/* * Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016, 2017, SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciArrayKlass.hpp" #include "ci/ciInstance.hpp" #include "gc/shared/collectedHeap.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/cardTableModRefBS.hpp" #include "nativeInst_s390.hpp" #include "oops/objArrayKlass.hpp" #include "runtime/sharedRuntime.hpp" #include "vmreg_s390.inline.hpp" #define __ _masm-> #ifndef PRODUCT #undef __ #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)-> #endif //------------------------------------------------------------ bool LIR_Assembler::is_small_constant(LIR_Opr opr) { // Not used on ZARCH_64 ShouldNotCallThis(); return false; } LIR_Opr LIR_Assembler::receiverOpr() { return FrameMap::Z_R2_oop_opr; } LIR_Opr LIR_Assembler::osrBufferPointer() { return FrameMap::Z_R2_opr; } int LIR_Assembler::initial_frame_size_in_bytes() const { return in_bytes(frame_map()->framesize_in_bytes()); } // Inline cache check: done before the frame is built. // The inline cached class is in Z_inline_cache(Z_R9). // We fetch the class of the receiver and compare it with the cached class. // If they do not match we jump to the slow case. int LIR_Assembler::check_icache() { Register receiver = receiverOpr()->as_register(); int offset = __ offset(); __ inline_cache_check(receiver, Z_inline_cache); return offset; } void LIR_Assembler::osr_entry() { // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp): // // 1. Create a new compiled activation. // 2. Initialize local variables in the compiled activation. The expression stack must be empty // at the osr_bci; it is not initialized. // 3. Jump to the continuation address in compiled code to resume execution. // OSR entry point offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); BlockBegin* osr_entry = compilation()->hir()->osr_entry(); ValueStack* entry_state = osr_entry->end()->state(); int number_of_locks = entry_state->locks_size(); // Create a frame for the compiled activation. __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); // OSR buffer is // // locals[nlocals-1..0] // monitors[number_of_locks-1..0] // // Locals is a direct copy of the interpreter frame so in the osr buffer // the first slot in the local array is the last local from the interpreter // and the last slot is local[0] (receiver) from the interpreter // // Similarly with locks. The first lock slot in the osr buffer is the nth lock // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock // in the interpreter frame (the method lock if a sync method) // Initialize monitors in the compiled activation. // I0: pointer to osr buffer // // All other registers are dead at this point and the locals will be // copied into place by code emitted in the IR. Register OSR_buf = osrBufferPointer()->as_register(); { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); int monitor_offset = BytesPerWord * method()->max_locals() + (2 * BytesPerWord) * (number_of_locks - 1); // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in // the OSR buffer using 2 word entries: first the lock and then // the oop. for (int i = 0; i < number_of_locks; i++) { int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); // Verify the interpreter's monitor has a non-null object. __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is NULL", __LINE__); // Copy the lock field into the compiled activation. __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf); __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i)); __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf); __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i)); } } } // -------------------------------------------------------------------------------------------- address LIR_Assembler::emit_call_c(address a) { __ align_call_far_patchable(__ pc()); address call_addr = __ call_c_opt(a); if (call_addr == NULL) { bailout("const section overflow"); } return call_addr; } int LIR_Assembler::emit_exception_handler() { // If the last instruction is a call (typically to do a throw which // is coming at the end after block reordering) the return address // must still point into the code area in order to avoid assertion // failures when searching for the corresponding bci. => Add a nop. // (was bug 5/14/1999 - gri) __ nop(); // Generate code for exception handler. address handler_base = __ start_a_stub(exception_handler_size()); if (handler_base == NULL) { // Not enough space left for the handler. bailout("exception handler overflow"); return -1; } int offset = code_offset(); address a = Runtime1::entry_for (Runtime1::handle_exception_from_callee_id); address call_addr = emit_call_c(a); CHECK_BAILOUT_(-1); __ should_not_reach_here(); guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); __ end_a_stub(); return offset; } // Emit the code to remove the frame from the stack in the exception // unwind path. int LIR_Assembler::emit_unwind_handler() { #ifndef PRODUCT if (CommentedAssembly) { _masm->block_comment("Unwind handler"); } #endif int offset = code_offset(); Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved. Register Rtmp1 = Z_R11; Register Rtmp2 = Z_R12; // Fetch the exception from TLS and clear out exception related thread state. Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset()); Address exc_pc_addr = Address(Z_thread, JavaThread::exception_pc_offset()); __ z_lg(Z_EXC_OOP, exc_oop_addr); __ clear_mem(exc_oop_addr, sizeof(oop)); __ clear_mem(exc_pc_addr, sizeof(intptr_t)); __ bind(_unwind_handler_entry); __ verify_not_null_oop(Z_EXC_OOP); if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception. } // Preform needed unlocking. MonitorExitStub* stub = NULL; if (method()->is_synchronized()) { // Runtime1::monitorexit_id expects lock address in Z_R1_scratch. LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch); monitor_address(0, lock); stub = new MonitorExitStub(lock, true, 0); __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry()); __ bind(*stub->continuation()); } if (compilation()->env()->dtrace_method_probes()) { ShouldNotReachHere(); // Not supported. #if 0 __ mov(rdi, r15_thread); __ mov_metadata(rsi, method()->constant_encoding()); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); #endif } if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved); // Restore the exception. } // Remove the activation and dispatch to the unwind handler. __ pop_frame(); __ z_lg(Z_EXC_PC, _z_abi16(return_pc), Z_SP); // Z_EXC_OOP: exception oop // Z_EXC_PC: exception pc // Dispatch to the unwind logic. __ load_const_optimized(Z_R5, Runtime1::entry_for (Runtime1::unwind_exception_id)); __ z_br(Z_R5); // Emit the slow path assembly. if (stub != NULL) { stub->emit_code(this); } return offset; } int LIR_Assembler::emit_deopt_handler() { // If the last instruction is a call (typically to do a throw which // is coming at the end after block reordering) the return address // must still point into the code area in order to avoid assertion // failures when searching for the corresponding bci. => Add a nop. // (was bug 5/14/1999 - gri) __ nop(); // Generate code for exception handler. address handler_base = __ start_a_stub(deopt_handler_size()); if (handler_base == NULL) { // Not enough space left for the handler. bailout("deopt handler overflow"); return -1; } int offset = code_offset(); // Size must be constant (see HandlerImpl::emit_deopt_handler). __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack()); __ call(Z_R1_scratch); guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); __ end_a_stub(); return offset; } void LIR_Assembler::jobject2reg(jobject o, Register reg) { if (o == NULL) { __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove. } else { AddressLiteral a = __ allocate_oop_address(o); bool success = __ load_oop_from_toc(reg, a, reg); if (!success) { bailout("const section overflow"); } } } void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { // Allocate a new index in table to hold the object once it's been patched. int oop_index = __ oop_recorder()->allocate_oop_index(NULL); PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index)); assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); // The NULL will be dynamically patched later so the sequence to // load the address literal must not be optimized. __ load_const(reg, addrlit); patching_epilog(patch, lir_patch_normal, reg, info); } void LIR_Assembler::metadata2reg(Metadata* md, Register reg) { bool success = __ set_metadata_constant(md, reg); if (!success) { bailout("const section overflow"); return; } } void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { // Allocate a new index in table to hold the klass once it's been patched. int index = __ oop_recorder()->allocate_metadata_index(NULL); PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index)); assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); // The NULL will be dynamically patched later so the sequence to // load the address literal must not be optimized. __ load_const(reg, addrlit); patching_epilog(patch, lir_patch_normal, reg, info); } void LIR_Assembler::emit_op3(LIR_Op3* op) { switch (op->code()) { case lir_idiv: case lir_irem: arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(), op->result_opr(), op->info()); break; case lir_fmad: { const FloatRegister opr1 = op->in_opr1()->as_double_reg(), opr2 = op->in_opr2()->as_double_reg(), opr3 = op->in_opr3()->as_double_reg(), res = op->result_opr()->as_double_reg(); __ z_madbr(opr3, opr1, opr2); if (res != opr3) { __ z_ldr(res, opr3); } } break; case lir_fmaf: { const FloatRegister opr1 = op->in_opr1()->as_float_reg(), opr2 = op->in_opr2()->as_float_reg(), opr3 = op->in_opr3()->as_float_reg(), res = op->result_opr()->as_float_reg(); __ z_maebr(opr3, opr1, opr2); if (res != opr3) { __ z_ler(res, opr3); } } break; default: ShouldNotReachHere(); break; } } void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { #ifdef ASSERT assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); if (op->block() != NULL) { _branch_target_blocks.append(op->block()); } if (op->ublock() != NULL) { _branch_target_blocks.append(op->ublock()); } #endif if (op->cond() == lir_cond_always) { if (op->info() != NULL) { add_debug_info_for_branch(op->info()); } __ branch_optimized(Assembler::bcondAlways, *(op->label())); } else { Assembler::branch_condition acond = Assembler::bcondZero; if (op->code() == lir_cond_float_branch) { assert(op->ublock() != NULL, "must have unordered successor"); __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label())); } switch (op->cond()) { case lir_cond_equal: acond = Assembler::bcondEqual; break; case lir_cond_notEqual: acond = Assembler::bcondNotEqual; break; case lir_cond_less: acond = Assembler::bcondLow; break; case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; break; case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; break; case lir_cond_greater: acond = Assembler::bcondHigh; break; case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; break; case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; break; default: ShouldNotReachHere(); } __ branch_optimized(acond,*(op->label())); } } void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { LIR_Opr src = op->in_opr(); LIR_Opr dest = op->result_opr(); switch (op->bytecode()) { case Bytecodes::_i2l: __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT); break; case Bytecodes::_l2i: __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG); break; case Bytecodes::_i2b: __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT); break; case Bytecodes::_i2c: __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT); break; case Bytecodes::_i2s: __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT); break; case Bytecodes::_f2d: assert(dest->is_double_fpu(), "check"); __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT); break; case Bytecodes::_d2f: assert(dest->is_single_fpu(), "check"); __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE); break; case Bytecodes::_i2f: __ z_cefbr(dest->as_float_reg(), src->as_register()); break; case Bytecodes::_i2d: __ z_cdfbr(dest->as_double_reg(), src->as_register()); break; case Bytecodes::_l2f: __ z_cegbr(dest->as_float_reg(), src->as_register_lo()); break; case Bytecodes::_l2d: __ z_cdgbr(dest->as_double_reg(), src->as_register_lo()); break; case Bytecodes::_f2i: case Bytecodes::_f2l: { Label done; FloatRegister Rsrc = src->as_float_reg(); Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo()); __ clear_reg(Rdst, true, false); __ z_cebr(Rsrc, Rsrc); __ z_brno(done); // NaN -> 0 if (op->bytecode() == Bytecodes::_f2i) { __ z_cfebr(Rdst, Rsrc, Assembler::to_zero); } else { // op->bytecode() == Bytecodes::_f2l __ z_cgebr(Rdst, Rsrc, Assembler::to_zero); } __ bind(done); } break; case Bytecodes::_d2i: case Bytecodes::_d2l: { Label done; FloatRegister Rsrc = src->as_double_reg(); Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo()); __ clear_reg(Rdst, true, false); // Don't set CC. __ z_cdbr(Rsrc, Rsrc); __ z_brno(done); // NaN -> 0 if (op->bytecode() == Bytecodes::_d2i) { __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero); } else { // Bytecodes::_d2l __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero); } __ bind(done); } break; default: ShouldNotReachHere(); } } void LIR_Assembler::align_call(LIR_Code code) { // End of call instruction must be 4 byte aligned. int offset = __ offset(); switch (code) { case lir_icvirtual_call: offset += MacroAssembler::load_const_from_toc_size(); // no break case lir_static_call: case lir_optvirtual_call: case lir_dynamic_call: offset += NativeCall::call_far_pcrelative_displacement_offset; break; case lir_virtual_call: // currently, sparc-specific for niagara default: ShouldNotReachHere(); } if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) { __ nop(); } } void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0, "must be aligned (offset=%d)", __ offset()); assert(rtype == relocInfo::none || rtype == relocInfo::opt_virtual_call_type || rtype == relocInfo::static_call_type, "unexpected rtype"); // Prepend each BRASL with a nop. __ relocate(rtype); __ z_nop(); __ z_brasl(Z_R14, op->addr()); add_call_info(code_offset(), op->info()); } void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { address virtual_call_oop_addr = NULL; AddressLiteral empty_ic((address) Universe::non_oop_word()); virtual_call_oop_addr = __ pc(); bool success = __ load_const_from_toc(Z_inline_cache, empty_ic); if (!success) { bailout("const section overflow"); return; } // CALL to fixup routine. Fixup routine uses ScopeDesc info // to determine who we intended to call. __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr)); call(op, relocInfo::none); } // not supported void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) { ShouldNotReachHere(); } void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { if (from_reg != to_reg) __ z_lgr(to_reg, from_reg); } void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { assert(src->is_constant(), "should not call otherwise"); assert(dest->is_stack(), "should not call otherwise"); LIR_Const* c = src->as_constant_ptr(); unsigned int lmem = 0; unsigned int lcon = 0; int64_t cbits = 0; Address dest_addr; switch (c->type()) { case T_INT: // fall through case T_FLOAT: dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); lmem = 4; lcon = 4; cbits = c->as_jint_bits(); break; case T_ADDRESS: dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); lmem = 8; lcon = 4; cbits = c->as_jint_bits(); break; case T_OBJECT: dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); if (c->as_jobject() == NULL) { __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8); } else { jobject2reg(c->as_jobject(), Z_R1_scratch); __ reg2mem_opt(Z_R1_scratch, dest_addr, true); } return; case T_LONG: // fall through case T_DOUBLE: dest_addr = frame_map()->address_for_slot(dest->double_stack_ix()); lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits()); break; default: ShouldNotReachHere(); } __ store_const(dest_addr, cbits, lmem, lcon); } void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { assert(src->is_constant(), "should not call otherwise"); assert(dest->is_address(), "should not call otherwise"); // See special case in LIRGenerator::do_StoreIndexed. // T_BYTE: Special case for card mark store. assert(type == T_BYTE || !dest->as_address_ptr()->index()->is_valid(), "not supported"); LIR_Const* c = src->as_constant_ptr(); Address addr = as_Address(dest->as_address_ptr()); int store_offset = -1; unsigned int lmem = 0; unsigned int lcon = 0; int64_t cbits = 0; switch (type) { case T_INT: // fall through case T_FLOAT: lmem = 4; lcon = 4; cbits = c->as_jint_bits(); break; case T_ADDRESS: lmem = 8; lcon = 4; cbits = c->as_jint_bits(); break; case T_OBJECT: // fall through case T_ARRAY: if (c->as_jobject() == NULL) { if (UseCompressedOops && !wide) { store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4); } else { store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8); } } else { jobject2reg(c->as_jobject(), Z_R1_scratch); if (UseCompressedOops && !wide) { __ encode_heap_oop(Z_R1_scratch); store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); } else { store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); } } assert(store_offset >= 0, "check"); break; case T_LONG: // fall through case T_DOUBLE: lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits()); break; case T_BOOLEAN: // fall through case T_BYTE: lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint()); break; case T_CHAR: // fall through case T_SHORT: lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint()); break; default: ShouldNotReachHere(); }; // Index register is normally not supported, but for // LIRGenerator::CardTableModRef_post_barrier we make an exception. if (type == T_BYTE && dest->as_address_ptr()->index()->is_valid()) { __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint())); store_offset = __ offset(); if (Immediate::is_uimm12(addr.disp())) { __ z_stc(Z_R0_scratch, addr); } else { __ z_stcy(Z_R0_scratch, addr); } } if (store_offset == -1) { store_offset = __ store_const(addr, cbits, lmem, lcon); assert(store_offset >= 0, "check"); } if (info != NULL) { add_debug_info_for_null_check(store_offset, info); } } void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { assert(src->is_constant(), "should not call otherwise"); assert(dest->is_register(), "should not call otherwise"); LIR_Const* c = src->as_constant_ptr(); switch (c->type()) { case T_INT: { assert(patch_code == lir_patch_none, "no patching handled here"); __ load_const_optimized(dest->as_register(), c->as_jint()); break; } case T_ADDRESS: { assert(patch_code == lir_patch_none, "no patching handled here"); __ load_const_optimized(dest->as_register(), c->as_jint()); break; } case T_LONG: { assert(patch_code == lir_patch_none, "no patching handled here"); __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong()); break; } case T_OBJECT: { if (patch_code != lir_patch_none) { jobject2reg_with_patching(dest->as_register(), info); } else { jobject2reg(c->as_jobject(), dest->as_register()); } break; } case T_METADATA: { if (patch_code != lir_patch_none) { klass2reg_with_patching(dest->as_register(), info); } else { metadata2reg(c->as_metadata(), dest->as_register()); } break; } case T_FLOAT: { Register toc_reg = Z_R1_scratch; __ load_toc(toc_reg); address const_addr = __ float_constant(c->as_jfloat()); if (const_addr == NULL) { bailout("const section overflow"); break; } int displ = const_addr - _masm->code()->consts()->start(); if (dest->is_single_fpu()) { __ z_ley(dest->as_float_reg(), displ, toc_reg); } else { assert(dest->is_single_cpu(), "Must be a cpu register."); __ z_ly(dest->as_register(), displ, toc_reg); } } break; case T_DOUBLE: { Register toc_reg = Z_R1_scratch; __ load_toc(toc_reg); address const_addr = __ double_constant(c->as_jdouble()); if (const_addr == NULL) { bailout("const section overflow"); break; } int displ = const_addr - _masm->code()->consts()->start(); if (dest->is_double_fpu()) { __ z_ldy(dest->as_double_reg(), displ, toc_reg); } else { assert(dest->is_double_cpu(), "Must be a long register."); __ z_lg(dest->as_register_lo(), displ, toc_reg); } } break; default: ShouldNotReachHere(); } } Address LIR_Assembler::as_Address(LIR_Address* addr) { if (addr->base()->is_illegal()) { Unimplemented(); } Register base = addr->base()->as_pointer_register(); if (addr->index()->is_illegal()) { return Address(base, addr->disp()); } else if (addr->index()->is_cpu_register()) { Register index = addr->index()->as_pointer_register(); return Address(base, index, addr->disp()); } else if (addr->index()->is_constant()) { intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp(); return Address(base, addr_offset); } else { ShouldNotReachHere(); return Address(); } } void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { switch (type) { case T_INT: case T_FLOAT: { Register tmp = Z_R1_scratch; Address from = frame_map()->address_for_slot(src->single_stack_ix()); Address to = frame_map()->address_for_slot(dest->single_stack_ix()); __ mem2reg_opt(tmp, from, false); __ reg2mem_opt(tmp, to, false); break; } case T_ADDRESS: case T_OBJECT: { Register tmp = Z_R1_scratch; Address from = frame_map()->address_for_slot(src->single_stack_ix()); Address to = frame_map()->address_for_slot(dest->single_stack_ix()); __ mem2reg_opt(tmp, from, true); __ reg2mem_opt(tmp, to, true); break; } case T_LONG: case T_DOUBLE: { Register tmp = Z_R1_scratch; Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); __ mem2reg_opt(tmp, from, true); __ reg2mem_opt(tmp, to, true); break; } default: ShouldNotReachHere(); } } // 4-byte accesses only! Don't use it to access 8 bytes! Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { ShouldNotCallThis(); return 0; // unused } // 4-byte accesses only! Don't use it to access 8 bytes! Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { ShouldNotCallThis(); return 0; // unused } void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) { assert(type != T_METADATA, "load of metadata ptr not supported"); LIR_Address* addr = src_opr->as_address_ptr(); LIR_Opr to_reg = dest; Register src = addr->base()->as_pointer_register(); Register disp_reg = Z_R0; int disp_value = addr->disp(); bool needs_patching = (patch_code != lir_patch_none); if (addr->base()->type() == T_OBJECT) { __ verify_oop(src); } PatchingStub* patch = NULL; if (needs_patching) { patch = new PatchingStub(_masm, PatchingStub::access_field_id); assert(!to_reg->is_double_cpu() || patch_code == lir_patch_none || patch_code == lir_patch_normal, "patching doesn't match register"); } if (addr->index()->is_illegal()) { if (!Immediate::is_simm20(disp_value)) { if (needs_patching) { __ load_const(Z_R1_scratch, (intptr_t)0); } else { __ load_const_optimized(Z_R1_scratch, disp_value); } disp_reg = Z_R1_scratch; disp_value = 0; } } else { if (!Immediate::is_simm20(disp_value)) { __ load_const_optimized(Z_R1_scratch, disp_value); __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register()); disp_reg = Z_R1_scratch; disp_value = 0; } disp_reg = addr->index()->as_pointer_register(); } // Remember the offset of the load. The patching_epilog must be done // before the call to add_debug_info, otherwise the PcDescs don't get // entered in increasing order. int offset = code_offset(); assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up"); bool short_disp = Immediate::is_uimm12(disp_value); switch (type) { case T_BOOLEAN: // fall through case T_BYTE : __ z_lb(dest->as_register(), disp_value, disp_reg, src); break; case T_CHAR : __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break; case T_SHORT : if (short_disp) { __ z_lh(dest->as_register(), disp_value, disp_reg, src); } else { __ z_lhy(dest->as_register(), disp_value, disp_reg, src); } break; case T_INT : if (short_disp) { __ z_l(dest->as_register(), disp_value, disp_reg, src); } else { __ z_ly(dest->as_register(), disp_value, disp_reg, src); } break; case T_ADDRESS: if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) { __ z_llgf(dest->as_register(), disp_value, disp_reg, src); __ decode_klass_not_null(dest->as_register()); } else { __ z_lg(dest->as_register(), disp_value, disp_reg, src); } break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { __ z_llgf(dest->as_register(), disp_value, disp_reg, src); __ oop_decoder(dest->as_register(), dest->as_register(), true); } else { __ z_lg(dest->as_register(), disp_value, disp_reg, src); } break; } case T_FLOAT: if (short_disp) { __ z_le(dest->as_float_reg(), disp_value, disp_reg, src); } else { __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src); } break; case T_DOUBLE: if (short_disp) { __ z_ld(dest->as_double_reg(), disp_value, disp_reg, src); } else { __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src); } break; case T_LONG : __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break; default : ShouldNotReachHere(); } if (type == T_ARRAY || type == T_OBJECT) { __ verify_oop(dest->as_register()); } if (patch != NULL) { patching_epilog(patch, patch_code, src, info); } if (info != NULL) add_debug_info_for_null_check(offset, info); } void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { assert(src->is_stack(), "should not call otherwise"); assert(dest->is_register(), "should not call otherwise"); if (dest->is_single_cpu()) { if (type == T_ARRAY || type == T_OBJECT) { __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true); __ verify_oop(dest->as_register()); } else if (type == T_METADATA) { __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true); } else { __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false); } } else if (dest->is_double_cpu()) { Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix()); __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true); } else if (dest->is_single_fpu()) { Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); __ mem2freg_opt(dest->as_float_reg(), src_addr, false); } else if (dest->is_double_fpu()) { Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); __ mem2freg_opt(dest->as_double_reg(), src_addr, true); } else { ShouldNotReachHere(); } } void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { assert(src->is_register(), "should not call otherwise"); assert(dest->is_stack(), "should not call otherwise"); if (src->is_single_cpu()) { const Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); if (type == T_OBJECT || type == T_ARRAY) { __ verify_oop(src->as_register()); __ reg2mem_opt(src->as_register(), dst, true); } else if (type == T_METADATA) { __ reg2mem_opt(src->as_register(), dst, true); } else { __ reg2mem_opt(src->as_register(), dst, false); } } else if (src->is_double_cpu()) { Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix()); __ reg2mem_opt(src->as_register_lo(), dstLO, true); } else if (src->is_single_fpu()) { Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); __ freg2mem_opt(src->as_float_reg(), dst_addr, false); } else if (src->is_double_fpu()) { Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); __ freg2mem_opt(src->as_double_reg(), dst_addr, true); } else { ShouldNotReachHere(); } } void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { if (from_reg->is_float_kind() && to_reg->is_float_kind()) { if (from_reg->is_double_fpu()) { // double to double moves assert(to_reg->is_double_fpu(), "should match"); __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg()); } else { // float to float moves assert(to_reg->is_single_fpu(), "should match"); __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg()); } } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { if (from_reg->is_double_cpu()) { __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register()); } else if (to_reg->is_double_cpu()) { // int to int moves __ z_lgr(to_reg->as_register_lo(), from_reg->as_register()); } else { // int to int moves __ z_lgr(to_reg->as_register(), from_reg->as_register()); } } else { ShouldNotReachHere(); } if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) { __ verify_oop(to_reg->as_register()); } } void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool unaligned) { assert(type != T_METADATA, "store of metadata ptr not supported"); LIR_Address* addr = dest_opr->as_address_ptr(); Register dest = addr->base()->as_pointer_register(); Register disp_reg = Z_R0; int disp_value = addr->disp(); bool needs_patching = (patch_code != lir_patch_none); if (addr->base()->is_oop_register()) { __ verify_oop(dest); } PatchingStub* patch = NULL; if (needs_patching) { patch = new PatchingStub(_masm, PatchingStub::access_field_id); assert(!from->is_double_cpu() || patch_code == lir_patch_none || patch_code == lir_patch_normal, "patching doesn't match register"); } assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption"); if (addr->index()->is_illegal()) { if (!Immediate::is_simm20(disp_value)) { if (needs_patching) { __ load_const(Z_R1_scratch, (intptr_t)0); } else { __ load_const_optimized(Z_R1_scratch, disp_value); } disp_reg = Z_R1_scratch; disp_value = 0; } } else { if (!Immediate::is_simm20(disp_value)) { __ load_const_optimized(Z_R1_scratch, disp_value); __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register()); disp_reg = Z_R1_scratch; disp_value = 0; } disp_reg = addr->index()->as_pointer_register(); } assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up"); if (type == T_ARRAY || type == T_OBJECT) { __ verify_oop(from->as_register()); } bool short_disp = Immediate::is_uimm12(disp_value); // Remember the offset of the store. The patching_epilog must be done // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get // entered in increasing order. int offset = code_offset(); switch (type) { case T_BOOLEAN: // fall through case T_BYTE : if (short_disp) { __ z_stc(from->as_register(), disp_value, disp_reg, dest); } else { __ z_stcy(from->as_register(), disp_value, disp_reg, dest); } break; case T_CHAR : // fall through case T_SHORT : if (short_disp) { __ z_sth(from->as_register(), disp_value, disp_reg, dest); } else { __ z_sthy(from->as_register(), disp_value, disp_reg, dest); } break; case T_INT : if (short_disp) { __ z_st(from->as_register(), disp_value, disp_reg, dest); } else { __ z_sty(from->as_register(), disp_value, disp_reg, dest); } break; case T_LONG : __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break; case T_ADDRESS: __ z_stg(from->as_register(), disp_value, disp_reg, dest); break; break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { Register compressed_src = Z_R14; __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true); offset = code_offset(); if (short_disp) { __ z_st(compressed_src, disp_value, disp_reg, dest); } else { __ z_sty(compressed_src, disp_value, disp_reg, dest); } } else { __ z_stg(from->as_register(), disp_value, disp_reg, dest); } break; } case T_FLOAT : if (short_disp) { __ z_ste(from->as_float_reg(), disp_value, disp_reg, dest); } else { __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest); } break; case T_DOUBLE: if (short_disp) { __ z_std(from->as_double_reg(), disp_value, disp_reg, dest); } else { __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest); } break; default: ShouldNotReachHere(); } if (patch != NULL) { patching_epilog(patch, patch_code, dest, info); } if (info != NULL) add_debug_info_for_null_check(offset, info); } void LIR_Assembler::return_op(LIR_Opr result) { assert(result->is_illegal() || (result->is_single_cpu() && result->as_register() == Z_R2) || (result->is_double_cpu() && result->as_register_lo() == Z_R2) || (result->is_single_fpu() && result->as_float_reg() == Z_F0) || (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention"); AddressLiteral pp(os::get_polling_page()); __ load_const_optimized(Z_R1_scratch, pp); // Pop the frame before the safepoint code. int retPC_offset = initial_frame_size_in_bytes() + _z_abi16(return_pc); if (Displacement::is_validDisp(retPC_offset)) { __ z_lg(Z_R14, retPC_offset, Z_SP); __ add2reg(Z_SP, initial_frame_size_in_bytes()); } else { __ add2reg(Z_SP, initial_frame_size_in_bytes()); __ restore_return_pc(); } // We need to mark the code position where the load from the safepoint // polling page was emitted as relocInfo::poll_return_type here. __ relocate(relocInfo::poll_return_type); __ load_from_polling_page(Z_R1_scratch); __ z_br(Z_R14); // Return to caller. } int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { AddressLiteral pp(os::get_polling_page()); __ load_const_optimized(tmp->as_register_lo(), pp); guarantee(info != NULL, "Shouldn't be NULL"); add_debug_info_for_branch(info); int offset = __ offset(); __ relocate(relocInfo::poll_type); __ load_from_polling_page(tmp->as_register_lo()); return offset; } void LIR_Assembler::emit_static_call_stub() { // Stub is fixed up when the corresponding call is converted from calling // compiled code to calling interpreted code. address call_pc = __ pc(); address stub = __ start_a_stub(call_stub_size()); if (stub == NULL) { bailout("static call stub overflow"); return; } int start = __ offset(); __ relocate(static_stub_Relocation::spec(call_pc)); // See also Matcher::interpreter_method_oop_reg(). AddressLiteral meta = __ allocate_metadata_address(NULL); bool success = __ load_const_from_toc(Z_method, meta); __ set_inst_mark(); AddressLiteral a((address)-1); success = success && __ load_const_from_toc(Z_R1, a); if (!success) { bailout("const section overflow"); return; } __ z_br(Z_R1); assert(__ offset() - start <= call_stub_size(), "stub too big"); __ end_a_stub(); // Update current stubs pointer and restore insts_end. } void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual; if (opr1->is_single_cpu()) { Register reg1 = opr1->as_register(); if (opr2->is_single_cpu()) { // cpu register - cpu register if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) { __ z_clgr(reg1, opr2->as_register()); } else { assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?"); if (unsigned_comp) { __ z_clr(reg1, opr2->as_register()); } else { __ z_cr(reg1, opr2->as_register()); } } } else if (opr2->is_stack()) { // cpu register - stack if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) { __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); } else { if (unsigned_comp) { __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); } else { __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); } } } else if (opr2->is_constant()) { // cpu register - constant LIR_Const* c = opr2->as_constant_ptr(); if (c->type() == T_INT) { if (unsigned_comp) { __ z_clfi(reg1, c->as_jint()); } else { __ z_cfi(reg1, c->as_jint()); } } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) { // In 64bit oops are single register. jobject o = c->as_jobject(); if (o == NULL) { __ z_ltgr(reg1, reg1); } else { jobject2reg(o, Z_R1_scratch); __ z_cgr(reg1, Z_R1_scratch); } } else { fatal("unexpected type: %s", basictype_to_str(c->type())); } // cpu register - address } else if (opr2->is_address()) { if (op->info() != NULL) { add_debug_info_for_null_check_here(op->info()); } if (unsigned_comp) { __ z_cly(reg1, as_Address(opr2->as_address_ptr())); } else { __ z_cy(reg1, as_Address(opr2->as_address_ptr())); } } else { ShouldNotReachHere(); } } else if (opr1->is_double_cpu()) { assert(!unsigned_comp, "unexpected"); Register xlo = opr1->as_register_lo(); Register xhi = opr1->as_register_hi(); if (opr2->is_double_cpu()) { __ z_cgr(xlo, opr2->as_register_lo()); } else if (opr2->is_constant()) { // cpu register - constant 0 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); __ z_ltgr(xlo, xlo); } else { ShouldNotReachHere(); } } else if (opr1->is_single_fpu()) { if (opr2->is_single_fpu()) { __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg()); } else { // stack slot Address addr = frame_map()->address_for_slot(opr2->single_stack_ix()); if (Immediate::is_uimm12(addr.disp())) { __ z_ceb(opr1->as_float_reg(), addr); } else { __ z_ley(Z_fscratch_1, addr); __ z_cebr(opr1->as_float_reg(), Z_fscratch_1); } } } else if (opr1->is_double_fpu()) { if (opr2->is_double_fpu()) { __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg()); } else { // stack slot Address addr = frame_map()->address_for_slot(opr2->double_stack_ix()); if (Immediate::is_uimm12(addr.disp())) { __ z_cdb(opr1->as_double_reg(), addr); } else { __ z_ldy(Z_fscratch_1, addr); __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1); } } } else { ShouldNotReachHere(); } } void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { Label done; Register dreg = dst->as_register(); if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { assert((left->is_single_fpu() && right->is_single_fpu()) || (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types"); bool is_single = left->is_single_fpu(); bool is_unordered_less = (code == lir_ucmp_fd2i); FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg(); FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg(); if (is_single) { __ z_cebr(lreg, rreg); } else { __ z_cdbr(lreg, rreg); } if (VM_Version::has_LoadStoreConditional()) { Register one = Z_R0_scratch; Register minus_one = Z_R1_scratch; __ z_lghi(minus_one, -1); __ z_lghi(one, 1); __ z_lghi(dreg, 0); __ z_locgr(dreg, one, is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered); __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow); } else { __ clear_reg(dreg, true, false); __ z_bre(done); // if (left == right) dst = 0 // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1 __ z_lhi(dreg, 1); __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done); // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1 __ z_lhi(dreg, -1); } } else { assert(code == lir_cmp_l2i, "check"); if (VM_Version::has_LoadStoreConditional()) { Register one = Z_R0_scratch; Register minus_one = Z_R1_scratch; __ z_cgr(left->as_register_lo(), right->as_register_lo()); __ z_lghi(minus_one, -1); __ z_lghi(one, 1); __ z_lghi(dreg, 0); __ z_locgr(dreg, one, Assembler::bcondHigh); __ z_locgr(dreg, minus_one, Assembler::bcondLow); } else { __ z_cgr(left->as_register_lo(), right->as_register_lo()); __ z_lghi(dreg, 0); // eq value __ z_bre(done); __ z_lghi(dreg, 1); // gt value __ z_brh(done); __ z_lghi(dreg, -1); // lt value } } __ bind(done); } // result = condition ? opr1 : opr2 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual; switch (condition) { case lir_cond_equal: acond = Assembler::bcondEqual; ncond = Assembler::bcondNotEqual; break; case lir_cond_notEqual: acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual; break; case lir_cond_less: acond = Assembler::bcondLow; ncond = Assembler::bcondNotLow; break; case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break; case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break; case lir_cond_greater: acond = Assembler::bcondHigh; ncond = Assembler::bcondNotHigh; break; case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break; case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break; default: ShouldNotReachHere(); } if (opr1->is_cpu_register()) { reg2reg(opr1, result); } else if (opr1->is_stack()) { stack2reg(opr1, result, result->type()); } else if (opr1->is_constant()) { const2reg(opr1, result, lir_patch_none, NULL); } else { ShouldNotReachHere(); } if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) { // Optimized version that does not require a branch. if (opr2->is_single_cpu()) { assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); __ z_locgr(result->as_register(), opr2->as_register(), ncond); } else if (opr2->is_double_cpu()) { assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond); } else if (opr2->is_single_stack()) { __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond); } else if (opr2->is_double_stack()) { __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond); } else { ShouldNotReachHere(); } } else { Label skip; __ z_brc(acond, skip); if (opr2->is_cpu_register()) { reg2reg(opr2, result); } else if (opr2->is_stack()) { stack2reg(opr2, result, result->type()); } else if (opr2->is_constant()) { const2reg(opr2, result, lir_patch_none, NULL); } else { ShouldNotReachHere(); } __ bind(skip); } } void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); if (left->is_single_cpu()) { assert(left == dest, "left and dest must be equal"); Register lreg = left->as_register(); if (right->is_single_cpu()) { // cpu register - cpu register Register rreg = right->as_register(); switch (code) { case lir_add: __ z_ar (lreg, rreg); break; case lir_sub: __ z_sr (lreg, rreg); break; case lir_mul: __ z_msr(lreg, rreg); break; default: ShouldNotReachHere(); } } else if (right->is_stack()) { // cpu register - stack Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); switch (code) { case lir_add: __ z_ay(lreg, raddr); break; case lir_sub: __ z_sy(lreg, raddr); break; default: ShouldNotReachHere(); } } else if (right->is_constant()) { // cpu register - constant jint c = right->as_constant_ptr()->as_jint(); switch (code) { case lir_add: __ z_agfi(lreg, c); break; case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint case lir_mul: __ z_msfi(lreg, c); break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } else if (left->is_double_cpu()) { assert(left == dest, "left and dest must be equal"); Register lreg_lo = left->as_register_lo(); Register lreg_hi = left->as_register_hi(); if (right->is_double_cpu()) { // cpu register - cpu register Register rreg_lo = right->as_register_lo(); Register rreg_hi = right->as_register_hi(); assert_different_registers(lreg_lo, rreg_lo); switch (code) { case lir_add: __ z_agr(lreg_lo, rreg_lo); break; case lir_sub: __ z_sgr(lreg_lo, rreg_lo); break; case lir_mul: __ z_msgr(lreg_lo, rreg_lo); break; default: ShouldNotReachHere(); } } else if (right->is_constant()) { // cpu register - constant jlong c = right->as_constant_ptr()->as_jlong_bits(); switch (code) { case lir_add: __ z_agfi(lreg_lo, c); break; case lir_sub: if (c != min_jint) { __ z_agfi(lreg_lo, -c); } else { // -min_jint cannot be represented as simm32 in z_agfi // min_jint sign extended: 0xffffffff80000000 // -min_jint as 64 bit integer: 0x0000000080000000 // 0x80000000 can be represented as uimm32 in z_algfi // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000 __ z_algfi(lreg_lo, UCONST64(0x80000000)); } break; case lir_mul: __ z_msgfi(lreg_lo, c); break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } else if (left->is_single_fpu()) { assert(left == dest, "left and dest must be equal"); FloatRegister lreg = left->as_float_reg(); FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg; Address raddr; if (rreg == fnoreg) { assert(right->is_single_stack(), "constants should be loaded into register"); raddr = frame_map()->address_for_slot(right->single_stack_ix()); if (!Immediate::is_uimm12(raddr.disp())) { __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false); } } if (rreg != fnoreg) { switch (code) { case lir_add: __ z_aebr(lreg, rreg); break; case lir_sub: __ z_sebr(lreg, rreg); break; case lir_mul_strictfp: // fall through case lir_mul: __ z_meebr(lreg, rreg); break; case lir_div_strictfp: // fall through case lir_div: __ z_debr(lreg, rreg); break; default: ShouldNotReachHere(); } } else { switch (code) { case lir_add: __ z_aeb(lreg, raddr); break; case lir_sub: __ z_seb(lreg, raddr); break; case lir_mul_strictfp: // fall through case lir_mul: __ z_meeb(lreg, raddr); break; case lir_div_strictfp: // fall through case lir_div: __ z_deb(lreg, raddr); break; default: ShouldNotReachHere(); } } } else if (left->is_double_fpu()) { assert(left == dest, "left and dest must be equal"); FloatRegister lreg = left->as_double_reg(); FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg; Address raddr; if (rreg == fnoreg) { assert(right->is_double_stack(), "constants should be loaded into register"); raddr = frame_map()->address_for_slot(right->double_stack_ix()); if (!Immediate::is_uimm12(raddr.disp())) { __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true); } } if (rreg != fnoreg) { switch (code) { case lir_add: __ z_adbr(lreg, rreg); break; case lir_sub: __ z_sdbr(lreg, rreg); break; case