1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "registerSaver_s390.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "nativeInst_s390.hpp"
  32 #include "oops/instanceOop.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/frame.inline.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubCodeGenerator.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 
  43 // Declaration and definition of StubGenerator (no .hpp file).
  44 // For a more detailed description of the stub routine structure
  45 // see the comment in stubRoutines.hpp.
  46 
  47 #ifdef PRODUCT
  48 #define __ _masm->
  49 #else
  50 #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
  51 #endif
  52 
  53 #define BLOCK_COMMENT(str) if (PrintAssembly) __ block_comment(str)
  54 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  55 
  56 // -----------------------------------------------------------------------
  57 // Stub Code definitions
  58 
  59 class StubGenerator: public StubCodeGenerator {
  60  private:
  61 
  62   //----------------------------------------------------------------------
  63   // Call stubs are used to call Java from C.
  64 
  65   //
  66   // Arguments:
  67   //
  68   //   R2        - call wrapper address     : address
  69   //   R3        - result                   : intptr_t*
  70   //   R4        - result type              : BasicType
  71   //   R5        - method                   : method
  72   //   R6        - frame mgr entry point    : address
  73   //   [SP+160]  - parameter block          : intptr_t*
  74   //   [SP+172]  - parameter count in words : int
  75   //   [SP+176]  - thread                   : Thread*
  76   //
  77   address generate_call_stub(address& return_address) {
  78     // Set up a new C frame, copy Java arguments, call frame manager
  79     // or native_entry, and process result.
  80 
  81     StubCodeMark mark(this, "StubRoutines", "call_stub");
  82     address start = __ pc();
  83 
  84     Register r_arg_call_wrapper_addr   = Z_ARG1;
  85     Register r_arg_result_addr         = Z_ARG2;
  86     Register r_arg_result_type         = Z_ARG3;
  87     Register r_arg_method              = Z_ARG4;
  88     Register r_arg_entry               = Z_ARG5;
  89 
  90     // offsets to fp
  91     #define d_arg_thread 176
  92     #define d_arg_argument_addr 160
  93     #define d_arg_argument_count 168+4
  94 
  95     Register r_entryframe_fp           = Z_tmp_1;
  96     Register r_top_of_arguments_addr   = Z_ARG4;
  97     Register r_new_arg_entry = Z_R14;
  98 
  99     // macros for frame offsets
 100     #define call_wrapper_address_offset \
 101                _z_entry_frame_locals_neg(call_wrapper_address)
 102     #define result_address_offset \
 103               _z_entry_frame_locals_neg(result_address)
 104     #define result_type_offset \
 105               _z_entry_frame_locals_neg(result_type)
 106     #define arguments_tos_address_offset \
 107               _z_entry_frame_locals_neg(arguments_tos_address)
 108 
 109     {
 110       //
 111       // STACK on entry to call_stub:
 112       //
 113       //     F1      [C_FRAME]
 114       //            ...
 115       //
 116 
 117       Register r_argument_addr              = Z_tmp_3;
 118       Register r_argumentcopy_addr          = Z_tmp_4;
 119       Register r_argument_size_in_bytes     = Z_ARG5;
 120       Register r_frame_size                 = Z_R1;
 121 
 122       Label arguments_copied;
 123 
 124       // Save non-volatile registers to ABI of caller frame.
 125       BLOCK_COMMENT("save registers, push frame {");
 126       __ z_stmg(Z_R6, Z_R14, 16, Z_SP);
 127       __ z_std(Z_F8, 96, Z_SP);
 128       __ z_std(Z_F9, 104, Z_SP);
 129       __ z_std(Z_F10, 112, Z_SP);
 130       __ z_std(Z_F11, 120, Z_SP);
 131       __ z_std(Z_F12, 128, Z_SP);
 132       __ z_std(Z_F13, 136, Z_SP);
 133       __ z_std(Z_F14, 144, Z_SP);
 134       __ z_std(Z_F15, 152, Z_SP);
 135 
 136       //
 137       // Push ENTRY_FRAME including arguments:
 138       //
 139       //     F0      [TOP_IJAVA_FRAME_ABI]
 140       //             [outgoing Java arguments]
 141       //             [ENTRY_FRAME_LOCALS]
 142       //     F1      [C_FRAME]
 143       //             ...
 144       //
 145 
 146       // Calculate new frame size and push frame.
 147       #define abi_plus_locals_size \
 148                 (frame::z_top_ijava_frame_abi_size + frame::z_entry_frame_locals_size)
 149       if (abi_plus_locals_size % BytesPerWord == 0) {
 150         // Preload constant part of frame size.
 151         __ load_const_optimized(r_frame_size, -abi_plus_locals_size/BytesPerWord);
 152         // Keep copy of our frame pointer (caller's SP).
 153         __ z_lgr(r_entryframe_fp, Z_SP);
 154         // Add space required by arguments to frame size.
 155         __ z_slgf(r_frame_size, d_arg_argument_count, Z_R0, Z_SP);
 156         // Move Z_ARG5 early, it will be used as a local.
 157         __ z_lgr(r_new_arg_entry, r_arg_entry);
 158         // Convert frame size from words to bytes.
 159         __ z_sllg(r_frame_size, r_frame_size, LogBytesPerWord);
 160         __ push_frame(r_frame_size, r_entryframe_fp,
 161                       false/*don't copy SP*/, true /*frame size sign inverted*/);
 162       } else {
 163         guarantee(false, "frame sizes should be multiples of word size (BytesPerWord)");
 164       }
 165       BLOCK_COMMENT("} save, push");
 166 
 167       // Load argument registers for call.
 168       BLOCK_COMMENT("prepare/copy arguments {");
 169       __ z_lgr(Z_method, r_arg_method);
 170       __ z_lg(Z_thread, d_arg_thread, r_entryframe_fp);
 171 
 172       // Calculate top_of_arguments_addr which will be tos (not prepushed) later.
 173       // Wimply use SP + frame::top_ijava_frame_size.
 174       __ add2reg(r_top_of_arguments_addr,
 175                  frame::z_top_ijava_frame_abi_size - BytesPerWord, Z_SP);
 176 
 177       // Initialize call_stub locals (step 1).
 178       if ((call_wrapper_address_offset + BytesPerWord == result_address_offset) &&
 179           (result_address_offset + BytesPerWord == result_type_offset)          &&
 180           (result_type_offset + BytesPerWord == arguments_tos_address_offset)) {
 181 
 182         __ z_stmg(r_arg_call_wrapper_addr, r_top_of_arguments_addr,
 183                   call_wrapper_address_offset, r_entryframe_fp);
 184       } else {
 185         __ z_stg(r_arg_call_wrapper_addr,
 186                  call_wrapper_address_offset, r_entryframe_fp);
 187         __ z_stg(r_arg_result_addr,
 188                  result_address_offset, r_entryframe_fp);
 189         __ z_stg(r_arg_result_type,
 190                  result_type_offset, r_entryframe_fp);
 191         __ z_stg(r_top_of_arguments_addr,
 192                  arguments_tos_address_offset, r_entryframe_fp);
 193       }
 194 
 195       // Copy Java arguments.
 196 
 197       // Any arguments to copy?
 198       __ load_and_test_int2long(Z_R1, Address(r_entryframe_fp, d_arg_argument_count));
 199       __ z_bre(arguments_copied);
 200 
 201       // Prepare loop and copy arguments in reverse order.
 202       {
 203         // Calculate argument size in bytes.
 204         __ z_sllg(r_argument_size_in_bytes, Z_R1, LogBytesPerWord);
 205 
 206         // Get addr of first incoming Java argument.
 207         __ z_lg(r_argument_addr, d_arg_argument_addr, r_entryframe_fp);
 208 
 209         // Let r_argumentcopy_addr point to last outgoing Java argument.
 210         __ add2reg(r_argumentcopy_addr, BytesPerWord, r_top_of_arguments_addr); // = Z_SP+160 effectively.
 211 
 212         // Let r_argument_addr point to last incoming Java argument.
 213         __ add2reg_with_index(r_argument_addr, -BytesPerWord,
 214                               r_argument_size_in_bytes, r_argument_addr);
 215 
 216         // Now loop while Z_R1 > 0 and copy arguments.
 217         {
 218           Label next_argument;
 219           __ bind(next_argument);
 220           // Mem-mem move.
 221           __ z_mvc(0, BytesPerWord-1, r_argumentcopy_addr, 0, r_argument_addr);
 222           __ add2reg(r_argument_addr,    -BytesPerWord);
 223           __ add2reg(r_argumentcopy_addr, BytesPerWord);
 224           __ z_brct(Z_R1, next_argument);
 225         }
 226       }  // End of argument copy loop.
 227 
 228       __ bind(arguments_copied);
 229     }
 230     BLOCK_COMMENT("} arguments");
 231 
 232     BLOCK_COMMENT("call {");
 233     {
 234       // Call frame manager or native entry.
 235 
 236       //
 237       // Register state on entry to frame manager / native entry:
 238       //
 239       //   Z_ARG1 = r_top_of_arguments_addr  - intptr_t *sender tos (prepushed)
 240       //                                       Lesp = (SP) + copied_arguments_offset - 8
 241       //   Z_method                          - method
 242       //   Z_thread                          - JavaThread*
 243       //
 244 
 245       // Here, the usual SP is the initial_caller_sp.
 246       __ z_lgr(Z_R10, Z_SP);
 247 
 248       // Z_esp points to the slot below the last argument.
 249       __ z_lgr(Z_esp, r_top_of_arguments_addr);
 250 
 251       //
 252       // Stack on entry to frame manager / native entry:
 253       //
 254       //     F0      [TOP_IJAVA_FRAME_ABI]
 255       //             [outgoing Java arguments]
 256       //             [ENTRY_FRAME_LOCALS]
 257       //     F1      [C_FRAME]
 258       //             ...
 259       //
 260 
 261       // Do a light-weight C-call here, r_new_arg_entry holds the address
 262       // of the interpreter entry point (frame manager or native entry)
 263       // and save runtime-value of return_pc in return_address
 264       // (call by reference argument).
 265       return_address = __ call_stub(r_new_arg_entry);
 266     }
 267     BLOCK_COMMENT("} call");
 268 
 269     {
 270       BLOCK_COMMENT("restore registers {");
 271       // Returned from frame manager or native entry.
 272       // Now pop frame, process result, and return to caller.
 273 
 274       //
 275       // Stack on exit from frame manager / native entry:
 276       //
 277       //     F0      [ABI]
 278       //             ...
 279       //             [ENTRY_FRAME_LOCALS]
 280       //     F1      [C_FRAME]
 281       //             ...
 282       //
 283       // Just pop the topmost frame ...
 284       //
 285 
 286       Label ret_is_object;
 287       Label ret_is_long;
 288       Label ret_is_float;
 289       Label ret_is_double;
 290 
 291       // Restore frame pointer.
 292       __ z_lg(r_entryframe_fp, _z_abi(callers_sp), Z_SP);
 293       // Pop frame. Done here to minimize stalls.
 294       __ z_lg(Z_SP, _z_abi(callers_sp), Z_SP);
 295 
 296       // Reload some volatile registers which we've spilled before the call
 297       // to frame manager / native entry.
 298       // Access all locals via frame pointer, because we know nothing about
 299       // the topmost frame's size.
 300       __ z_lg(r_arg_result_addr, result_address_offset, r_entryframe_fp);
 301       __ z_lg(r_arg_result_type, result_type_offset, r_entryframe_fp);
 302 
 303       // Restore non-volatiles.
 304       __ z_lmg(Z_R6, Z_R14, 16, Z_SP);
 305       __ z_ld(Z_F8, 96, Z_SP);
 306       __ z_ld(Z_F9, 104, Z_SP);
 307       __ z_ld(Z_F10, 112, Z_SP);
 308       __ z_ld(Z_F11, 120, Z_SP);
 309       __ z_ld(Z_F12, 128, Z_SP);
 310       __ z_ld(Z_F13, 136, Z_SP);
 311       __ z_ld(Z_F14, 144, Z_SP);
 312       __ z_ld(Z_F15, 152, Z_SP);
 313       BLOCK_COMMENT("} restore");
 314 
 315       //
 316       // Stack on exit from call_stub:
 317       //
 318       //     0       [C_FRAME]
 319       //             ...
 320       //
 321       // No call_stub frames left.
 322       //
 323 
 324       // All non-volatiles have been restored at this point!!
 325 
 326       //------------------------------------------------------------------------
 327       // The following code makes some assumptions on the T_<type> enum values.
 328       // The enum is defined in globalDefinitions.hpp.
 329       // The validity of the assumptions is tested as far as possible.
 330       //   The assigned values should not be shuffled
 331       //   T_BOOLEAN==4    - lowest used enum value
 332       //   T_NARROWOOP==16 - largest used enum value
 333       //------------------------------------------------------------------------
 334       BLOCK_COMMENT("process result {");
 335       Label firstHandler;
 336       int   handlerLen= 8;
 337 #ifdef ASSERT
 338       char  assertMsg[] = "check BasicType definition in globalDefinitions.hpp";
 339       __ z_chi(r_arg_result_type, T_BOOLEAN);
 340       __ asm_assert_low(assertMsg, 0x0234);
 341       __ z_chi(r_arg_result_type, T_NARROWOOP);
 342       __ asm_assert_high(assertMsg, 0x0235);
 343 #endif
 344       __ add2reg(r_arg_result_type, -T_BOOLEAN);          // Remove offset.
 345       __ z_larl(Z_R1, firstHandler);                      // location of first handler
 346       __ z_sllg(r_arg_result_type, r_arg_result_type, 3); // Each handler is 8 bytes long.
 347       __ z_bc(MacroAssembler::bcondAlways, 0, r_arg_result_type, Z_R1);
 348 
 349       __ align(handlerLen);
 350       __ bind(firstHandler);
 351       // T_BOOLEAN:
 352         guarantee(T_BOOLEAN == 4, "check BasicType definition in globalDefinitions.hpp");
 353         __ z_st(Z_RET, 0, r_arg_result_addr);
 354         __ z_br(Z_R14); // Return to caller.
 355         __ align(handlerLen);
 356       // T_CHAR:
 357         guarantee(T_CHAR == T_BOOLEAN+1, "check BasicType definition in globalDefinitions.hpp");
 358         __ z_st(Z_RET, 0, r_arg_result_addr);
 359         __ z_br(Z_R14); // Return to caller.
 360         __ align(handlerLen);
 361       // T_FLOAT:
 362         guarantee(T_FLOAT == T_CHAR+1, "check BasicType definition in globalDefinitions.hpp");
 363         __ z_ste(Z_FRET, 0, r_arg_result_addr);
 364         __ z_br(Z_R14); // Return to caller.
 365         __ align(handlerLen);
 366       // T_DOUBLE:
 367         guarantee(T_DOUBLE == T_FLOAT+1, "check BasicType definition in globalDefinitions.hpp");
 368         __ z_std(Z_FRET, 0, r_arg_result_addr);
 369         __ z_br(Z_R14); // Return to caller.
 370         __ align(handlerLen);
 371       // T_BYTE:
 372         guarantee(T_BYTE == T_DOUBLE+1, "check BasicType definition in globalDefinitions.hpp");
 373         __ z_st(Z_RET, 0, r_arg_result_addr);
 374         __ z_br(Z_R14); // Return to caller.
