Threads_lock->unlock();
 436     }
 437   }
 438   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 439 }
 440 #endif
 441 
 442 
 443 ThreadPriority Thread::get_priority(const Thread* const thread) {
 444   trace("get priority", thread);
 445   ThreadPriority priority;
 446   // Can return an error!
 447   (void)os::get_priority(thread, priority);
 448   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 449   return priority;
 450 }
 451 
 452 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 453   trace("set priority", thread);
 454   debug_only(check_for_dangling_thread_pointer(thread);)
 455   // Can return an error!
 456   (void)os::set_priority(thread, priority);
 457 }
 458 
 459 
 460 void Thread::start(Thread* thread) {
 461   trace("start", thread);
 462   // Start is different from resume in that its safety is guaranteed by context or
 463   // being called from a Java method synchronized on the Thread object.
 464   if (!DisableStartThread) {
 465     if (thread->is_Java_thread()) {
 466       // Initialize the thread state to RUNNABLE before starting this thread.
 467       // Can not set it after the thread started because we do not know the
 468       // exact thread state at that time. It could be in MONITOR_WAIT or
 469       // in SLEEPING or some other state.
 470       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 471                                           java_lang_Thread::RUNNABLE);
 472     }
 473     os::start_thread(thread);
 474   }
 475 }
 476 
 477 // Enqueue a VM_Operation to do the job for us - sometime later
 478 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 479   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 480   VMThread::execute(vm_stop);
 481 }
 482 
 483 
 484 //
 485 // Check if an external suspend request has completed (or has been
 486 // cancelled). Returns true if the thread is externally suspended and
 487 // false otherwise.
 488 //
 489 // The bits parameter returns information about the code path through
 490 // the routine. Useful for debugging:
 491 //
 492 // set in is_ext_suspend_completed():
 493 // 0x00000001 - routine was entered
 494 // 0x00000010 - routine return false at end
 495 // 0x00000100 - thread exited (return false)
 496 // 0x00000200 - suspend request cancelled (return false)
 497 // 0x00000400 - thread suspended (return true)
 498 // 0x00001000 - thread is in a suspend equivalent state (return true)
 499 // 0x00002000 - thread is native and walkable (return true)
 500 // 0x00004000 - thread is native_trans and walkable (needed retry)
 501 //
 502 // set in wait_for_ext_suspend_completion():
 503 // 0x00010000 - routine was entered
 504 // 0x00020000 - suspend request cancelled before loop (return false)
 505 // 0x00040000 - thread suspended before loop (return true)
 506 // 0x00080000 - suspend request cancelled in loop (return false)
 507 // 0x00100000 - thread suspended in loop (return true)
 508 // 0x00200000 - suspend not completed during retry loop (return false)
 509 //
 510 
 511 // Helper class for tracing suspend wait debug bits.
 512 //
 513 // 0x00000100 indicates that the target thread exited before it could
 514 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 515 // 0x00080000 each indicate a cancelled suspend request so they don't
 516 // count as wait failures either.
 517 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 518 
 519 class TraceSuspendDebugBits : public StackObj {
 520  private:
 521   JavaThread * jt;
 522   bool         is_wait;
 523   bool         called_by_wait;  // meaningful when !is_wait
 524   uint32_t *   bits;
 525 
 526  public:
 527   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 528                         uint32_t *_bits) {
 529     jt             = _jt;
 530     is_wait        = _is_wait;
 531     called_by_wait = _called_by_wait;
 532     bits           = _bits;
 533   }
 534 
 535   ~TraceSuspendDebugBits() {
 536     if (!is_wait) {
 537 #if 1
 538       // By default, don't trace bits for is_ext_suspend_completed() calls.
 539       // That trace is very chatty.
 540       return;
 541 #else
 542       if (!called_by_wait) {
 543         // If tracing for is_ext_suspend_completed() is enabled, then only
 544         // trace calls to it from wait_for_ext_suspend_completion()
 545         return;
 546       }
 547 #endif
 548     }
 549 
 550     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 551       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 552         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 553         ResourceMark rm;
 554 
 555         tty->print_cr(
 556             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 557             jt->get_thread_name(), *bits);
 558 
 559         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 560       }
 561     }
 562   }
 563 };
 564 #undef DEBUG_FALSE_BITS
 565 
 566 
 567 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 568   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 569 
 570   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 571   bool do_trans_retry;           // flag to force the retry
 572 
 573   *bits |= 0x00000001;
 574 
 575   do {
 576     do_trans_retry = false;
 577 
 578     if (is_exiting()) {
 579       // Thread is in the process of exiting. This is always checked
 580       // first to reduce the risk of dereferencing a freed JavaThread.
 581       *bits |= 0x00000100;
 582       return false;
 583     }
 584 
 585     if (!is_external_suspend()) {
 586       // Suspend request is cancelled. This is always checked before
 587       // is_ext_suspended() to reduce the risk of a rogue resume
 588       // confusing the thread that made the suspend request.
 589       *bits |= 0x00000200;
 590       return false;
 591     }
 592 
 593     if (is_ext_suspended()) {
 594       // thread is suspended
 595       *bits |= 0x00000400;
 596       return true;
 597     }
 598 
 599     // Now that we no longer do hard suspends of threads running
 600     // native code, the target thread can be changing thread state
 601     // while we are in this routine:
 602     //
 603     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 604     //
 605     // We save a copy of the thread state as observed at this moment
 606     // and make our decision about suspend completeness based on the
 607     // copy. This closes the race where the thread state is seen as
 608     // _thread_in_native_trans in the if-thread_blocked check, but is
 609     // seen as _thread_blocked in if-thread_in_native_trans check.
 610     JavaThreadState save_state = thread_state();
 611 
 612     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 613       // If the thread's state is _thread_blocked and this blocking
 614       // condition is known to be equivalent to a suspend, then we can
 615       // consider the thread to be externally suspended. This means that
 616       // the code that sets _thread_blocked has been modified to do
 617       // self-suspension if the blocking condition releases. We also
 618       // used to check for CONDVAR_WAIT here, but that is now covered by
 619       // the _thread_blocked with self-suspension check.
 620       //
 621       // Return true since we wouldn't be here unless there was still an
 622       // external suspend request.
 623       *bits |= 0x00001000;
 624       return true;
 625     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 626       // Threads running native code will self-suspend on native==>VM/Java
 627       // transitions. If its stack is walkable (should always be the case
 628       // unless this function is called before the actual java_suspend()
 629       // call), then the wait is done.
 630       *bits |= 0x00002000;
 631       return true;
 632     } else if (!called_by_wait && !did_trans_retry &&
 633                save_state == _thread_in_native_trans &&
 634                frame_anchor()->walkable()) {
 635       // The thread is transitioning from thread_in_native to another
 636       // thread state. check_safepoint_and_suspend_for_native_trans()
 637       // will force the thread to self-suspend. If it hasn't gotten
 638       // there yet we may have caught the thread in-between the native
 639       // code check above and the self-suspend. Lucky us. If we were
 640       // called by wait_for_ext_suspend_completion(), then it
 641       // will be doing the retries so we don't have to.
 642       //
 643       // Since we use the saved thread state in the if-statement above,
 644       // there is a chance that the thread has already transitioned to
 645       // _thread_blocked by the time we get here. In that case, we will
 646       // make a single unnecessary pass through the logic below. This
 647       // doesn't hurt anything since we still do the trans retry.
 648 
 649       *bits |= 0x00004000;
 650 
 651       // Once the thread leaves thread_in_native_trans for another
 652       // thread state, we break out of this retry loop. We shouldn't
 653       // need this flag to prevent us from getting back here, but
 654       // sometimes paranoia is good.
 655       did_trans_retry = true;
 656 
 657       // We wait for the thread to transition to a more usable state.
 658       for (int i = 1; i <= SuspendRetryCount; i++) {
 659         // We used to do an "os::yield_all(i)" call here with the intention
 660         // that yielding would increase on each retry. However, the parameter
 661         // is ignored on Linux which means the yield didn't scale up. Waiting
 662         // on the SR_lock below provides a much more predictable scale up for
 663         // the delay. It also provides a simple/direct point to check for any
 664         // safepoint requests from the VMThread
 665 
 666         // temporarily drops SR_lock while doing wait with safepoint check
 667         // (if we're a JavaThread - the WatcherThread can also call this)
 668         // and increase delay with each retry
 669         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 670 
 671         // check the actual thread state instead of what we saved above
 672         if (thread_state() != _thread_in_native_trans) {
 673           // the thread has transitioned to another thread state so
 674           // try all the checks (except this one) one more time.
 675           do_trans_retry = true;
 676           break;
 677         }
 678       } // end retry loop
 679 
 680 
 681     }
 682   } while (do_trans_retry);
 683 
 684   *bits |= 0x00000010;
 685   return false;
 686 }
 687 
 688 //
 689 // Wait for an external suspend request to complete (or be cancelled).
 690 // Returns true if the thread is externally suspended and false otherwise.
 691 //
 692 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 693        uint32_t *bits) {
 694   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 695                              false /* !called_by_wait */, bits);
 696 
 697   // local flag copies to minimize SR_lock hold time
 698   bool is_suspended;
 699   bool pending;
 700   uint32_t reset_bits;
 701 
 702   // set a marker so is_ext_suspend_completed() knows we are the caller
 703   *bits |= 0x00010000;
 704 
 705   // We use reset_bits to reinitialize the bits value at the top of
 706   // each retry loop. This allows the caller to make use of any
 707   // unused bits for their own marking purposes.
 708   reset_bits = *bits;
 709 
 710   {
 711     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 712     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 713                                             delay, bits);
 714     pending = is_external_suspend();
 715   }
 716   // must release SR_lock to allow suspension to complete
 717 
 718   if (!pending) {
 719     // A cancelled suspend request is the only false return from
 720     // is_ext_suspend_completed() that keeps us from entering the
 721     // retry loop.
 722     *bits |= 0x00020000;
 723     return false;
 724   }
 725 
 726   if (is_suspended) {
 727     *bits |= 0x00040000;
 728     return true;
 729   }
 730 
 731   for (int i = 1; i <= retries; i++) {
 732     *bits = reset_bits;  // reinit to only track last retry
 733 
 734     // We used to do an "os::yield_all(i)" call here with the intention
 735     // that yielding would increase on each retry. However, the parameter
 736     // is ignored on Linux which means the yield didn't scale up. Waiting
 737     // on the SR_lock below provides a much more predictable scale up for
 738     // the delay. It also provides a simple/direct point to check for any
 739     // safepoint requests from the VMThread
 740 
 741     {
 742       MutexLocker ml(SR_lock());
 743       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 744       // can also call this)  and increase delay with each retry
 745       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 746 
 747       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 748                                               delay, bits);
 749 
 750       // It is possible for the external suspend request to be cancelled
 751       // (by a resume) before the actual suspend operation is completed.
 752       // Refresh our local copy to see if we still need to wait.
 753       pending = is_external_suspend();
 754     }
 755 
 756     if (!pending) {
 757       // A cancelled suspend request is the only false return from
 758       // is_ext_suspend_completed() that keeps us from staying in the
 759       // retry loop.
 760       *bits |= 0x00080000;
 761       return false;
 762     }
 763 
 764     if (is_suspended) {
 765       *bits |= 0x00100000;
 766       return true;
 767     }
 768   } // end retry loop
 769 
 770   // thread did not suspend after all our retries
 771   *bits |= 0x00200000;
 772   return false;
 773 }
 774 
 775 #ifndef PRODUCT
 776 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 777 
 778   // This should not need to be atomic as the only way for simultaneous
 779   // updates is via interrupts. Even then this should be rare or non-existant
 780   // and we don't care that much anyway.
 781 
 782   int index = _jmp_ring_index;
 783   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 784   _jmp_ring[index]._target = (intptr_t) target;
 785   _jmp_ring[index]._instruction = (intptr_t) instr;
 786   _jmp_ring[index]._file = file;
 787   _jmp_ring[index]._line = line;
 788 }
 789 #endif /* PRODUCT */
 790 
 791 // Called by flat profiler
 792 // Callers have already called wait_for_ext_suspend_completion
 793 // The assertion for that is currently too complex to put here:
 794 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 795   bool gotframe = false;
 796   // self suspension saves needed state.
 797   if (has_last_Java_frame() && _anchor.walkable()) {
 798      *_fr = pd_last_frame();
 799      gotframe = true;
 800   }
 801   return gotframe;
 802 }
 803 
 804 void Thread::interrupt(Thread* thread) {
 805   trace("interrupt", thread);
 806   debug_only(check_for_dangling_thread_pointer(thread);)
 807   os::interrupt(thread);
 808 }
 809 
 810 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 811   trace("is_interrupted", thread);
 812   debug_only(check_for_dangling_thread_pointer(thread);)
 813   // Note:  If clear_interrupted==false, this simply fetches and
 814   // returns the value of the field osthread()->interrupted().
 815   return os::is_interrupted(thread, clear_interrupted);
 816 }
 817 
 818 
 819 // GC Support
 820 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 821   jint thread_parity = _oops_do_parity;
 822   if (thread_parity != strong_roots_parity) {
 823     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 824     if (res == thread_parity) {
 825       return true;
 826     } else {
 827       guarantee(res == strong_roots_parity, "Or else what?");
 828       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 829          "Should only fail when parallel.");
 830       return false;
 831     }
 832   }
 833   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 834          "Should only fail when parallel.");
 835   return false;
 836 }
 837 
 838 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 839   active_handles()->oops_do(f);
 840   // Do oop for ThreadShadow
 841   f->do_oop((oop*)&_pending_exception);
 842   handle_area()->oops_do(f);
 843 }
 844 
 845 void Thread::nmethods_do(CodeBlobClosure* cf) {
 846   // no nmethods in a generic thread...
 847 }
 848 
 849 void Thread::metadata_do(void f(Metadata*)) {
 850   if (metadata_handles() != NULL) {
 851     for (int i = 0; i< metadata_handles()->length(); i++) {
 852       f(metadata_handles()->at(i));
 853     }
 854   }
 855 }
 856 
 857 void Thread::print_on(outputStream* st) const {
 858   // get_priority assumes osthread initialized
 859   if (osthread() != NULL) {
 860     int os_prio;
 861     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 862       st->print("os_prio=%d ", os_prio);
 863     }
 864     st->print("tid=" INTPTR_FORMAT " ", this);
 865     ext().print_on(st);
 866     osthread()->print_on(st);
 867   }
 868   debug_only(if (WizardMode) print_owned_locks_on(st);)
 869 }
 870 
 871 // Thread::print_on_error() is called by fatal error handler. Don't use
 872 // any lock or allocate memory.
 873 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 874   if      (is_VM_thread())                  st->print("VMThread");
 875   else if (is_Compiler_thread())            st->print("CompilerThread");
 876   else if (is_Java_thread())                st->print("JavaThread");
 877   else if (is_GC_task_thread())             st->print("GCTaskThread");
 878   else if (is_Watcher_thread())             st->print("WatcherThread");
 879   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 880   else st->print("Thread");
 881 
 882   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 883             _stack_base - _stack_size, _stack_base);
 884 
 885   if (osthread()) {
 886     st->print(" [id=%d]", osthread()->thread_id());
 887   }
 888 }
 889 
 890 #ifdef ASSERT
 891 void Thread::print_owned_locks_on(outputStream* st) const {
 892   Monitor *cur = _owned_locks;
 893   if (cur == NULL) {
 894     st->print(" (no locks) ");
 895   } else {
 896     st->print_cr(" Locks owned:");
 897     while(cur) {
 898       cur->print_on(st);
 899       cur = cur->next();
 900     }
 901   }
 902 }
 903 
 904 static int ref_use_count  = 0;
 905 
 906 bool Thread::owns_locks_but_compiled_lock() const {
 907   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 908     if (cur != Compile_lock) return true;
 909   }
 910   return false;
 911 }
 912 
 913 
 914 #endif
 915 
 916 #ifndef PRODUCT
 917 
 918 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 919 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 920 // no threads which allow_vm_block's are held
 921 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 922     // Check if current thread is allowed to block at a safepoint
 923     if (!(_allow_safepoint_count == 0))
 924       fatal("Possible safepoint reached by thread that does not allow it");
 925     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 926       fatal("LEAF method calling lock?");
 927     }
 928 
 929 #ifdef ASSERT
 930     if (potential_vm_operation && is_Java_thread()
 931         && !Universe::is_bootstrapping()) {
 932       // Make sure we do not hold any locks that the VM thread also uses.
 933       // This could potentially lead to deadlocks
 934       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 935         // Threads_lock is special, since the safepoint synchronization will not start before this is
 936         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 937         // since it is used to transfer control between JavaThreads and the VMThread
 938         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 939         if ( (cur->allow_vm_block() &&
 940               cur != Threads_lock &&
 941               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 942               cur != VMOperationRequest_lock &&
 943               cur != VMOperationQueue_lock) ||
 944               cur->rank() == Mutex::special) {
 945           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 946         }
 947       }
 948     }
 949 
 950     if (GCALotAtAllSafepoints) {
 951       // We could enter a safepoint here and thus have a gc
 952       InterfaceSupport::check_gc_alot();
 953     }
 954 #endif
 955 }
 956 #endif
 957 
 958 bool Thread::is_in_stack(address adr) const {
 959   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 960   address end = os::current_stack_pointer();
 961   // Allow non Java threads to call this without stack_base
 962   if (_stack_base == NULL) return true;
 963   if (stack_base() >= adr && adr >= end) return true;
 964 
 965   return false;
 966 }
 967 
 968 
 969 bool Thread::is_in_usable_stack(address adr) const {
 970   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 971   size_t usable_stack_size = _stack_size - stack_guard_size;
 972 
 973   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 974 }
 975 
 976 
 977 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 978 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 979 // used for compilation in the future. If that change is made, the need for these methods
 980 // should be revisited, and they should be removed if possible.