lir_mul_strictfp: // fall through case lir_mul: __ z_mdbr(lreg, rreg); break; case lir_div_strictfp: // fall through case lir_div: __ z_ddbr(lreg, rreg); break; default: ShouldNotReachHere(); } } else { switch (code) { case lir_add: __ z_adb(lreg, raddr); break; case lir_sub: __ z_sdb(lreg, raddr); break; case lir_mul_strictfp: // fall through case lir_mul: __ z_mdb(lreg, raddr); break; case lir_div_strictfp: // fall through case lir_div: __ z_ddb(lreg, raddr); break; default: ShouldNotReachHere(); } } } else if (left->is_address()) { assert(left == dest, "left and dest must be equal"); assert(code == lir_add, "unsupported operation"); assert(right->is_constant(), "unsupported operand"); jint c = right->as_constant_ptr()->as_jint(); LIR_Address* lir_addr = left->as_address_ptr(); Address addr = as_Address(lir_addr); switch (lir_addr->type()) { case T_INT: __ add2mem_32(addr, c, Z_R1_scratch); break; case T_LONG: __ add2mem_64(addr, c, Z_R1_scratch); break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } void LIR_Assembler::fpop() { // do nothing } void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { switch (code) { case lir_sqrt: { assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt"); FloatRegister src_reg = value->as_double_reg(); FloatRegister dst_reg = dest->as_double_reg(); __ z_sqdbr(dst_reg, src_reg); break; } case lir_abs: { assert(!thread->is_valid(), "there is no need for a thread_reg for fabs"); FloatRegister src_reg = value->as_double_reg(); FloatRegister dst_reg = dest->as_double_reg(); __ z_lpdbr(dst_reg, src_reg); break; } default: { ShouldNotReachHere(); break; } } } void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { if (left->is_single_cpu()) { Register reg = left->as_register(); if (right->is_constant()) { int val = right->as_constant_ptr()->as_jint(); switch (code) { case lir_logic_and: __ z_nilf(reg, val); break; case lir_logic_or: __ z_oilf(reg, val); break; case lir_logic_xor: __ z_xilf(reg, val); break; default: ShouldNotReachHere(); } } else if (right->is_stack()) { Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); switch (code) { case lir_logic_and: __ z_ny(reg, raddr); break; case lir_logic_or: __ z_oy(reg, raddr); break; case lir_logic_xor: __ z_xy(reg, raddr); break; default: ShouldNotReachHere(); } } else { Register rright = right->as_register(); switch (code) { case lir_logic_and: __ z_nr(reg, rright); break; case lir_logic_or : __ z_or(reg, rright); break; case lir_logic_xor: __ z_xr(reg, rright); break; default: ShouldNotReachHere(); } } move_regs(reg, dst->as_register()); } else { Register l_lo = left->as_register_lo(); if (right->is_constant()) { __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong()); switch (code) { case lir_logic_and: __ z_ngr(l_lo, Z_R1_scratch); break; case lir_logic_or: __ z_ogr(l_lo, Z_R1_scratch); break; case lir_logic_xor: __ z_xgr(l_lo, Z_R1_scratch); break; default: ShouldNotReachHere(); } } else { Register r_lo; if (right->type() == T_OBJECT || right->type() == T_ARRAY) { r_lo = right->as_register(); } else { r_lo = right->as_register_lo(); } switch (code) { case lir_logic_and: __ z_ngr(l_lo, r_lo); break; case lir_logic_or: __ z_ogr(l_lo, r_lo); break; case lir_logic_xor: __ z_xgr(l_lo, r_lo); break; default: ShouldNotReachHere(); } } Register dst_lo = dst->as_register_lo(); move_regs(l_lo, dst_lo); } } // See operand selection in LIRGenerator::do_ArithmeticOp_Int(). void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { if (left->is_double_cpu()) { // 64 bit integer case assert(left->is_double_cpu(), "left must be register"); assert(right->is_double_cpu() || is_power_of_2_long(right->as_jlong()), "right must be register or power of 2 constant"); assert(result->is_double_cpu(), "result must be register"); Register lreg = left->as_register_lo(); Register dreg = result->as_register_lo(); if (right->is_constant()) { // Convert division by a power of two into some shifts and logical operations. Register treg1 = Z_R0_scratch; Register treg2 = Z_R1_scratch; jlong divisor = right->as_jlong(); jlong log_divisor = log2_long(right->as_jlong()); if (divisor == min_jlong) { // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1. if (dreg == lreg) { NearLabel done; __ load_const_optimized(treg2, min_jlong); __ z_cgr(lreg, treg2); __ z_lghi(dreg, 0); // Preserves condition code. __ z_brne(done); __ z_lghi(dreg, 1); // min_jlong / min_jlong = 1 __ bind(done); } else { assert_different_registers(dreg, lreg); NearLabel done; __ z_lghi(dreg, 0); __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done); __ z_lghi(dreg, 1); __ bind(done); } return; } __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG); if (divisor == 2) { __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0 } else { __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0 __ and_imm(treg2, divisor - 1, treg1, true); } if (code == lir_idiv) { __ z_agr(dreg, treg2); __ z_srag(dreg, dreg, log_divisor); } else { assert(code == lir_irem, "check"); __ z_agr(treg2, dreg); __ and_imm(treg2, ~(divisor - 1), treg1, true); __ z_sgr(dreg, treg2); } return; } // Divisor is not a power of 2 constant. Register rreg = right->as_register_lo(); Register treg = temp->as_register_lo(); assert(right->is_double_cpu(), "right must be register"); assert(lreg == Z_R11, "see ldivInOpr()"); assert(rreg != lreg, "right register must not be same as left register"); assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()"); Register R1 = lreg->predecessor(); Register R2 = rreg; assert(code != lir_idiv || lreg==dreg, "see code below"); if (code == lir_idiv) { __ z_lcgr(lreg, lreg); } else { __ clear_reg(dreg, true, false); } NearLabel done; __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done); if (code == lir_idiv) { __ z_lcgr(lreg, lreg); // Revert lcgr above. } if (ImplicitDiv0Checks) { // No debug info because the idiv won't trap. // Add_debug_info_for_div0 would instantiate another DivByZeroStub, // which is unnecessary, too. add_debug_info_for_div0(__ offset(), info); } __ z_dsgr(R1, R2); __ bind(done); return; } // 32 bit integer case assert(left->is_single_cpu(), "left must be register"); assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant"); assert(result->is_single_cpu(), "result must be register"); Register lreg = left->as_register(); Register dreg = result->as_register(); if (right->is_constant()) { // Convert division by a power of two into some shifts and logical operations. Register treg1 = Z_R0_scratch; Register treg2 = Z_R1_scratch; jlong divisor = right->as_jint(); jlong log_divisor = log2_long(right->as_jint()); __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend if (divisor == 2) { __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0 } else { __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0 __ and_imm(treg2, divisor - 1, treg1, true); } if (code == lir_idiv) { __ z_agr(dreg, treg2); __ z_srag(dreg, dreg, log_divisor); } else { assert(code == lir_irem, "check"); __ z_agr(treg2, dreg); __ and_imm(treg2, ~(divisor - 1), treg1, true); __ z_sgr(dreg, treg2); } return; } // Divisor is not a power of 2 constant. Register rreg = right->as_register(); Register treg = temp->as_register(); assert(right->is_single_cpu(), "right must be register"); assert(lreg == Z_R11, "left register must be rax,"); assert(rreg != lreg, "right register must not be same as left register"); assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()"); Register R1 = lreg->predecessor(); Register R2 = rreg; __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend if (ImplicitDiv0Checks) { // No debug info because the idiv won't trap. // Add_debug_info_for_div0 would instantiate another DivByZeroStub, // which is unnecessary, too. add_debug_info_for_div0(__ offset(), info); } __ z_dsgfr(R1, R2); } void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { assert(exceptionOop->as_register() == Z_EXC_OOP, "should match"); assert(exceptionPC->as_register() == Z_EXC_PC, "should match"); // Exception object is not added to oop map by LinearScan // (LinearScan assumes that no oops are in fixed registers). info->add_register_oop(exceptionOop); // Reuse the debug info from the safepoint poll for the throw op itself. __ get_PC(Z_EXC_PC); add_call_info(__ offset(), info); // for exception handler address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? Runtime1::handle_exception_id : Runtime1::handle_exception_nofpu_id); emit_call_c(stub); } void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { assert(exceptionOop->as_register() == Z_EXC_OOP, "should match"); __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry); } void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { ciArrayKlass* default_type = op->expected_type(); Register src = op->src()->as_register(); Register dst = op->dst()->as_register(); Register src_pos = op->src_pos()->as_register(); Register dst_pos = op->dst_pos()->as_register(); Register length = op->length()->as_register(); Register tmp = op->tmp()->as_register(); CodeStub* stub = op->stub(); int flags = op->flags(); BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; if (basic_type == T_ARRAY) basic_type = T_OBJECT; // If we don't know anything, just go through the generic arraycopy. if (default_type == NULL) { Label done; // Save outgoing arguments in callee saved registers (C convention) in case // a call to System.arraycopy is needed. Register callee_saved_src = Z_R10; Register callee_saved_src_pos = Z_R11; Register callee_saved_dst = Z_R12; Register callee_saved_dst_pos = Z_R13; Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved. __ lgr_if_needed(callee_saved_src, src); __ lgr_if_needed(callee_saved_src_pos, src_pos); __ lgr_if_needed(callee_saved_dst, dst); __ lgr_if_needed(callee_saved_dst_pos, dst_pos); __ lgr_if_needed(callee_saved_length, length); // C function requires 64 bit values. __ z_lgfr(src_pos, src_pos); __ z_lgfr(dst_pos, dst_pos); __ z_lgfr(length, length); address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy); address copyfunc_addr = StubRoutines::generic_arraycopy(); // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint. // The arguments are in the corresponding registers. assert(Z_ARG1 == src, "assumption"); assert(Z_ARG2 == src_pos, "assumption"); assert(Z_ARG3 == dst, "assumption"); assert(Z_ARG4 == dst_pos, "assumption"); assert(Z_ARG5 == length, "assumption"); if (copyfunc_addr == NULL) { // Use C version if stub was not generated. emit_call_c(C_entry); } else { #ifndef PRODUCT if (PrintC1Statistics) { __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt); __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); } #endif emit_call_c(copyfunc_addr); } CHECK_BAILOUT(); __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation()); if (copyfunc_addr != NULL) { __ z_lgr(tmp, Z_RET); __ z_xilf(tmp, -1); } // Restore values from callee saved registers so they are where the stub // expects them. __ lgr_if_needed(src, callee_saved_src); __ lgr_if_needed(src_pos, callee_saved_src_pos); __ lgr_if_needed(dst, callee_saved_dst); __ lgr_if_needed(dst_pos, callee_saved_dst_pos); __ lgr_if_needed(length, callee_saved_length); if (copyfunc_addr != NULL) { __ z_sr(length, tmp); __ z_ar(src_pos, tmp); __ z_ar(dst_pos, tmp); } __ branch_optimized(Assembler::bcondAlways, *stub->entry()); __ bind(*stub->continuation()); return; } assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); int elem_size = type2aelembytes(basic_type); int shift_amount; switch (elem_size) { case 1 : shift_amount = 0; break; case 2 : shift_amount = 1; break; case 4 : shift_amount = 2; break; case 8 : shift_amount = 3; break; default: shift_amount = -1; ShouldNotReachHere(); } Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); // Length and pos's are all sign extended at this point on 64bit. // test for NULL if (flags & LIR_OpArrayCopy::src_null_check) { __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry()); } if (flags & LIR_OpArrayCopy::dst_null_check) { __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry()); } // Check if negative. if (flags & LIR_OpArrayCopy::src_pos_positive_check) { __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry()); } if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry()); } // If the compiler was not able to prove that exact type of the source or the destination // of the arraycopy is an array type, check at runtime if the source or the destination is // an instance type. if (flags & LIR_OpArrayCopy::type_check) { assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions"); if (!