 375         __ align(handlerLen);
 376       // T_SHORT:
 377         guarantee(T_SHORT == T_BYTE+1, "check BasicType definition in globalDefinitions.hpp");
 378         __ z_st(Z_RET, 0, r_arg_result_addr);
 379         __ z_br(Z_R14); // Return to caller.
 380         __ align(handlerLen);
 381       // T_INT:
 382         guarantee(T_INT == T_SHORT+1, "check BasicType definition in globalDefinitions.hpp");
 383         __ z_st(Z_RET, 0, r_arg_result_addr);
 384         __ z_br(Z_R14); // Return to caller.
 385         __ align(handlerLen);
 386       // T_LONG:
 387         guarantee(T_LONG == T_INT+1, "check BasicType definition in globalDefinitions.hpp");
 388         __ z_stg(Z_RET, 0, r_arg_result_addr);
 389         __ z_br(Z_R14); // Return to caller.
 390         __ align(handlerLen);
 391       // T_OBJECT:
 392         guarantee(T_OBJECT == T_LONG+1, "check BasicType definition in globalDefinitions.hpp");
 393         __ z_stg(Z_RET, 0, r_arg_result_addr);
 394         __ z_br(Z_R14); // Return to caller.
 395         __ align(handlerLen);
 396       // T_ARRAY:
 397         guarantee(T_ARRAY == T_OBJECT+1, "check BasicType definition in globalDefinitions.hpp");
 398         __ z_stg(Z_RET, 0, r_arg_result_addr);
 399         __ z_br(Z_R14); // Return to caller.
 400         __ align(handlerLen);
 401       // T_VOID:
 402         guarantee(T_VOID == T_ARRAY+1, "check BasicType definition in globalDefinitions.hpp");
 403         __ z_stg(Z_RET, 0, r_arg_result_addr);
 404         __ z_br(Z_R14); // Return to caller.
 405         __ align(handlerLen);
 406       // T_ADDRESS:
 407         guarantee(T_ADDRESS == T_VOID+1, "check BasicType definition in globalDefinitions.hpp");
 408         __ z_stg(Z_RET, 0, r_arg_result_addr);
 409         __ z_br(Z_R14); // Return to caller.
 410         __ align(handlerLen);
 411       // T_NARROWOOP:
 412         guarantee(T_NARROWOOP == T_ADDRESS+1, "check BasicType definition in globalDefinitions.hpp");
 413         __ z_st(Z_RET, 0, r_arg_result_addr);
 414         __ z_br(Z_R14); // Return to caller.
 415         __ align(handlerLen);
 416       BLOCK_COMMENT("} process result");
 417     }
 418     return start;
 419   }
 420 
 421   // Return point for a Java call if there's an exception thrown in
 422   // Java code. The exception is caught and transformed into a
 423   // pending exception stored in JavaThread that can be tested from
 424   // within the VM.
 425   address generate_catch_exception() {
 426     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 427 
 428     address start = __ pc();
 429 
 430     //
 431     // Registers alive
 432     //
 433     //   Z_thread
 434     //   Z_ARG1 - address of pending exception
 435     //   Z_ARG2 - return address in call stub
 436     //
 437 
 438     const Register exception_file = Z_R0;
 439     const Register exception_line = Z_R1;
 440 
 441     __ load_const_optimized(exception_file, (void*)__FILE__);
 442     __ load_const_optimized(exception_line, (void*)__LINE__);
 443 
 444     __ z_stg(Z_ARG1, thread_(pending_exception));
 445     // Store into `char *'.
 446     __ z_stg(exception_file, thread_(exception_file));
 447     // Store into `int'.
 448     __ z_st(exception_line, thread_(exception_line));
 449 
 450     // Complete return to VM.
 451     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
 452 
 453     // Continue in call stub.
 454     __ z_br(Z_ARG2);
 455 
 456     return start;
 457   }
 458 
 459   // Continuation point for runtime calls returning with a pending
 460   // exception. The pending exception check happened in the runtime
 461   // or native call stub. The pending exception in Thread is
 462   // converted into a Java-level exception.
 463   //
 464   // Read:
 465   //   Z_R14: pc the runtime library callee wants to return to.
 466   //   Since the exception occurred in the callee, the return pc
 467   //   from the point of view of Java is the exception pc.
 468   //
 469   // Invalidate:
 470   //   Volatile registers (except below).
 471   //
 472   // Update:
 473   //   Z_ARG1: exception
 474   //   (Z_R14 is unchanged and is live out).
 475   //
 476   address generate_forward_exception() {
 477     StubCodeMark mark(this, "StubRoutines", "forward_exception");
 478     address start = __ pc();
 479 
 480     #define pending_exception_offset in_bytes(Thread::pending_exception_offset())
 481 #ifdef ASSERT
 482     // Get pending exception oop.
 483     __ z_lg(Z_ARG1, pending_exception_offset, Z_thread);
 484 
 485     // Make sure that this code is only executed if there is a pending exception.
 486     {
 487       Label L;
 488       __ z_ltgr(Z_ARG1, Z_ARG1);
 489       __ z_brne(L);
 490       __ stop("StubRoutines::forward exception: no pending exception (1)");
 491       __ bind(L);
 492     }
 493 
 494     __ verify_oop(Z_ARG1, "StubRoutines::forward exception: not an oop");
 495 #endif
 496 
 497     __ z_lgr(Z_ARG2, Z_R14); // Copy exception pc into Z_ARG2.
 498     __ save_return_pc();
 499     __ push_frame_abi160(0);
 500     // Find exception handler.
 501     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
 502                     Z_thread,
 503                     Z_ARG2);
 504     // Copy handler's address.
 505     __ z_lgr(Z_R1, Z_RET);
 506     __ pop_frame();
 507     __ restore_return_pc();
 508 
 509     // Set up the arguments for the exception handler:
 510     // - Z_ARG1: exception oop
 511     // - Z_ARG2: exception pc
 512 
 513     // Load pending exception oop.
 514     __ z_lg(Z_ARG1, pending_exception_offset, Z_thread);
 515 
 516     // The exception pc is the return address in the caller,
 517     // must load it into Z_ARG2
 518     __ z_lgr(Z_ARG2, Z_R14);
 519 
 520 #ifdef ASSERT
 521     // Make sure exception is set.
 522     { Label L;
 523       __ z_ltgr(Z_ARG1, Z_ARG1);
 524       __ z_brne(L);
 525       __ stop("StubRoutines::forward exception: no pending exception (2)");
 526       __ bind(L);
 527     }
 528 #endif
 529     // Clear the pending exception.
 530     __ clear_mem(Address(Z_thread, pending_exception_offset), sizeof(void *));
 531     // Jump to exception handler
 532     __ z_br(Z_R1 /*handler address*/);
 533 
 534     return start;
 535 
 536     #undef pending_exception_offset
 537   }
 538 
 539   // Continuation point for throwing of implicit exceptions that are
 540   // not handled in the current activation. Fabricates an exception
 541   // oop and initiates normal exception dispatching in this
 542   // frame. Only callee-saved registers are preserved (through the
 543   // normal RegisterMap handling). If the compiler
 544   // needs all registers to be preserved between the fault point and
 545   // the exception handler then it must assume responsibility for that
 546   // in AbstractCompiler::continuation_for_implicit_null_exception or
 547   // continuation_for_implicit_division_by_zero_exception. All other
 548   // implicit exceptions (e.g., NullPointerException or
 549   // AbstractMethodError on entry) are either at call sites or
 550   // otherwise assume that stack unwinding will be initiated, so
 551   // caller saved registers were assumed volatile in the compiler.
 552 
 553   // Note that we generate only this stub into a RuntimeStub, because
 554   // it needs to be properly traversed and ignored during GC, so we
 555   // change the meaning of the "__" macro within this method.
 556 
 557   // Note: the routine set_pc_not_at_call_for_caller in
 558   // SharedRuntime.cpp requires that this code be generated into a
 559   // RuntimeStub.
 560 #undef __
 561 #define __ masm->
 562 
 563   address generate_throw_exception(const char* name, address runtime_entry,
 564                                    bool restore_saved_exception_pc,
 565                                    Register arg1 = noreg, Register arg2 = noreg) {
 566     int insts_size = 256;
 567     int locs_size  = 0;
 568     CodeBuffer      code(name, insts_size, locs_size);
 569     MacroAssembler* masm = new MacroAssembler(&code);
 570     int framesize_in_bytes;
 571     address start = __ pc();
 572 
 573     __ save_return_pc();
 574     framesize_in_bytes = __ push_frame_abi160(0);
 575 
 576     address frame_complete_pc = __ pc();
 577     if (restore_saved_exception_pc) {
 578       __ unimplemented("StubGenerator::throw_exception", 74);
 579     }
 580 
 581     // Note that we always have a runtime stub frame on the top of stack at this point.
 582     __ get_PC(Z_R1);
 583     __ set_last_Java_frame(/*sp*/Z_SP, /*pc*/Z_R1);
 584 
 585     // Do the call.
 586     BLOCK_COMMENT("call runtime_entry");
 587     __ call_VM_leaf(runtime_entry, Z_thread, arg1, arg2);
 588 
 589     __ reset_last_Java_frame();
 590 
 591 #ifdef ASSERT
 592     // Make sure that this code is only executed if there is a pending exception.
 593     { Label L;
 594       __ z_lg(Z_R0,
 595                 in_bytes(Thread::pending_exception_offset()),
 596                 Z_thread);
 597       __ z_ltgr(Z_R0, Z_R0);
 598       __ z_brne(L);
 599       __ stop("StubRoutines::throw_exception: no pending exception");
 600       __ bind(L);
 601     }
 602 #endif
 603 
 604     __ pop_frame();
 605     __ restore_return_pc();
 606 
 607     __ load_const_optimized(Z_R1, StubRoutines::forward_exception_entry());
 608     __ z_br(Z_R1);
 609 
 610     RuntimeStub* stub =
 611       RuntimeStub::new_runtime_stub(name, &code,
 612                                     frame_complete_pc - start,
 613                                     framesize_in_bytes/wordSize,
 614                                     NULL /*oop_maps*/, false);
 615 
 616     return stub->entry_point();
 617   }
 618 
 619 #undef __
 620 #ifdef PRODUCT
 621 #define __ _masm->
 622 #else
 623 #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
 624 #endif
 625 
 626   // Support for uint StubRoutine::zarch::partial_subtype_check(Klass
 627   // sub, Klass super);
 628   //
 629   // Arguments:
 630   //   ret  : Z_RET, returned
 631   //   sub  : Z_ARG2, argument, not changed
 632   //   super: Z_ARG3, argument, not changed
 633   //
 634   //   raddr: Z_R14, blown by call
 635   //
 636   address generate_partial_subtype_check() {
 637     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
 638     Label miss;
 639 
 640     address start = __ pc();
 641 
 642     const Register Rsubklass   = Z_ARG2; // subklass
 643     const Register Rsuperklass = Z_ARG3; // superklass
 644 
 645     // No args, but tmp registers that are killed.
 646     const Register Rlength     = Z_ARG4; // cache array length
 647     const Register Rarray_ptr  = Z_ARG5; // Current value from cache array.
 648 
 649     if (UseCompressedOops) {
 650       assert(Universe::heap() != NULL, "java heap must be initialized to generate partial_subtype_check stub");
 651     }
 652 
 653     // Always take the slow path (see SPARC).
 654     __ check_klass_subtype_slow_path(Rsubklass, Rsuperklass,
 655                                      Rarray_ptr, Rlength, NULL, &miss);
 656 
 657     // Match falls through here.
 658     __ clear_reg(Z_RET);               // Zero indicates a match. Set EQ flag in CC.
 659     __ z_br(Z_R14);
 660 
 661     __ BIND(miss);
 662     __ load_const_optimized(Z_RET, 1); // One indicates a miss.
 663     __ z_ltgr(Z_RET, Z_RET);           // Set NE flag in CR.
 664     __ z_br(Z_R14);
 665 
 666     return start;
 667   }
 668 
 669   // Return address of code to be called from code generated by
 670   // MacroAssembler::verify_oop.
 671   //
 672   // Don't generate, rather use C++ code.
 673   address generate_verify_oop_subroutine() {
 674     // Don't generate a StubCodeMark, because no code is generated!
 675     // Generating the mark triggers notifying the oprofile jvmti agent
 676     // about the dynamic code generation, but the stub without
 677     // code (code_size == 0) confuses opjitconv
 678     // StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
 679 
 680     address start = 0;
 681     return start;
 682   }
 683 
 684   // Generate pre-write barrier for array.
 685   //
 686   // Input:
 687   //    addr  - register containing starting address
 688   //    count - register containing element count
 689   //
 690   // The input registers are overwritten.
 691   void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
 692 
 693     BarrierSet* const bs = Universe::heap()->barrier_set();
 694     switch (bs->kind()) {
 695       case BarrierSet::G1SATBCTLogging:
 696         // With G1, don't generate the call if we statically know that the target in uninitialized.
 697         if (!dest_uninitialized) {
 698           // Is marking active?
 699           Label filtered;
 700           Register Rtmp1 = Z_R0;
 701           const int active_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 702                                              SATBMarkQueue::byte_offset_of_active());
 703           if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
 704             __ load_and_test_int(Rtmp1, Address(Z_thread, active_offset));
 705           } else {
 706             guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
 707             __ load_and_test_byte(Rtmp1, Address(Z_thread, active_offset));
 708           }
 709           __ z_bre(filtered); // Activity indicator is zero, so there is no marking going on currently.
 710 
 711           // __ push_frame_abi160(0);
 712           (void) RegisterSaver::save_live_registers(_masm, RegisterSaver::arg_registers);
 713           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), addr, count);
 714           (void) RegisterSaver::restore_live_registers(_masm, RegisterSaver::arg_registers);
 715           // __ pop_frame();
 716 
 717           __ bind(filtered);
 718         }
 719         break;
 720       case BarrierSet::CardTableForRS:
 721       case BarrierSet::CardTableExtension:
 722       case BarrierSet::ModRef:
 723         break;
 724       default:
 725         ShouldNotReachHere();
 726     }
 727   }
 728 
 729   // Generate post-write barrier for array.
 730   //
 731   // Input:
 732   //    addr  - register containing starting address
 733   //    count - register containing element count
 734   //
 735   // The input registers are overwritten.
 736   void gen_write_ref_array_post_barrier(Register addr, Register count, bool branchToEnd) {
 737     BarrierSet* const bs = Universe::heap()->barrier_set();
 738     switch (bs->kind()) {
 739       case BarrierSet::G1SATBCTLogging:
 740         {
 741           if (branchToEnd) {
 742             // __ push_frame_abi160(0);
 743             (void) RegisterSaver::save_live_registers(_masm, RegisterSaver::arg_registers);
 744             __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), addr, count);
 745             (void) RegisterSaver::restore_live_registers(_masm, RegisterSaver::arg_registers);
 746             // __ pop_frame();
 747           } else {
 748             // Tail call: call c and return to stub caller.
 749             address entry_point = CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post);
 750             if (Z_ARG1 != addr) __ z_lgr(Z_ARG1, addr);
 751             if (Z_ARG2 != count) __ z_lgr(Z_ARG2, count);
 752             __ load_const(Z_R1, entry_point);
 753             __ z_br(Z_R1); // Branch without linking, callee will return to stub caller.
 754           }
 755         }
 756         break;
 757       case BarrierSet::CardTableForRS:
 758       case BarrierSet::CardTableExtension:
 759         // These cases formerly known as
 760         //   void array_store_check(Register addr, Register count, bool branchToEnd).