 981 
 982 bool Thread::is_lock_owned(address adr) const {
 983   return on_local_stack(adr);
 984 }
 985 
 986 bool Thread::set_as_starting_thread() {
 987  // NOTE: this must be called inside the main thread.
 988   return os::create_main_thread((JavaThread*)this);
 989 }
 990 
 991 static void initialize_class(Symbol* class_name, TRAPS) {
 992   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 993   InstanceKlass::cast(klass)->initialize(CHECK);
 994 }
 995 
 996 
 997 // Creates the initial ThreadGroup
 998 static Handle create_initial_thread_group(TRAPS) {
 999   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1000   instanceKlassHandle klass (THREAD, k);
1001 
1002   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1003   {
1004     JavaValue result(T_VOID);
1005     JavaCalls::call_special(&result,
1006                             system_instance,
1007                             klass,
1008                             vmSymbols::object_initializer_name(),
1009                             vmSymbols::void_method_signature(),
1010                             CHECK_NH);
1011   }
1012   Universe::set_system_thread_group(system_instance());
1013 
1014   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1015   {
1016     JavaValue result(T_VOID);
1017     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1018     JavaCalls::call_special(&result,
1019                             main_instance,
1020                             klass,
1021                             vmSymbols::object_initializer_name(),
1022                             vmSymbols::threadgroup_string_void_signature(),
1023                             system_instance,
1024                             string,
1025                             CHECK_NH);
1026   }
1027   return main_instance;
1028 }
1029 
1030 // Creates the initial Thread
1031 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1032   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1033   instanceKlassHandle klass (THREAD, k);
1034   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1035 
1036   java_lang_Thread::set_thread(thread_oop(), thread);
1037   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1038   thread->set_threadObj(thread_oop());
1039 
1040   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1041 
1042   JavaValue result(T_VOID);
1043   JavaCalls::call_special(&result, thread_oop,
1044                                    klass,
1045                                    vmSymbols::object_initializer_name(),
1046                                    vmSymbols::threadgroup_string_void_signature(),
1047                                    thread_group,
1048                                    string,
1049                                    CHECK_NULL);
1050   return thread_oop();
1051 }
1052 
1053 static void call_initializeSystemClass(TRAPS) {
1054   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1055   instanceKlassHandle klass (THREAD, k);
1056 
1057   JavaValue result(T_VOID);
1058   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1059                                          vmSymbols::void_method_signature(), CHECK);
1060 }
1061 
1062 char java_runtime_name[128] = "";
1063 char java_runtime_version[128] = "";
1064 
1065 // extract the JRE name from sun.misc.Version.java_runtime_name
1066 static const char* get_java_runtime_name(TRAPS) {
1067   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1068                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1069   fieldDescriptor fd;
1070   bool found = k != NULL &&
1071                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1072                                                         vmSymbols::string_signature(), &fd);
1073   if (found) {
1074     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1075     if (name_oop == NULL)
1076       return NULL;
1077     const char* name = java_lang_String::as_utf8_string(name_oop,
1078                                                         java_runtime_name,
1079                                                         sizeof(java_runtime_name));
1080     return name;
1081   } else {
1082     return NULL;
1083   }
1084 }
1085 
1086 // extract the JRE version from sun.misc.Version.java_runtime_version
1087 static const char* get_java_runtime_version(TRAPS) {
1088   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1089                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1090   fieldDescriptor fd;
1091   bool found = k != NULL &&
1092                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1093                                                         vmSymbols::string_signature(), &fd);
1094   if (found) {
1095     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1096     if (name_oop == NULL)
1097       return NULL;
1098     const char* name = java_lang_String::as_utf8_string(name_oop,
1099                                                         java_runtime_version,
1100                                                         sizeof(java_runtime_version));
1101     return name;
1102   } else {
1103     return NULL;
1104   }
1105 }
1106 
1107 // General purpose hook into Java code, run once when the VM is initialized.
1108 // The Java library method itself may be changed independently from the VM.
1109 static void call_postVMInitHook(TRAPS) {
1110   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1111   instanceKlassHandle klass (THREAD, k);
1112   if (klass.not_null()) {
1113     JavaValue result(T_VOID);
1114     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1115                                            vmSymbols::void_method_signature(),
1116                                            CHECK);
1117   }
1118 }
1119 
1120 static void reset_vm_info_property(TRAPS) {
1121   // the vm info string
1122   ResourceMark rm(THREAD);
1123   const char *vm_info = VM_Version::vm_info_string();
1124 
1125   // java.lang.System class
1126   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1127   instanceKlassHandle klass (THREAD, k);
1128 
1129   // setProperty arguments
1130   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1131   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1132 
1133   // return value
1134   JavaValue r(T_OBJECT);
1135 
1136   // public static String setProperty(String key, String value);
1137   JavaCalls::call_static(&r,
1138                          klass,
1139                          vmSymbols::setProperty_name(),
1140                          vmSymbols::string_string_string_signature(),
1141                          key_str,
1142                          value_str,
1143                          CHECK);
1144 }
1145 
1146 
1147 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1148   assert(thread_group.not_null(), "thread group should be specified");
1149   assert(threadObj() == NULL, "should only create Java thread object once");
1150 
1151   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1152   instanceKlassHandle klass (THREAD, k);
1153   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1154 
1155   java_lang_Thread::set_thread(thread_oop(), this);
1156   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1157   set_threadObj(thread_oop());
1158 
1159   JavaValue result(T_VOID);
1160   if (thread_name != NULL) {
1161     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1162     // Thread gets assigned specified name and null target
1163     JavaCalls::call_special(&result,
1164                             thread_oop,
1165                             klass,
1166                             vmSymbols::object_initializer_name(),
1167                             vmSymbols::threadgroup_string_void_signature(),
1168                             thread_group, // Argument 1
1169                             name,         // Argument 2
1170                             THREAD);
1171   } else {
1172     // Thread gets assigned name "Thread-nnn" and null target
1173     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1174     JavaCalls::call_special(&result,
1175                             thread_oop,
1176                             klass,
1177                             vmSymbols::object_initializer_name(),
1178                             vmSymbols::threadgroup_runnable_void_signature(),
1179                             thread_group, // Argument 1
1180                             Handle(),     // Argument 2
1181                             THREAD);
1182   }
1183 
1184 
1185   if (daemon) {
1186       java_lang_Thread::set_daemon(thread_oop());
1187   }
1188 
1189   if (HAS_PENDING_EXCEPTION) {
1190     return;
1191   }
1192 
1193   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1194   Handle threadObj(this, this->threadObj());
1195 
1196   JavaCalls::call_special(&result,
1197                          thread_group,
1198                          group,
1199                          vmSymbols::add_method_name(),
1200                          vmSymbols::thread_void_signature(),
1201                          threadObj,          // Arg 1
1202                          THREAD);
1203 
1204 
1205 }
1206 
1207 // NamedThread --  non-JavaThread subclasses with multiple
1208 // uniquely named instances should derive from this.
1209 NamedThread::NamedThread() : Thread() {
1210   _name = NULL;
1211   _processed_thread = NULL;
1212 }
1213 
1214 NamedThread::~NamedThread() {
1215   if (_name != NULL) {
1216     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1217     _name = NULL;
1218   }
1219 }
1220 
1221 void NamedThread::set_name(const char* format, ...) {
1222   guarantee(_name == NULL, "Only get to set name once.");
1223   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1224   guarantee(_name != NULL, "alloc failure");
1225   va_list ap;
1226   va_start(ap, format);
1227   jio_vsnprintf(_name, max_name_len, format, ap);
1228   va_end(ap);
1229 }
1230 
1231 // ======= WatcherThread ========
1232 
1233 // The watcher thread exists to simulate timer interrupts.  It should
1234 // be replaced by an abstraction over whatever native support for
1235 // timer interrupts exists on the platform.
1236 
1237 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1238 bool WatcherThread::_startable = false;
1239 volatile bool  WatcherThread::_should_terminate = false;
1240 
1241 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1242   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1243   if (os::create_thread(this, os::watcher_thread)) {
1244     _watcher_thread = this;
1245 
1246     // Set the watcher thread to the highest OS priority which should not be
1247     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1248     // is created. The only normal thread using this priority is the reference
1249     // handler thread, which runs for very short intervals only.
1250     // If the VMThread's priority is not lower than the WatcherThread profiling
1251     // will be inaccurate.
1252     os::set_priority(this, MaxPriority);
1253     if (!DisableStartThread) {
1254       os::start_thread(this);
1255     }
1256   }
1257 }
1258 
1259 int WatcherThread::sleep() const {
1260   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1261 
1262   // remaining will be zero if there are no tasks,
1263   // causing the WatcherThread to sleep until a task is
1264   // enrolled
1265   int remaining = PeriodicTask::time_to_wait();
1266   int time_slept = 0;
1267 
1268   // we expect this to timeout - we only ever get unparked when
1269   // we should terminate or when a new task has been enrolled
1270   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1271 
1272   jlong time_before_loop = os::javaTimeNanos();
1273 
1274   for (;;) {
1275     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1276     jlong now = os::javaTimeNanos();
1277 
1278     if (remaining == 0) {
1279         // if we didn't have any tasks we could have waited for a long time
1280         // consider the time_slept zero and reset time_before_loop
1281         time_slept = 0;
1282         time_before_loop = now;
1283     } else {
1284         // need to recalulate since we might have new tasks in _tasks
1285         time_slept = (int) ((now - time_before_loop) / 1000000);
1286     }
1287 
1288     // Change to task list or spurious wakeup of some kind
1289     if (timedout || _should_terminate) {
1290         break;
1291     }
1292 
1293     remaining = PeriodicTask::time_to_wait();
1294     if (remaining == 0) {
1295         // Last task was just disenrolled so loop around and wait until
1296         // another task gets enrolled
1297         continue;
1298     }
1299 
1300     remaining -= time_slept;
1301     if (remaining <= 0)
1302       break;
1303   }
1304 
1305   return time_slept;
1306 }
1307 
1308 void WatcherThread::run() {
1309   assert(this == watcher_thread(), "just checking");
1310 
1311   this->record_stack_base_and_size();
1312   this->initialize_thread_local_storage();
1313   this->set_active_handles(JNIHandleBlock::allocate_block());
1314   while(!_should_terminate) {
1315     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1316     assert(watcher_thread() == this,  "thread consistency check");
1317 
1318     // Calculate how long it'll be until the next PeriodicTask work
1319     // should be done, and sleep that amount of time.
1320     int time_waited = sleep();
1321 
1322     if (is_error_reported()) {
1323       // A fatal error has happened, the error handler(VMError::report_and_die)
1324       // should abort JVM after creating an error log file. However in some
1325       // rare cases, the error handler itself might deadlock. Here we try to
1326       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1327       //
1328       // This code is in WatcherThread because WatcherThread wakes up
1329       // periodically so the fatal error handler doesn't need to do anything;
1330       // also because the WatcherThread is less likely to crash than other
1331       // threads.
1332 
1333       for (;;) {
1334         if (!ShowMessageBoxOnError
1335          && (OnError == NULL || OnError[0] == '\0')
1336          && Arguments::abort_hook() == NULL) {
1337              os::sleep(this, 2 * 60 * 1000, false);
1338              fdStream err(defaultStream::output_fd());
1339              err.print_raw_cr("# [ timer expired, abort... ]");
1340              // skip atexit/vm_exit/vm_abort hooks
1341              os::die();
1342         }
1343 
1344         // Wake up 5 seconds later, the fatal handler may reset OnError or
1345         // ShowMessageBoxOnError when it is ready to abort.
1346         os::sleep(this, 5 * 1000, false);
1347       }
1348     }
1349 
1350     PeriodicTask::real_time_tick(time_waited);
1351   }
1352 
1353   // Signal that it is terminated
1354   {
1355     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1356     _watcher_thread = NULL;
1357     Terminator_lock->notify();
1358   }
1359 
1360   // Thread destructor usually does this..
1361   ThreadLocalStorage::set_thread(NULL);
1362 }
1363 
1364 void WatcherThread::start() {
1365   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1366 
1367   if (watcher_thread() == NULL && _startable) {
1368     _should_terminate = false;
1369     // Create the single instance of WatcherThread
1370     new WatcherThread();
1371   }
1372 }
1373 
1374 void WatcherThread::make_startable() {
1375   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1376   _startable = true;
1377 }
1378 
1379 void WatcherThread::stop() {
1380   {
1381     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1382     _should_terminate = true;
1383     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1384 
1385     WatcherThread* watcher = watcher_thread();
1386     if (watcher != NULL)
1387       watcher->unpark();
1388   }
1389 
1390   // it is ok to take late safepoints here, if needed
1391   MutexLocker mu(Terminator_lock);
1392 
1393   while(watcher_thread() != NULL) {
1394     // This wait should make safepoint checks, wait without a timeout,
1395     // and wait as a suspend-equivalent condition.
1396     //
1397     // Note: If the FlatProfiler is running, then this thread is waiting
1398     // for the WatcherThread to terminate and the WatcherThread, via the
1399     // FlatProfiler task, is waiting for the external suspend request on
1400     // this thread to complete. wait_for_ext_suspend_completion() will
1401     // eventually timeout, but that takes time. Making this wait a
1402     // suspend-equivalent condition solves that timeout problem.
1403     //
1404     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1405                           Mutex::_as_suspend_equivalent_flag);
1406   }
1407 }
1408 
1409 void WatcherThread::unpark() {
1410   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1411   PeriodicTask_lock->notify();
1412 }
1413 
1414 void WatcherThread::print_on(outputStream* st) const {
1415   st->print("\"%s\" ", name());
1416   Thread::print_on(st);
1417   st->cr();
1418 }
1419 
1420 // ======= JavaThread ========
1421 
1422 // A JavaThread is a normal Java thread
1423 
1424 void JavaThread::initialize() {
1425   // Initialize fields
1426 
1427   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1428   set_claimed_par_id(UINT_MAX);
1429 
1430   set_saved_exception_pc(NULL);
1431   set_threadObj(NULL);
1432   _anchor.clear();
1433   set_entry_point(NULL);
1434   set_jni_functions(jni_functions());
1435   set_callee_target(NULL);
1436   set_vm_result(NULL);
1437   set_vm_result_2(NULL);
1438   set_vframe_array_head(NULL);
1439   set_vframe_array_last(NULL);
1440   set_deferred_locals(NULL);
1441   set_deopt_mark(NULL);
1442   set_deopt_nmethod(NULL);
1443   clear_must_deopt_id();
1444   set_monitor_chunks(NULL);
1445   set_next(NULL);
1446   set_thread_state(_thread_new);
1447   _terminated = _not_terminated;
1448   _privileged_stack_top = NULL;
1449   _array_for_gc = NULL;
1450   _suspend_equivalent = false;
1451   _in_deopt_handler = 0;
1452   _doing_unsafe_access = false;
1453   _stack_guard_state = stack_guard_unused;
1454   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1455   _exception_pc  = 0;
1456   _exception_handler_pc = 0;
1457   _is_method_handle_return = 0;
1458   _jvmti_thread_state= NULL;
1459   _should_post_on_exceptions_flag = JNI_FALSE;
1460   _jvmti_get_loaded_classes_closure = NULL;
1461   _interp_only_mode    = 0;
1462   _special_runtime_exit_condition = _no_async_condition;
1463   _pending_async_exception = NULL;
1464   _thread_stat = NULL;
1465   _thread_stat = new ThreadStatistics();
1466   _blocked_on_compilation = false;
1467   _jni_active_critical = 0;
1468   _pending_jni_exception_check_fn = NULL;
1469   _do_not_unlock_if_synchronized = false;
1470   _cached_monitor_info = NULL;
1471   _parker = Parker::Allocate(this) ;
1472 
1473 #ifndef PRODUCT
1474   _jmp_ring_index = 0;
1475   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1476     record_jump(NULL, NULL, NULL, 0);
1477   }
1478 #endif /* PRODUCT */
1479 
1480   set_thread_profiler(NULL);
1481   if (FlatProfiler::is_active()) {
1482     // This is where we would decide to either give each thread it's own profiler
1483     // or use one global one from FlatProfiler,
1484     // or up to some count of the number of profiled threads, etc.