(flags & LIR_OpArrayCopy::dst_objarray)) { __ load_klass(tmp, dst); __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset()))); __ branch_optimized(Assembler::bcondNotLow, *stub->entry()); } if (!(flags & LIR_OpArrayCopy::src_objarray)) { __ load_klass(tmp, src); __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset()))); __ branch_optimized(Assembler::bcondNotLow, *stub->entry()); } } if (flags & LIR_OpArrayCopy::src_range_check) { __ z_la(tmp, Address(src_pos, length)); __ z_cl(tmp, src_length_addr); __ branch_optimized(Assembler::bcondHigh, *stub->entry()); } if (flags & LIR_OpArrayCopy::dst_range_check) { __ z_la(tmp, Address(dst_pos, length)); __ z_cl(tmp, dst_length_addr); __ branch_optimized(Assembler::bcondHigh, *stub->entry()); } if (flags & LIR_OpArrayCopy::length_positive_check) { __ z_ltr(length, length); __ branch_optimized(Assembler::bcondNegative, *stub->entry()); } // Stubs require 64 bit values. __ z_lgfr(src_pos, src_pos); // int -> long __ z_lgfr(dst_pos, dst_pos); // int -> long __ z_lgfr(length, length); // int -> long if (flags & LIR_OpArrayCopy::type_check) { // We don't know the array types are compatible. if (basic_type != T_OBJECT) { // Simple test for basic type arrays. if (UseCompressedClassPointers) { __ z_l(tmp, src_klass_addr); __ z_c(tmp, dst_klass_addr); } else { __ z_lg(tmp, src_klass_addr); __ z_cg(tmp, dst_klass_addr); } __ branch_optimized(Assembler::bcondNotEqual, *stub->entry()); } else { // For object arrays, if src is a sub class of dst then we can // safely do the copy. NearLabel cont, slow; Register src_klass = Z_R1_scratch; Register dst_klass = Z_R10; __ load_klass(src_klass, src); __ load_klass(dst_klass, dst); __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, NULL); store_parameter(src_klass, 0); // sub store_parameter(dst_klass, 1); // super emit_call_c(Runtime1::entry_for (Runtime1::slow_subtype_check_id)); CHECK_BAILOUT(); // Sets condition code 0 for match (2 otherwise). __ branch_optimized(Assembler::bcondEqual, cont); __ bind(slow); address copyfunc_addr = StubRoutines::checkcast_arraycopy(); if (copyfunc_addr != NULL) { // use stub if available // Src is not a sub class of dst so we have to do a // per-element check. int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; if ((flags & mask) != mask) { // Check that at least both of them object arrays. assert(flags & mask, "one of the two should be known to be an object array"); if (!(flags & LIR_OpArrayCopy::src_objarray)) { __ load_klass(tmp, src); } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { __ load_klass(tmp, dst); } Address klass_lh_addr(tmp, Klass::layout_helper_offset()); jint objArray_lh = Klass::array_layout_helper(T_OBJECT); __ load_const_optimized(Z_R1_scratch, objArray_lh); __ z_c(Z_R1_scratch, klass_lh_addr); __ branch_optimized(Assembler::bcondNotEqual, *stub->entry()); } // Save outgoing arguments in callee saved registers (C convention) in case // a call to System.arraycopy is needed. Register callee_saved_src = Z_R10; Register callee_saved_src_pos = Z_R11; Register callee_saved_dst = Z_R12; Register callee_saved_dst_pos = Z_R13; Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved. __ lgr_if_needed(callee_saved_src, src); __ lgr_if_needed(callee_saved_src_pos, src_pos); __ lgr_if_needed(callee_saved_dst, dst); __ lgr_if_needed(callee_saved_dst_pos, dst_pos); __ lgr_if_needed(callee_saved_length, length); __ z_llgfr(length, length); // Higher 32bits must be null. __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type))); assert_different_registers(Z_ARG1, dst, dst_pos, length); __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type))); assert_different_registers(Z_ARG2, dst, length); __ z_lgr(Z_ARG3, length); assert_different_registers(Z_ARG3, dst); __ load_klass(Z_ARG5, dst); __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset())); __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset())); emit_call_c(copyfunc_addr); CHECK_BAILOUT(); #ifndef PRODUCT if (PrintC1Statistics) { NearLabel failed; __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed); __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt); __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); __ bind(failed); } #endif __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation()); #ifndef PRODUCT if (PrintC1Statistics) { __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt); __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); } #endif __ z_lgr(tmp, Z_RET); __ z_xilf(tmp, -1); // Restore previously spilled arguments __ lgr_if_needed(src, callee_saved_src); __ lgr_if_needed(src_pos, callee_saved_src_pos); __ lgr_if_needed(dst, callee_saved_dst); __ lgr_if_needed(dst_pos, callee_saved_dst_pos); __ lgr_if_needed(length, callee_saved_length); __ z_sr(length, tmp); __ z_ar(src_pos, tmp); __ z_ar(dst_pos, tmp); } __ branch_optimized(Assembler::bcondAlways, *stub->entry()); __ bind(cont); } } #ifdef ASSERT if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { // Sanity check the known type with the incoming class. For the // primitive case the types must match exactly with src.klass and // dst.klass each exactly matching the default type. For the // object array case, if no type check is needed then either the // dst type is exactly the expected type and the src type is a // subtype which we can't check or src is the same array as dst // but not necessarily exactly of type default_type. NearLabel known_ok, halt; metadata2reg(default_type->constant_encoding(), tmp); if (UseCompressedClassPointers) { __ encode_klass_not_null(tmp); } if (basic_type != T_OBJECT) { if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); } else { __ z_cg(tmp, dst_klass_addr); } __ branch_optimized(Assembler::bcondNotEqual, halt); if (UseCompressedClassPointers) { __ z_c (tmp, src_klass_addr); } else { __ z_cg(tmp, src_klass_addr); } __ branch_optimized(Assembler::bcondEqual, known_ok); } else { if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); } else { __ z_cg(tmp, dst_klass_addr); } __ branch_optimized(Assembler::bcondEqual, known_ok); __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok); } __ bind(halt); __ stop("incorrect type information in arraycopy"); __ bind(known_ok); } #endif #ifndef PRODUCT if (PrintC1Statistics) { __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type)); __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); } #endif __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset assert_different_registers(Z_ARG1, dst, dst_pos, length); __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type))); assert_different_registers(Z_ARG2, length); __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type))); __ lgr_if_needed(Z_ARG3, length); bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; const char *name; address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); __ call_VM_leaf(entry); __ bind(*stub->continuation()); } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { if (dest->is_single_cpu()) { if (left->type() == T_OBJECT) { switch (code) { case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break; case lir_shr: __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break; case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break; default: ShouldNotReachHere(); } } else { assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts"); Register masked_count = Z_R1_scratch; __ z_lr(masked_count, count->as_register()); __ z_nill(masked_count, 31); switch (code) { case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break; case lir_shr: __ z_sra (dest->as_register(), 0, masked_count); break; case lir_ushr: __ z_srl (dest->as_register(), 0, masked_count); break; default: ShouldNotReachHere(); } } } else { switch (code) { case lir_shl: __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; case lir_shr: __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; default: ShouldNotReachHere(); } } } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { if (left->type() == T_OBJECT) { count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). Register l = left->as_register(); Register d = dest->as_register_lo(); switch (code) { case lir_shl: __ z_sllg (d, l, count); break; case lir_shr: __ z_srag (d, l, count); break; case lir_ushr: __ z_srlg (d, l, count); break; default: ShouldNotReachHere(); } return; } if (dest->is_single_cpu()) { assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts"); count = count & 0x1F; // Java spec switch (code) { case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), count); break; case lir_shr: __ z_sra (dest->as_register(), count); break; case lir_ushr: __ z_srl (dest->as_register(), count); break; default: ShouldNotReachHere(); } } else if (dest->is_double_cpu()) { count = count & 63; // Java spec Register l = left->as_pointer_register(); Register d = dest->as_pointer_register(); switch (code) { case lir_shl: __ z_sllg (d, l, count); break; case lir_shr: __ z_srag (d, l, count); break; case lir_ushr: __ z_srlg (d, l, count); break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { if (op->init_check()) { // Make sure klass is initialized & doesn't have finalizer. const int state_offset = in_bytes(InstanceKlass::init_state_offset()); Register iklass = op->klass()->as_register(); add_debug_info_for_null_check_here(op->stub()->info()); if (Immediate::is_uimm12(state_offset)) { __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized); } else { __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized); } __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far. } __ allocate_object(op->obj()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), op->header_size(), op->object_size(), op->klass()->as_register(), *op->stub()->entry()); __ bind(*op->stub()->continuation()); __ verify_oop(op->obj()->as_register()); } void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { Register len = op->len()->as_register(); __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend if (UseSlowPath || (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) || (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) { __ z_brul(*op->stub()->entry()); } else { __ allocate_array(op->obj()->as_register(), op->len()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), arrayOopDesc::header_size(op->type()), type2aelembytes(op->type()), op->klass()->as_register(), *op->stub()->entry()); } __ bind(*op->stub()->continuation()); } void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data, Register recv, Register tmp1, Label* update_done) { uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { Label next_test; // See if the receiver is receiver[n]. Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); __ z_cg(recv, receiver_addr); __ z_brne(next_test); Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); __ branch_optimized(Assembler::bcondAlways, *update_done); __ bind(next_test); } // Didn't find receiver; find next empty slot and fill it in. for (i = 0; i < VirtualCallData::row_limit(); i++) { Label next_test; Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); __ z_ltg(Z_R0_scratch, recv_addr); __ z_brne(next_test); __ z_stg(recv, recv_addr); __ load_const_optimized(tmp1, DataLayout::counter_increment); __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo); __ branch_optimized(Assembler::bcondAlways, *update_done); __ bind(next_test); } } void LIR_Assembler::setup_md_access(ciMethod* method, int bci, ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { Unimplemented(); } void LIR_Assembler::store_parameter(Register r, int param_num) { assert(param_num >= 0, "invalid num"); int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame; assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); __ z_stg(r, offset_in_bytes, Z_SP); } void LIR_Assembler::store_parameter(jint c, int param_num) { assert(param_num >= 0, "invalid num"); int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame; assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true); } void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { // We always need a stub for the failure case. CodeStub* stub = op->stub(); Register obj = op->object()->as_register(); Register k_RInfo = op->tmp1()->as_register(); Register klass_RInfo = op->tmp2()->as_register(); Register dst = op->result_opr()->as_register(); Register Rtmp1 = Z_R1_scratch; ciKlass* k = op->klass(); assert(!op->tmp3()->is_valid(), "tmp3's not needed"); // Check if it needs to be profiled. ciMethodData* md = NULL; ciProfileData* data = NULL; if (op->should_profile()) { ciMethod* method = op->profiled_method(); assert(method != NULL, "Should have method"); int bci = op->profiled_bci(); md = method->method_data_or_null(); assert(md != NULL, "Sanity"); data = md->bci_to_data(bci); assert(data != NULL, "need data for type check"); assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); } // Temp operands do not overlap with inputs, if this is their last // use (end of range is exclusive), so a register conflict is possible. if (obj == k_RInfo) { k_RInfo = dst; } else if (obj == klass_RInfo) { klass_RInfo = dst; } assert_different_registers(obj, k_RInfo, klass_RInfo); if (op->should_profile()) { NearLabel not_null; __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null); // Object is null; update MDO and exit. Register mdo = klass_RInfo; metadata2reg(md->constant_encoding(), mdo); Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); __ or2mem_8(data_addr, header_bits); __ branch_optimized(Assembler::bcondAlways, *obj_is_null); __ bind(not_null); } else { __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null); } NearLabel profile_cast_failure, profile_cast_success; Label *failure_target = op->should_profile() ? &profile_cast_failure : failure; Label *success_target = op->should_profile() ? &profile_cast_success : success; // Patching may screw with our temporaries on sparc, // so let's do it before loading the class. if (k->is_loaded()) { metadata2reg(k->constant_encoding(), k_RInfo); } else { klass2reg_with_patching(k_RInfo, op->info_for_patch()); } assert(obj != k_RInfo, "must be different"); __ verify_oop(obj); // Get object class. // Not a safepoint as obj null check happens earlier. if (op->fast_check()) { if (UseCompressedClassPointers) { __ load_klass(klass_RInfo, obj); __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target); } else { __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); __ branch_optimized(Assembler::bcondNotEqual, *failure_target); } // Successful cast, fall through to profile or jump. } else { bool need_slow_path = !k->is_loaded() || ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset())); intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L; __ load_klass(klass_RInfo, obj); // Perform the fast part of the checking logic. __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, (need_slow_path ? success_target : NULL), failure_target, NULL, RegisterOrConstant(super_check_offset)); if (need_slow_path) { // Call out-of-line instance of __ check_klass_subtype_slow_path(...): address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id); store_parameter(klass_RInfo, 0); // sub store_parameter(k_RInfo, 1); // super emit_call_c(a); // Sets condition code 0 for match (2 otherwise). CHECK_BAILOUT(); __ branch_optimized(Assembler::bcondNotEqual, *failure_target); // Fall through to success case. } } if (op->should_profile()) { Register mdo = klass_RInfo, recv = k_RInfo; assert_different_registers(obj, mdo, recv); __ bind(profile_cast_success); metadata2reg(md->constant_encoding(), mdo); __ load_klass(recv, obj); type_profile_helper(mdo, md, data, recv, Rtmp1, success); __ branch_optimized(Assembler::bcondAlways, *success); __ bind(profile_cast_failure); metadata2reg(md->constant_encoding(), mdo); __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1); __ branch_optimized(Assembler::bcondAlways, *failure); } else { __ branch_optimized(Assembler::bcondAlways, *success); } } void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { LIR_Code code = op->code(); if (code == lir_store_check) { Register value = op->object()->as_register(); Register array = op->array()->as_register(); Register k_RInfo = op->tmp1()->as_register(); Register klass_RInfo = op->tmp2()->as_register(); Register Rtmp1 = Z_R1_scratch; CodeStub* stub = op->stub(); // Check if it needs to be profiled. ciMethodData* md = NULL; ciProfileData* data = NULL; assert_different_registers(value, k_RInfo, klass_RInfo); if (op->should_profile()) { ciMethod* method = op->profiled_method(); assert(method != NULL, "Should have method"); int bci = op->profiled_bci(); md = method->method_data_or_null(); assert(md != NULL, "Sanity"); data = md->bci_to_data(bci); assert(data != NULL, "need data for type check"); assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); } NearLabel profile_cast_success, profile_cast_failure, done; Label *success_target = op->should_profile() ? &profile_cast_success : &done; Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry(); if (op->should_profile()) { NearLabel not_null; __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null); // Object is null; update MDO and exit. Register mdo = klass_RInfo; metadata2reg(md->constant_encoding(), mdo); Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); __ or2mem_8(data_addr, header_bits); __ branch_optimized(Assembler::bcondAlways, done); __ bind(not_null); } else { __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done); } add_debug_info_for_null_check_here(op->info_for_exception()); __ load_klass(k_RInfo, array); __ load_klass(klass_RInfo, value); // Get instance klass (it's already uncompressed). __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); // Perform the fast part of the checking logic. __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); // Call out-of-line instance of __ check_klass_subtype_slow_path(...): address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id); store_parameter(klass_RInfo, 0); // sub store_parameter(k_RInfo, 1); // super emit_call_c(a); // Sets condition code 0 for match (2 otherwise). CHECK_BAILOUT(); __ branch_optimized(Assembler::bcondNotEqual, *failure_target); // Fall through to success case. if (op->should_profile()) { Register mdo = klass_RInfo, recv = k_RInfo; assert_different_registers(value, mdo, recv); __ bind(profile_cast_success); metadata2reg(md->constant_encoding(), mdo); __ load_klass(recv, value); type_profile_helper(mdo, md, data, recv, Rtmp1, &done); __ branch_optimized(Assembler::bcondAlways, done); __ bind(profile_cast_failure); metadata2reg(md->constant_encoding(), mdo); __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1); __ branch_optimized(Assembler::bcondAlways, *stub->entry()); } __ bind(done); } else { if (code == lir_checkcast) { Register obj = op->object()->as_register(); Register dst = op->result_opr()->as_register(); NearLabel success; emit_typecheck_helper(op, &success, op->stub()->entry(), &success); __ bind(success); __ lgr_if_needed(dst, obj); } else { if (code == lir_instanceof) { Register obj = op->object()->as_register(); Register dst = op->result_opr()->as_register(); NearLabel success, failure, done; emit_typecheck_helper(op, &success, &failure, &failure); __ bind(failure); __ clear_reg(dst); __ branch_optimized(Assembler::bcondAlways, done); __ bind(success); __ load_const_optimized(dst, 1); __ bind(done); } else { ShouldNotReachHere(); } } } } void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { Register addr = op->addr()->as_pointer_register(); Register t1_cmp = Z_R1_scratch; if (op->code() == lir_cas_long) { assert(VM_Version::supports_cx8(), "wrong machine"); Register cmp_value_lo = op->cmp_value()->as_register_lo(); Register new_value_lo = op->new_value()->as_register_lo(); __ z_lgr(t1_cmp, cmp_value_lo); // Perform the compare and swap operation. __ z_csg(t1_cmp, new_value_lo, 0, addr); } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { Register cmp_value = op->cmp_value()->as_register(); Register new_value = op->new_value()->as_register(); if (op->code() == lir_cas_obj) { if (UseCompressedOops) { t1_cmp = op->tmp1()->as_register(); Register t2_new = op->tmp2()->as_register(); assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new); __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/); __ oop_encoder(t2_new, new_value, true /*maybe null*/); __ z_cs(t1_cmp, t2_new, 0, addr); } else { __ z_lgr(t1_cmp, cmp_value); __ z_csg(t1_cmp, new_value, 0, addr); } } else { __ z_lr(t1_cmp, cmp_value); __ z_cs(t1_cmp, new_value, 0, addr); } } else { ShouldNotReachHere(); // new lir_cas_?? } } void LIR_Assembler::set_24bit_FPU() { ShouldNotCallThis(); // x86 only } void LIR_Assembler::reset_FPU() { ShouldNotCallThis(); // x86 only } void LIR_Assembler::breakpoint() { Unimplemented(); // __ breakpoint_trap(); } void LIR_Assembler::push(LIR_Opr opr) { ShouldNotCallThis(); // unused } void LIR_Assembler::pop(LIR_Opr opr) { ShouldNotCallThis(); // unused } void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { Address addr = frame_map()->address_for_monitor_lock(monitor_no); __ add2reg(dst_opr->as_register(), addr.disp(), addr.base()); } void LIR_Assembler::emit_lock(LIR_OpLock* op) { Register obj = op->obj_opr()->as_register(); // May not be an oop. Register hdr = op->hdr_opr()->as_register(); Register lock = op->lock_opr()->as_register(); if (!UseFastLocking) { __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry()); } else if (op->code() == lir_lock) { assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); // Add debug info for NullPointerException only if one is possible. if (op->info() != NULL) { add_debug_info_for_null_check_here(op->info()); } __ lock_object(hdr, obj, lock, *op->stub()->entry()); // done } else if (op->code() == lir_unlock) { assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); __ unlock_object(hdr, obj, lock, *op->stub()->entry()); } else { ShouldNotReachHere(); } __ bind(*op->stub()->continuation()); } void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { ciMethod* method = op->profiled_method(); int bci = op->profiled_bci(); ciMethod* callee = op->profiled_callee(); // Update counter for all call types. ciMethodData* md = method->method_data_or_null(); assert(md != NULL, "Sanity"); ciProfileData* data = md->bci_to_data(bci); assert(data->is_CounterData(), "need CounterData for calls"); assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); Register mdo = op->mdo()->as_register(); assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); Register tmp1 = op->tmp1()->as_register_lo(); metadata2reg(md->constant_encoding(), mdo); Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); Bytecodes::Code bc = method->java_code_at_bci(bci); const bool callee_is_static = callee->is_loaded() && callee->is_static(); // Perform additional virtual call profiling for invokevirtual and // invokeinterface bytecodes. if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) && !callee_is_static && // Required for optimized MH invokes. C1ProfileVirtualCalls) { assert(op->recv()->is_single_cpu(), "recv must be allocated"); Register recv = op->recv()->as_register(); assert_different_registers(mdo, tmp1, recv); assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); ciKlass* known_klass = op->known_holder(); if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { // We know the type that will be seen at this call site; we can // statically update the MethodData* rather than needing to do // dynamic tests on the receiver type. // NOTE: we should probably put a lock around this search to // avoid collisions by concurrent compilations. ciVirtualCallData* vc_data = (ciVirtualCallData*) data; uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (known_klass->equals(receiver)) { Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); return; } } // Receiver type not found in profile data. Select an empty slot. // Note that this is less efficient than it should be because it // always does a write to the receiver part of the // VirtualCallData rather than just the first time. for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (receiver == NULL) { Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); metadata2reg(known_klass->constant_encoding(), tmp1); __ z_stg(tmp1, recv_addr); Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); return; } } } else { __ load_klass(recv, recv); NearLabel update_done; type_profile_helper(mdo, md, data, recv, tmp1, &update_done); // Receiver did not match any saved receiver and there is no empty row for it. // Increment total counter to indicate polymorphic case. __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1); __ bind(update_done); } } else { // static call __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1); } } void LIR_Assembler::align_backward_branch_target() { __ align(OptoLoopAlignment); } void LIR_Assembler::emit_delay(LIR_OpDelay* op) { ShouldNotCallThis(); // There are no delay slots on ZARCH_64. } void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) { assert(left->is_register(), "can only handle registers"); if (left->is_single_cpu()) { __ z_lcr(dest->as_register(), left->as_register()); } else if (left->is_single_fpu()) { __ z_lcebr(dest->as_float_reg(), left->as_float_reg()); } else if (left->is_double_fpu()) { __ z_lcdbr(dest->as_double_reg(), left->as_double_reg()); } else { assert(left->is_double_cpu(), "Must be a long"); __ z_lcgr(dest->as_register_lo(), left->as_register_lo()); } } void LIR_Assembler::fxch(int i) { ShouldNotCallThis(); // x86 only } void LIR_Assembler::fld(int i) { ShouldNotCallThis(); // x86 only } void LIR_Assembler::ffree(int i) { ShouldNotCallThis(); // x86 only } void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { assert(!tmp->is_valid(), "don't need temporary"); emit_call_c(dest); CHECK_BAILOUT(); if (info != NULL) { add_call_info_here(info); } } void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { ShouldNotCallThis(); // not needed on ZARCH_64 } void LIR_Assembler::membar() { __ z_fence(); } void LIR_Assembler::membar_acquire() { __ z_acquire(); } void LIR_Assembler::membar_release() { __ z_release(); } void LIR_Assembler::membar_loadload() { __ z_acquire(); } void LIR_Assembler::membar_storestore() { __ z_release(); } void LIR_Assembler::membar_loadstore() { __ z_acquire(); } void LIR_Assembler::membar_storeload() { __ z_fence(); } void LIR_Assembler::on_spin_wait() { Unimplemented(); } void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) { LIR_Address* addr = addr_opr->as_address_ptr(); assert(addr->scale() == LIR_Address::times_1, "scaling unsupported"); __ load_address(dest->as_pointer_register(), as_Address(addr)); } void LIR_Assembler::get_thread(LIR_Opr result_reg) { ShouldNotCallThis(); // unused } #ifdef ASSERT // Emit run-time assertion. void LIR_Assembler::emit_assert(LIR_OpAssert* op) { Unimplemented(); } #endif void LIR_Assembler::peephole(LIR_List*) { // Do nothing for now. } void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { assert(code == lir_xadd, "lir_xchg not supported"); Address src_addr = as_Address(src->as_address_ptr()); Register base = src_addr.base(); intptr_t disp = src_addr.disp(); if (src_addr.index()->is_valid()) { // LAA and LAAG do not support index register. __ load_address(Z_R1_scratch, src_addr); base = Z_R1_scratch; disp = 0; } if (data->type() == T_INT) { __ z_laa(dest->as_register(), data->as_register(), disp, base); } else if (data->type() == T_LONG) { assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base); } else { ShouldNotReachHere(); } } void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { Register obj = op->obj()->as_register(); Register tmp1 = op->tmp()->as_pointer_register(); Register tmp2 = Z_R1_scratch; Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); ciKlass* exact_klass = op->exact_klass(); intptr_t current_klass = op->current_klass(); bool not_null = op->not_null(); bool no_conflict = op->no_conflict(); Label update, next, none, null_seen, init_klass; bool do_null = !not_null; bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; assert(do_null || do_update, "why are we here?"); assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); __ verify_oop(obj); if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) { __ z_ltgr(tmp1, obj); } if (do_null) { __ z_brnz(update); if (!TypeEntries::was_null_seen(current_klass)) { __ z_lg(tmp1, mdo_addr); __ z_oill(tmp1, TypeEntries::null_seen); __ z_stg(tmp1, mdo_addr); } if (do_update) { __ z_bru(next); } } else { __ asm_assert_ne("unexpect null obj", __LINE__); } __ bind(update); if (do_update) { #ifdef ASSERT if (exact_klass != NULL) { __ load_klass(tmp1, tmp1); metadata2reg(exact_klass->constant_encoding(), tmp2); __ z_cgr(tmp1, tmp2); __ asm_assert_eq("exact klass and actual klass differ", __LINE__); } #endif Label do_update; __ z_lg(tmp2, mdo_addr); if (!no_conflict) { if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { if (exact_klass != NULL) { metadata2reg(exact_klass->constant_encoding(), tmp1); } else { __ load_klass(tmp1, tmp1); } // Klass seen before: nothing to do (regardless of unknown bit). __ z_lgr(Z_R0_scratch, tmp2); assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF); __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next); // Already unknown: Nothing to do anymore. __ z_tmll(tmp2, TypeEntries::type_unknown); __ z_brc(Assembler::bcondAllOne, next); if (TypeEntries::is_type_none(current_klass)) { __ z_lgr(Z_R0_scratch, tmp2); assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF); __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass); } } else { assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); // Already unknown: Nothing to do anymore. __ z_tmll(tmp2, TypeEntries::type_unknown); __ z_brc(Assembler::bcondAllOne, next); } // Different than before. Cannot keep accurate profile. __ z_oill(tmp2, TypeEntries::type_unknown); __ z_bru(do_update); } else { // There's a single possible klass at this profile point. assert(exact_klass != NULL, "should be"); if (TypeEntries::is_type_none(current_klass)) { metadata2reg(exact_klass->constant_encoding(), tmp1); __ z_lgr(Z_R0_scratch, tmp2); assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF); __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next); #ifdef ASSERT { Label ok; __ z_lgr(Z_R0_scratch, tmp2); assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF); __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok); __ stop("unexpected profiling mismatch"); __ bind(ok); } #endif } else { assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); // Already unknown: Nothing to do anymore. __ z_tmll(tmp2, TypeEntries::type_unknown); __ z_brc(Assembler::bcondAllOne, next); __ z_oill(tmp2, TypeEntries::type_unknown); __ z_bru(do_update); } } __ bind(init_klass); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). __ z_ogr(tmp2, tmp1); __ bind(do_update); __ z_stg(tmp2, mdo_addr); __ bind(next); } } void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { assert(op->crc()->is_single_cpu(), "crc must be register"); assert(op->val()->is_single_cpu(), "byte value must be register"); assert(op->result_opr()->is_single_cpu(), "result must be register"); Register crc = op->crc()->as_register(); Register val = op->val()->as_register(); Register res = op->result_opr()->as_register(); assert_different_registers(val, crc, res); __ load_const_optimized(res, StubRoutines::crc_table_addr()); __ kernel_crc32_singleByteReg(crc, val, res, true); __ z_lgfr(res, crc); } #undef __