 761         {
 762           NearLabel doXC, done;
 763           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
 764           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 765           assert_different_registers(Z_R0, Z_R1, addr, count);
 766 
 767           // Nothing to do if count <= 0.
 768           if (branchToEnd) {
 769             __ compare64_and_branch(count, (intptr_t) 0, Assembler::bcondNotHigh, done);
 770           } else {
 771             __ z_ltgr(count, count);
 772             __ z_bcr(Assembler::bcondNotPositive, Z_R14);
 773           }
 774 
 775           // Note: We can't combine the shifts. We could lose a carry
 776           // from calculating the array end address.
 777           // count = (count-1)*BytesPerHeapOop + addr
 778           // Count holds addr of last oop in array then.
 779           __ z_sllg(count, count, LogBytesPerHeapOop);
 780           __ add2reg_with_index(count, -BytesPerHeapOop, count, addr);
 781 
 782           // Get base address of card table.
 783           __ load_const_optimized(Z_R1, (address)ct->byte_map_base);
 784 
 785           // count = (count>>shift) - (addr>>shift)
 786           __ z_srlg(addr,  addr,  CardTableModRefBS::card_shift);
 787           __ z_srlg(count, count, CardTableModRefBS::card_shift);
 788 
 789           // Prefetch first elements of card table for update.
 790           if (VM_Version::has_Prefetch()) {
 791             __ z_pfd(0x02, 0, addr, Z_R1);
 792           }
 793 
 794           // Special case: clear just one byte.
 795           __ clear_reg(Z_R0, true, false);  // Used for doOneByte.
 796           __ z_sgr(count, addr);            // Count = n-1 now, CC used for brc below.
 797           __ z_stc(Z_R0, 0, addr, Z_R1);    // Must preserve CC from z_sgr.
 798           if (branchToEnd) {
 799             __ z_brz(done);
 800           } else {
 801             __ z_bcr(Assembler::bcondZero, Z_R14);
 802           }
 803 
 804           __ z_cghi(count, 255);
 805           __ z_brnh(doXC);
 806 
 807           // MVCLE: clear a long area.
 808           // Start addr of card table range = base + addr.
 809           // # bytes in    card table range = (count + 1)
 810           __ add2reg_with_index(Z_R0, 0, Z_R1, addr);
 811           __ add2reg(Z_R1, 1, count);
 812 
 813           // dirty hack:
 814           // There are just two callers. Both pass
 815           // count in Z_ARG3 = Z_R4
 816           // addr  in Z_ARG2 = Z_R3
 817           // ==> use Z_ARG2 as src len reg = 0
 818           //         Z_ARG1 as src addr (ignored)
 819           assert(count == Z_ARG3, "count: unexpected register number");
 820           assert(addr  == Z_ARG2, "addr:  unexpected register number");
 821           __ clear_reg(Z_ARG2, true, false);
 822 
 823           __ MacroAssembler::move_long_ext(Z_R0, Z_ARG1, 0);
 824 
 825           if (branchToEnd) {
 826             __ z_bru(done);
 827           } else {
 828             __ z_bcr(Assembler::bcondAlways, Z_R14);
 829           }
 830 
 831           // XC: clear a short area.
 832           Label XC_template; // Instr template, never exec directly!
 833           __ bind(XC_template);
 834           __ z_xc(0, 0, addr, 0, addr);
 835 
 836           __ bind(doXC);
 837           // start addr of card table range = base + addr
 838           // end   addr of card table range = base + addr + count
 839           __ add2reg_with_index(addr, 0, Z_R1, addr);
 840 
 841           if (VM_Version::has_ExecuteExtensions()) {
 842             __ z_exrl(count, XC_template);   // Execute XC with var. len.
 843           } else {
 844             __ z_larl(Z_R1, XC_template);
 845             __ z_ex(count, 0, Z_R0, Z_R1);   // Execute XC with var. len.
 846           }
 847           if (!branchToEnd) {
 848             __ z_br(Z_R14);
 849           }
 850 
 851           __ bind(done);
 852         }
 853         break;
 854       case BarrierSet::ModRef:
 855         if (!branchToEnd) { __ z_br(Z_R14); }
 856         break;
 857       default:
 858         ShouldNotReachHere();
 859     }
 860   }
 861 
 862 
 863   // This is to test that the count register contains a positive int value.
 864   // Required because C2 does not respect int to long conversion for stub calls.
 865   void assert_positive_int(Register count) {
 866 #ifdef ASSERT
 867     __ z_srag(Z_R0, count, 31);  // Just leave the sign (must be zero) in Z_R0.
 868     __ asm_assert_eq("missing zero extend", 0xAFFE);
 869 #endif
 870   }
 871 
 872   //  Generate overlap test for array copy stubs.
 873   //  If no actual overlap is detected, control is transferred to the
 874   //  "normal" copy stub (entry address passed in disjoint_copy_target).
 875   //  Otherwise, execution continues with the code generated by the
 876   //  caller of array_overlap_test.
 877   //
 878   //  Input:
 879   //    Z_ARG1    - from
 880   //    Z_ARG2    - to
 881   //    Z_ARG3    - element count
 882   void array_overlap_test(address disjoint_copy_target, int log2_elem_size) {
 883     __ MacroAssembler::compare_and_branch_optimized(Z_ARG2, Z_ARG1, Assembler::bcondNotHigh,
 884                                                     disjoint_copy_target, /*len64=*/true, /*has_sign=*/false);
 885 
 886     Register index = Z_ARG3;
 887     if (log2_elem_size > 0) {
 888       __ z_sllg(Z_R1, Z_ARG3, log2_elem_size);  // byte count
 889       index = Z_R1;
 890     }
 891     __ add2reg_with_index(Z_R1, 0, index, Z_ARG1);  // First byte after "from" range.
 892 
 893     __ MacroAssembler::compare_and_branch_optimized(Z_R1, Z_ARG2, Assembler::bcondNotHigh,
 894                                                     disjoint_copy_target, /*len64=*/true, /*has_sign=*/false);
 895 
 896     // Destructive overlap: let caller generate code for that.
 897   }
 898 
 899   //  Generate stub for disjoint array copy. If "aligned" is true, the
 900   //  "from" and "to" addresses are assumed to be heapword aligned.
 901   //
 902   //  Arguments for generated stub:
 903   //      from:  Z_ARG1
 904   //      to:    Z_ARG2
 905   //      count: Z_ARG3 treated as signed
 906   void generate_disjoint_copy(bool aligned, int element_size,
 907                               bool branchToEnd,
 908                               bool restoreArgs) {
 909     // This is the zarch specific stub generator for general array copy tasks.
 910     // It has the following prereqs and features:
 911     //
 912     // - No destructive overlap allowed (else unpredictable results).
 913     // - Destructive overlap does not exist if the leftmost byte of the target
 914     //   does not coincide with any of the source bytes (except the leftmost).
 915     //
 916     //   Register usage upon entry:
 917     //      Z_ARG1 == Z_R2 :   address of source array
 918     //      Z_ARG2 == Z_R3 :   address of target array
 919     //      Z_ARG3 == Z_R4 :   length of operands (# of elements on entry)
 920     //
 921     // Register usage within the generator:
 922     // - Z_R0 and Z_R1 are KILLed by the stub routine (target addr/len).
 923     //                 Used as pair register operand in complex moves, scratch registers anyway.
 924     // - Z_R5 is KILLed by the stub routine (source register pair addr/len) (even/odd reg).
 925     //                  Same as R0/R1, but no scratch register.
 926     // - Z_ARG1, Z_ARG2, Z_ARG3 are USEd but preserved by the stub routine,
 927     //                          but they might get temporarily overwritten.
 928 
 929     Register  save_reg    = Z_ARG4;   // (= Z_R5), holds original target operand address for restore.
 930 
 931     {
 932       Register   llen_reg = Z_R1;     // Holds left operand len (odd reg).
 933       Register  laddr_reg = Z_R0;     // Holds left operand addr (even reg), overlaps with data_reg.
 934       Register   rlen_reg = Z_R5;     // Holds right operand len (odd reg), overlaps with save_reg.
 935       Register  raddr_reg = Z_R4;     // Holds right operand addr (even reg), overlaps with len_reg.
 936 
 937       Register   data_reg = Z_R0;     // Holds copied data chunk in alignment process and copy loop.
 938       Register    len_reg = Z_ARG3;   // Holds operand len (#elements at entry, #bytes shortly after).
 939       Register    dst_reg = Z_ARG2;   // Holds left (target)  operand addr.
 940       Register    src_reg = Z_ARG1;   // Holds right (source) operand addr.
 941 
 942       Label     doMVCLOOP, doMVCLOOPcount, doMVCLOOPiterate;
 943       Label     doMVCUnrolled;
 944       NearLabel doMVC,  doMVCgeneral, done;
 945       Label     MVC_template;
 946       address   pcMVCblock_b, pcMVCblock_e;
 947 
 948       bool      usedMVCLE       = true;
 949       bool      usedMVCLOOP     = true;
 950       bool      usedMVCUnrolled = false;
 951       bool      usedMVC         = false;
 952       bool      usedMVCgeneral  = false;
 953 
 954       int       stride;
 955       Register  stride_reg;
 956       Register  ix_reg;
 957 
 958       assert((element_size<=256) && (256%element_size == 0), "element size must be <= 256, power of 2");
 959       unsigned int log2_size = exact_log2(element_size);
 960 
 961       switch (element_size) {
 962         case 1:  BLOCK_COMMENT("ARRAYCOPY DISJOINT byte  {"); break;
 963         case 2:  BLOCK_COMMENT("ARRAYCOPY DISJOINT short {"); break;
 964         case 4:  BLOCK_COMMENT("ARRAYCOPY DISJOINT int   {"); break;
 965         case 8:  BLOCK_COMMENT("ARRAYCOPY DISJOINT long  {"); break;
 966         default: BLOCK_COMMENT("ARRAYCOPY DISJOINT       {"); break;
 967       }
 968 
 969       assert_positive_int(len_reg);
 970 
 971       BLOCK_COMMENT("preparation {");
 972 
 973       // No copying if len <= 0.
 974       if (branchToEnd) {
 975         __ compare64_and_branch(len_reg, (intptr_t) 0, Assembler::bcondNotHigh, done);
 976       } else {
 977         if (VM_Version::has_CompareBranch()) {
 978           __ z_cgib(len_reg, 0, Assembler::bcondNotHigh, 0, Z_R14);
 979         } else {
 980           __ z_ltgr(len_reg, len_reg);
 981           __ z_bcr(Assembler::bcondNotPositive, Z_R14);
 982         }
 983       }
 984 
 985       // Prefetch just one cache line. Speculative opt for short arrays.
 986       // Do not use Z_R1 in prefetch. Is undefined here.
 987       if (VM_Version::has_Prefetch()) {
 988         __ z_pfd(0x01, 0, Z_R0, src_reg); // Fetch access.
 989         __ z_pfd(0x02, 0, Z_R0, dst_reg); // Store access.
 990       }
 991 
 992       BLOCK_COMMENT("} preparation");
 993 
 994       // Save args only if really needed.
 995       // Keep len test local to branch. Is generated only once.
 996 
 997       BLOCK_COMMENT("mode selection {");
 998 
 999       // Special handling for arrays with only a few elements.
1000       // Nothing fancy: just an executed MVC.
1001       if (log2_size > 0) {
1002         __ z_sllg(Z_R1, len_reg, log2_size); // Remember #bytes in Z_R1.
1003       }
1004       if (element_size != 8) {
1005         __ z_cghi(len_reg, 256/element_size);
1006         __ z_brnh(doMVC);
1007         usedMVC = true;
1008       }
1009       if (element_size == 8) { // Long and oop arrays are always aligned.
1010         __ z_cghi(len_reg, 256/element_size);
1011         __ z_brnh(doMVCUnrolled);
1012         usedMVCUnrolled = true;
1013       }
1014 
1015       // Prefetch another cache line. We, for sure, have more than one line to copy.
1016       if (VM_Version::has_Prefetch()) {
1017         __ z_pfd(0x01, 256, Z_R0, src_reg); // Fetch access.
1018         __ z_pfd(0x02, 256, Z_R0, dst_reg); // Store access.
1019       }
1020 
1021       if (restoreArgs) {
1022         // Remember entry value of ARG2 to restore all arguments later from that knowledge.
1023         __ z_lgr(save_reg, dst_reg);
1024       }
1025 
1026       __ z_cghi(len_reg, 4096/element_size);
1027       if (log2_size == 0) {
1028         __ z_lgr(Z_R1, len_reg); // Init Z_R1 with #bytes
1029       }
1030       __ z_brnh(doMVCLOOP);
1031 
1032       // Fall through to MVCLE case.
1033 
1034       BLOCK_COMMENT("} mode selection");
1035 
1036       // MVCLE: for long arrays
1037       //   DW aligned: Best performance for sizes > 4kBytes.
1038       //   unaligned:  Least complex for sizes > 256 bytes.
1039       if (usedMVCLE) {
1040         BLOCK_COMMENT("mode MVCLE {");
1041 
1042         // Setup registers for mvcle.
1043         //__ z_lgr(llen_reg, len_reg);// r1 <- r4  #bytes already in Z_R1, aka llen_reg.
1044         __ z_lgr(laddr_reg, dst_reg); // r0 <- r3
1045         __ z_lgr(raddr_reg, src_reg); // r4 <- r2
1046         __ z_lgr(rlen_reg, llen_reg); // r5 <- r1
1047 
1048         __ MacroAssembler::move_long_ext(laddr_reg, raddr_reg, 0xb0);    // special: bypass cache
1049         // __ MacroAssembler::move_long_ext(laddr_reg, raddr_reg, 0xb8); // special: Hold data in cache.
1050         // __ MacroAssembler::move_long_ext(laddr_reg, raddr_reg, 0);
1051 
1052         if (restoreArgs) {
1053           // MVCLE updates the source (Z_R4,Z_R5) and target (Z_R0,Z_R1) register pairs.
1054           // Dst_reg (Z_ARG2) and src_reg (Z_ARG1) are left untouched. No restore required.
1055           // Len_reg (Z_ARG3) is destroyed and must be restored.
1056           __ z_slgr(laddr_reg, dst_reg);    // copied #bytes
1057           if (log2_size > 0) {
1058             __ z_srag(Z_ARG3, laddr_reg, log2_size); // Convert back to #elements.
1059           } else {
1060             __ z_lgr(Z_ARG3, laddr_reg);
1061           }
1062         }
1063         if (branchToEnd) {
1064           __ z_bru(done);
1065         } else {
1066           __ z_br(Z_R14);
1067         }
1068         BLOCK_COMMENT("} mode MVCLE");
1069       }
1070       // No fallthru possible here.
1071 
1072       //  MVCUnrolled: for short, aligned arrays.
1073 
1074       if (usedMVCUnrolled) {
1075         BLOCK_COMMENT("mode MVC unrolled {");
1076         stride = 8;
1077 
1078         // Generate unrolled MVC instructions.