1485     ThreadProfiler* pp = new ThreadProfiler();
1486     pp->engage();
1487     set_thread_profiler(pp);
1488   }
1489 
1490   // Setup safepoint state info for this thread
1491   ThreadSafepointState::create(this);
1492 
1493   debug_only(_java_call_counter = 0);
1494 
1495   // JVMTI PopFrame support
1496   _popframe_condition = popframe_inactive;
1497   _popframe_preserved_args = NULL;
1498   _popframe_preserved_args_size = 0;
1499   _frames_to_pop_failed_realloc = 0;
1500 
1501   pd_initialize();
1502 }
1503 
1504 #if INCLUDE_ALL_GCS
1505 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1506 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1507 #endif // INCLUDE_ALL_GCS
1508 
1509 JavaThread::JavaThread(bool is_attaching_via_jni) :
1510   Thread()
1511 #if INCLUDE_ALL_GCS
1512   , _satb_mark_queue(&_satb_mark_queue_set),
1513   _dirty_card_queue(&_dirty_card_queue_set)
1514 #endif // INCLUDE_ALL_GCS
1515 {
1516   initialize();
1517   if (is_attaching_via_jni) {
1518     _jni_attach_state = _attaching_via_jni;
1519   } else {
1520     _jni_attach_state = _not_attaching_via_jni;
1521   }
1522   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1523 }
1524 
1525 bool JavaThread::reguard_stack(address cur_sp) {
1526   if (_stack_guard_state != stack_guard_yellow_disabled) {
1527     return true; // Stack already guarded or guard pages not needed.
1528   }
1529 
1530   if (register_stack_overflow()) {
1531     // For those architectures which have separate register and
1532     // memory stacks, we must check the register stack to see if
1533     // it has overflowed.
1534     return false;
1535   }
1536 
1537   // Java code never executes within the yellow zone: the latter is only
1538   // there to provoke an exception during stack banging.  If java code
1539   // is executing there, either StackShadowPages should be larger, or
1540   // some exception code in c1, c2 or the interpreter isn't unwinding
1541   // when it should.
1542   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1543 
1544   enable_stack_yellow_zone();
1545   return true;
1546 }
1547 
1548 bool JavaThread::reguard_stack(void) {
1549   return reguard_stack(os::current_stack_pointer());
1550 }
1551 
1552 
1553 void JavaThread::block_if_vm_exited() {
1554   if (_terminated == _vm_exited) {
1555     // _vm_exited is set at safepoint, and Threads_lock is never released
1556     // we will block here forever
1557     Threads_lock->lock_without_safepoint_check();
1558     ShouldNotReachHere();
1559   }
1560 }
1561 
1562 
1563 // Remove this ifdef when C1 is ported to the compiler interface.
1564 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1565 
1566 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1567   Thread()
1568 #if INCLUDE_ALL_GCS
1569   , _satb_mark_queue(&_satb_mark_queue_set),
1570   _dirty_card_queue(&_dirty_card_queue_set)
1571 #endif // INCLUDE_ALL_GCS
1572 {
1573   if (TraceThreadEvents) {
1574     tty->print_cr("creating thread %p", this);
1575   }
1576   initialize();
1577   _jni_attach_state = _not_attaching_via_jni;
1578   set_entry_point(entry_point);
1579   // Create the native thread itself.
1580   // %note runtime_23
1581   os::ThreadType thr_type = os::java_thread;
1582   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1583                                                      os::java_thread;
1584   os::create_thread(this, thr_type, stack_sz);
1585   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1586   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1587   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1588   // the exception consists of creating the exception object & initializing it, initialization
1589   // will leave the VM via a JavaCall and then all locks must be unlocked).
1590   //
1591   // The thread is still suspended when we reach here. Thread must be explicit started
1592   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1593   // by calling Threads:add. The reason why this is not done here, is because the thread
1594   // object must be fully initialized (take a look at JVM_Start)
1595 }
1596 
1597 JavaThread::~JavaThread() {
1598   if (TraceThreadEvents) {
1599       tty->print_cr("terminate thread %p", this);
1600   }
1601 
1602   // JSR166 -- return the parker to the free list
1603   Parker::Release(_parker);
1604   _parker = NULL ;
1605 
1606   // Free any remaining  previous UnrollBlock
1607   vframeArray* old_array = vframe_array_last();
1608 
1609   if (old_array != NULL) {
1610     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1611     old_array->set_unroll_block(NULL);
1612     delete old_info;
1613     delete old_array;
1614   }
1615 
1616   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1617   if (deferred != NULL) {
1618     // This can only happen if thread is destroyed before deoptimization occurs.
1619     assert(deferred->length() != 0, "empty array!");
1620     do {
1621       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1622       deferred->remove_at(0);
1623       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1624       delete dlv;
1625     } while (deferred->length() != 0);
1626     delete deferred;
1627   }
1628 
1629   // All Java related clean up happens in exit
1630   ThreadSafepointState::destroy(this);
1631   if (_thread_profiler != NULL) delete _thread_profiler;
1632   if (_thread_stat != NULL) delete _thread_stat;
1633 }
1634 
1635 
1636 // The first routine called by a new Java thread
1637 void JavaThread::run() {
1638   // initialize thread-local alloc buffer related fields
1639   this->initialize_tlab();
1640 
1641   // used to test validitity of stack trace backs
1642   this->record_base_of_stack_pointer();
1643 
1644   // Record real stack base and size.
1645   this->record_stack_base_and_size();
1646 
1647   // Initialize thread local storage; set before calling MutexLocker
1648   this->initialize_thread_local_storage();
1649 
1650   this->create_stack_guard_pages();
1651 
1652   this->cache_global_variables();
1653 
1654   // Thread is now sufficient initialized to be handled by the safepoint code as being
1655   // in the VM. Change thread state from _thread_new to _thread_in_vm
1656   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1657 
1658   assert(JavaThread::current() == this, "sanity check");
1659   assert(!Thread::current()->owns_locks(), "sanity check");
1660 
1661   DTRACE_THREAD_PROBE(start, this);
1662 
1663   // This operation might block. We call that after all safepoint checks for a new thread has
1664   // been completed.
1665   this->set_active_handles(JNIHandleBlock::allocate_block());
1666 
1667   if (JvmtiExport::should_post_thread_life()) {
1668     JvmtiExport::post_thread_start(this);
1669   }
1670 
1671   EventThreadStart event;
1672   if (event.should_commit()) {
1673      event.set_thread(THREAD_TRACE_ID(this));
1674      event.commit();
1675   }
1676 
1677   // We call another function to do the rest so we are sure that the stack addresses used
1678   // from there will be lower than the stack base just computed
1679   thread_main_inner();
1680 
1681   // Note, thread is no longer valid at this point!
1682 }
1683 
1684 
1685 void JavaThread::thread_main_inner() {
1686   assert(JavaThread::current() == this, "sanity check");
1687   assert(this->threadObj() != NULL, "just checking");
1688 
1689   // Execute thread entry point unless this thread has a pending exception
1690   // or has been stopped before starting.
1691   // Note: Due to JVM_StopThread we can have pending exceptions already!
1692   if (!this->has_pending_exception() &&
1693       !java_lang_Thread::is_stillborn(this->threadObj())) {
1694     {
1695       ResourceMark rm(this);
1696       this->set_native_thread_name(this->get_thread_name());
1697     }
1698     HandleMark hm(this);
1699     this->entry_point()(this, this);
1700   }
1701 
1702   DTRACE_THREAD_PROBE(stop, this);
1703 
1704   this->exit(false);
1705   delete this;
1706 }
1707 
1708 
1709 static void ensure_join(JavaThread* thread) {
1710   // We do not need to grap the Threads_lock, since we are operating on ourself.
1711   Handle threadObj(thread, thread->threadObj());
1712   assert(threadObj.not_null(), "java thread object must exist");
1713   ObjectLocker lock(threadObj, thread);
1714   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1715   thread->clear_pending_exception();
1716   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1717   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1718   // Clear the native thread instance - this makes isAlive return false and allows the join()
1719   // to complete once we've done the notify_all below
1720   java_lang_Thread::set_thread(threadObj(), NULL);
1721   lock.notify_all(thread);
1722   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1723   thread->clear_pending_exception();
1724 }
1725 
1726 
1727 // For any new cleanup additions, please check to see if they need to be applied to
1728 // cleanup_failed_attach_current_thread as well.
1729 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1730   assert(this == JavaThread::current(),  "thread consistency check");
1731 
1732   HandleMark hm(this);
1733   Handle uncaught_exception(this, this->pending_exception());
1734   this->clear_pending_exception();
1735   Handle threadObj(this, this->threadObj());
1736   assert(threadObj.not_null(), "Java thread object should be created");
1737 
1738   if (get_thread_profiler() != NULL) {
1739     get_thread_profiler()->disengage();
1740     ResourceMark rm;
1741     get_thread_profiler()->print(get_thread_name());
1742   }
1743 
1744 
1745   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1746   {
1747     EXCEPTION_MARK;
1748 
1749     CLEAR_PENDING_EXCEPTION;
1750   }
1751   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1752   // has to be fixed by a runtime query method
1753   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1754     // JSR-166: change call from from ThreadGroup.uncaughtException to
1755     // java.lang.Thread.dispatchUncaughtException
1756     if (uncaught_exception.not_null()) {
1757       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1758       {
1759         EXCEPTION_MARK;
1760         // Check if the method Thread.dispatchUncaughtException() exists. If so
1761         // call it.  Otherwise we have an older library without the JSR-166 changes,
1762         // so call ThreadGroup.uncaughtException()
1763         KlassHandle recvrKlass(THREAD, threadObj->klass());
1764         CallInfo callinfo;
1765         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1766         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1767                                            vmSymbols::dispatchUncaughtException_name(),
1768                                            vmSymbols::throwable_void_signature(),
1769                                            KlassHandle(), false, false, THREAD);
1770         CLEAR_PENDING_EXCEPTION;
1771         methodHandle method = callinfo.selected_method();
1772         if (method.not_null()) {
1773           JavaValue result(T_VOID);
1774           JavaCalls::call_virtual(&result,
1775                                   threadObj, thread_klass,
1776                                   vmSymbols::dispatchUncaughtException_name(),
1777                                   vmSymbols::throwable_void_signature(),
1778                                   uncaught_exception,
1779                                   THREAD);
1780         } else {
1781           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1782           JavaValue result(T_VOID);
1783           JavaCalls::call_virtual(&result,
1784                                   group, thread_group,
1785                                   vmSymbols::uncaughtException_name(),
1786                                   vmSymbols::thread_throwable_void_signature(),
1787                                   threadObj,           // Arg 1
1788                                   uncaught_exception,  // Arg 2
1789                                   THREAD);
1790         }
1791         if (HAS_PENDING_EXCEPTION) {
1792           ResourceMark rm(this);
1793           jio_fprintf(defaultStream::error_stream(),
1794                 "\nException: %s thrown from the UncaughtExceptionHandler"
1795                 " in thread \"%s\"\n",
1796                 pending_exception()->klass()->external_name(),
1797                 get_thread_name());
1798           CLEAR_PENDING_EXCEPTION;
1799         }
1800       }
1801     }
1802 
1803     // Called before the java thread exit since we want to read info
1804     // from java_lang_Thread object
1805     EventThreadEnd event;
1806     if (event.should_commit()) {
1807         event.set_thread(THREAD_TRACE_ID(this));
1808         event.commit();
1809     }
1810 
1811     // Call after last event on thread
1812     EVENT_THREAD_EXIT(this);
1813 
1814     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1815     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1816     // is deprecated anyhow.
1817     if (!is_Compiler_thread()) {
1818       int count = 3;
1819       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1820         EXCEPTION_MARK;
1821         JavaValue result(T_VOID);
1822         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1823         JavaCalls::call_virtual(&result,
1824                               threadObj, thread_klass,
1825                               vmSymbols::exit_method_name(),
1826                               vmSymbols::void_method_signature(),
1827                               THREAD);
1828         CLEAR_PENDING_EXCEPTION;
1829       }
1830     }
1831     // notify JVMTI
1832     if (JvmtiExport::should_post_thread_life()) {
1833       JvmtiExport::post_thread_end(this);
1834     }
1835 
1836     // We have notified the agents that we are exiting, before we go on,
1837     // we must check for a pending external suspend request and honor it
1838     // in order to not surprise the thread that made the suspend request.
1839     while (true) {
1840       {
1841         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1842         if (!is_external_suspend()) {
1843           set_terminated(_thread_exiting);
1844           ThreadService::current_thread_exiting(this);
1845           break;
1846         }
1847         // Implied else:
1848         // Things get a little tricky here. We have a pending external
1849         // suspend request, but we are holding the SR_lock so we
1850         // can't just self-suspend. So we temporarily drop the lock
1851         // and then self-suspend.
1852       }
1853 
1854       ThreadBlockInVM tbivm(this);
1855       java_suspend_self();
1856 
1857       // We're done with this suspend request, but we have to loop around
1858       // and check again. Eventually we will get SR_lock without a pending
1859       // external suspend request and will be able to mark ourselves as
1860       // exiting.
1861     }
1862     // no more external suspends are allowed at this point
1863   } else {
1864     // before_exit() has already posted JVMTI THREAD_END events
1865   }
1866 
1867   // Notify waiters on thread object. This has to be done after exit() is called
1868   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1869   // group should have the destroyed bit set before waiters are notified).
1870   ensure_join(this);
1871   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1872 
1873   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1874   // held by this thread must be released.  A detach operation must only
1875   // get here if there are no Java frames on the stack.  Therefore, any
1876   // owned monitors at this point MUST be JNI-acquired monitors which are
1877   // pre-inflated and in the monitor cache.
1878   //
1879   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1880   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1881     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1882     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1883     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1884   }
1885 
1886   // These things needs to be done while we are still a Java Thread. Make sure that thread
1887   // is in a consistent state, in case GC happens
1888   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1889 
1890   if (active_handles() != NULL) {
1891     JNIHandleBlock* block = active_handles();
1892     set_active_handles(NULL);
1893     JNIHandleBlock::release_block(block);
1894   }
1895 
1896   if (free_handle_block() != NULL) {
1897     JNIHandleBlock* block = free_handle_block();
1898     set_free_handle_block(NULL);
1899     JNIHandleBlock::release_block(block);
1900   }
1901 
1902   // These have to be removed while this is still a valid thread.
1903   remove_stack_guard_pages();
1904 
1905   if (UseTLAB) {
1906     tlab().make_parsable(true);  // retire TLAB
1907   }
1908 
1909   if (JvmtiEnv::environments_might_exist()) {
1910     JvmtiExport::cleanup_thread(this);
1911   }
1912 
1913   // We must flush any deferred card marks before removing a thread from
1914   // the list of active threads.
1915   Universe::heap()->flush_deferred_store_barrier(this);
1916   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1917 
1918 #if INCLUDE_ALL_GCS
1919   // We must flush the G1-related buffers before removing a thread
1920   // from the list of active threads. We must do this after any deferred
1921   // card marks have been flushed (above) so that any entries that are
1922   // added to the thread's dirty card queue as a result are not lost.
1923   if (UseG1GC) {
1924     flush_barrier_queues();
1925   }
1926 #endif // INCLUDE_ALL_GCS
1927 
1928   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1929   Threads::remove(this);
1930 }
1931 
1932 #if INCLUDE_ALL_GCS
1933 // Flush G1-related queues.
1934 void JavaThread::flush_barrier_queues() {
1935   satb_mark_queue().flush();
1936   dirty_card_queue().flush();
1937 }
1938 
1939 void JavaThread::initialize_queues() {
1940   assert(!SafepointSynchronize::is_at_safepoint(),
1941          "we should not be at a safepoint");
1942 
1943   ObjPtrQueue& satb_queue = satb_mark_queue();
1944   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1945   // The SATB queue should have been constructed with its active
1946   // field set to false.
1947   assert(!satb_queue.is_active(), "SATB queue should not be active");
1948   assert(satb_queue.is_empty(), "SATB queue should be empty");
1949   // If we are creating the thread during a marking cycle, we should
1950   // set the active field of the SATB queue to true.
1951   if (satb_queue_set.is_active()) {
1952     satb_queue.set_active(true);
1953   }
1954 
1955   DirtyCardQueue& dirty_queue = dirty_card_queue();
1956   // The dirty card queue should have been constructed with its
1957   // active field set to true.
1958   assert(dirty_queue.is_active(), "dirty card queue should be active");
1959 }
1960 #endif // INCLUDE_ALL_GCS
1961 
1962 void JavaThread::cleanup_failed_attach_current_thread() {
1963   if (get_thread_profiler() != NULL) {
1964     get_thread_profiler()->disengage();
1965     ResourceMark rm;
1966     get_thread_profiler()->print(get_thread_name());
1967   }
1968 
1969   if (active_handles() != NULL) {
1970     JNIHandleBlock* block = active_handles();
1971     set_active_handles(NULL);
1972     JNIHandleBlock::release_block(block);
1973   }
1974 
1975   if (free_handle_block() != NULL) {
1976     JNIHandleBlock* block = free_handle_block();
1977     set_free_handle_block(NULL);
1978     JNIHandleBlock::release_block(block);
1979   }
1980 
1981   // These have to be removed while this is still a valid thread.