1079         for (int ii = 32; ii > 1; ii--) {
1080           __ z_mvc(0, ii * stride-1, dst_reg, 0, src_reg); // ii*8 byte copy
1081           if (branchToEnd) {
1082             __ z_bru(done);
1083           } else {
1084             __ z_br(Z_R14);
1085           }
1086         }
1087 
1088         pcMVCblock_b = __ pc();
1089         __ z_mvc(0, 1 * stride-1, dst_reg, 0, src_reg); // 8 byte copy
1090         if (branchToEnd) {
1091           __ z_bru(done);
1092         } else {
1093           __ z_br(Z_R14);
1094         }
1095 
1096         pcMVCblock_e = __ pc();
1097         Label MVC_ListEnd;
1098         __ bind(MVC_ListEnd);
1099 
1100         // This is an absolute fast path:
1101         // - Array len in bytes must be not greater than 256.
1102         // - Array len in bytes must be an integer mult of DW
1103         //   to save expensive handling of trailing bytes.
1104         // - Argument restore is not done,
1105         //   i.e. previous code must not alter arguments (this code doesn't either).
1106 
1107         __ bind(doMVCUnrolled);
1108 
1109         // Avoid mul, prefer shift where possible.
1110         // Combine shift right (for #DW) with shift left (for block size).
1111         // Set CC for zero test below (asm_assert).
1112         // Note: #bytes comes in Z_R1, #DW in len_reg.
1113         unsigned int MVCblocksize    = pcMVCblock_e - pcMVCblock_b;
1114         unsigned int logMVCblocksize = 0xffffffffU; // Pacify compiler ("used uninitialized" warning).
1115 
1116         if (log2_size > 0) { // Len was scaled into Z_R1.
1117           switch (MVCblocksize) {
1118 
1119             case  8: logMVCblocksize = 3;
1120                      __ z_ltgr(Z_R0, Z_R1); // #bytes is index
1121                      break;                 // reasonable size, use shift
1122 
1123             case 16: logMVCblocksize = 4;
1124                      __ z_slag(Z_R0, Z_R1, logMVCblocksize-log2_size);
1125                      break;                 // reasonable size, use shift
1126 
1127             default: logMVCblocksize = 0;
1128                      __ z_ltgr(Z_R0, len_reg); // #DW for mul
1129                      break;                 // all other sizes: use mul
1130           }
1131         } else {
1132           guarantee(log2_size, "doMVCUnrolled: only for DW entities");
1133         }
1134 
1135         // This test (and branch) is redundant. Previous code makes sure that
1136         //  - element count > 0
1137         //  - element size == 8.
1138         // Thus, len reg should never be zero here. We insert an asm_assert() here,
1139         // just to double-check and to be on the safe side.
1140         __ asm_assert(false, "zero len cannot occur", 99);
1141 
1142         __ z_larl(Z_R1, MVC_ListEnd);        // Get addr of last instr block.
1143         // Avoid mul, prefer shift where possible.
1144         if (logMVCblocksize == 0) {
1145           __ z_mghi(Z_R0, MVCblocksize);
1146         }
1147         __ z_slgr(Z_R1, Z_R0);
1148         __ z_br(Z_R1);
1149         BLOCK_COMMENT("} mode MVC unrolled");
1150       }
1151       // No fallthru possible here.
1152 
1153       // MVC execute template
1154       // Must always generate. Usage may be switched on below.
1155       // There is no suitable place after here to put the template.
1156       __ bind(MVC_template);
1157       __ z_mvc(0,0,dst_reg,0,src_reg);      // Instr template, never exec directly!
1158 
1159 
1160       // MVC Loop: for medium-sized arrays
1161 
1162       // Only for DW aligned arrays (src and dst).
1163       // #bytes to copy must be at least 256!!!
1164       // Non-aligned cases handled separately.
1165       stride     = 256;
1166       stride_reg = Z_R1;   // Holds #bytes when control arrives here.
1167       ix_reg     = Z_ARG3; // Alias for len_reg.
1168 
1169 
1170       if (usedMVCLOOP) {
1171         BLOCK_COMMENT("mode MVC loop {");
1172         __ bind(doMVCLOOP);
1173 
1174         __ z_lcgr(ix_reg, Z_R1);         // Ix runs from -(n-2)*stride to 1*stride (inclusive).
1175         __ z_llill(stride_reg, stride);
1176         __ add2reg(ix_reg, 2*stride);    // Thus: increment ix by 2*stride.
1177 
1178         __ bind(doMVCLOOPiterate);
1179           __ z_mvc(0, stride-1, dst_reg, 0, src_reg);
1180           __ add2reg(dst_reg, stride);
1181           __ add2reg(src_reg, stride);
1182           __ bind(doMVCLOOPcount);
1183           __ z_brxlg(ix_reg, stride_reg, doMVCLOOPiterate);
1184 
1185         // Don 't use add2reg() here, since we must set the condition code!
1186         __ z_aghi(ix_reg, -2*stride);       // Compensate incr from above: zero diff means "all copied".
1187 
1188         if (restoreArgs) {
1189           __ z_lcgr(Z_R1, ix_reg);          // Prepare ix_reg for copy loop, #bytes expected in Z_R1.
1190           __ z_brnz(doMVCgeneral);          // We're not done yet, ix_reg is not zero.
1191 
1192           // ARG1, ARG2, and ARG3 were altered by the code above, so restore them building on save_reg.
1193           __ z_slgr(dst_reg, save_reg);     // copied #bytes
1194           __ z_slgr(src_reg, dst_reg);      // = ARG1 (now restored)
1195           if (log2_size) {
1196             __ z_srag(Z_ARG3, dst_reg, log2_size); // Convert back to #elements to restore ARG3.
1197           } else {
1198             __ z_lgr(Z_ARG3, dst_reg);
1199           }
1200           __ z_lgr(Z_ARG2, save_reg);       // ARG2 now restored.
1201 
1202           if (branchToEnd) {
1203             __ z_bru(done);
1204           } else {
1205             __ z_br(Z_R14);
1206           }
1207 
1208         } else {
1209             if (branchToEnd) {
1210               __ z_brz(done);                        // CC set by aghi instr.
1211           } else {
1212               __ z_bcr(Assembler::bcondZero, Z_R14); // We're all done if zero.
1213             }
1214 
1215           __ z_lcgr(Z_R1, ix_reg);    // Prepare ix_reg for copy loop, #bytes expected in Z_R1.
1216           // __ z_bru(doMVCgeneral);  // fallthru
1217         }
1218         usedMVCgeneral = true;
1219         BLOCK_COMMENT("} mode MVC loop");
1220       }
1221       // Fallthru to doMVCgeneral
1222 
1223       // MVCgeneral: for short, unaligned arrays, after other copy operations
1224 
1225       // Somewhat expensive due to use of EX instruction, but simple.
1226       if (usedMVCgeneral) {
1227         BLOCK_COMMENT("mode MVC general {");
1228         __ bind(doMVCgeneral);
1229 
1230         __ add2reg(len_reg, -1, Z_R1);             // Get #bytes-1 for EXECUTE.
1231         if (VM_Version::has_ExecuteExtensions()) {
1232           __ z_exrl(len_reg, MVC_template);        // Execute MVC with variable length.
1233         } else {
1234           __ z_larl(Z_R1, MVC_template);           // Get addr of instr template.
1235           __ z_ex(len_reg, 0, Z_R0, Z_R1);         // Execute MVC with variable length.
1236         }                                          // penalty: 9 ticks
1237 
1238         if (restoreArgs) {
1239           // ARG1, ARG2, and ARG3 were altered by code executed before, so restore them building on save_reg
1240           __ z_slgr(dst_reg, save_reg);            // Copied #bytes without the "doMVCgeneral" chunk
1241           __ z_slgr(src_reg, dst_reg);             // = ARG1 (now restored), was not advanced for "doMVCgeneral" chunk
1242           __ add2reg_with_index(dst_reg, 1, len_reg, dst_reg); // Len of executed MVC was not accounted for, yet.
1243           if (log2_size) {
1244             __ z_srag(Z_ARG3, dst_reg, log2_size); // Convert back to #elements to restore ARG3
1245           } else {
1246              __ z_lgr(Z_ARG3, dst_reg);
1247           }
1248           __ z_lgr(Z_ARG2, save_reg);              // ARG2 now restored.
1249         }
1250 
1251         if (usedMVC) {
1252           if (branchToEnd) {
1253             __ z_bru(done);
1254           } else {
1255             __ z_br(Z_R14);
1256         }
1257         } else {
1258           if (!branchToEnd) __ z_br(Z_R14);
1259         }
1260         BLOCK_COMMENT("} mode MVC general");
1261       }
1262       // Fallthru possible if following block not generated.
1263 
1264       // MVC: for short, unaligned arrays
1265 
1266       // Somewhat expensive due to use of EX instruction, but simple. penalty: 9 ticks.
1267       // Differs from doMVCgeneral in reconstruction of ARG2, ARG3, and ARG4.
1268       if (usedMVC) {
1269         BLOCK_COMMENT("mode MVC {");
1270         __ bind(doMVC);
1271 
1272         // get #bytes-1 for EXECUTE
1273         if (log2_size) {
1274           __ add2reg(Z_R1, -1);                // Length was scaled into Z_R1.
1275         } else {
1276           __ add2reg(Z_R1, -1, len_reg);       // Length was not scaled.
1277         }
1278 
1279         if (VM_Version::has_ExecuteExtensions()) {
1280           __ z_exrl(Z_R1, MVC_template);       // Execute MVC with variable length.
1281         } else {
1282           __ z_lgr(Z_R0, Z_R5);                // Save ARG4, may be unnecessary.
1283           __ z_larl(Z_R5, MVC_template);       // Get addr of instr template.
1284           __ z_ex(Z_R1, 0, Z_R0, Z_R5);        // Execute MVC with variable length.
1285           __ z_lgr(Z_R5, Z_R0);                // Restore ARG4, may be unnecessary.
1286         }
1287 
1288         if (!branchToEnd) {
1289           __ z_br(Z_R14);
1290         }
1291         BLOCK_COMMENT("} mode MVC");
1292       }
1293 
1294       __ bind(done);
1295 
1296       switch (element_size) {
1297         case 1:  BLOCK_COMMENT("} ARRAYCOPY DISJOINT byte "); break;
1298         case 2:  BLOCK_COMMENT("} ARRAYCOPY DISJOINT short"); break;
1299         case 4:  BLOCK_COMMENT("} ARRAYCOPY DISJOINT int  "); break;
1300         case 8:  BLOCK_COMMENT("} ARRAYCOPY DISJOINT long "); break;
1301         default: BLOCK_COMMENT("} ARRAYCOPY DISJOINT      "); break;
1302       }
1303     }
1304   }
1305 
1306   // Generate stub for conjoint array copy. If "aligned" is true, the
1307   // "from" and "to" addresses are assumed to be heapword aligned.
1308   //
1309   // Arguments for generated stub:
1310   //   from:  Z_ARG1
1311   //   to:    Z_ARG2
1312   //   count: Z_ARG3 treated as signed
1313   void generate_conjoint_copy(bool aligned, int element_size, bool branchToEnd) {
1314 
1315     // This is the zarch specific stub generator for general array copy tasks.
1316     // It has the following prereqs and features:
1317     //
1318     // - Destructive overlap exists and is handled by reverse copy.
1319     // - Destructive overlap exists if the leftmost byte of the target
1320     //   does coincide with any of the source bytes (except the leftmost).
1321     // - Z_R0 and Z_R1 are KILLed by the stub routine (data and stride)
1322     // - Z_ARG1 and Z_ARG2 are USEd but preserved by the stub routine.
1323     // - Z_ARG3 is USED but preserved by the stub routine.
1324     // - Z_ARG4 is used as index register and is thus KILLed.
1325     //
1326     {
1327       Register stride_reg = Z_R1;     // Stride & compare value in loop (negative element_size).
1328       Register   data_reg = Z_R0;     // Holds value of currently processed element.
1329       Register     ix_reg = Z_ARG4;   // Holds byte index of currently processed element.
1330       Register    len_reg = Z_ARG3;   // Holds length (in #elements) of arrays.
1331       Register    dst_reg = Z_ARG2;   // Holds left  operand addr.
1332       Register    src_reg = Z_ARG1;   // Holds right operand addr.
1333 
1334       assert(256%element_size == 0, "Element size must be power of 2.");
1335       assert(element_size     <= 8, "Can't handle more than DW units.");
1336 
1337       switch (element_size) {
1338         case 1:  BLOCK_COMMENT("ARRAYCOPY CONJOINT byte  {"); break;
1339         case 2:  BLOCK_COMMENT("ARRAYCOPY CONJOINT short {"); break;
1340         case 4:  BLOCK_COMMENT("ARRAYCOPY CONJOINT int   {"); break;
1341         case 8:  BLOCK_COMMENT("ARRAYCOPY CONJOINT long  {"); break;
1342         default: BLOCK_COMMENT("ARRAYCOPY CONJOINT       {"); break;
1343       }
1344 
1345       assert_positive_int(len_reg);
1346 
1347       if (VM_Version::has_Prefetch()) {
1348         __ z_pfd(0x01, 0, Z_R0, src_reg); // Fetch access.
1349         __ z_pfd(0x02, 0, Z_R0, dst_reg); // Store access.
1350       }
1351 
1352       unsigned int log2_size = exact_log2(element_size);
1353       if (log2_size) {
1354         __ z_sllg(ix_reg, len_reg, log2_size);
1355       } else {
1356         __ z_lgr(ix_reg, len_reg);
1357       }
1358 
1359       // Optimize reverse copy loop.
1360       // Main loop copies DW units which may be unaligned. Unaligned access adds some penalty ticks.
1361       // Unaligned DW access (neither fetch nor store) is DW-atomic, but should be alignment-atomic.
1362       // Preceding the main loop, some bytes are copied to obtain a DW-multiple remaining length.
1363 
1364       Label countLoop1;
1365       Label copyLoop1;
1366       Label skipBY;
1367       Label skipHW;
1368       int   stride = -8;
1369 
1370       __ load_const_optimized(stride_reg, stride); // Prepare for DW copy loop.
1371 
1372       if (element_size == 8)    // Nothing to do here.
1373         __ z_bru(countLoop1);
1374       else {                    // Do not generate dead code.
1375         __ z_tmll(ix_reg, 7);   // Check the "odd" bits.
1376         __ z_bre(countLoop1);   // There are none, very good!
1377       }
1378 
1379       if (log2_size == 0) {     // Handle leftover Byte.
1380         __ z_tmll(ix_reg, 1);
1381         __ z_bre(skipBY);
1382         __ z_lb(data_reg,   -1, ix_reg, src_reg);
1383         __ z_stcy(data_reg, -1, ix_reg, dst_reg);
1384         __ add2reg(ix_reg, -1); // Decrement delayed to avoid AGI.
1385         __ bind(skipBY);
1386         // fallthru
1387       }
1388       if (log2_size <= 1) {     // Handle leftover HW.
1389         __ z_tmll(ix_reg, 2);
1390         __ z_bre(skipHW);
1391         __ z_lhy(data_reg,  -2, ix_reg, src_reg);
1392         __ z_sthy(data_reg, -2, ix_reg, dst_reg);
1393         __ add2reg(ix_reg, -2); // Decrement delayed to avoid AGI.
1394         __ bind(skipHW);
1395         __ z_tmll(ix_reg, 4);
1396         __ z_bre(countLoop1);
1397         // fallthru
1398       }
1399       if (log2_size <= 2) {     // There are just 4 bytes (left) that need to be copied.
1400         __ z_ly(data_reg,  -4, ix_reg, src_reg);
1401         __ z_sty(data_reg, -4, ix_reg, dst_reg);
1402         __ add2reg(ix_reg, -4); // Decrement delayed to avoid AGI.