1982   remove_stack_guard_pages();
1983 
1984   if (UseTLAB) {
1985     tlab().make_parsable(true);  // retire TLAB, if any
1986   }
1987 
1988 #if INCLUDE_ALL_GCS
1989   if (UseG1GC) {
1990     flush_barrier_queues();
1991   }
1992 #endif // INCLUDE_ALL_GCS
1993 
1994   Threads::remove(this);
1995   delete this;
1996 }
1997 
1998 
1999 
2000 
2001 JavaThread* JavaThread::active() {
2002   Thread* thread = ThreadLocalStorage::thread();
2003   assert(thread != NULL, "just checking");
2004   if (thread->is_Java_thread()) {
2005     return (JavaThread*) thread;
2006   } else {
2007     assert(thread->is_VM_thread(), "this must be a vm thread");
2008     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2009     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2010     assert(ret->is_Java_thread(), "must be a Java thread");
2011     return ret;
2012   }
2013 }
2014 
2015 bool JavaThread::is_lock_owned(address adr) const {
2016   if (Thread::is_lock_owned(adr)) return true;
2017 
2018   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2019     if (chunk->contains(adr)) return true;
2020   }
2021 
2022   return false;
2023 }
2024 
2025 
2026 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2027   chunk->set_next(monitor_chunks());
2028   set_monitor_chunks(chunk);
2029 }
2030 
2031 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2032   guarantee(monitor_chunks() != NULL, "must be non empty");
2033   if (monitor_chunks() == chunk) {
2034     set_monitor_chunks(chunk->next());
2035   } else {
2036     MonitorChunk* prev = monitor_chunks();
2037     while (prev->next() != chunk) prev = prev->next();
2038     prev->set_next(chunk->next());
2039   }
2040 }
2041 
2042 // JVM support.
2043 
2044 // Note: this function shouldn't block if it's called in
2045 // _thread_in_native_trans state (such as from
2046 // check_special_condition_for_native_trans()).
2047 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2048 
2049   if (has_last_Java_frame() && has_async_condition()) {
2050     // If we are at a polling page safepoint (not a poll return)
2051     // then we must defer async exception because live registers
2052     // will be clobbered by the exception path. Poll return is
2053     // ok because the call we a returning from already collides
2054     // with exception handling registers and so there is no issue.
2055     // (The exception handling path kills call result registers but
2056     //  this is ok since the exception kills the result anyway).
2057 
2058     if (is_at_poll_safepoint()) {
2059       // if the code we are returning to has deoptimized we must defer
2060       // the exception otherwise live registers get clobbered on the
2061       // exception path before deoptimization is able to retrieve them.
2062       //
2063       RegisterMap map(this, false);
2064       frame caller_fr = last_frame().sender(&map);
2065       assert(caller_fr.is_compiled_frame(), "what?");
2066       if (caller_fr.is_deoptimized_frame()) {
2067         if (TraceExceptions) {
2068           ResourceMark rm;
2069           tty->print_cr("deferred async exception at compiled safepoint");
2070         }
2071         return;
2072       }
2073     }
2074   }
2075 
2076   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2077   if (condition == _no_async_condition) {
2078     // Conditions have changed since has_special_runtime_exit_condition()
2079     // was called:
2080     // - if we were here only because of an external suspend request,
2081     //   then that was taken care of above (or cancelled) so we are done
2082     // - if we were here because of another async request, then it has
2083     //   been cleared between the has_special_runtime_exit_condition()
2084     //   and now so again we are done
2085     return;
2086   }
2087 
2088   // Check for pending async. exception
2089   if (_pending_async_exception != NULL) {
2090     // Only overwrite an already pending exception, if it is not a threadDeath.
2091     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2092 
2093       // We cannot call Exceptions::_throw(...) here because we cannot block
2094       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2095 
2096       if (TraceExceptions) {
2097         ResourceMark rm;
2098         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2099         if (has_last_Java_frame() ) {
2100           frame f = last_frame();
2101           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2102         }
2103         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2104       }
2105       _pending_async_exception = NULL;
2106       clear_has_async_exception();
2107     }
2108   }
2109 
2110   if (check_unsafe_error &&
2111       condition == _async_unsafe_access_error && !has_pending_exception()) {
2112     condition = _no_async_condition;  // done
2113     switch (thread_state()) {
2114     case _thread_in_vm:
2115       {
2116         JavaThread* THREAD = this;
2117         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2118       }
2119     case _thread_in_native:
2120       {
2121         ThreadInVMfromNative tiv(this);
2122         JavaThread* THREAD = this;
2123         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2124       }
2125     case _thread_in_Java:
2126       {
2127         ThreadInVMfromJava tiv(this);
2128         JavaThread* THREAD = this;
2129         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2130       }
2131     default:
2132       ShouldNotReachHere();
2133     }
2134   }
2135 
2136   assert(condition == _no_async_condition || has_pending_exception() ||
2137          (!check_unsafe_error && condition == _async_unsafe_access_error),
2138          "must have handled the async condition, if no exception");
2139 }
2140 
2141 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2142   //
2143   // Check for pending external suspend. Internal suspend requests do
2144   // not use handle_special_runtime_exit_condition().
2145   // If JNIEnv proxies are allowed, don't self-suspend if the target
2146   // thread is not the current thread. In older versions of jdbx, jdbx
2147   // threads could call into the VM with another thread's JNIEnv so we
2148   // can be here operating on behalf of a suspended thread (4432884).
2149   bool do_self_suspend = is_external_suspend_with_lock();
2150   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2151     //
2152     // Because thread is external suspended the safepoint code will count
2153     // thread as at a safepoint. This can be odd because we can be here
2154     // as _thread_in_Java which would normally transition to _thread_blocked
2155     // at a safepoint. We would like to mark the thread as _thread_blocked
2156     // before calling java_suspend_self like all other callers of it but
2157     // we must then observe proper safepoint protocol. (We can't leave
2158     // _thread_blocked with a safepoint in progress). However we can be
2159     // here as _thread_in_native_trans so we can't use a normal transition
2160     // constructor/destructor pair because they assert on that type of
2161     // transition. We could do something like:
2162     //
2163     // JavaThreadState state = thread_state();
2164     // set_thread_state(_thread_in_vm);
2165     // {
2166     //   ThreadBlockInVM tbivm(this);
2167     //   java_suspend_self()
2168     // }
2169     // set_thread_state(_thread_in_vm_trans);
2170     // if (safepoint) block;
2171     // set_thread_state(state);
2172     //
2173     // but that is pretty messy. Instead we just go with the way the
2174     // code has worked before and note that this is the only path to
2175     // java_suspend_self that doesn't put the thread in _thread_blocked
2176     // mode.
2177 
2178     frame_anchor()->make_walkable(this);
2179     java_suspend_self();
2180 
2181     // We might be here for reasons in addition to the self-suspend request
2182     // so check for other async requests.
2183   }
2184 
2185   if (check_asyncs) {
2186     check_and_handle_async_exceptions();
2187   }
2188 #if INCLUDE_TRACE
2189   if (is_trace_suspend()) {
2190     TRACE_SUSPEND_THREAD(this);
2191   }
2192 #endif
2193 }
2194 
2195 void JavaThread::send_thread_stop(oop java_throwable)  {
2196   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2197   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2198   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2199 
2200   // Do not throw asynchronous exceptions against the compiler thread
2201   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2202   if (is_Compiler_thread()) return;
2203 
2204   {
2205     // Actually throw the Throwable against the target Thread - however
2206     // only if there is no thread death exception installed already.
2207     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2208       // If the topmost frame is a runtime stub, then we are calling into
2209       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2210       // must deoptimize the caller before continuing, as the compiled  exception handler table
2211       // may not be valid
2212       if (has_last_Java_frame()) {
2213         frame f = last_frame();
2214         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2215           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2216           RegisterMap reg_map(this, UseBiasedLocking);
2217           frame compiled_frame = f.sender(&reg_map);
2218           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2219             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2220           }
2221         }
2222       }
2223 
2224       // Set async. pending exception in thread.
2225       set_pending_async_exception(java_throwable);
2226 
2227       if (TraceExceptions) {
2228        ResourceMark rm;
2229        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2230       }
2231       // for AbortVMOnException flag
2232       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2233     }
2234   }
2235 
2236 
2237   // Interrupt thread so it will wake up from a potential wait()
2238   Thread::interrupt(this);
2239 }
2240 
2241 // External suspension mechanism.
2242 //
2243 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2244 // to any VM_locks and it is at a transition
2245 // Self-suspension will happen on the transition out of the vm.
2246 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2247 //
2248 // Guarantees on return:
2249 //   + Target thread will not execute any new bytecode (that's why we need to
2250 //     force a safepoint)
2251 //   + Target thread will not enter any new monitors
2252 //
2253 void JavaThread::java_suspend() {
2254   { MutexLocker mu(Threads_lock);
2255     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2256        return;
2257     }
2258   }
2259 
2260   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2261     if (!is_external_suspend()) {
2262       // a racing resume has cancelled us; bail out now
2263       return;
2264     }
2265 
2266     // suspend is done
2267     uint32_t debug_bits = 0;
2268     // Warning: is_ext_suspend_completed() may temporarily drop the
2269     // SR_lock to allow the thread to reach a stable thread state if
2270     // it is currently in a transient thread state.
2271     if (is_ext_suspend_completed(false /* !called_by_wait */,
2272                                  SuspendRetryDelay, &debug_bits) ) {
2273       return;
2274     }
2275   }
2276 
2277   VM_ForceSafepoint vm_suspend;
2278   VMThread::execute(&vm_suspend);
2279 }
2280 
2281 // Part II of external suspension.
2282 // A JavaThread self suspends when it detects a pending external suspend
2283 // request. This is usually on transitions. It is also done in places
2284 // where continuing to the next transition would surprise the caller,
2285 // e.g., monitor entry.
2286 //
2287 // Returns the number of times that the thread self-suspended.
2288 //
2289 // Note: DO NOT call java_suspend_self() when you just want to block current
2290 //       thread. java_suspend_self() is the second stage of cooperative
2291 //       suspension for external suspend requests and should only be used
2292 //       to complete an external suspend request.
2293 //
2294 int JavaThread::java_suspend_self() {
2295   int ret = 0;
2296 
2297   // we are in the process of exiting so don't suspend
2298   if (is_exiting()) {
2299      clear_external_suspend();
2300      return ret;
2301   }
2302 
2303   assert(_anchor.walkable() ||
2304     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2305     "must have walkable stack");
2306 
2307   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2308 
2309   assert(!this->is_ext_suspended(),
2310     "a thread trying to self-suspend should not already be suspended");
2311 
2312   if (this->is_suspend_equivalent()) {
2313     // If we are self-suspending as a result of the lifting of a
2314     // suspend equivalent condition, then the suspend_equivalent
2315     // flag is not cleared until we set the ext_suspended flag so
2316     // that wait_for_ext_suspend_completion() returns consistent
2317     // results.
2318     this->clear_suspend_equivalent();
2319   }
2320 
2321   // A racing resume may have cancelled us before we grabbed SR_lock
2322   // above. Or another external suspend request could be waiting for us
2323   // by the time we return from SR_lock()->wait(). The thread
2324   // that requested the suspension may already be trying to walk our
2325   // stack and if we return now, we can change the stack out from under
2326   // it. This would be a "bad thing (TM)" and cause the stack walker
2327   // to crash. We stay self-suspended until there are no more pending
2328   // external suspend requests.
2329   while (is_external_suspend()) {
2330     ret++;
2331     this->set_ext_suspended();
2332 
2333     // _ext_suspended flag is cleared by java_resume()
2334     while (is_ext_suspended()) {
2335       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2336     }
2337   }
2338 
2339   return ret;
2340 }
2341 
2342 #ifdef ASSERT
2343 // verify the JavaThread has not yet been published in the Threads::list, and
2344 // hence doesn't need protection from concurrent access at this stage
2345 void JavaThread::verify_not_published() {
2346   if (!Threads_lock->owned_by_self()) {
2347    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2348    assert( !Threads::includes(this),
2349            "java thread shouldn't have been published yet!");
2350   }
2351   else {
2352    assert( !Threads::includes(this),
2353            "java thread shouldn't have been published yet!");
2354   }
2355 }
2356 #endif
2357 
2358 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2359 // progress or when _suspend_flags is non-zero.
2360 // Current thread needs to self-suspend if there is a suspend request and/or
2361 // block if a safepoint is in progress.
2362 // Async exception ISN'T checked.
2363 // Note only the ThreadInVMfromNative transition can call this function
2364 // directly and when thread state is _thread_in_native_trans
2365 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2366   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2367 
2368   JavaThread *curJT = JavaThread::current();
2369   bool do_self_suspend = thread->is_external_suspend();
2370 
2371   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2372 
2373   // If JNIEnv proxies are allowed, don't self-suspend if the target
2374   // thread is not the current thread. In older versions of jdbx, jdbx
2375   // threads could call into the VM with another thread's JNIEnv so we
2376   // can be here operating on behalf of a suspended thread (4432884).
2377   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2378     JavaThreadState state = thread->thread_state();
2379 
2380     // We mark this thread_blocked state as a suspend-equivalent so
2381     // that a caller to is_ext_suspend_completed() won't be confused.
2382     // The suspend-equivalent state is cleared by java_suspend_self().
2383     thread->set_suspend_equivalent();
2384 
2385     // If the safepoint code sees the _thread_in_native_trans state, it will
2386     // wait until the thread changes to other thread state. There is no
2387     // guarantee on how soon we can obtain the SR_lock and complete the
2388     // self-suspend request. It would be a bad idea to let safepoint wait for
2389     // too long. Temporarily change the state to _thread_blocked to
2390     // let the VM thread know that this thread is ready for GC. The problem
2391     // of changing thread state is that safepoint could happen just after
2392     // java_suspend_self() returns after being resumed, and VM thread will
2393     // see the _thread_blocked state. We must check for safepoint
2394     // after restoring the state and make sure we won't leave while a safepoint
2395     // is in progress.
2396     thread->set_thread_state(_thread_blocked);
2397     thread->java_suspend_self();
2398     thread->set_thread_state(state);
2399     // Make sure new state is seen by VM thread
2400     if (os::is_MP()) {
2401       if (UseMembar) {
2402         // Force a fence between the write above and read below
2403         OrderAccess::fence();
2404       } else {
2405         // Must use this rather than serialization page in particular on Windows
2406         InterfaceSupport::serialize_memory(thread);
2407       }
2408     }
2409   }
2410 
2411   if (SafepointSynchronize::do_call_back()) {
2412     // If we are safepointing, then block the caller which may not be
2413     // the same as the target thread (see above).
2414     SafepointSynchronize::block(curJT);
2415   }
2416 
2417   if (thread->is_deopt_suspend()) {
2418     thread->clear_deopt_suspend();
2419     RegisterMap map(thread, false);
2420     frame f = thread->last_frame();
2421     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2422       f = f.sender(&map);
2423     }
2424     if (f.id() == thread->must_deopt_id()) {
2425       thread->clear_must_deopt_id();
2426       f.deoptimize(thread);
2427     } else {
2428       fatal("missed deoptimization!");
2429     }
2430   }
2431 #if INCLUDE_TRACE
2432   if (thread->is_trace_suspend()) {
2433     TRACE_SUSPEND_THREAD(thread);
2434   }
2435 #endif
2436 }
2437 
2438 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2439 // progress or when _suspend_flags is non-zero.
2440 // Current thread needs to self-suspend if there is a suspend request and/or
2441 // block if a safepoint is in progress.
2442 // Also check for pending async exception (not including unsafe access error).
2443 // Note only the native==>VM/Java barriers can call this function and when
2444 // thread state is _thread_in_native_trans.
2445 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2446   check_safepoint_and_suspend_for_native_trans(thread);
2447 
2448   if (thread->has_async_exception()) {
2449     // We are in _thread_in_native_trans state, don't handle unsafe
2450     // access error since that may block.
2451     thread->check_and_handle_async_exceptions(false);
2452   }
2453 }
2454 
2455 // This is a variant of the normal
2456 // check_special_condition_for_native_trans with slightly different
2457 // semantics for use by critical native wrappers.  It does all the
2458 // normal checks but also performs the transition back into
2459 // thread_in_Java state.  This is required so that critical natives
2460 // can potentially block and perform a GC if they are the last thread
2461 // exiting the GC_locker.
2462 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2463   check_special_condition_for_native_trans(thread);
2464 
2465   // Finish the transition
2466   thread->set_thread_state(_thread_in_Java);
2467 
2468   if (thread->do_critical_native_unlock()) {
2469     ThreadInVMfromJavaNoAsyncException tiv(thread);
2470     GC_locker::unlock_critical(thread);
2471     thread->clear_critical_native_unlock();
2472   }
2473 }
2474 
2475 // We need to guarantee the Threads_lock here, since resumes are not
2476 // allowed during safepoint synchronization
2477 // Can only resume from an external suspension
2478 void JavaThread::java_resume() {
2479   assert_locked_or_safepoint(Threads_lock);
2480 
2481   // Sanity check: thread is gone, has started exiting or the thread
2482   // was not externally suspended.
2483   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2484     return;
2485   }
2486 
2487   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2488 
2489   clear_external_suspend();
2490 
2491   if (is_ext_suspended()) {
2492     clear_ext_suspended();
2493     SR_lock()->notify_all();
2494   }
2495 }
2496 
2497 void JavaThread::create_stack_guard_pages() {
2498   if (!os::uses_stack_guard_pages() ||
2499       _stack_guard_state != stack_guard_unused ||
2500       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2501       if (TraceThreadEvents) {
2502         tty->print_cr("Stack guard page creation for thread "
2503                       UINTX_FORMAT " disabled", os::current_thread_id());
2504       }
2505     return;
2506   }
2507   address low_addr = stack_base() - stack_size();
2508   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2509 
2510   int allocate = os::allocate_stack_guard_pages();
2511   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2512 
2513   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2514     warning("Attempt to allocate stack guard pages failed.");
2515     return;
2516   }
2517 
2518   if (os::guard_memory((char *) low_addr, len)) {
2519     _stack_guard_state = stack_guard_enabled;
2520   } else {
2521     warning("Attempt to protect stack guard pages failed.");
2522     if (os::uncommit_memory((char *) low_addr, len)) {
2523       warning("Attempt to deallocate stack guard pages failed.");
2524     }
2525   }
2526 }
2527 
2528 void JavaThread::remove_stack_guard_pages() {
2529   assert(Thread::current() == this, "from different thread");
2530   if (_stack_guard_state == stack_guard_unused) return;
2531   address low_addr = stack_base() - stack_size();
2532   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2533 
2534   if (os::allocate_stack_guard_pages()) {
2535     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2536       _stack_guard_state = stack_guard_unused;
2537     } else {
2538       warning("Attempt to deallocate stack guard pages failed.");
2539     }
2540   } else {
2541     if (_stack_guard_state == stack_guard_unused) return;
2542     if (os::unguard_memory((char *) low_addr, len)) {
2543       _stack_guard_state = stack_guard_unused;
2544     } else {
2545         warning("Attempt to unprotect stack guard pages failed.");
2546     }
2547   }
2548 }
2549 
2550 void JavaThread::enable_stack_yellow_zone() {
2551   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2552   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2553 
2554   // The base notation is from the stacks point of view, growing downward.
2555   // We need to adjust it to work correctly with guard_memory()
2556   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2557 
2558   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2559   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2560 
2561   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2562     _stack_guard_state = stack_guard_enabled;
2563   } else {
2564     warning("Attempt to guard stack yellow zone failed.");
2565   }
2566   enable_register_stack_guard();
2567 }
2568 
2569 void JavaThread::disable_stack_yellow_zone() {
2570   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2571   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2572 
2573   // Simply return if called for a thread that does not use guard pages.
2574   if (_stack_guard_state == stack_guard_unused) return;
2575 
2576   // The base notation is from the stacks point of view, growing downward.
2577   // We need to adjust it to work correctly with guard_memory()
2578   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2579 
2580   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2581     _stack_guard_state = stack_guard_yellow_disabled;
2582   } else {
2583     warning("Attempt to unguard stack yellow zone failed.");
2584   }
2585   disable_register_stack_guard();
2586 }
2587 
2588 void JavaThread::enable_stack_red_zone() {
2589   // The base notation is from the stacks point of view, growing downward.
2590   // We need to adjust it to work correctly with guard_memory()
2591   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2592   address base = stack_red_zone_base() - stack_red_zone_size();
2593 
2594   guarantee(base < stack_base(),"Error calculating stack red zone");
2595   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2596 
2597   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2598     warning("Attempt to guard stack red zone failed.");
2599   }
2600 }
2601 
2602 void JavaThread::disable_stack_red_zone() {
2603   // The base notation is from the stacks point of view, growing downward.
2604   // We need to adjust it to work correctly with guard_memory()
2605   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2606   address base = stack_red_zone_base() - stack_red_zone_size();
2607   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2608     warning("Attempt to unguard stack red zone failed.");
2609   }
2610 }
2611 
2612 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2613   // ignore is there is no stack
2614   if (!has_last_Java_frame()) return;
2615   // traverse the stack frames. Starts from top frame.
2616   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2617     frame* fr = fst.current();
2618     f(fr, fst.register_map());
2619   }
2620 }
2621 
2622 
2623 #ifndef PRODUCT
2624 // Deoptimization
2625 // Function for testing deoptimization
2626 void JavaThread::deoptimize() {
2627   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2628   StackFrameStream fst(this, UseBiasedLocking);
2629   bool deopt = false;           // Dump stack only if a deopt actually happens.
2630   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2631   // Iterate over all frames in the thread and deoptimize
2632   for(; !fst.is_done(); fst.next()) {
2633     if(fst.current()->can_be_deoptimized()) {
2634 
2635       if (only_at) {
2636         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2637         // consists of comma or carriage return separated numbers so
2638         // search for the current bci in that string.
2639         address pc = fst.current()->pc();
2640         nmethod* nm =  (nmethod*) fst.current()->cb();
2641         ScopeDesc* sd = nm->scope_desc_at( pc);
2642         char buffer[8];
2643         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2644         size_t len = strlen(buffer);
2645         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2646         while (found != NULL) {
2647           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2648               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2649             // Check that the bci found is bracketed by terminators.
2650             break;
2651           }
2652           found = strstr(found + 1, buffer);
2653         }
2654         if (!found) {
2655           continue;
2656         }
2657       }
2658 
2659       if (DebugDeoptimization && !deopt) {
2660         deopt = true; // One-time only print before deopt
2661         tty->print_cr("[BEFORE Deoptimization]");
2662         trace_frames();
2663         trace_stack();
2664       }
2665       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2666     }
2667   }
2668 
2669   if (DebugDeoptimization && deopt) {
2670     tty->print_cr("[AFTER Deoptimization]");
2671     trace_frames();
2672   }
2673 }
2674 
2675 
2676 // Make zombies
2677 void JavaThread::make_zombies() {
2678   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2679     if (fst.current()->can_be_deoptimized()) {
2680       // it is a Java nmethod
2681       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2682       nm->make_not_entrant();
2683     }
2684   }
2685 }
2686 #endif // PRODUCT
2687 
2688 
2689 void JavaThread::deoptimized_wrt_marked_nmethods() {
2690   if (!has_last_Java_frame()) return;
2691   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2692   StackFrameStream fst(this, UseBiasedLocking);
2693   for(; !fst.is_done(); fst.next()) {
2694     if (fst.current()->should_be_deoptimized()) {
2695       if (LogCompilation && xtty != NULL) {
2696         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2697         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2698                    this->name(), nm != NULL ? nm->compile_id() : -1);
2699       }
2700 
2701       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2702     }
2703   }
2704 }
2705 
2706 
2707 // GC support
2708 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2709 
2710 void JavaThread::gc_epilogue() {
2711   frames_do(frame_gc_epilogue);
2712 }
2713 
2714 
2715 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2716 
2717 void JavaThread::gc_prologue() {
2718   frames_do(frame_gc_prologue);
2719 }
2720 
2721 // If the caller is a NamedThread, then remember, in the current scope,
2722 // the given JavaThread in its _processed_thread field.
2723 class RememberProcessedThread: public StackObj {
2724   NamedThread* _cur_thr;
2725 public:
2726   RememberProcessedThread(JavaThread* jthr) {
2727     Thread* thread = Thread::current();
2728     if (thread->is_Named_thread()) {
2729       _cur_thr = (NamedThread *)thread;
2730       _cur_thr->set_processed_thread(jthr);
2731     } else {
2732       _cur_thr = NULL;
2733     }
2734   }
2735 
2736   ~RememberProcessedThread() {
2737     if (_cur_thr) {
2738       _cur_thr->set_processed_thread(NULL);
2739     }
2740   }
2741 };
2742 
2743 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2744   // Verify that the deferred card marks have been flushed.
2745   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2746 
2747   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2748   // since there may be more than one thread using each ThreadProfiler.
2749 
2750   // Traverse the GCHandles
2751   Thread::oops_do(f, cld_f, cf);
2752 
2753   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2754           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2755 
2756   if (has_last_Java_frame()) {
2757     // Record JavaThread to GC thread
2758     RememberProcessedThread rpt(this);
2759 
2760     // Traverse the privileged stack
2761     if (_privileged_stack_top != NULL) {
2762       _privileged_stack_top->oops_do(f);
2763     }
2764 
2765     // traverse the registered growable array
2766     if (_array_for_gc != NULL) {
2767       for (int index = 0; index < _array_for_gc->length(); index++) {
2768         f->do_oop(_array_for_gc->adr_at(index));
2769       }
2770     }
2771 
2772     // Traverse the monitor chunks
2773     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2774       chunk->oops_do(f);
2775     }
2776 
2777     // Traverse the execution stack
2778     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2779       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2780     }
2781   }
2782 
2783   // callee_target is never live across a gc point so NULL it here should
2784   // it still contain a methdOop.
2785 
2786   set_callee_target(NULL);
2787 
2788   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2789   // If we have deferred set_locals there might be oops waiting to be
2790   // written
2791   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2792   if (list != NULL) {
2793     for (int i = 0; i < list->length(); i++) {
2794       list->at(i)->oops_do(f);
2795     }
2796   }
2797 
2798   // Traverse instance variables at the end since the GC may be moving things
2799   // around using this function
2800   f->do_oop((oop*) &_threadObj);
2801   f->do_oop((oop*) &_vm_result);
2802   f->do_oop((oop*) &_exception_oop);
2803   f->do_oop((oop*) &_pending_async_exception);
2804 
2805   if (jvmti_thread_state() != NULL) {
2806     jvmti_thread_state()->oops_do(f);
2807   }
2808 }
2809 
2810 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2811   Thread::nmethods_do(cf);  // (super method is a no-op)
2812 
2813   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2814           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2815 
2816   if (has_last_Java_frame()) {
2817     // Traverse the execution stack
2818     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2819       fst.current()->nmethods_do(cf);
2820     }
2821   }
2822 }
2823 
2824 void JavaThread::metadata_do(void f(Metadata*)) {
2825   Thread::metadata_do(f);
2826   if (has_last_Java_frame()) {
2827     // Traverse the execution stack to call f() on the methods in the stack
2828     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2829       fst.current()->metadata_do(f);
2830     }
2831   } else if (is_Compiler_thread()) {
2832     // need to walk ciMetadata in current compile tasks to keep alive.
2833     CompilerThread* ct = (CompilerThread*)this;
2834     if (ct->env() != NULL) {
2835       ct->env()->metadata_do(f);
2836     }
2837   }
2838 }
2839 
2840 // Printing
2841 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2842   switch (_thread_state) {
2843   case _thread_uninitialized:     return "_thread_uninitialized";
2844   case _thread_new:               return "_thread_new";
2845   case _thread_new_trans:         return "_thread_new_trans";
2846   case _thread_in_native:         return "_thread_in_native";
2847   case _thread_in_native_trans:   return "_thread_in_native_trans";
2848   case _thread_in_vm:             return "_thread_in_vm";
2849   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2850   case _thread_in_Java:           return "_thread_in_Java";
2851   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2852   case _thread_blocked:           return "_thread_blocked";
2853   case _thread_blocked_trans:     return "_thread_blocked_trans";
2854   default:                        return "unknown thread state";
2855   }
2856 }
2857 
2858 #ifndef PRODUCT
2859 void JavaThread::print_thread_state_on(outputStream *st) const {
2860   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2861 };
2862 void JavaThread::print_thread_state() const {
2863   print_thread_state_on(tty);
2864 };
2865 #endif // PRODUCT
2866 
2867 // Called by Threads::print() for VM_PrintThreads operation
2868 void JavaThread::print_on(outputStream *st) const {
2869   st->print("\"%s\" ", get_thread_name());
2870   oop thread_oop = threadObj();
2871   if (thread_oop != NULL) {
2872     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2873     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2874     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2875   }
2876   Thread::print_on(st);
2877   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2878   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2879   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2880     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2881   }
2882 #ifndef PRODUCT
2883   print_thread_state_on(st);
2884   _safepoint_state->print_on(st);
2885 #endif // PRODUCT
2886 }
2887 
2888 // Called by fatal error handler. The difference between this and
2889 // JavaThread::print() is that we can't grab lock or allocate memory.
2890 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2891   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2892   oop thread_obj = threadObj();
2893   if (thread_obj != NULL) {
2894      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2895   }
2896   st->print(" [");
2897   st->print("%s", _get_thread_state_name(_thread_state));
2898   if (osthread()) {
2899     st->print(", id=%d", osthread()->thread_id());
2900   }
2901   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2902             _stack_base - _stack_size, _stack_base);
2903   st->print("]");
2904   return;
2905 }
2906 
2907 // Verification
2908 
2909 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2910 
2911 void JavaThread::verify() {
2912   // Verify oops in the thread.
2913   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2914 
2915   // Verify the stack frames.
2916   frames_do(frame_verify);
2917 }
2918 
2919 // CR 6300358 (sub-CR 2137150)
2920 // Most callers of this method assume that it can't return NULL but a
2921 // thread may not have a name whilst it is in the process of attaching to
2922 // the VM - see CR 6412693, and there are places where a JavaThread can be
2923 // seen prior to having it's threadObj set (eg JNI attaching threads and
2924 // if vm exit occurs during initialization). These cases can all be accounted
2925 // for such that this method never returns NULL.
2926 const char* JavaThread::get_thread_name() const {
2927 #ifdef ASSERT
2928   // early safepoints can hit while current thread does not yet have TLS
2929   if (!SafepointSynchronize::is_at_safepoint()) {
2930     Thread *cur = Thread::current();
2931     if (!(cur->is_Java_thread() && cur == this)) {
2932       // Current JavaThreads are allowed to get their own name without
2933       // the Threads_lock.
2934       assert_locked_or_safepoint(Threads_lock);
2935     }
2936   }
2937 #endif // ASSERT
2938     return get_thread_name_string();
2939 }
2940 
2941 // Returns a non-NULL representation of this thread's name, or a suitable
2942 // descriptive string if there is no set name
2943 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2944   const char* name_str;
2945   oop thread_obj = threadObj();
2946   if (thread_obj != NULL) {
2947     oop name = java_lang_Thread::name(thread_obj);
2948     if (name != NULL) {
2949       if (buf == NULL) {
2950         name_str = java_lang_String::as_utf8_string(name);
2951       }
2952       else {
2953         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2954       }
2955     }
2956     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2957       name_str = "<no-name - thread is attaching>";
2958     }
2959     else {
2960       name_str = Thread::name();
2961     }
2962   }
2963   else {
2964     name_str = Thread::name();
2965   }
2966   assert(name_str != NULL, "unexpected NULL thread name");
2967   return name_str;
2968 }
2969 
2970 
2971 const char* JavaThread::get_threadgroup_name() const {
2972   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2973   oop thread_obj = threadObj();
2974   if (thread_obj != NULL) {
2975     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2976     if (thread_group != NULL) {
2977       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2978       // ThreadGroup.name can be null
2979       if (name != NULL) {
2980         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2981         return str;
2982       }
2983     }
2984   }
2985   return NULL;
2986 }
2987 
2988 const char* JavaThread::get_parent_name() const {
2989   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2990   oop thread_obj = threadObj();
2991   if (thread_obj != NULL) {
2992     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2993     if (thread_group != NULL) {
2994       oop parent = java_lang_ThreadGroup::parent(thread_group);
2995       if (parent != NULL) {
2996         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2997         // ThreadGroup.name can be null
2998         if (name != NULL) {
2999           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
3000           return str;
3001         }
3002       }
3003     }
3004   }
3005   return NULL;
3006 }
3007 
3008 ThreadPriority JavaThread::java_priority() const {
3009   oop thr_oop = threadObj();
3010   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3011   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3012   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3013   return priority;
3014 }
3015 
3016 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3017 
3018   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3019   // Link Java Thread object <-> C++ Thread
3020 
3021   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3022   // and put it into a new Handle.  The Handle "thread_oop" can then
3023   // be used to pass the C++ thread object to other methods.
3024 
3025   // Set the Java level thread object (jthread) field of the
3026   // new thread (a JavaThread *) to C++ thread object using the
3027   // "thread_oop" handle.
3028 
3029   // Set the thread field (a JavaThread *) of the
3030   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3031 
3032   Handle thread_oop(Thread::current(),
3033                     JNIHandles::resolve_non_null(jni_thread));
3034   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3035     "must be initialized");
3036   set_threadObj(thread_oop());
3037   java_lang_Thread::set_thread(thread_oop(), this);
3038 
3039   if (prio == NoPriority) {
3040     prio = java_lang_Thread::priority(thread_oop());
3041     assert(prio != NoPriority, "A valid priority should be present");
3042   }
3043 
3044   // Push the Java priority down to the native thread; needs Threads_lock
3045   Thread::set_priority(this, prio);
3046 
3047   prepare_ext();
3048 
3049   // Add the new thread to the Threads list and set it in motion.
3050   // We must have threads lock in order to call Threads::add.
3051   // It is crucial that we do not block before the thread is
3052   // added to the Threads list for if a GC happens, then the java_thread oop
3053   // will not be visited by GC.