1403         __ z_bru(countLoop1);
1404       }
1405 
1406       // Control can never get to here. Never! Never ever!
1407       __ z_illtrap(0x99);
1408       __ bind(copyLoop1);
1409       __ z_lg(data_reg,  0, ix_reg, src_reg);
1410       __ z_stg(data_reg, 0, ix_reg, dst_reg);
1411       __ bind(countLoop1);
1412       __ z_brxhg(ix_reg, stride_reg, copyLoop1);
1413 
1414       if (!branchToEnd)
1415         __ z_br(Z_R14);
1416 
1417       switch (element_size) {
1418         case 1:  BLOCK_COMMENT("} ARRAYCOPY CONJOINT byte "); break;
1419         case 2:  BLOCK_COMMENT("} ARRAYCOPY CONJOINT short"); break;
1420         case 4:  BLOCK_COMMENT("} ARRAYCOPY CONJOINT int  "); break;
1421         case 8:  BLOCK_COMMENT("} ARRAYCOPY CONJOINT long "); break;
1422         default: BLOCK_COMMENT("} ARRAYCOPY CONJOINT      "); break;
1423       }
1424     }
1425   }
1426 
1427   // Generate stub for disjoint byte copy. If "aligned" is true, the
1428   // "from" and "to" addresses are assumed to be heapword aligned.
1429   address generate_disjoint_byte_copy(bool aligned, const char * name) {
1430     StubCodeMark mark(this, "StubRoutines", name);
1431 
1432     // This is the zarch specific stub generator for byte array copy.
1433     // Refer to generate_disjoint_copy for a list of prereqs and features:
1434     unsigned int start_off = __ offset();  // Remember stub start address (is rtn value).
1435     generate_disjoint_copy(aligned, 1, false, false);
1436     return __ addr_at(start_off);
1437   }
1438 
1439 
1440   address generate_disjoint_short_copy(bool aligned, const char * name) {
1441     StubCodeMark mark(this, "StubRoutines", name);
1442     // This is the zarch specific stub generator for short array copy.
1443     // Refer to generate_disjoint_copy for a list of prereqs and features:
1444     unsigned int start_off = __ offset();  // Remember stub start address (is rtn value).
1445     generate_disjoint_copy(aligned, 2, false, false);
1446     return __ addr_at(start_off);
1447   }
1448 
1449 
1450   address generate_disjoint_int_copy(bool aligned, const char * name) {
1451     StubCodeMark mark(this, "StubRoutines", name);
1452     // This is the zarch specific stub generator for int array copy.
1453     // Refer to generate_disjoint_copy for a list of prereqs and features:
1454     unsigned int start_off = __ offset();  // Remember stub start address (is rtn value).
1455     generate_disjoint_copy(aligned, 4, false, false);
1456     return __ addr_at(start_off);
1457   }
1458 
1459 
1460   address generate_disjoint_long_copy(bool aligned, const char * name) {
1461     StubCodeMark mark(this, "StubRoutines", name);
1462     // This is the zarch specific stub generator for long array copy.
1463     // Refer to generate_disjoint_copy for a list of prereqs and features:
1464     unsigned int start_off = __ offset();  // Remember stub start address (is rtn value).
1465     generate_disjoint_copy(aligned, 8, false, false);
1466     return __ addr_at(start_off);
1467   }
1468 
1469 
1470   address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
1471     StubCodeMark mark(this, "StubRoutines", name);
1472     // This is the zarch specific stub generator for oop array copy.
1473     // Refer to generate_disjoint_copy for a list of prereqs and features.
1474     unsigned int start_off = __ offset();  // Remember stub start address (is rtn value).
1475     unsigned int size      = UseCompressedOops ? 4 : 8;
1476 
1477     gen_write_ref_array_pre_barrier(Z_ARG2, Z_ARG3, dest_uninitialized);
1478 
1479     generate_disjoint_copy(aligned, size, true, true);
1480 
1481     gen_write_ref_array_post_barrier(Z_ARG2, Z_ARG3, false);
1482 
1483     return __ addr_at(start_off);
1484   }
1485 
1486 
1487   address generate_conjoint_byte_copy(bool aligned, const char * name) {
1488     StubCodeMark mark(this, "StubRoutines", name);
1489     // This is the zarch specific stub generator for overlapping byte array copy.
1490     // Refer to generate_conjoint_copy for a list of prereqs and features:
1491     unsigned int   start_off = __ offset();  // Remember stub start address (is rtn value).
1492     address nooverlap_target = aligned ? StubRoutines::arrayof_jbyte_disjoint_arraycopy()
1493                                        : StubRoutines::jbyte_disjoint_arraycopy();
1494 
1495     array_overlap_test(nooverlap_target, 0); // Branch away to nooverlap_target if disjoint.
1496     generate_conjoint_copy(aligned, 1, false);
1497 
1498     return __ addr_at(start_off);
1499   }
1500 
1501 
1502   address generate_conjoint_short_copy(bool aligned, const char * name) {
1503     StubCodeMark mark(this, "StubRoutines", name);
1504     // This is the zarch specific stub generator for overlapping short array copy.
1505     // Refer to generate_conjoint_copy for a list of prereqs and features:
1506     unsigned int   start_off = __ offset();  // Remember stub start address (is rtn value).
1507     address nooverlap_target = aligned ? StubRoutines::arrayof_jshort_disjoint_arraycopy()
1508                                        : StubRoutines::jshort_disjoint_arraycopy();
1509 
1510     array_overlap_test(nooverlap_target, 1); // Branch away to nooverlap_target if disjoint.
1511     generate_conjoint_copy(aligned, 2, false);
1512 
1513     return __ addr_at(start_off);
1514   }
1515 
1516   address generate_conjoint_int_copy(bool aligned, const char * name) {
1517     StubCodeMark mark(this, "StubRoutines", name);
1518     // This is the zarch specific stub generator for overlapping int array copy.
1519     // Refer to generate_conjoint_copy for a list of prereqs and features:
1520 
1521     unsigned int   start_off = __ offset();  // Remember stub start address (is rtn value).
1522     address nooverlap_target = aligned ? StubRoutines::arrayof_jint_disjoint_arraycopy()
1523                                        : StubRoutines::jint_disjoint_arraycopy();
1524 
1525     array_overlap_test(nooverlap_target, 2); // Branch away to nooverlap_target if disjoint.
1526     generate_conjoint_copy(aligned, 4, false);
1527 
1528     return __ addr_at(start_off);
1529   }
1530 
1531   address generate_conjoint_long_copy(bool aligned, const char * name) {
1532     StubCodeMark mark(this, "StubRoutines", name);
1533     // This is the zarch specific stub generator for overlapping long array copy.
1534     // Refer to generate_conjoint_copy for a list of prereqs and features:
1535 
1536     unsigned int start_off   = __ offset();  // Remember stub start address (is rtn value).
1537     address nooverlap_target = aligned ? StubRoutines::arrayof_jlong_disjoint_arraycopy()
1538                                        : StubRoutines::jlong_disjoint_arraycopy();
1539 
1540     array_overlap_test(nooverlap_target, 3); // Branch away to nooverlap_target if disjoint.
1541     generate_conjoint_copy(aligned, 8, false);
1542 
1543     return __ addr_at(start_off);
1544   }
1545 
1546   address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
1547     StubCodeMark mark(this, "StubRoutines", name);
1548     // This is the zarch specific stub generator for overlapping oop array copy.
1549     // Refer to generate_conjoint_copy for a list of prereqs and features.
1550     unsigned int start_off = __ offset();  // Remember stub start address (is rtn value).
1551     unsigned int size      = UseCompressedOops ? 4 : 8;
1552     unsigned int shift     = UseCompressedOops ? 2 : 3;
1553 
1554     address nooverlap_target = aligned ? StubRoutines::arrayof_oop_disjoint_arraycopy(dest_uninitialized)
1555                                        : StubRoutines::oop_disjoint_arraycopy(dest_uninitialized);
1556 
1557     // Branch to disjoint_copy (if applicable) before pre_barrier to avoid double pre_barrier.
1558     array_overlap_test(nooverlap_target, shift);  // Branch away to nooverlap_target if disjoint.
1559 
1560     gen_write_ref_array_pre_barrier(Z_ARG2, Z_ARG3, dest_uninitialized);
1561 
1562     generate_conjoint_copy(aligned, size, true);  // Must preserve ARG2, ARG3.
1563 
1564     gen_write_ref_array_post_barrier(Z_ARG2, Z_ARG3, false);
1565 
1566     return __ addr_at(start_off);
1567   }
1568 
1569 
1570   void generate_arraycopy_stubs() {
1571 
1572     // Note: the disjoint stubs must be generated first, some of
1573     // the conjoint stubs use them.
1574     StubRoutines::_jbyte_disjoint_arraycopy      = generate_disjoint_byte_copy (false, "jbyte_disjoint_arraycopy");
1575     StubRoutines::_jshort_disjoint_arraycopy     = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
1576     StubRoutines::_jint_disjoint_arraycopy       = generate_disjoint_int_copy  (false, "jint_disjoint_arraycopy");
1577     StubRoutines::_jlong_disjoint_arraycopy      = generate_disjoint_long_copy (false, "jlong_disjoint_arraycopy");
1578     StubRoutines::_oop_disjoint_arraycopy        = generate_disjoint_oop_copy  (false, "oop_disjoint_arraycopy", false);
1579     StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy  (false, "oop_disjoint_arraycopy_uninit", true);
1580 
1581     StubRoutines::_arrayof_jbyte_disjoint_arraycopy      = generate_disjoint_byte_copy (true, "arrayof_jbyte_disjoint_arraycopy");
1582     StubRoutines::_arrayof_jshort_disjoint_arraycopy     = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
1583     StubRoutines::_arrayof_jint_disjoint_arraycopy       = generate_disjoint_int_copy  (true, "arrayof_jint_disjoint_arraycopy");
1584     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = generate_disjoint_long_copy (true, "arrayof_jlong_disjoint_arraycopy");
1585     StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy  (true, "arrayof_oop_disjoint_arraycopy", false);
1586     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy  (true, "arrayof_oop_disjoint_arraycopy_uninit", true);
1587 
1588     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy (false, "jbyte_arraycopy");
1589     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
1590     StubRoutines::_jint_arraycopy            = generate_conjoint_int_copy  (false, "jint_arraycopy");
1591     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_copy (false, "jlong_arraycopy");
1592     StubRoutines::_oop_arraycopy             = generate_conjoint_oop_copy  (false, "oop_arraycopy", false);
1593     StubRoutines::_oop_arraycopy_uninit      = generate_conjoint_oop_copy  (false, "oop_arraycopy_uninit", true);
1594 
1595     StubRoutines::_arrayof_jbyte_arraycopy      = generate_conjoint_byte_copy (true, "arrayof_jbyte_arraycopy");
1596     StubRoutines::_arrayof_jshort_arraycopy     = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
1597     StubRoutines::_arrayof_jint_arraycopy       = generate_conjoint_int_copy  (true, "arrayof_jint_arraycopy");
1598     StubRoutines::_arrayof_jlong_arraycopy      = generate_conjoint_long_copy (true, "arrayof_jlong_arraycopy");
1599     StubRoutines::_arrayof_oop_arraycopy        = generate_conjoint_oop_copy  (true, "arrayof_oop_arraycopy", false);
1600     StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy  (true, "arrayof_oop_arraycopy_uninit", true);
1601   }
1602 
1603   void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) {
1604 
1605     // safefetch signatures:
1606     //   int      SafeFetch32(int*      adr, int      errValue);
1607     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
1608     //
1609     // arguments:
1610     //   Z_ARG1 = adr
1611     //   Z_ARG2 = errValue
1612     //
1613     // result:
1614     //   Z_RET  = *adr or errValue
1615 
1616     StubCodeMark mark(this, "StubRoutines", name);
1617 
1618     // entry point
1619     // Load *adr into Z_ARG2, may fault.
1620     *entry = *fault_pc = __ pc();
1621     switch (size) {
1622       case 4:
1623         // Sign extended int32_t.
1624         __ z_lgf(Z_ARG2, 0, Z_ARG1);
1625         break;
1626       case 8:
1627         // int64_t
1628         __ z_lg(Z_ARG2, 0, Z_ARG1);
1629         break;
1630       default:
1631         ShouldNotReachHere();
1632     }
1633 
1634     // Return errValue or *adr.
1635     *continuation_pc = __ pc();
1636     __ z_lgr(Z_RET, Z_ARG2);
1637     __ z_br(Z_R14);
1638 
1639   }
1640 
1641   // Call interface for AES_encryptBlock, AES_decryptBlock stubs.
1642   //
1643   //   Z_ARG1 - source data block. Ptr to leftmost byte to be processed.
1644   //   Z_ARG2 - destination data block. Ptr to leftmost byte to be stored.
1645   //            For in-place encryption/decryption, ARG1 and ARG2 can point
1646   //            to the same piece of storage.
1647   //   Z_ARG3 - Crypto key address (expanded key). The first n bits of
1648   //            the expanded key constitute the original AES-<n> key (see below).
1649   //
1650   //   Z_RET  - return value. First unprocessed byte offset in src buffer.
1651   //
1652   // Some remarks:
1653   //   The crypto key, as passed from the caller to these encryption stubs,
1654   //   is a so-called expanded key. It is derived from the original key
1655   //   by the Rijndael key schedule, see http://en.wikipedia.org/wiki/Rijndael_key_schedule
1656   //   With the expanded key, the cipher/decipher task is decomposed in
1657   //   multiple, less complex steps, called rounds. Sun SPARC and Intel
1658   //   processors obviously implement support for those less complex steps.
1659   //   z/Architecture provides instructions for full cipher/decipher complexity.
1660   //   Therefore, we need the original, not the expanded key here.
1661   //   Luckily, the first n bits of an AES-<n> expanded key are formed
1662   //   by the original key itself. That takes us out of trouble. :-)
1663   //   The key length (in bytes) relation is as follows:
1664   //     original    expanded   rounds  key bit     keylen
1665   //    key bytes   key bytes            length   in words
1666   //           16         176       11      128         44
1667   //           24         208       13      192         52
1668   //           32         240       15      256         60
1669   //
1670   // The crypto instructions used in the AES* stubs have some specific register requirements.
1671   //   Z_R0   holds the crypto function code. Please refer to the KM/KMC instruction
1672   //          description in the "z/Architecture Principles of Operation" manual for details.
1673   //   Z_R1   holds the parameter block address. The parameter block contains the cryptographic key
1674   //          (KM instruction) and the chaining value (KMC instruction).
1675   //   dst    must designate an even-numbered register, holding the address of the output message.
1676   //   src    must designate an even/odd register pair, holding the address/length of the original message
1677 
1678   // Helper function which generates code to
1679   //  - load the function code in register fCode (== Z_R0)
1680   //  - load the data block length (depends on cipher function) in register srclen if requested.
1681   //  - is_decipher switches between cipher/decipher function codes
1682   //  - set_len requests (if true) loading the data block length in register srclen
1683   void generate_load_AES_fCode(Register keylen, Register fCode, Register srclen, bool is_decipher) {
1684 
1685     BLOCK_COMMENT("Set fCode {"); {
1686       Label fCode_set;
1687       int   mode = is_decipher ? VM_Version::CipherMode::decipher : VM_Version::CipherMode::cipher;
1688       bool  identical_dataBlk_len =  (VM_Version::Cipher::_AES128_dataBlk == VM_Version::Cipher::_AES192_dataBlk)
1689                                   && (VM_Version::Cipher::_AES128_dataBlk == VM_Version::Cipher::_AES256_dataBlk);
1690       // Expanded key length is 44/52/60 * 4 bytes for AES-128/AES-192/AES-256.
1691       __ z_cghi(keylen, 52);
1692       __ z_lghi(fCode, VM_Version::Cipher::_AES256 + mode);
1693       if (!identical_dataBlk_len) {
1694         __ z_lghi(srclen, VM_Version::Cipher::_AES256_dataBlk);
1695       }
1696       __ z_brh(fCode_set);  // keyLen >  52: AES256
1697 
1698       __ z_lghi(fCode, VM_Version::Cipher::_AES192 + mode);
1699       if (!identical_dataBlk_len) {
1700         __ z_lghi(srclen, VM_Version::Cipher::_AES192_dataBlk);
1701       }
1702       __ z_bre(fCode_set);  // keyLen == 52: AES192
1703 
1704       __ z_lghi(fCode, VM_Version::Cipher::_AES128 + mode);
1705       if (!identical_dataBlk_len) {
1706         __ z_lghi(srclen, VM_Version::Cipher::_AES128_dataBlk);
1707       }
1708       // __ z_brl(fCode_set);  // keyLen <  52: AES128           // fallthru
1709       __ bind(fCode_set);
1710       if (identical_dataBlk_len) {
1711         __ z_lghi(srclen, VM_Version::Cipher::_AES128_dataBlk);
1712       }
1713     }
1714     BLOCK_COMMENT("} Set fCode");
1715   }
1716 
1717   // Push a parameter block for the cipher/decipher instruction on the stack.
1718   // NOTE:
1719   //   Before returning, the stub has to copy the chaining value from
1720   //   the parmBlk, where it was updated by the crypto instruction, back
1721   //   to the chaining value array the address of which was passed in the cv argument.
1722   //   As all the available registers are used and modified by KMC, we need to save
1723   //   the key length across the KMC instruction. We do so by spilling it to the stack,
1724   //   just preceding the parmBlk (at (parmBlk - 8)).
1725   void generate_push_parmBlk(Register keylen, Register fCode, Register parmBlk, Register key, Register cv, bool is_decipher) {
1726     const int AES_parmBlk_align    = 32;
1727     const int AES_parmBlk_addspace = AES_parmBlk_align; // Must be multiple of AES_parmblk_align.
1728     int       cv_len, key_len;
1729     int       mode = is_decipher ? VM_Version::CipherMode::decipher : VM_Version::CipherMode::cipher;
1730     Label     parmBlk_128, parmBlk_192, parmBlk_256, parmBlk_set;
1731 
1732     BLOCK_COMMENT("push parmBlk {");
1733     if (VM_Version::has_Crypto_AES()   ) { __ z_cghi(keylen, 52); }
1734     if (VM_Version::has_Crypto_AES256()) { __ z_brh(parmBlk_256); }  // keyLen >  52: AES256
1735     if (VM_Version::has_Crypto_AES192()) { __ z_bre(parmBlk_192); }  // keyLen == 52: AES192
1736     if (VM_Version::has_Crypto_AES128()) { __ z_brl(parmBlk_128); }  // keyLen <  52: AES128
1737 
1738     // Security net: requested AES function not available on this CPU.
1739     // NOTE:
1740     //   As of now (March 2015), this safety net is not required. JCE policy files limit the
1741     //   cryptographic strength of the keys used to 128 bit. If we have AES hardware support
1742     //   at all, we have at least AES-128.
1743     __ stop_static("AES key strength not supported by CPU. Use -XX:-UseAES as remedy.", 0);
1744 
1745     if (VM_Version::has_Crypto_AES128()) {
1746       __ bind(parmBlk_128);
1747       cv_len  = VM_Version::Cipher::_AES128_dataBlk;
1748       key_len = VM_Version::Cipher::_AES128_parmBlk_C - cv_len;
1749       __ z_lay(parmBlk, -(VM_Version::Cipher::_AES128_parmBlk_C+AES_parmBlk_align)+(AES_parmBlk_align-1), Z_SP);
1750       __ z_nill(parmBlk, (~(AES_parmBlk_align-1)) & 0xffff);  // align parameter block
1751 
1752       // Resize the frame to accommodate for the aligned parameter block and other stuff.
1753       // There is room for stuff in the range [parmBlk-AES_parmBlk_addspace, parmBlk).
1754       __ z_stg(keylen, -8, parmBlk);                   // Spill keylen for later use.
1755       __ z_stg(Z_SP,  -16, parmBlk);                   // Spill SP for easy revert.
1756       __ z_aghi(parmBlk, -AES_parmBlk_addspace);       // Additional space for keylen, etc..
1757       __ resize_frame_absolute(parmBlk, keylen, true); // Resize frame with parmBlk being the new SP.
1758       __ z_aghi(parmBlk,  AES_parmBlk_addspace);       // Restore parameter block address.
1759 
1760       __ z_mvc(0,      cv_len-1,  parmBlk, 0, cv);     // Copy cv.
1761       __ z_mvc(cv_len, key_len-1, parmBlk, 0, key);    // Copy key.
1762       __ z_lghi(fCode, VM_Version::Cipher::_AES128 + mode);
1763       if (VM_Version::has_Crypto_AES192() || VM_Version::has_Crypto_AES256()) {
1764         __ z_bru(parmBlk_set);  // Fallthru otherwise.
1765       }
1766     }
1767 
1768     if (VM_Version::has_Crypto_AES192()) {
1769       __ bind(parmBlk_192);
1770       cv_len  = VM_Version::Cipher::_AES192_dataBlk;
1771       key_len = VM_Version::Cipher::_AES192_parmBlk_C - cv_len;
1772       __ z_lay(parmBlk, -(VM_Version::Cipher::_AES192_parmBlk_C+AES_parmBlk_align)+(AES_parmBlk_align-1), Z_SP);
1773       __ z_nill(parmBlk, (~(AES_parmBlk_align-1)) & 0xffff);  // Align parameter block.
1774 
1775       // Resize the frame to accommodate for the aligned parameter block and other stuff.
1776       // There is room for stuff in the range [parmBlk-AES_parmBlk_addspace, parmBlk).
1777       __ z_stg(keylen, -8, parmBlk);                   // Spill keylen for later use.
1778       __ z_stg(Z_SP,  -16, parmBlk);                   // Spill SP for easy revert.
1779       __ z_aghi(parmBlk, -AES_parmBlk_addspace);       // Additional space for keylen, etc..
1780       __ resize_frame_absolute(parmBlk, keylen, true); // Resize frame with parmBlk being the new SP.
1781       __ z_aghi(parmBlk, AES_parmBlk_addspace);        // Restore parameter block address.
1782 
1783       __ z_mvc(0,      cv_len-1,  parmBlk, 0, cv);     // Copy cv.
1784       __ z_mvc(cv_len, key_len-1, parmBlk, 0, key);    // Copy key.
1785       __ z_lghi(fCode,    VM_Version::Cipher::_AES192 + mode);
1786       if (VM_Version::has_Crypto_AES256()) {
1787         __ z_bru(parmBlk_set);  // Fallthru otherwise.
1788       }
1789     }
1790 
1791     if (VM_Version::has_Crypto_AES256()) {
1792       __ bind(parmBlk_256);
1793       cv_len  = VM_Version::Cipher::_AES256_dataBlk;
1794       key_len = VM_Version::Cipher::_AES256_parmBlk_C - cv_len;
1795       __ z_lay(parmBlk, -(VM_Version::Cipher::_AES256_parmBlk_C+AES_parmBlk_align)+(AES_parmBlk_align-1), Z_SP);
1796       __ z_nill(parmBlk, (~(AES_parmBlk_align-1)) & 0xffff);  // Align parameter block.
1797 
1798       // Resize the frame to accommodate for the aligned parameter block and other stuff.
1799       // There is room for stuff in the range [parmBlk-AES_parmBlk_addspace, parmBlk).
1800       __ z_stg(keylen, -8, parmBlk);                   // Spill keylen for later use.
1801       __ z_stg(Z_SP,  -16, parmBlk);                   // Spill SP for easy revert.
1802       __ z_aghi(parmBlk, -AES_parmBlk_addspace);       // Additional space for keylen, etc..
1803       __ resize_frame_absolute(parmBlk, keylen, true); // Resize frame with parmBlk being the new SP.
1804       __ z_aghi(parmBlk,  AES_parmBlk_addspace);       // Restore parameter block address.
1805 
1806       __ z_mvc(0,      cv_len-1,  parmBlk, 0, cv);     // Copy cv.
1807       __ z_mvc(cv_len, key_len-1, parmBlk, 0, key);    // Copy key.
1808       __ z_lghi(fCode, VM_Version::Cipher::_AES256 + mode);
1809       // __ z_bru(parmBlk_set);  // fallthru
1810     }
1811 
1812     __ bind(parmBlk_set);
1813     BLOCK_COMMENT("} push parmBlk");
1814   }
1815 
1816   // Pop a parameter block from the stack. The chaining value portion of the parameter block
1817   // is copied back to the cv array as it is needed for subsequent cipher steps.
1818   // The keylen value as well as the original SP (before resizing) was pushed to the stack
1819   // when pushing the parameter block.
1820   void generate_pop_parmBlk(Register keylen, Register parmBlk, Register key, Register cv) {
1821 
1822     BLOCK_COMMENT("pop parmBlk {");
1823     bool identical_dataBlk_len =  (VM_Version::Cipher::_AES128_dataBlk == VM_Version::Cipher::_AES192_dataBlk) &&
1824                                   (VM_Version::Cipher::_AES128_dataBlk == VM_Version::Cipher::_AES256_dataBlk);
1825     if (identical_dataBlk_len) {
1826       int cv_len = VM_Version::Cipher::_AES128_dataBlk;
1827       __ z_mvc(0, cv_len-1, cv, 0, parmBlk);  // Copy cv.
1828     } else {
1829       int cv_len;
1830       Label parmBlk_128, parmBlk_192, parmBlk_256, parmBlk_set;
1831       __ z_lg(keylen, -8, parmBlk);  // restore keylen
1832       __ z_cghi(keylen, 52);
1833       if (VM_Version::has_Crypto_AES256()) __ z_brh(parmBlk_256);  // keyLen >  52: AES256
1834       if (VM_Version::has_Crypto_AES192()) __ z_bre(parmBlk_192);  // keyLen == 52: AES192
1835       // if (VM_Version::has_Crypto_AES128()) __ z_brl(parmBlk_128);  // keyLen <  52: AES128  // fallthru
1836 
1837       // Security net: there is no one here. If we would need it, we should have
1838       // fallen into it already when pushing the parameter block.
1839       if (VM_Version::has_Crypto_AES128()) {
1840         __ bind(parmBlk_128);
1841         cv_len = VM_Version::Cipher::_AES128_dataBlk;
1842         __ z_mvc(0, cv_len-1, cv, 0, parmBlk);  // Copy cv.
1843         if (VM_Version::has_Crypto_AES192() || VM_Version::has_Crypto_AES256()) {
1844           __ z_bru(parmBlk_set);
1845         }
1846       }
1847 
1848       if (VM_Version::has_Crypto_AES192()) {
1849         __ bind(parmBlk_192);
1850         cv_len = VM_Version::Cipher::_AES192_dataBlk;
1851         __ z_mvc(0, cv_len-1, cv, 0, parmBlk);  // Copy cv.
1852         if (VM_Version::has_Crypto_AES256()) {
1853           __ z_bru(parmBlk_set);
1854         }
1855       }
1856 
1857       if (VM_Version::has_Crypto_AES256()) {
1858         __ bind(parmBlk_256);
1859         cv_len = VM_Version::Cipher::_AES256_dataBlk;
1860         __ z_mvc(0, cv_len-1, cv, 0, parmBlk);  // Copy cv.
1861         // __ z_bru(parmBlk_set);  // fallthru
1862       }
1863       __ bind(parmBlk_set);
1864     }
1865     __ z_lg(Z_SP, -16, parmBlk); // Revert resize_frame_absolute.
1866     BLOCK_COMMENT("} pop parmBlk");
1867   }
1868 
1869   // Compute AES encrypt function.
1870   address generate_AES_encryptBlock(const char* name) {
1871     __ align(CodeEntryAlignment);
1872     StubCodeMark mark(this, "StubRoutines", name);
1873     unsigned int   start_off = __ offset();  // Remember stub start address (is rtn value).
1874 
1875     Register       from    = Z_ARG1; // source byte array
1876     Register       to      = Z_ARG2; // destination byte array
1877     Register       key     = Z_ARG3; // expanded key array
1878 
1879     const Register keylen  = Z_R0;   // Temporarily (until fCode is set) holds the expanded key array length.
1880     const Register fCode   = Z_R0;   // crypto function code
1881     const Register parmBlk = Z_R1;   // parameter block address (points to crypto key)
1882     const Register src     = Z_ARG1; // is Z_R2
1883     const Register srclen  = Z_ARG2; // Overwrites destination address.
1884     const Register dst     = Z_ARG3; // Overwrites expanded key address.
1885 
1886     // Read key len of expanded key (in 4-byte words).
1887     __ z_lgf(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
1888 
1889     // Copy arguments to registers as required by crypto instruction.
1890     __ z_lgr(parmBlk, key);          // crypto key (in T_INT array).
1891     // __ z_lgr(src, from);          // Copy not needed, src/from are identical.
1892     __ z_lgr(dst, to);               // Copy destination address to even register.
1893 
1894     // Construct function code in Z_R0, data block length in Z_ARG2.
1895     generate_load_AES_fCode(keylen, fCode, srclen, false);
1896 
1897     __ km(dst, src);          // Cipher the message.
1898 
1899     __ z_br(Z_R14);
1900 
1901     return __ addr_at(start_off);
1902   }
1903 
1904   // Compute AES decrypt function.
1905   address generate_AES_decryptBlock(const char* name) {
1906     __ align(CodeEntryAlignment);
1907     StubCodeMark mark(this, "StubRoutines", name);
1908     unsigned int   start_off = __ offset();  // Remember stub start address (is rtn value).
1909 
1910     Register       from    = Z_ARG1; // source byte array
1911     Register       to      = Z_ARG2; // destination byte array
1912     Register       key     = Z_ARG3; // expanded key array, not preset at entry!!!
1913 
1914     const Register keylen  = Z_R0;   // Temporarily (until fCode is set) holds the expanded key array length.
1915     const Register fCode   = Z_R0;   // crypto function code
1916     const Register parmBlk = Z_R1;   // parameter block address (points to crypto key)
1917     const Register src     = Z_ARG1; // is Z_R2
1918     const Register srclen  = Z_ARG2; // Overwrites destination address.
1919     const Register dst     = Z_ARG3; // Overwrites key address.
1920 
1921     // Read key len of expanded key (in 4-byte words).
1922     __ z_lgf(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
1923 
1924     // Copy arguments to registers as required by crypto instruction.
1925     __ z_lgr(parmBlk, key);     // Copy crypto key address.
1926     // __ z_lgr(src, from);     // Copy not needed, src/from are identical.
1927     __ z_lgr(dst, to);          // Copy destination address to even register.
1928 
1929     // Construct function code in Z_R0, data block length in Z_ARG2.