3054   Threads::add(this);
3055 }
3056 
3057 oop JavaThread::current_park_blocker() {
3058   // Support for JSR-166 locks
3059   oop thread_oop = threadObj();
3060   if (thread_oop != NULL &&
3061       JDK_Version::current().supports_thread_park_blocker()) {
3062     return java_lang_Thread::park_blocker(thread_oop);
3063   }
3064   return NULL;
3065 }
3066 
3067 
3068 void JavaThread::print_stack_on(outputStream* st) {
3069   if (!has_last_Java_frame()) return;
3070   ResourceMark rm;
3071   HandleMark   hm;
3072 
3073   RegisterMap reg_map(this);
3074   vframe* start_vf = last_java_vframe(&reg_map);
3075   int count = 0;
3076   for (vframe* f = start_vf; f; f = f->sender() ) {
3077     if (f->is_java_frame()) {
3078       javaVFrame* jvf = javaVFrame::cast(f);
3079       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3080 
3081       // Print out lock information
3082       if (JavaMonitorsInStackTrace) {
3083         jvf->print_lock_info_on(st, count);
3084       }
3085     } else {
3086       // Ignore non-Java frames
3087     }
3088 
3089     // Bail-out case for too deep stacks
3090     count++;
3091     if (MaxJavaStackTraceDepth == count) return;
3092   }
3093 }
3094 
3095 
3096 // JVMTI PopFrame support
3097 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3098   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3099   if (in_bytes(size_in_bytes) != 0) {
3100     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3101     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3102     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3103   }
3104 }
3105 
3106 void* JavaThread::popframe_preserved_args() {
3107   return _popframe_preserved_args;
3108 }
3109 
3110 ByteSize JavaThread::popframe_preserved_args_size() {
3111   return in_ByteSize(_popframe_preserved_args_size);
3112 }
3113 
3114 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3115   int sz = in_bytes(popframe_preserved_args_size());
3116   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3117   return in_WordSize(sz / wordSize);
3118 }
3119 
3120 void JavaThread::popframe_free_preserved_args() {
3121   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3122   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3123   _popframe_preserved_args = NULL;
3124   _popframe_preserved_args_size = 0;
3125 }
3126 
3127 #ifndef PRODUCT
3128 
3129 void JavaThread::trace_frames() {
3130   tty->print_cr("[Describe stack]");
3131   int frame_no = 1;
3132   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3133     tty->print("  %d. ", frame_no++);
3134     fst.current()->print_value_on(tty,this);
3135     tty->cr();
3136   }
3137 }
3138 
3139 class PrintAndVerifyOopClosure: public OopClosure {
3140  protected:
3141   template <class T> inline void do_oop_work(T* p) {
3142     oop obj = oopDesc::load_decode_heap_oop(p);
3143     if (obj == NULL) return;
3144     tty->print(INTPTR_FORMAT ": ", p);
3145     if (obj->is_oop_or_null()) {
3146       if (obj->is_objArray()) {
3147         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3148       } else {
3149         obj->print();
3150       }
3151     } else {
3152       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3153     }
3154     tty->cr();
3155   }
3156  public:
3157   virtual void do_oop(oop* p) { do_oop_work(p); }
3158   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3159 };
3160 
3161 
3162 static void oops_print(frame* f, const RegisterMap *map) {
3163   PrintAndVerifyOopClosure print;
3164   f->print_value();
3165   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3166 }
3167 
3168 // Print our all the locations that contain oops and whether they are
3169 // valid or not.  This useful when trying to find the oldest frame
3170 // where an oop has gone bad since the frame walk is from youngest to
3171 // oldest.
3172 void JavaThread::trace_oops() {
3173   tty->print_cr("[Trace oops]");
3174   frames_do(oops_print);
3175 }
3176 
3177 
3178 #ifdef ASSERT
3179 // Print or validate the layout of stack frames
3180 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3181   ResourceMark rm;
3182   PRESERVE_EXCEPTION_MARK;
3183   FrameValues values;
3184   int frame_no = 0;
3185   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3186     fst.current()->describe(values, ++frame_no);
3187     if (depth == frame_no) break;
3188   }
3189   if (validate_only) {
3190     values.validate();
3191   } else {
3192     tty->print_cr("[Describe stack layout]");
3193     values.print(this);
3194   }
3195 }
3196 #endif
3197 
3198 void JavaThread::trace_stack_from(vframe* start_vf) {
3199   ResourceMark rm;
3200   int vframe_no = 1;
3201   for (vframe* f = start_vf; f; f = f->sender() ) {
3202     if (f->is_java_frame()) {
3203       javaVFrame::cast(f)->print_activation(vframe_no++);
3204     } else {
3205       f->print();
3206     }
3207     if (vframe_no > StackPrintLimit) {
3208       tty->print_cr("...<more frames>...");
3209       return;
3210     }
3211   }
3212 }
3213 
3214 
3215 void JavaThread::trace_stack() {
3216   if (!has_last_Java_frame()) return;
3217   ResourceMark rm;
3218   HandleMark   hm;
3219   RegisterMap reg_map(this);
3220   trace_stack_from(last_java_vframe(&reg_map));
3221 }
3222 
3223 
3224 #endif // PRODUCT
3225 
3226 
3227 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3228   assert(reg_map != NULL, "a map must be given");
3229   frame f = last_frame();
3230   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3231     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3232   }
3233   return NULL;
3234 }
3235 
3236 
3237 Klass* JavaThread::security_get_caller_class(int depth) {
3238   vframeStream vfst(this);
3239   vfst.security_get_caller_frame(depth);
3240   if (!vfst.at_end()) {
3241     return vfst.method()->method_holder();
3242   }
3243   return NULL;
3244 }
3245 
3246 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3247   assert(thread->is_Compiler_thread(), "must be compiler thread");
3248   CompileBroker::compiler_thread_loop();
3249 }
3250 
3251 // Create a CompilerThread
3252 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3253 : JavaThread(&compiler_thread_entry) {
3254   _env   = NULL;
3255   _log   = NULL;
3256   _task  = NULL;
3257   _queue = queue;
3258   _counters = counters;
3259   _buffer_blob = NULL;
3260   _scanned_nmethod = NULL;
3261   _compiler = NULL;
3262 
3263   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3264   resource_area()->bias_to(mtCompiler);
3265 
3266 #ifndef PRODUCT
3267   _ideal_graph_printer = NULL;
3268 #endif
3269 }
3270 
3271 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3272   JavaThread::oops_do(f, cld_f, cf);
3273   if (_scanned_nmethod != NULL && cf != NULL) {
3274     // Safepoints can occur when the sweeper is scanning an nmethod so
3275     // process it here to make sure it isn't unloaded in the middle of
3276     // a scan.
3277     cf->do_code_blob(_scanned_nmethod);
3278   }
3279 }
3280 
3281 
3282 // ======= Threads ========
3283 
3284 // The Threads class links together all active threads, and provides
3285 // operations over all threads.  It is protected by its own Mutex
3286 // lock, which is also used in other contexts to protect thread
3287 // operations from having the thread being operated on from exiting
3288 // and going away unexpectedly (e.g., safepoint synchronization)
3289 
3290 JavaThread* Threads::_thread_list = NULL;
3291 int         Threads::_number_of_threads = 0;
3292 int         Threads::_number_of_non_daemon_threads = 0;
3293 int         Threads::_return_code = 0;
3294 size_t      JavaThread::_stack_size_at_create = 0;
3295 #ifdef ASSERT
3296 bool        Threads::_vm_complete = false;
3297 #endif
3298 
3299 // All JavaThreads
3300 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3301 
3302 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3303 void Threads::threads_do(ThreadClosure* tc) {
3304   assert_locked_or_safepoint(Threads_lock);
3305   // ALL_JAVA_THREADS iterates through all JavaThreads
3306   ALL_JAVA_THREADS(p) {
3307     tc->do_thread(p);
3308   }
3309   // Someday we could have a table or list of all non-JavaThreads.
3310   // For now, just manually iterate through them.
3311   tc->do_thread(VMThread::vm_thread());
3312   Universe::heap()->gc_threads_do(tc);
3313   WatcherThread *wt = WatcherThread::watcher_thread();
3314   // Strictly speaking, the following NULL check isn't sufficient to make sure
3315   // the data for WatcherThread is still valid upon being examined. However,
3316   // considering that WatchThread terminates when the VM is on the way to
3317   // exit at safepoint, the chance of the above is extremely small. The right
3318   // way to prevent termination of WatcherThread would be to acquire
3319   // Terminator_lock, but we can't do that without violating the lock rank
3320   // checking in some cases.
3321   if (wt != NULL)
3322     tc->do_thread(wt);
3323 
3324   // If CompilerThreads ever become non-JavaThreads, add them here
3325 }
3326 
3327 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3328 
3329   extern void JDK_Version_init();
3330 
3331   // Preinitialize version info.
3332   VM_Version::early_initialize();
3333 
3334   // Check version
3335   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3336 
3337   // Initialize the output stream module
3338   ostream_init();
3339 
3340   // Process java launcher properties.
3341   Arguments::process_sun_java_launcher_properties(args);
3342 
3343   // Initialize the os module before using TLS
3344   os::init();
3345 
3346   // Initialize system properties.
3347   Arguments::init_system_properties();
3348 
3349   // So that JDK version can be used as a discrimintor when parsing arguments
3350   JDK_Version_init();
3351 
3352   // Update/Initialize System properties after JDK version number is known
3353   Arguments::init_version_specific_system_properties();
3354 
3355   // Parse arguments
3356   // Note: this internally calls os::init_container_support()
3357   jint parse_result = Arguments::parse(args);
3358   if (parse_result != JNI_OK) return parse_result;
3359 
3360   os::init_before_ergo();
3361 
3362   jint ergo_result = Arguments::apply_ergo();
3363   if (ergo_result != JNI_OK) return ergo_result;
3364 
3365   if (PauseAtStartup) {
3366     os::pause();
3367   }
3368 
3369 #ifndef USDT2
3370   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3371 #else /* USDT2 */
3372   HOTSPOT_VM_INIT_BEGIN();
3373 #endif /* USDT2 */
3374 
3375   // Record VM creation timing statistics
3376   TraceVmCreationTime create_vm_timer;
3377   create_vm_timer.start();
3378 
3379   // Timing (must come after argument parsing)
3380   TraceTime timer("Create VM", TraceStartupTime);
3381 
3382   // Initialize the os module after parsing the args
3383   jint os_init_2_result = os::init_2();
3384   if (os_init_2_result != JNI_OK) return os_init_2_result;
3385 
3386   jint adjust_after_os_result = Arguments::adjust_after_os();
3387   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3388 
3389   // intialize TLS
3390   ThreadLocalStorage::init();
3391 
3392   // Initialize output stream logging
3393   ostream_init_log();
3394 
3395   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3396   // Must be before create_vm_init_agents()
3397   if (Arguments::init_libraries_at_startup()) {
3398     convert_vm_init_libraries_to_agents();
3399   }
3400 
3401   // Launch -agentlib/-agentpath and converted -Xrun agents
3402   if (Arguments::init_agents_at_startup()) {
3403     create_vm_init_agents();
3404   }
3405 
3406   // Initialize Threads state
3407   _thread_list = NULL;
3408   _number_of_threads = 0;
3409   _number_of_non_daemon_threads = 0;
3410 
3411   // Initialize global data structures and create system classes in heap
3412   vm_init_globals();
3413 
3414   // Attach the main thread to this os thread
3415   JavaThread* main_thread = new JavaThread();
3416   main_thread->set_thread_state(_thread_in_vm);
3417   // must do this before set_active_handles and initialize_thread_local_storage
3418   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3419   // change the stack size recorded here to one based on the java thread
3420   // stacksize. This adjusted size is what is used to figure the placement
3421   // of the guard pages.
3422   main_thread->record_stack_base_and_size();
3423   main_thread->initialize_thread_local_storage();
3424 
3425   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3426 
3427   if (!main_thread->set_as_starting_thread()) {
3428     vm_shutdown_during_initialization(
3429       "Failed necessary internal allocation. Out of swap space");
3430     delete main_thread;
3431     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3432     return JNI_ENOMEM;
3433   }
3434 
3435   // Enable guard page *after* os::create_main_thread(), otherwise it would
3436   // crash Linux VM, see notes in os_linux.cpp.
3437   main_thread->create_stack_guard_pages();
3438 
3439   // Initialize Java-Level synchronization subsystem
3440   ObjectMonitor::Initialize() ;
3441 
3442   // Initialize global modules
3443   jint status = init_globals();
3444   if (status != JNI_OK) {
3445     delete main_thread;
3446     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3447     return status;
3448   }
3449 
3450   // Should be done after the heap is fully created
3451   main_thread->cache_global_variables();
3452 
3453   HandleMark hm;
3454 
3455   { MutexLocker mu(Threads_lock);
3456     Threads::add(main_thread);
3457   }
3458 
3459   // Any JVMTI raw monitors entered in onload will transition into
3460   // real raw monitor. VM is setup enough here for raw monitor enter.
3461   JvmtiExport::transition_pending_onload_raw_monitors();
3462 
3463   // Create the VMThread
3464   { TraceTime timer("Start VMThread", TraceStartupTime);
3465     VMThread::create();
3466     Thread* vmthread = VMThread::vm_thread();
3467 
3468     if (!os::create_thread(vmthread, os::vm_thread))
3469       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3470 
3471     // Wait for the VM thread to become ready, and VMThread::run to initialize
3472     // Monitors can have spurious returns, must always check another state flag
3473     {
3474       MutexLocker ml(Notify_lock);
3475       os::start_thread(vmthread);
3476       while (vmthread->active_handles() == NULL) {
3477         Notify_lock->wait();
3478       }
3479     }
3480   }
3481 
3482   assert (Universe::is_fully_initialized(), "not initialized");
3483   if (VerifyDuringStartup) {
3484     // Make sure we're starting with a clean slate.
3485     VM_Verify verify_op;
3486     VMThread::execute(&verify_op);
3487   }
3488 
3489   EXCEPTION_MARK;
3490 
3491   // At this point, the Universe is initialized, but we have not executed
3492   // any byte code.  Now is a good time (the only time) to dump out the
3493   // internal state of the JVM for sharing.
3494   if (DumpSharedSpaces) {
3495     MetaspaceShared::preload_and_dump(CHECK_0);
3496     ShouldNotReachHere();
3497   }
3498 
3499   // Always call even when there are not JVMTI environments yet, since environments
3500   // may be attached late and JVMTI must track phases of VM execution
3501   JvmtiExport::enter_start_phase();
3502 
3503   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3504   JvmtiExport::post_vm_start();
3505 
3506   {
3507     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3508 
3509     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3510       create_vm_init_libraries();
3511     }
3512 
3513     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3514 
3515     // Initialize java_lang.System (needed before creating the thread)
3516     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3517     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3518     Handle thread_group = create_initial_thread_group(CHECK_0);
3519     Universe::set_main_thread_group(thread_group());
3520     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3521     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3522     main_thread->set_threadObj(thread_object);
3523     // Set thread status to running since main thread has
3524     // been started and running.
3525     java_lang_Thread::set_thread_status(thread_object,
3526                                         java_lang_Thread::RUNNABLE);
3527 
3528     // The VM creates & returns objects of this class. Make sure it's initialized.
3529     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3530 
3531     // The VM preresolves methods to these classes. Make sure that they get initialized
3532     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3533     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3534     call_initializeSystemClass(CHECK_0);
3535 
3536     // get the Java runtime name after java.lang.System is initialized
3537     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3538     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3539 
3540     // an instance of OutOfMemory exception has been allocated earlier
3541     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3542     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3543     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3544     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3545     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3546     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3547     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3548     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3549   }
3550 
3551   // See        : bugid 4211085.
3552   // Background : the static initializer of java.lang.Compiler tries to read
3553   //              property"java.compiler" and read & write property "java.vm.info".
3554   //              When a security manager is installed through the command line
3555   //              option "-Djava.security.manager", the above properties are not
3556   //              readable and the static initializer for java.lang.Compiler fails
3557   //              resulting in a NoClassDefFoundError.  This can happen in any
3558   //              user code which calls methods in java.lang.Compiler.
3559   // Hack :       the hack is to pre-load and initialize this class, so that only
3560   //              system domains are on the stack when the properties are read.
3561   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3562   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3563   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3564   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3565   //              Once that is done, we should remove this hack.
3566   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3567 
3568   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3569   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3570   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3571   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3572   // This should also be taken out as soon as 4211383 gets fixed.
3573   reset_vm_info_property(CHECK_0);
3574 
3575   quicken_jni_functions();
3576 
3577   // Must be run after init_ft which initializes ft_enabled
3578   if (TRACE_INITIALIZE() != JNI_OK) {
3579     vm_exit_during_initialization("Failed to initialize tracing backend");
3580   }
3581 
3582   // Set flag that basic initialization has completed. Used by exceptions and various
3583   // debug stuff, that does not work until all basic classes have been initialized.
3584   set_init_completed();
3585 
3586   Metaspace::post_initialize();
3587 
3588 #ifndef USDT2
3589   HS_DTRACE_PROBE(hotspot, vm__init__end);
3590 #else /* USDT2 */
3591   HOTSPOT_VM_INIT_END();
3592 #endif /* USDT2 */
3593 
3594   // record VM initialization completion time
3595 #if INCLUDE_MANAGEMENT
3596   Management::record_vm_init_completed();
3597 #endif // INCLUDE_MANAGEMENT
3598 
3599   // Compute system loader. Note that this has to occur after set_init_completed, since
3600   // valid exceptions may be thrown in the process.
3601   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3602   // set_init_completed has just been called, causing exceptions not to be shortcut
3603   // anymore. We call vm_exit_during_initialization directly instead.