1930     generate_load_AES_fCode(keylen, fCode, srclen, true);
1931 
1932     __ km(dst, src);          // Cipher the message.
1933 
1934     __ z_br(Z_R14);
1935 
1936     return __ addr_at(start_off);
1937   }
1938 
1939   // These stubs receive the addresses of the cryptographic key and of the chaining value as two separate
1940   // arguments (registers "key" and "cv", respectively). The KMC instruction, on the other hand, requires
1941   // chaining value and key to be, in this sequence, adjacent in storage. Thus, we need to allocate some
1942   // thread-local working storage. Using heap memory incurs all the hassles of allocating/freeing.
1943   // Stack space, on the contrary, is deallocated automatically when we return from the stub to the caller.
1944   // *** WARNING ***
1945   // Please note that we do not formally allocate stack space, nor do we
1946   // update the stack pointer. Therefore, no function calls are allowed
1947   // and nobody else must use the stack range where the parameter block
1948   // is located.
1949   // We align the parameter block to the next available octoword.
1950   //
1951   // Compute chained AES encrypt function.
1952   address generate_cipherBlockChaining_AES_encrypt(const char* name) {
1953     __ align(CodeEntryAlignment);
1954     StubCodeMark mark(this, "StubRoutines", name);
1955     unsigned int   start_off = __ offset();  // Remember stub start address (is rtn value).
1956 
1957     Register       from    = Z_ARG1; // source byte array (clear text)
1958     Register       to      = Z_ARG2; // destination byte array (ciphered)
1959     Register       key     = Z_ARG3; // expanded key array.
1960     Register       cv      = Z_ARG4; // chaining value
1961     const Register msglen  = Z_ARG5; // Total length of the msg to be encrypted. Value must be returned
1962                                      // in Z_RET upon completion of this stub. Is 32-bit integer.
1963 
1964     const Register keylen  = Z_R0;   // Expanded key length, as read from key array. Temp only.
1965     const Register fCode   = Z_R0;   // crypto function code
1966     const Register parmBlk = Z_R1;   // parameter block address (points to crypto key)
1967     const Register src     = Z_ARG1; // is Z_R2
1968     const Register srclen  = Z_ARG2; // Overwrites destination address.
1969     const Register dst     = Z_ARG3; // Overwrites key address.
1970 
1971     // Read key len of expanded key (in 4-byte words).
1972     __ z_lgf(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
1973 
1974     // Construct parm block address in parmBlk (== Z_R1), copy cv and key to parm block.
1975     // Construct function code in Z_R0.
1976     generate_push_parmBlk(keylen, fCode, parmBlk, key, cv, false);
1977 
1978     // Prepare other registers for instruction.
1979     // __ z_lgr(src, from);     // Not needed, registers are the same.
1980     __ z_lgr(dst, to);
1981     __ z_llgfr(srclen, msglen); // We pass the offsets as ints, not as longs as required.
1982 
1983     __ kmc(dst, src);           // Cipher the message.
1984 
1985     generate_pop_parmBlk(keylen, parmBlk, key, cv);
1986 
1987     __ z_llgfr(Z_RET, msglen);  // We pass the offsets as ints, not as longs as required.
1988     __ z_br(Z_R14);
1989 
1990     return __ addr_at(start_off);
1991   }
1992 
1993   // Compute chained AES encrypt function.
1994   address generate_cipherBlockChaining_AES_decrypt(const char* name) {
1995     __ align(CodeEntryAlignment);
1996     StubCodeMark mark(this, "StubRoutines", name);
1997     unsigned int   start_off = __ offset();  // Remember stub start address (is rtn value).
1998 
1999     Register       from    = Z_ARG1; // source byte array (ciphered)
2000     Register       to      = Z_ARG2; // destination byte array (clear text)
2001     Register       key     = Z_ARG3; // expanded key array, not preset at entry!!!
2002     Register       cv      = Z_ARG4; // chaining value
2003     const Register msglen  = Z_ARG5; // Total length of the msg to be encrypted. Value must be returned
2004                                      // in Z_RET upon completion of this stub.
2005 
2006     const Register keylen  = Z_R0;   // Expanded key length, as read from key array. Temp only.
2007     const Register fCode   = Z_R0;   // crypto function code
2008     const Register parmBlk = Z_R1;   // parameter block address (points to crypto key)
2009     const Register src     = Z_ARG1; // is Z_R2
2010     const Register srclen  = Z_ARG2; // Overwrites destination address.
2011     const Register dst     = Z_ARG3; // Overwrites key address.
2012 
2013     // Read key len of expanded key (in 4-byte words).
2014     __ z_lgf(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2015 
2016     // Construct parm block address in parmBlk (== Z_R1), copy cv and key to parm block.
2017     // Construct function code in Z_R0.
2018     generate_push_parmBlk(keylen, fCode, parmBlk, key, cv, true);
2019 
2020     // Prepare other registers for instruction.
2021     // __ z_lgr(src, from);     // Not needed, registers are the same.
2022     __ z_lgr(dst, to);
2023     __ z_llgfr(srclen, msglen); // We pass the offsets as ints, not as longs as required.
2024 
2025     __ kmc(dst, src);           // Decipher the message.
2026 
2027     generate_pop_parmBlk(keylen, parmBlk, key, cv);
2028 
2029     __ z_llgfr(Z_RET, msglen);  // We pass the offsets as ints, not as longs as required.
2030     __ z_br(Z_R14);
2031 
2032     return __ addr_at(start_off);
2033   }
2034 
2035 
2036   // Call interface for all SHA* stubs.
2037   //
2038   //   Z_ARG1 - source data block. Ptr to leftmost byte to be processed.
2039   //   Z_ARG2 - current SHA state. Ptr to state area. This area serves as
2040   //            parameter block as required by the crypto instruction.
2041   //   Z_ARG3 - current byte offset in source data block.
2042   //   Z_ARG4 - last byte offset in source data block.
2043   //            (Z_ARG4 - Z_ARG3) gives the #bytes remaining to be processed.
2044   //
2045   //   Z_RET  - return value. First unprocessed byte offset in src buffer.
2046   //
2047   //   A few notes on the call interface:
2048   //    - All stubs, whether they are single-block or multi-block, are assumed to
2049   //      digest an integer multiple of the data block length of data. All data
2050   //      blocks are digested using the intermediate message digest (KIMD) instruction.
2051   //      Special end processing, as done by the KLMD instruction, seems to be
2052   //      emulated by the calling code.
2053   //
2054   //    - Z_ARG1 addresses the first byte of source data. The offset (Z_ARG3) is
2055   //      already accounted for.
2056   //
2057   //    - The current SHA state (the intermediate message digest value) is contained
2058   //      in an area addressed by Z_ARG2. The area size depends on the SHA variant
2059   //      and is accessible via the enum VM_Version::MsgDigest::_SHA<n>_parmBlk_I
2060   //
2061   //    - The single-block stub is expected to digest exactly one data block, starting
2062   //      at the address passed in Z_ARG1.
2063   //
2064   //    - The multi-block stub is expected to digest all data blocks which start in
2065   //      the offset interval [srcOff(Z_ARG3), srcLimit(Z_ARG4)). The exact difference
2066   //      (srcLimit-srcOff), rounded up to the next multiple of the data block length,
2067   //      gives the number of blocks to digest. It must be assumed that the calling code
2068   //      provides for a large enough source data buffer.
2069   //
2070   // Compute SHA-1 function.
2071   address generate_SHA1_stub(bool multiBlock, const char* name) {
2072     __ align(CodeEntryAlignment);
2073     StubCodeMark mark(this, "StubRoutines", name);
2074     unsigned int start_off = __ offset();   // Remember stub start address (is rtn value).
2075 
2076     const Register srcBuff        = Z_ARG1; // Points to first block to process (offset already added).
2077     const Register SHAState       = Z_ARG2; // Only on entry. Reused soon thereafter for kimd register pairs.
2078     const Register srcOff         = Z_ARG3; // int
2079     const Register srcLimit       = Z_ARG4; // Only passed in multiBlock case. int
2080 
2081     const Register SHAState_local = Z_R1;
2082     const Register SHAState_save  = Z_ARG3;
2083     const Register srcBufLen      = Z_ARG2; // Destroys state address, must be copied before.
2084     Label useKLMD, rtn;
2085 
2086     __ load_const_optimized(Z_R0, (int)VM_Version::MsgDigest::_SHA1);   // function code
2087     __ z_lgr(SHAState_local, SHAState);                                 // SHAState == parameter block
2088 
2089     if (multiBlock) {  // Process everything from offset to limit.
2090 
2091       // The following description is valid if we get a raw (unpimped) source data buffer,
2092       // spanning the range between [srcOff(Z_ARG3), srcLimit(Z_ARG4)). As detailled above,
2093       // the calling convention for these stubs is different. We leave the description in
2094       // to inform the reader what must be happening hidden in the calling code.
2095       //
2096       // The data block to be processed can have arbitrary length, i.e. its length does not
2097       // need to be an integer multiple of SHA<n>_datablk. Therefore, we need to implement
2098       // two different paths. If the length is an integer multiple, we use KIMD, saving us
2099       // to copy the SHA state back and forth. If the length is odd, we copy the SHA state
2100       // to the stack, execute a KLMD instruction on it and copy the result back to the
2101       // caller's SHA state location.
2102 
2103       // Total #srcBuff blocks to process.
2104       if (VM_Version::has_DistinctOpnds()) {
2105         __ z_srk(srcBufLen, srcLimit, srcOff); // exact difference
2106         __ z_ahi(srcBufLen, VM_Version::MsgDigest::_SHA1_dataBlk-1);   // round up
2107         __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA1_dataBlk-1)) & 0xffff);
2108         __ z_ark(srcLimit, srcOff, srcBufLen); // Srclimit temporarily holds return value.
2109         __ z_llgfr(srcBufLen, srcBufLen);      // Cast to 64-bit.
2110       } else {
2111         __ z_lgfr(srcBufLen, srcLimit);        // Exact difference. srcLimit passed as int.
2112         __ z_sgfr(srcBufLen, srcOff);          // SrcOff passed as int, now properly casted to long.
2113         __ z_aghi(srcBufLen, VM_Version::MsgDigest::_SHA1_dataBlk-1);   // round up
2114         __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA1_dataBlk-1)) & 0xffff);
2115         __ z_lgr(srcLimit, srcOff);            // SrcLimit temporarily holds return value.
2116         __ z_agr(srcLimit, srcBufLen);
2117       }
2118 
2119       // Integral #blocks to digest?
2120       // As a result of the calculations above, srcBufLen MUST be an integer
2121       // multiple of _SHA1_dataBlk, or else we are in big trouble.
2122       // We insert an asm_assert into the KLMD case to guard against that.
2123       __ z_tmll(srcBufLen, VM_Version::MsgDigest::_SHA1_dataBlk-1);
2124       __ z_brc(Assembler::bcondNotAllZero, useKLMD);
2125 
2126       // Process all full blocks.
2127       __ kimd(srcBuff);
2128 
2129       __ z_lgr(Z_RET, srcLimit);  // Offset of first unprocessed byte in buffer.
2130     } else {  // Process one data block only.
2131       __ load_const_optimized(srcBufLen, (int)VM_Version::MsgDigest::_SHA1_dataBlk);   // #srcBuff bytes to process
2132       __ kimd(srcBuff);
2133       __ add2reg(Z_RET, (int)VM_Version::MsgDigest::_SHA1_dataBlk, srcOff);            // Offset of first unprocessed byte in buffer. No 32 to 64 bit extension needed.
2134     }
2135 
2136     __ bind(rtn);
2137     __ z_br(Z_R14);
2138 
2139     if (multiBlock) {
2140       __ bind(useKLMD);
2141 
2142 #if 1
2143       // Security net: this stub is believed to be called for full-sized data blocks only
2144       // NOTE: The following code is believed to be correct, but is is not tested.
2145       __ stop_static("SHA128 stub can digest full data blocks only. Use -XX:-UseSHA as remedy.", 0);
2146 #endif
2147     }
2148 
2149     return __ addr_at(start_off);
2150   }
2151 
2152   // Compute SHA-256 function.
2153   address generate_SHA256_stub(bool multiBlock, const char* name) {
2154     __ align(CodeEntryAlignment);
2155     StubCodeMark mark(this, "StubRoutines", name);
2156     unsigned int start_off = __ offset();   // Remember stub start address (is rtn value).
2157 
2158     const Register srcBuff        = Z_ARG1;
2159     const Register SHAState       = Z_ARG2; // Only on entry. Reused soon thereafter.
2160     const Register SHAState_local = Z_R1;
2161     const Register SHAState_save  = Z_ARG3;
2162     const Register srcOff         = Z_ARG3;
2163     const Register srcLimit       = Z_ARG4;
2164     const Register srcBufLen      = Z_ARG2; // Destroys state address, must be copied before.
2165     Label useKLMD, rtn;
2166 
2167     __ load_const_optimized(Z_R0, (int)VM_Version::MsgDigest::_SHA256); // function code
2168     __ z_lgr(SHAState_local, SHAState);                                 // SHAState == parameter block
2169 
2170     if (multiBlock) {  // Process everything from offset to limit.
2171       // The following description is valid if we get a raw (unpimped) source data buffer,
2172       // spanning the range between [srcOff(Z_ARG3), srcLimit(Z_ARG4)). As detailled above,
2173       // the calling convention for these stubs is different. We leave the description in
2174       // to inform the reader what must be happening hidden in the calling code.
2175       //
2176       // The data block to be processed can have arbitrary length, i.e. its length does not
2177       // need to be an integer multiple of SHA<n>_datablk. Therefore, we need to implement
2178       // two different paths. If the length is an integer multiple, we use KIMD, saving us
2179       // to copy the SHA state back and forth. If the length is odd, we copy the SHA state
2180       // to the stack, execute a KLMD instruction on it and copy the result back to the
2181       // caller's SHA state location.
2182 
2183       // total #srcBuff blocks to process
2184       if (VM_Version::has_DistinctOpnds()) {
2185         __ z_srk(srcBufLen, srcLimit, srcOff);   // exact difference
2186         __ z_ahi(srcBufLen, VM_Version::MsgDigest::_SHA256_dataBlk-1); // round up
2187         __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA256_dataBlk-1)) & 0xffff);
2188         __ z_ark(srcLimit, srcOff, srcBufLen);   // Srclimit temporarily holds return value.
2189         __ z_llgfr(srcBufLen, srcBufLen);        // Cast to 64-bit.
2190       } else {
2191         __ z_lgfr(srcBufLen, srcLimit);          // exact difference
2192         __ z_sgfr(srcBufLen, srcOff);
2193         __ z_aghi(srcBufLen, VM_Version::MsgDigest::_SHA256_dataBlk-1); // round up
2194         __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA256_dataBlk-1)) & 0xffff);
2195         __ z_lgr(srcLimit, srcOff);              // Srclimit temporarily holds return value.
2196         __ z_agr(srcLimit, srcBufLen);
2197       }
2198 
2199       // Integral #blocks to digest?
2200       // As a result of the calculations above, srcBufLen MUST be an integer
2201       // multiple of _SHA1_dataBlk, or else we are in big trouble.
2202       // We insert an asm_assert into the KLMD case to guard against that.
2203       __ z_tmll(srcBufLen, VM_Version::MsgDigest::_SHA256_dataBlk-1);
2204       __ z_brc(Assembler::bcondNotAllZero, useKLMD);
2205 
2206       // Process all full blocks.