3604   SystemDictionary::compute_java_system_loader(THREAD);
3605   if (HAS_PENDING_EXCEPTION) {
3606     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3607   }
3608 
3609 #if INCLUDE_ALL_GCS
3610   // Support for ConcurrentMarkSweep. This should be cleaned up
3611   // and better encapsulated. The ugly nested if test would go away
3612   // once things are properly refactored. XXX YSR
3613   if (UseConcMarkSweepGC || UseG1GC) {
3614     if (UseConcMarkSweepGC) {
3615       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3616     } else {
3617       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3618     }
3619     if (HAS_PENDING_EXCEPTION) {
3620       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3621     }
3622   }
3623 #endif // INCLUDE_ALL_GCS
3624 
3625   // Always call even when there are not JVMTI environments yet, since environments
3626   // may be attached late and JVMTI must track phases of VM execution
3627   JvmtiExport::enter_live_phase();
3628 
3629   // Signal Dispatcher needs to be started before VMInit event is posted
3630   os::signal_init();
3631 
3632   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3633   if (!DisableAttachMechanism) {
3634     AttachListener::vm_start();
3635     if (StartAttachListener || AttachListener::init_at_startup()) {
3636       AttachListener::init();
3637     }
3638   }
3639 
3640   // Launch -Xrun agents
3641   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3642   // back-end can launch with -Xdebug -Xrunjdwp.
3643   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3644     create_vm_init_libraries();
3645   }
3646 
3647   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3648   JvmtiExport::post_vm_initialized();
3649 
3650   if (TRACE_START() != JNI_OK) {
3651     vm_exit_during_initialization("Failed to start tracing backend.");
3652   }
3653 
3654   if (CleanChunkPoolAsync) {
3655     Chunk::start_chunk_pool_cleaner_task();
3656   }
3657 
3658   // initialize compiler(s)
3659 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3660   CompileBroker::compilation_init();
3661 #endif
3662 
3663   if (EnableInvokeDynamic) {
3664     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3665     // It is done after compilers are initialized, because otherwise compilations of
3666     // signature polymorphic MH intrinsics can be missed
3667     // (see SystemDictionary::find_method_handle_intrinsic).
3668     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3669     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3670     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3671   }
3672 
3673 #if INCLUDE_MANAGEMENT
3674   Management::initialize(THREAD);
3675 #endif // INCLUDE_MANAGEMENT
3676 
3677   if (HAS_PENDING_EXCEPTION) {
3678     // management agent fails to start possibly due to
3679     // configuration problem and is responsible for printing
3680     // stack trace if appropriate. Simply exit VM.
3681     vm_exit(1);
3682   }
3683 
3684   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3685   if (MemProfiling)                   MemProfiler::engage();
3686   StatSampler::engage();
3687   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3688 
3689   BiasedLocking::init();
3690 
3691 #if INCLUDE_RTM_OPT
3692   RTMLockingCounters::init();
3693 #endif
3694 
3695   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3696     call_postVMInitHook(THREAD);
3697     // The Java side of PostVMInitHook.run must deal with all
3698     // exceptions and provide means of diagnosis.
3699     if (HAS_PENDING_EXCEPTION) {
3700       CLEAR_PENDING_EXCEPTION;
3701     }
3702   }
3703 
3704   {
3705       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3706       // Make sure the watcher thread can be started by WatcherThread::start()
3707       // or by dynamic enrollment.
3708       WatcherThread::make_startable();
3709       // Start up the WatcherThread if there are any periodic tasks
3710       // NOTE:  All PeriodicTasks should be registered by now. If they
3711       //   aren't, late joiners might appear to start slowly (we might
3712       //   take a while to process their first tick).
3713       if (PeriodicTask::num_tasks() > 0) {
3714           WatcherThread::start();
3715       }
3716   }
3717 
3718   create_vm_timer.end();
3719 #ifdef ASSERT
3720   _vm_complete = true;
3721 #endif
3722   return JNI_OK;
3723 }
3724 
3725 // type for the Agent_OnLoad and JVM_OnLoad entry points
3726 extern "C" {
3727   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3728 }
3729 // Find a command line agent library and return its entry point for
3730 //         -agentlib:  -agentpath:   -Xrun
3731 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3732 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3733   OnLoadEntry_t on_load_entry = NULL;
3734   void *library = NULL;
3735 
3736   if (!agent->valid()) {
3737     char buffer[JVM_MAXPATHLEN];
3738     char ebuf[1024];
3739     const char *name = agent->name();
3740     const char *msg = "Could not find agent library ";
3741 
3742     // First check to see if agent is statically linked into executable
3743     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3744       library = agent->os_lib();
3745     } else if (agent->is_absolute_path()) {
3746       library = os::dll_load(name, ebuf, sizeof ebuf);
3747       if (library == NULL) {
3748         const char *sub_msg = " in absolute path, with error: ";
3749         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3750         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3751         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3752         // If we can't find the agent, exit.
3753         vm_exit_during_initialization(buf, NULL);
3754         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3755       }
3756     } else {
3757       // Try to load the agent from the standard dll directory
3758       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3759                              name)) {
3760         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3761       }
3762       if (library == NULL) { // Try the local directory
3763         char ns[1] = {0};
3764         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3765           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3766         }
3767         if (library == NULL) {
3768           const char *sub_msg = " on the library path, with error: ";
3769           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3770           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3771           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3772           // If we can't find the agent, exit.
3773           vm_exit_during_initialization(buf, NULL);
3774           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3775         }
3776       }
3777     }
3778     agent->set_os_lib(library);
3779     agent->set_valid();
3780   }
3781 
3782   // Find the OnLoad function.
3783   on_load_entry =
3784     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3785                                                           false,
3786                                                           on_load_symbols,
3787                                                           num_symbol_entries));
3788   return on_load_entry;
3789 }
3790 
3791 // Find the JVM_OnLoad entry point
3792 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3793   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3794   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3795 }
3796 
3797 // Find the Agent_OnLoad entry point
3798 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3799   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3800   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3801 }
3802 
3803 // For backwards compatibility with -Xrun
3804 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3805 // treated like -agentpath:
3806 // Must be called before agent libraries are created
3807 void Threads::convert_vm_init_libraries_to_agents() {
3808   AgentLibrary* agent;
3809   AgentLibrary* next;
3810 
3811   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3812     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3813     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3814 
3815     // If there is an JVM_OnLoad function it will get called later,
3816     // otherwise see if there is an Agent_OnLoad
3817     if (on_load_entry == NULL) {
3818       on_load_entry = lookup_agent_on_load(agent);
3819       if (on_load_entry != NULL) {
3820         // switch it to the agent list -- so that Agent_OnLoad will be called,
3821         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3822         Arguments::convert_library_to_agent(agent);
3823       } else {
3824         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3825       }
3826     }
3827   }
3828 }
3829 
3830 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3831 // Invokes Agent_OnLoad
3832 // Called very early -- before JavaThreads exist
3833 void Threads::create_vm_init_agents() {
3834   extern struct JavaVM_ main_vm;
3835   AgentLibrary* agent;
3836 
3837   JvmtiExport::enter_onload_phase();
3838 
3839   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3840     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3841 
3842     if (on_load_entry != NULL) {
3843       // Invoke the Agent_OnLoad function
3844       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3845       if (err != JNI_OK) {
3846         vm_exit_during_initialization("agent library failed to init", agent->name());
3847       }
3848     } else {
3849       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3850     }
3851   }
3852   JvmtiExport::enter_primordial_phase();
3853 }
3854 
3855 extern "C" {
3856   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3857 }
3858 
3859 void Threads::shutdown_vm_agents() {
3860   // Send any Agent_OnUnload notifications
3861   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3862   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3863   extern struct JavaVM_ main_vm;
3864   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3865 
3866     // Find the Agent_OnUnload function.
3867     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3868       os::find_agent_function(agent,
3869       false,
3870       on_unload_symbols,
3871       num_symbol_entries));
3872 
3873     // Invoke the Agent_OnUnload function
3874     if (unload_entry != NULL) {
3875       JavaThread* thread = JavaThread::current();
3876       ThreadToNativeFromVM ttn(thread);
3877       HandleMark hm(thread);
3878       (*unload_entry)(&main_vm);
3879     }
3880   }
3881 }
3882 
3883 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3884 // Invokes JVM_OnLoad
3885 void Threads::create_vm_init_libraries() {
3886   extern struct JavaVM_ main_vm;
3887   AgentLibrary* agent;
3888 
3889   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3890     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3891 
3892     if (on_load_entry != NULL) {
3893       // Invoke the JVM_OnLoad function
3894       JavaThread* thread = JavaThread::current();
3895       ThreadToNativeFromVM ttn(thread);
3896       HandleMark hm(thread);
3897       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3898       if (err != JNI_OK) {
3899         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3900       }
3901     } else {
3902       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3903     }
3904   }
3905 }
3906 
3907 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3908   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3909 
3910   JavaThread* java_thread = NULL;
3911   // Sequential search for now.  Need to do better optimization later.
3912   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3913     oop tobj = thread->threadObj();
3914     if (!thread->is_exiting() &&
3915         tobj != NULL &&
3916         java_tid == java_lang_Thread::thread_id(tobj)) {
3917       java_thread = thread;
3918       break;
3919     }
3920   }
3921   return java_thread;
3922 }
3923 
3924 
3925 // Last thread running calls java.lang.Shutdown.shutdown()
3926 void JavaThread::invoke_shutdown_hooks() {
3927   HandleMark hm(this);
3928 
3929   // We could get here with a pending exception, if so clear it now.
3930   if (this->has_pending_exception()) {
3931     this->clear_pending_exception();
3932   }
3933 
3934   EXCEPTION_MARK;
3935   Klass* k =
3936     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3937                                       THREAD);
3938   if (k != NULL) {
3939     // SystemDictionary::resolve_or_null will return null if there was
3940     // an exception.  If we cannot load the Shutdown class, just don't
3941     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3942     // and finalizers (if runFinalizersOnExit is set) won't be run.
3943     // Note that if a shutdown hook was registered or runFinalizersOnExit
3944     // was called, the Shutdown class would have already been loaded
3945     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3946     instanceKlassHandle shutdown_klass (THREAD, k);
3947     JavaValue result(T_VOID);
3948     JavaCalls::call_static(&result,
3949                            shutdown_klass,
3950                            vmSymbols::shutdown_method_name(),
3951                            vmSymbols::void_method_signature(),
3952                            THREAD);
3953   }
3954   CLEAR_PENDING_EXCEPTION;
3955 }
3956 
3957 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3958 // the program falls off the end of main(). Another VM exit path is through
3959 // vm_exit() when the program calls System.exit() to return a value or when
3960 // there is a serious error in VM. The two shutdown paths are not exactly
3961 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3962 // and VM_Exit op at VM level.
3963 //
3964 // Shutdown sequence:
3965 //   + Shutdown native memory tracking if it is on
3966 //   + Wait until we are the last non-daemon thread to execute
3967 //     <-- every thing is still working at this moment -->
3968 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3969 //        shutdown hooks, run finalizers if finalization-on-exit
3970 //   + Call before_exit(), prepare for VM exit
3971 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3972 //        currently the only user of this mechanism is File.deleteOnExit())
3973 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3974 //        post thread end and vm death events to JVMTI,
3975 //        stop signal thread
3976 //   + Call JavaThread::exit(), it will:
3977 //      > release JNI handle blocks, remove stack guard pages
3978 //      > remove this thread from Threads list
3979 //     <-- no more Java code from this thread after this point -->
3980 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3981 //     the compiler threads at safepoint
3982 //     <-- do not use anything that could get blocked by Safepoint -->
3983 //   + Disable tracing at JNI/JVM barriers
3984 //   + Set _vm_exited flag for threads that are still running native code
3985 //   + Delete this thread
3986 //   + Call exit_globals()
3987 //      > deletes tty
3988 //      > deletes PerfMemory resources
3989 //   + Return to caller
3990 
3991 bool Threads::destroy_vm() {
3992   JavaThread* thread = JavaThread::current();
3993 
3994 #ifdef ASSERT
3995   _vm_complete = false;
3996 #endif
3997   // Wait until we are the last non-daemon thread to execute
3998   { MutexLocker nu(Threads_lock);
3999     while (Threads::number_of_non_daemon_threads() > 1 )
4000       // This wait should make safepoint checks, wait without a timeout,
4001       // and wait as a suspend-equivalent condition.
4002       //
4003       // Note: If the FlatProfiler is running and this thread is waiting
4004       // for another non-daemon thread to finish, then the FlatProfiler
4005       // is waiting for the external suspend request on this thread to
4006       // complete. wait_for_ext_suspend_completion() will eventually
4007       // timeout, but that takes time. Making this wait a suspend-
4008       // equivalent condition solves that timeout problem.
4009       //
4010       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4011                          Mutex::_as_suspend_equivalent_flag);
4012   }
4013 
4014   // Hang forever on exit if we are reporting an error.
4015   if (ShowMessageBoxOnError && is_error_reported()) {
4016     os::infinite_sleep();
4017   }
4018   os::wait_for_keypress_at_exit();
4019 
4020   if (JDK_Version::is_jdk12x_version()) {
4021     // We are the last thread running, so check if finalizers should be run.
4022     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4023     HandleMark rm(thread);
4024     Universe::run_finalizers_on_exit();
4025   } else {
4026     // run Java level shutdown hooks
4027     thread->invoke_shutdown_hooks();
4028   }
4029 
4030   before_exit(thread);
4031 
4032   thread->exit(true);
4033 
4034   // Stop VM thread.
4035   {
4036     // 4945125 The vm thread comes to a safepoint during exit.
4037     // GC vm_operations can get caught at the safepoint, and the
4038     // heap is unparseable if they are caught. Grab the Heap_lock
4039     // to prevent this. The GC vm_operations will not be able to
4040     // queue until after the vm thread is dead. After this point,
4041     // we'll never emerge out of the safepoint before the VM exits.
4042 
4043     MutexLocker ml(Heap_lock);
4044 
4045     VMThread::wait_for_vm_thread_exit();
4046     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4047     VMThread::destroy();
4048   }
4049 
4050   // clean up ideal graph printers
4051 #if defined(COMPILER2) && !defined(PRODUCT)
4052   IdealGraphPrinter::clean_up();
4053 #endif
4054 
4055   // Now, all Java threads are gone except daemon threads. Daemon threads
4056   // running Java code or in VM are stopped by the Safepoint. However,
4057   // daemon threads executing native code are still running.  But they
4058   // will be stopped at native=>Java/VM barriers. Note that we can't
4059   // simply kill or suspend them, as it is inherently deadlock-prone.
4060 
4061 #ifndef PRODUCT
4062   // disable function tracing at JNI/JVM barriers
4063   TraceJNICalls = false;
4064   TraceJVMCalls = false;
4065   TraceRuntimeCalls = false;
4066 #endif
4067 
4068   VM_Exit::set_vm_exited();
4069 
4070   notify_vm_shutdown();
4071 
4072   delete thread;
4073 
4074   // exit_globals() will delete tty
4075   exit_globals();
4076 
4077   return true;
4078 }
4079 
4080 
4081 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4082   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4083   return is_supported_jni_version(version);
4084 }
4085 
4086 
4087 jboolean Threads::is_supported_jni_version(jint version) {
4088   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4089   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4090   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4091   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4092   return JNI_FALSE;
4093 }
4094 
4095 
4096 void Threads::add(JavaThread* p, bool force_daemon) {
4097   // The threads lock must be owned at this point
4098   assert_locked_or_safepoint(Threads_lock);
4099 
4100   // See the comment for this method in thread.hpp for its purpose and
4101   // why it is called here.
4102   p->initialize_queues();
4103   p->set_next(_thread_list);
4104   _thread_list = p;
4105   _number_of_threads++;
4106   oop threadObj = p->threadObj();
4107   bool daemon = true;
4108   // Bootstrapping problem: threadObj can be null for initial
4109   // JavaThread (or for threads attached via JNI)
4110   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4111     _number_of_non_daemon_threads++;
4112     daemon = false;
4113   }
4114 
4115   ThreadService::add_thread(p, daemon);
4116 
4117   // Possible GC point.
4118   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4119 }
4120 
4121 void Threads::remove(JavaThread* p) {
4122   // Extra scope needed for Thread_lock, so we can check
4123   // that we do not remove thread without safepoint code notice
4124   { MutexLocker ml(Threads_lock);
4125 
4126     assert(includes(p), "p must be present");
4127 
4128     JavaThread* current = _thread_list;
4129     JavaThread* prev    = NULL;
4130 
4131     while (current != p) {
4132       prev    = current;
4133       current = current->next();
4134     }
4135 
4136     if (prev) {
4137       prev->set_next(current->next());
4138     } else {
4139       _thread_list = p->next();
4140     }
4141     _number_of_threads--;
4142     oop threadObj = p->threadObj();
4143     bool daemon = true;
4144     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4145       _number_of_non_daemon_threads--;
4146       daemon = false;
4147 
4148       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4149       // on destroy_vm will wake up.
4150       if (number_of_non_daemon_threads() == 1)
4151         Threads_lock->notify_all();
4152     }
4153     ThreadService::remove_thread(p, daemon);
4154 
4155     // Make sure that safepoint code disregard this thread. This is needed since
4156     // the thread might mess around with locks after this point. This can cause it
4157     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4158     // of this thread since it is removed from the queue.
4159     p->set_terminated_value();
4160   } // unlock Threads_lock
4161 
4162   // Since Events::log uses a lock, we grab it outside the Threads_lock
4163   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4164 }
4165 
4166 // Threads_lock must be held when this is called (or must be called during a safepoint)
4167 bool Threads::includes(JavaThread* p) {
4168   assert(Threads_lock->is_locked(), "sanity check");
4169   ALL_JAVA_THREADS(q) {
4170     if (q == p ) {
4171       return true;
4172     }
4173   }
4174   return false;
4175 }
4176 
4177 // Operations on the Threads list for GC.  These are not explicitly locked,
4178 // but the garbage collector must provide a safe context for them to run.
4179 // In particular, these things should never be called when the Threads_lock
4180 // is held by some other thread. (Note: the Safepoint abstraction also
4181 // uses the Threads_lock to gurantee this property. It also makes sure that
4182 // all threads gets blocked when exiting or starting).
4183 
4184 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4185   ALL_JAVA_THREADS(p) {
4186     p->oops_do(f, cld_f, cf);
4187   }
4188   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4189 }
4190 
4191 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4192   // Introduce a mechanism allowing parallel threads to claim threads as
4193   // root groups.  Overhead should be small enough to use all the time,
4194   // even in sequential code.
4195   SharedHeap* sh = SharedHeap::heap();
4196   // Cannot yet substitute active_workers for n_par_threads
4197   // because of G1CollectedHeap::verify() use of
4198   // SharedHeap::process_roots().  n_par_threads == 0 will
4199   // turn off parallelism in process_roots while active_workers
4200   // is being used for parallelism elsewhere.
4201   bool is_par = sh->n_par_threads() > 0;
4202   assert(!is_par ||
4203          (SharedHeap::heap()->n_par_threads() ==
4204           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4205   int cp = SharedHeap::heap()->strong_roots_parity();
4206   ALL_JAVA_THREADS(p) {
4207     if (p->claim_oops_do(is_par, cp)) {
4208       p->oops_do(f, cld_f, cf);
4209     }
4210   }
4211   VMThread* vmt = VMThread::vm_thread();
4212   if (vmt->claim_oops_do(is_par, cp)) {
4213     vmt->oops_do(f, cld_f, cf);
4214   }
4215 }
4216 
4217 #if INCLUDE_ALL_GCS
4218 // Used by ParallelScavenge
4219 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4220   ALL_JAVA_THREADS(p) {
4221     q->enqueue(new ThreadRootsTask(p));
4222   }
4223   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4224 }
4225 
4226 // Used by Parallel Old
4227 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4228   ALL_JAVA_THREADS(p) {
4229     q->enqueue(new ThreadRootsMarkingTask(p));
4230   }
4231   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4232 }
4233 #endif // INCLUDE_ALL_GCS
4234 
4235 void Threads::nmethods_do(CodeBlobClosure* cf) {
4236   ALL_JAVA_THREADS(p) {
4237     p->nmethods_do(cf);
4238   }
4239   VMThread::vm_thread()->nmethods_do(cf);
4240 }
4241 
4242 void Threads::metadata_do(void f(Metadata*)) {
4243   ALL_JAVA_THREADS(p) {
4244     p->metadata_do(f);
4245   }
4246 }
4247 
4248 void Threads::gc_epilogue() {
4249   ALL_JAVA_THREADS(p) {
4250     p->gc_epilogue();
4251   }
4252 }
4253 
4254 void Threads::gc_prologue() {
4255   ALL_JAVA_THREADS(p) {
4256     p->gc_prologue();
4257   }
4258 }
4259 
4260 void Threads::deoptimized_wrt_marked_nmethods() {
4261   ALL_JAVA_THREADS(p) {
4262     p->deoptimized_wrt_marked_nmethods();
4263   }
4264 }
4265 
4266 
4267 // Get count Java threads that are waiting to enter the specified monitor.
4268 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4269   address monitor, bool doLock) {
4270   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4271     "must grab Threads_lock or be at safepoint");
4272   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4273 
4274   int i = 0;
4275   {
4276     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4277     ALL_JAVA_THREADS(p) {
4278       if (p->is_Compiler_thread()) continue;
4279 
4280       address pending = (address)p->current_pending_monitor();
4281       if (pending == monitor) {             // found a match
4282         if (i < count) result->append(p);   // save the first count matches
4283         i++;
4284       }
4285     }
4286   }
4287   return result;
4288 }
4289 
4290 
4291 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4292   assert(doLock ||
4293          Threads_lock->owned_by_self() ||
4294          SafepointSynchronize::is_at_safepoint(),
4295          "must grab Threads_lock or be at safepoint");
4296 
4297   // NULL owner means not locked so we can skip the search
4298   if (owner == NULL) return NULL;
4299 
4300   {
4301     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4302     ALL_JAVA_THREADS(p) {
4303       // first, see if owner is the address of a Java thread
4304       if (owner == (address)p) return p;
4305     }
4306   }
4307   // Cannot assert on lack of success here since this function may be
4308   // used by code that is trying to report useful problem information
4309   // like deadlock detection.
4310   if (UseHeavyMonitors) return NULL;
4311 
4312   //
4313   // If we didn't find a matching Java thread and we didn't force use of
4314   // heavyweight monitors, then the owner is the stack address of the
4315   // Lock Word in the owning Java thread's stack.
4316   //
4317   JavaThread* the_owner = NULL;
4318   {
4319     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4320     ALL_JAVA_THREADS(q) {
4321       if (q->is_lock_owned(owner)) {
4322         the_owner = q;
4323         break;
4324       }
4325     }
4326   }
4327   // cannot assert on lack of success here; see above comment
4328   return the_owner;
4329 }
4330 
4331 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4332 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4333   char buf[32];
4334   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4335 
4336   st->print_cr("Full thread dump %s (%s %s):",
4337                 Abstract_VM_Version::vm_name(),
4338                 Abstract_VM_Version::vm_release(),
4339                 Abstract_VM_Version::vm_info_string()
4340                );
4341   st->cr();
4342 
4343 #if INCLUDE_ALL_GCS
4344   // Dump concurrent locks
4345   ConcurrentLocksDump concurrent_locks;
4346   if (print_concurrent_locks) {
4347     concurrent_locks.dump_at_safepoint();
4348   }
4349 #endif // INCLUDE_ALL_GCS
4350 
4351   ALL_JAVA_THREADS(p) {
4352     ResourceMark rm;
4353     p->print_on(st);
4354     if (print_stacks) {
4355       if (internal_format) {
4356         p->trace_stack();
4357       } else {
4358         p->print_stack_on(st);
4359       }
4360     }
4361     st->cr();
4362 #if INCLUDE_ALL_GCS
4363     if (print_concurrent_locks) {
4364       concurrent_locks.print_locks_on(p, st);
4365     }
4366 #endif // INCLUDE_ALL_GCS
4367   }
4368 
4369   VMThread::vm_thread()->print_on(st);
4370   st->cr();
4371   Universe::heap()->print_gc_threads_on(st);
4372   WatcherThread* wt = WatcherThread::watcher_thread();
4373   if (wt != NULL) {
4374     wt->print_on(st);
4375     st->cr();
4376   }
4377   CompileBroker::print_compiler_threads_on(st);
4378   st->flush();
4379 }
4380 
4381 // Threads::print_on_error() is called by fatal error handler. It's possible
4382 // that VM is not at safepoint and/or current thread is inside signal handler.
4383 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4384 // memory (even in resource area), it might deadlock the error handler.
4385 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4386   bool found_current = false;
4387   st->print_cr("Java Threads: ( => current thread )");
4388   ALL_JAVA_THREADS(thread) {
4389     bool is_current = (current == thread);
4390     found_current = found_current || is_current;
4391 
4392     st->print("%s", is_current ? "=>" : "  ");
4393 
4394     st->print(PTR_FORMAT, thread);
4395     st->print(" ");
4396     thread->print_on_error(st, buf, buflen);
4397     st->cr();
4398   }
4399   st->cr();
4400 
4401   st->print_cr("Other Threads:");
4402   if (VMThread::vm_thread()) {
4403     bool is_current = (current == VMThread::vm_thread());
4404     found_current = found_current || is_current;
4405     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4406 
4407     st->print(PTR_FORMAT, VMThread::vm_thread());
4408     st->print(" ");
4409     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4410     st->cr();
4411   }
4412   WatcherThread* wt = WatcherThread::watcher_thread();
4413   if (wt != NULL) {
4414     bool is_current = (current == wt);
4415     found_current = found_current || is_current;
4416     st->print("%s", is_current ? "=>" : "  ");
4417 
4418     st->print(PTR_FORMAT, wt);
4419     st->print(" ");
4420     wt->print_on_error(st, buf, buflen);
4421     st->cr();
4422   }
4423   if (!found_current) {
4424     st->cr();
4425     st->print("=>" PTR_FORMAT " (exited) ", current);
4426     current->print_on_error(st, buf, buflen);
4427     st->cr();
4428   }
4429 }
4430 
4431 // Internal SpinLock and Mutex
4432 // Based on ParkEvent
4433 
4434 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4435 //
4436 // We employ SpinLocks _only for low-contention, fixed-length
4437 // short-duration critical sections where we're concerned
4438 // about native mutex_t or HotSpot Mutex:: latency.
4439 // The mux construct provides a spin-then-block mutual exclusion
4440 // mechanism.
4441 //
4442 // Testing has shown that contention on the ListLock guarding gFreeList
4443 // is common.  If we implement ListLock as a simple SpinLock it's common
4444 // for the JVM to devolve to yielding with little progress.  This is true
4445 // despite the fact that the critical sections protected by ListLock are
4446 // extremely short.
4447 //
4448 // TODO-FIXME: ListLock should be of type SpinLock.
4449 // We should make this a 1st-class type, integrated into the lock
4450 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4451 // should have sufficient padding to avoid false-sharing and excessive
4452 // cache-coherency traffic.
4453 
4454 
4455 typedef volatile int SpinLockT ;
4456 
4457 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4458   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4459      return ;   // normal fast-path return
4460   }
4461 
4462   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4463   TEVENT (SpinAcquire - ctx) ;
4464   int ctr = 0 ;
4465   int Yields = 0 ;
4466   for (;;) {
4467      while (*adr != 0) {
4468         ++ctr ;
4469         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4470            if (Yields > 5) {
4471              os::naked_short_sleep(1);
4472            } else {
4473              os::NakedYield() ;
4474              ++Yields ;
4475            }
4476         } else {
4477            SpinPause() ;
4478         }
4479      }
4480      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4481   }
4482 }
4483 
4484 void Thread::SpinRelease (volatile int * adr) {
4485   assert (*adr != 0, "invariant") ;
4486   OrderAccess::fence() ;      // guarantee at least release consistency.
4487   // Roach-motel semantics.
4488   // It's safe if subsequent LDs and STs float "up" into the critical section,
4489   // but prior LDs and STs within the critical section can't be allowed
4490   // to reorder or float past the ST that releases the lock.
4491   *adr = 0 ;
4492 }
4493 
4494 // muxAcquire and muxRelease:
4495 //
4496 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4497 //    The LSB of the word is set IFF the lock is held.
4498 //    The remainder of the word points to the head of a singly-linked list
4499 //    of threads blocked on the lock.
4500 //
4501 // *  The current implementation of muxAcquire-muxRelease uses its own
4502 //    dedicated Thread._MuxEvent instance.  If we're interested in
4503 //    minimizing the peak number of extant ParkEvent instances then
4504 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4505 //    as certain invariants were satisfied.  Specifically, care would need
4506 //    to be taken with regards to consuming unpark() "permits".
4507 //    A safe rule of thumb is that a thread would never call muxAcquire()
4508 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4509 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4510 //    consume an unpark() permit intended for monitorenter, for instance.
4511 //    One way around this would be to widen the restricted-range semaphore
4512 //    implemented in park().  Another alternative would be to provide
4513 //    multiple instances of the PlatformEvent() for each thread.  One
4514 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4515 //
4516 // *  Usage:
4517 //    -- Only as leaf locks
4518 //    -- for short-term locking only as muxAcquire does not perform
4519 //       thread state transitions.
4520 //
4521 // Alternatives:
4522 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4523 //    but with parking or spin-then-park instead of pure spinning.
4524 // *  Use Taura-Oyama-Yonenzawa locks.
4525 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4526 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4527 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4528 //    acquiring threads use timers (ParkTimed) to detect and recover from
4529 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4530 //    boundaries by using placement-new.
4531 // *  Augment MCS with advisory back-link fields maintained with CAS().
4532 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4533 //    The validity of the backlinks must be ratified before we trust the value.
4534 //    If the backlinks are invalid the exiting thread must back-track through the
4535 //    the forward links, which are always trustworthy.
4536 // *  Add a successor indication.  The LockWord is currently encoded as
4537 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4538 //    to provide the usual futile-wakeup optimization.
4539 //    See RTStt for details.
4540 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4541 //
4542 
4543 
4544 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4545 enum MuxBits { LOCKBIT = 1 } ;
4546 
4547 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4548   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4549   if (w == 0) return ;
4550   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4551      return ;
4552   }
4553 
4554   TEVENT (muxAcquire - Contention) ;
4555   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4556   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4557   for (;;) {
4558      int its = (os::is_MP() ? 100 : 0) + 1 ;
4559 
4560      // Optional spin phase: spin-then-park strategy
4561      while (--its >= 0) {
4562        w = *Lock ;
4563        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4564           return ;
4565        }
4566      }
4567 
4568      Self->reset() ;
4569      Self->OnList = intptr_t(Lock) ;
4570      // The following fence() isn't _strictly necessary as the subsequent
4571      // CAS() both serializes execution and ratifies the fetched *Lock value.
4572      OrderAccess::fence();
4573      for (;;) {
4574         w = *Lock ;
4575         if ((w & LOCKBIT) == 0) {
4576             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4577                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4578                 return ;
4579             }
4580             continue ;      // Interference -- *Lock changed -- Just retry
4581         }
4582         assert (w & LOCKBIT, "invariant") ;
4583         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4584         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4585      }
4586 
4587      while (Self->OnList != 0) {
4588         Self->park() ;
4589      }
4590   }
4591 }
4592 
4593 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4594   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4595   if (w == 0) return ;
4596   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4597     return ;
4598   }
4599 
4600   TEVENT (muxAcquire - Contention) ;
4601   ParkEvent * ReleaseAfter = NULL ;
4602   if (ev == NULL) {
4603     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4604   }
4605   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4606   for (;;) {
4607     guarantee (ev->OnList == 0, "invariant") ;
4608     int its = (os::is_MP() ? 100 : 0) + 1 ;
4609 
4610     // Optional spin phase: spin-then-park strategy
4611     while (--its >= 0) {
4612       w = *Lock ;
4613       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4614         if (ReleaseAfter != NULL) {
4615           ParkEvent::Release (ReleaseAfter) ;
4616         }
4617         return ;
4618       }
4619     }
4620 
4621     ev->reset() ;
4622     ev->OnList = intptr_t(Lock) ;
4623     // The following fence() isn't _strictly necessary as the subsequent
4624     // CAS() both serializes execution and ratifies the fetched *Lock value.
4625     OrderAccess::fence();
4626     for (;;) {
4627       w = *Lock ;
4628       if ((w & LOCKBIT) == 0) {
4629         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4630           ev->OnList = 0 ;
4631           // We call ::Release while holding the outer lock, thus
4632           // artificially lengthening the critical section.
4633           // Consider deferring the ::Release() until the subsequent unlock(),
4634           // after we've dropped the outer lock.
4635           if (ReleaseAfter != NULL) {
4636             ParkEvent::Release (ReleaseAfter) ;
4637           }
4638           return ;
4639         }
4640         continue ;      // Interference -- *Lock changed -- Just retry
4641       }
4642       assert (w & LOCKBIT, "invariant") ;
4643       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4644       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4645     }
4646 
4647     while (ev->OnList != 0) {
4648       ev->park() ;
4649     }
4650   }
4651 }
4652 
4653 // Release() must extract a successor from the list and then wake that thread.
4654 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4655 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4656 // Release() would :
4657 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4658 // (B) Extract a successor from the private list "in-hand"
4659 // (C) attempt to CAS() the residual back into *Lock over null.
4660 //     If there were any newly arrived threads and the CAS() would fail.
4661 //     In that case Release() would detach the RATs, re-merge the list in-hand
4662 //     with the RATs and repeat as needed.  Alternately, Release() might
4663 //     detach and extract a successor, but then pass the residual list to the wakee.
4664 //     The wakee would be responsible for reattaching and remerging before it
4665 //     competed for the lock.
4666 //
4667 // Both "pop" and DMR are immune from ABA corruption -- there can be
4668 // multiple concurrent pushers, but only one popper or detacher.
4669 // This implementation pops from the head of the list.  This is unfair,
4670 // but tends to provide excellent throughput as hot threads remain hot.
4671 // (We wake recently run threads first).
4672 
4673 void Thread::muxRelease (volatile intptr_t * Lock)  {
4674   for (;;) {
4675     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4676     assert (w & LOCKBIT, "invariant") ;
4677     if (w == LOCKBIT) return ;
4678     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4679     assert (List != NULL, "invariant") ;
4680     assert (List->OnList == intptr_t(Lock), "invariant") ;
4681     ParkEvent * nxt = List->ListNext ;
4682 
4683     // The following CAS() releases the lock and pops the head element.
4684     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4685       continue ;
4686     }
4687     List->OnList = 0 ;
4688     OrderAccess::fence() ;
4689     List->unpark () ;
4690     return ;
4691   }
4692 }
4693 
4694 
4695 void Threads::verify() {
4696   ALL_JAVA_THREADS(p) {
4697     p->verify();
4698   }
4699   VMThread* thread = VMThread::vm_thread();
4700   if (thread != NULL) thread->verify();
4701 }