2207       __ kimd(srcBuff);
2208 
2209       __ z_lgr(Z_RET, srcLimit);  // Offset of first unprocessed byte in buffer.
2210     } else {  // Process one data block only.
2211       __ load_const_optimized(srcBufLen, (int)VM_Version::MsgDigest::_SHA256_dataBlk); // #srcBuff bytes to process
2212       __ kimd(srcBuff);
2213       __ add2reg(Z_RET, (int)VM_Version::MsgDigest::_SHA256_dataBlk, srcOff);          // Offset of first unprocessed byte in buffer.
2214     }
2215 
2216     __ bind(rtn);
2217     __ z_br(Z_R14);
2218 
2219     if (multiBlock) {
2220       __ bind(useKLMD);
2221 #if 1
2222       // Security net: this stub is believed to be called for full-sized data blocks only.
2223       // NOTE:
2224       //   The following code is believed to be correct, but is is not tested.
2225       __ stop_static("SHA256 stub can digest full data blocks only. Use -XX:-UseSHA as remedy.", 0);
2226 #endif
2227     }
2228 
2229     return __ addr_at(start_off);
2230   }
2231 
2232   // Compute SHA-512 function.
2233   address generate_SHA512_stub(bool multiBlock, const char* name) {
2234     __ align(CodeEntryAlignment);
2235     StubCodeMark mark(this, "StubRoutines", name);
2236     unsigned int start_off = __ offset();   // Remember stub start address (is rtn value).
2237 
2238     const Register srcBuff        = Z_ARG1;
2239     const Register SHAState       = Z_ARG2; // Only on entry. Reused soon thereafter.
2240     const Register SHAState_local = Z_R1;
2241     const Register SHAState_save  = Z_ARG3;
2242     const Register srcOff         = Z_ARG3;
2243     const Register srcLimit       = Z_ARG4;
2244     const Register srcBufLen      = Z_ARG2; // Destroys state address, must be copied before.
2245     Label useKLMD, rtn;
2246 
2247     __ load_const_optimized(Z_R0, (int)VM_Version::MsgDigest::_SHA512); // function code
2248     __ z_lgr(SHAState_local, SHAState);                                 // SHAState == parameter block
2249 
2250     if (multiBlock) {  // Process everything from offset to limit.
2251       // The following description is valid if we get a raw (unpimped) source data buffer,
2252       // spanning the range between [srcOff(Z_ARG3), srcLimit(Z_ARG4)). As detailled above,
2253       // the calling convention for these stubs is different. We leave the description in
2254       // to inform the reader what must be happening hidden in the calling code.
2255       //
2256       // The data block to be processed can have arbitrary length, i.e. its length does not
2257       // need to be an integer multiple of SHA<n>_datablk. Therefore, we need to implement
2258       // two different paths. If the length is an integer multiple, we use KIMD, saving us
2259       // to copy the SHA state back and forth. If the length is odd, we copy the SHA state
2260       // to the stack, execute a KLMD instruction on it and copy the result back to the
2261       // caller's SHA state location.
2262 
2263       // total #srcBuff blocks to process
2264       if (VM_Version::has_DistinctOpnds()) {
2265         __ z_srk(srcBufLen, srcLimit, srcOff);   // exact difference
2266         __ z_ahi(srcBufLen, VM_Version::MsgDigest::_SHA512_dataBlk-1); // round up
2267         __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA512_dataBlk-1)) & 0xffff);
2268         __ z_ark(srcLimit, srcOff, srcBufLen);   // Srclimit temporarily holds return value.
2269         __ z_llgfr(srcBufLen, srcBufLen);        // Cast to 64-bit.
2270       } else {
2271         __ z_lgfr(srcBufLen, srcLimit);          // exact difference
2272         __ z_sgfr(srcBufLen, srcOff);
2273         __ z_aghi(srcBufLen, VM_Version::MsgDigest::_SHA512_dataBlk-1); // round up
2274         __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA512_dataBlk-1)) & 0xffff);
2275         __ z_lgr(srcLimit, srcOff);              // Srclimit temporarily holds return value.
2276         __ z_agr(srcLimit, srcBufLen);
2277       }
2278 
2279       // integral #blocks to digest?
2280       // As a result of the calculations above, srcBufLen MUST be an integer
2281       // multiple of _SHA1_dataBlk, or else we are in big trouble.
2282       // We insert an asm_assert into the KLMD case to guard against that.
2283       __ z_tmll(srcBufLen, VM_Version::MsgDigest::_SHA512_dataBlk-1);
2284       __ z_brc(Assembler::bcondNotAllZero, useKLMD);
2285 
2286       // Process all full blocks.
2287       __ kimd(srcBuff);
2288 
2289       __ z_lgr(Z_RET, srcLimit);  // Offset of first unprocessed byte in buffer.
2290     } else {  // Process one data block only.
2291       __ load_const_optimized(srcBufLen, (int)VM_Version::MsgDigest::_SHA512_dataBlk); // #srcBuff bytes to process
2292       __ kimd(srcBuff);
2293       __ add2reg(Z_RET, (int)VM_Version::MsgDigest::_SHA512_dataBlk, srcOff);          // Offset of first unprocessed byte in buffer.
2294     }
2295 
2296     __ bind(rtn);
2297     __ z_br(Z_R14);
2298 
2299     if (multiBlock) {
2300       __ bind(useKLMD);
2301 #if 1
2302       // Security net: this stub is believed to be called for full-sized data blocks only
2303       // NOTE:
2304       //   The following code is believed to be correct, but is is not tested.
2305       __ stop_static("SHA512 stub can digest full data blocks only. Use -XX:-UseSHA as remedy.", 0);
2306 #endif
2307     }
2308 
2309     return __ addr_at(start_off);
2310   }
2311 
2312 
2313 
2314   // Arguments:
2315   //   Z_ARG1  - int   crc
2316   //   Z_ARG2  - byte* buf
2317   //   Z_ARG3  - int   length (of buffer)
2318   //
2319   // Result:
2320   //   Z_RET   - int   crc result
2321   //
2322   // Compute CRC32 function.
2323   address generate_CRC32_updateBytes(const char* name) {
2324     __ align(CodeEntryAlignment);
2325     StubCodeMark mark(this, "StubRoutines", name);
2326     unsigned int   start_off = __ offset();  // Remember stub start address (is rtn value).
2327 
2328     // arguments to kernel_crc32:
2329     Register       crc     = Z_ARG1;  // Current checksum, preset by caller or result from previous call, int.
2330     Register       data    = Z_ARG2;  // source byte array
2331     Register       dataLen = Z_ARG3;  // #bytes to process, int
2332     Register       table   = Z_ARG4;  // crc table address
2333     const Register t0      = Z_R10;   // work reg for kernel* emitters
2334     const Register t1      = Z_R11;   // work reg for kernel* emitters
2335     const Register t2      = Z_R12;   // work reg for kernel* emitters
2336     const Register t3      = Z_R13;   // work reg for kernel* emitters
2337 
2338     assert_different_registers(crc, data, dataLen, table);
2339 
2340     // We pass these values as ints, not as longs as required by C calling convention.
2341     // Crc used as int.
2342     __ z_llgfr(dataLen, dataLen);
2343 
2344     StubRoutines::zarch::generate_load_crc_table_addr(_masm, table);
2345 
2346     __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
2347     __ z_stmg(Z_R10, Z_R13, 1*8, Z_SP);  // Spill regs 10..11 to make them available as work registers.
2348     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3);
2349     __ z_lmg(Z_R10, Z_R13, 1*8, Z_SP);   // Spill regs 10..11 back from stack.
2350     __ resize_frame(+(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers.
2351 
2352     __ z_llgfr(Z_RET, crc);  // Updated crc is function result. No copying required, just zero upper 32 bits.
2353     __ z_br(Z_R14);          // Result already in Z_RET == Z_ARG1.
2354 
2355     return __ addr_at(start_off);
2356   }
2357 
2358 
2359   // Arguments:
2360   //   Z_ARG1    - x address
2361   //   Z_ARG2    - x length
2362   //   Z_ARG3    - y address
2363   //   Z_ARG4    - y length
2364   //   Z_ARG5    - z address
2365   //   160[Z_SP] - z length
2366   address generate_multiplyToLen() {
2367     __ align(CodeEntryAlignment);
2368     StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
2369 
2370     address start = __ pc();
2371 
2372     const Register x    = Z_ARG1;
2373     const Register xlen = Z_ARG2;
2374     const Register y    = Z_ARG3;
2375     const Register ylen = Z_ARG4;
2376     const Register z    = Z_ARG5;
2377     // zlen is passed on the stack:
2378     // Address zlen(Z_SP, _z_abi(remaining_cargs));
2379 
2380     // Next registers will be saved on stack in multiply_to_len().
2381     const Register tmp1 = Z_tmp_1;
2382     const Register tmp2 = Z_tmp_2;
2383     const Register tmp3 = Z_tmp_3;
2384     const Register tmp4 = Z_tmp_4;
2385     const Register tmp5 = Z_R9;
2386 
2387     BLOCK_COMMENT("Entry:");
2388 
2389     __ z_llgfr(xlen, xlen);
2390     __ z_llgfr(ylen, ylen);
2391 
2392     __ multiply_to_len(x, xlen, y, ylen, z, tmp1, tmp2, tmp3, tmp4, tmp5);
2393 
2394     __ z_br(Z_R14);  // Return to caller.
2395 
2396     return start;
2397   }
2398 
2399   void generate_initial() {
2400     // Generates all stubs and initializes the entry points.
2401 
2402     // Entry points that exist in all platforms.
2403     // Note: This is code that could be shared among different
2404     // platforms - however the benefit seems to be smaller than the
2405     // disadvantage of having a much more complicated generator
2406     // structure. See also comment in stubRoutines.hpp.
2407     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
2408 
2409     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
2410     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
2411 
2412     // Build this early so it's available for the interpreter.
2413     StubRoutines::_throw_StackOverflowError_entry          =
2414       generate_throw_exception("StackOverflowError throw_exception",
2415                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
2416     StubRoutines::_throw_delayed_StackOverflowError_entry  =
2417       generate_throw_exception("delayed StackOverflowError throw_exception",
2418                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError), false);
2419 
2420     //----------------------------------------------------------------------
2421     // Entry points that are platform specific.
2422 
2423     if (UseCRC32Intrinsics) {
2424       // We have no CRC32 table on z/Architecture.
2425       StubRoutines::_crc_table_adr    = (address)StubRoutines::zarch::_crc_table;
2426       StubRoutines::_updateBytesCRC32 = generate_CRC32_updateBytes("CRC32_updateBytes");
2427     }
2428 
2429     // Comapct string intrinsics: Translate table for string inflate intrinsic. Used by trot instruction.
2430     StubRoutines::zarch::_trot_table_addr = (address)StubRoutines::zarch::_trot_table;
2431   }
2432 
2433 
2434   void generate_all() {
2435     // Generates all stubs and initializes the entry points.
2436 
2437     StubRoutines::zarch::_partial_subtype_check            = generate_partial_subtype_check();
2438 
2439     // These entry points require SharedInfo::stack0 to be set up in non-core builds.
2440     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
2441     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
2442     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
2443 
2444     // Support for verify_oop (must happen after universe_init).
2445     StubRoutines::_verify_oop_subroutine_entry             = generate_verify_oop_subroutine();
2446 
2447     // Arraycopy stubs used by compilers.
2448     generate_arraycopy_stubs();
2449 
2450     // safefetch stubs
2451     generate_safefetch("SafeFetch32", sizeof(int),      &StubRoutines::_safefetch32_entry, &StubRoutines::_safefetch32_fault_pc, &StubRoutines::_safefetch32_continuation_pc);
2452     generate_safefetch("SafeFetchN",  sizeof(intptr_t), &StubRoutines::_safefetchN_entry,  &StubRoutines::_safefetchN_fault_pc,  &StubRoutines::_safefetchN_continuation_pc);
2453 
2454     // Generate AES intrinsics code.
2455     if (UseAESIntrinsics) {
2456       StubRoutines::_aescrypt_encryptBlock = generate_AES_encryptBlock("AES_encryptBlock");
2457       StubRoutines::_aescrypt_decryptBlock = generate_AES_decryptBlock("AES_decryptBlock");
2458       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_AES_encrypt("AES_encryptBlock_chaining");
2459       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_AES_decrypt("AES_decryptBlock_chaining");
2460     }
2461 
2462     // Generate SHA1/SHA256/SHA512 intrinsics code.
2463     if (UseSHA1Intrinsics) {
2464       StubRoutines::_sha1_implCompress     = generate_SHA1_stub(false,   "SHA1_singleBlock");
2465       StubRoutines::_sha1_implCompressMB   = generate_SHA1_stub(true,    "SHA1_multiBlock");
2466     }
2467     if (UseSHA256Intrinsics) {
2468       StubRoutines::_sha256_implCompress   = generate_SHA256_stub(false, "SHA256_singleBlock");
2469       StubRoutines::_sha256_implCompressMB = generate_SHA256_stub(true,  "SHA256_multiBlock");
2470     }
2471     if (UseSHA512Intrinsics) {
2472       StubRoutines::_sha512_implCompress   = generate_SHA512_stub(false, "SHA512_singleBlock");
2473       StubRoutines::_sha512_implCompressMB = generate_SHA512_stub(true,  "SHA512_multiBlock");
2474     }
2475 
2476 #ifdef COMPILER2
2477     if (UseMultiplyToLenIntrinsic) {
2478       StubRoutines::_multiplyToLen = generate_multiplyToLen();
2479     }
2480     if (UseMontgomeryMultiplyIntrinsic) {
2481       StubRoutines::_montgomeryMultiply
2482         = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
2483     }
2484     if (UseMontgomerySquareIntrinsic) {
2485       StubRoutines::_montgomerySquare
2486         = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
2487     }
2488 #endif
2489   }
2490 
2491  public:
2492   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
2493     // Replace the standard masm with a special one:
2494     _masm = new MacroAssembler(code);
2495 
2496     _stub_count = !all ? 0x100 : 0x200;
2497     if (all) {
2498       generate_all();
2499     } else {
2500       generate_initial();
2501     }
2502   }
2503 
2504  private:
2505   int _stub_count;
2506   void stub_prolog(StubCodeDesc* cdesc) {
2507 #ifdef ASSERT
2508     // Put extra information in the stub code, to make it more readable.
2509     // Write the high part of the address.
2510     // [RGV] Check if there is a dependency on the size of this prolog.
2511     __ emit_32((intptr_t)cdesc >> 32);
2512     __ emit_32((intptr_t)cdesc);
2513     __ emit_32(++_stub_count);
2514 #endif
2515     align(true);
2516   }
2517 
2518   void align(bool at_header = false) {
2519     // z/Architecture cache line size is 256 bytes.
2520     // There is no obvious benefit in aligning stub
2521     // code to cache lines. Use CodeEntryAlignment instead.
2522     const unsigned int icache_line_size      = CodeEntryAlignment;
2523     const unsigned int icache_half_line_size = MIN2<unsigned int>(32, CodeEntryAlignment);
2524 
2525     if (at_header) {
2526       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
2527         __ emit_16(0);
2528       }
2529     } else {
2530       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
2531         __ z_nop();
2532       }
2533     }
2534   }
2535 
2536 };
2537 
2538 void StubGenerator_generate(CodeBuffer* code, bool all) {
2539   StubGenerator g(code, all);
2540 }