1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "nativeInst_ppc.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/icache.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/g1CollectedHeap.inline.hpp"
  45 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  46 #include "gc/g1/heapRegion.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 #ifdef COMPILER2
  49 #include "opto/intrinsicnode.hpp"
  50 #endif
  51 
  52 #ifdef PRODUCT
  53 #define BLOCK_COMMENT(str) // nothing
  54 #else
  55 #define BLOCK_COMMENT(str) block_comment(str)
  56 #endif
  57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  58 
  59 #ifdef ASSERT
  60 // On RISC, there's no benefit to verifying instruction boundaries.
  61 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  62 #endif
  63 
  64 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
  65   assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
  66   if (Assembler::is_simm(si31, 16)) {
  67     ld(d, si31, a);
  68     if (emit_filler_nop) nop();
  69   } else {
  70     const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
  71     const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
  72     addis(d, a, hi);
  73     ld(d, lo, d);
  74   }
  75 }
  76 
  77 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
  78   assert_different_registers(d, a);
  79   ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
  80 }
  81 
  82 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
  83                                       size_t size_in_bytes, bool is_signed) {
  84   switch (size_in_bytes) {
  85   case  8:              ld(dst, offs, base);                         break;
  86   case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
  87   case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
  88   case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
  89   default:  ShouldNotReachHere();
  90   }
  91 }
  92 
  93 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
  94                                        size_t size_in_bytes) {
  95   switch (size_in_bytes) {
  96   case  8:  std(dst, offs, base); break;
  97   case  4:  stw(dst, offs, base); break;
  98   case  2:  sth(dst, offs, base); break;
  99   case  1:  stb(dst, offs, base); break;
 100   default:  ShouldNotReachHere();
 101   }
 102 }
 103 
 104 void MacroAssembler::align(int modulus, int max, int rem) {
 105   int padding = (rem + modulus - (offset() % modulus)) % modulus;
 106   if (padding > max) return;
 107   for (int c = (padding >> 2); c > 0; --c) { nop(); }
 108 }
 109 
 110 // Issue instructions that calculate given TOC from global TOC.
 111 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
 112                                                        bool add_relocation, bool emit_dummy_addr) {
 113   int offset = -1;
 114   if (emit_dummy_addr) {
 115     offset = -128; // dummy address
 116   } else if (addr != (address)(intptr_t)-1) {
 117     offset = MacroAssembler::offset_to_global_toc(addr);
 118   }
 119 
 120   if (hi16) {
 121     addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
 122   }
 123   if (lo16) {
 124     if (add_relocation) {
 125       // Relocate at the addi to avoid confusion with a load from the method's TOC.
 126       relocate(internal_word_Relocation::spec(addr));
 127     }
 128     addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
 129   }
 130 }
 131 
 132 int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
 133   const int offset = MacroAssembler::offset_to_global_toc(addr);
 134 
 135   const address inst2_addr = a;
 136   const int inst2 = *(int *)inst2_addr;
 137 
 138   // The relocation points to the second instruction, the addi,
 139   // and the addi reads and writes the same register dst.
 140   const int dst = inv_rt_field(inst2);
 141   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 142 
 143   // Now, find the preceding addis which writes to dst.
 144   int inst1 = 0;
 145   address inst1_addr = inst2_addr - BytesPerInstWord;
 146   while (inst1_addr >= bound) {
 147     inst1 = *(int *) inst1_addr;
 148     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 149       // Stop, found the addis which writes dst.
 150       break;
 151     }
 152     inst1_addr -= BytesPerInstWord;
 153   }
 154 
 155   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 156   set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
 157   set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
 158   return (int)((intptr_t)addr - (intptr_t)inst1_addr);
 159 }
 160 
 161 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
 162   const address inst2_addr = a;
 163   const int inst2 = *(int *)inst2_addr;
 164 
 165   // The relocation points to the second instruction, the addi,
 166   // and the addi reads and writes the same register dst.
 167   const int dst = inv_rt_field(inst2);
 168   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 169 
 170   // Now, find the preceding addis which writes to dst.
 171   int inst1 = 0;
 172   address inst1_addr = inst2_addr - BytesPerInstWord;
 173   while (inst1_addr >= bound) {
 174     inst1 = *(int *) inst1_addr;
 175     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 176       // stop, found the addis which writes dst
 177       break;
 178     }
 179     inst1_addr -= BytesPerInstWord;
 180   }
 181 
 182   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 183 
 184   int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
 185   // -1 is a special case
 186   if (offset == -1) {
 187     return (address)(intptr_t)-1;
 188   } else {
 189     return global_toc() + offset;
 190   }
 191 }
 192 
 193 #ifdef _LP64
 194 // Patch compressed oops or klass constants.
 195 // Assembler sequence is
 196 // 1) compressed oops:
 197 //    lis  rx = const.hi
 198 //    ori rx = rx | const.lo
 199 // 2) compressed klass:
 200 //    lis  rx = const.hi
 201 //    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
 202 //    ori rx = rx | const.lo
 203 // Clrldi will be passed by.
 204 int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
 205   assert(UseCompressedOops, "Should only patch compressed oops");
 206 
 207   const address inst2_addr = a;
 208   const int inst2 = *(int *)inst2_addr;
 209 
 210   // The relocation points to the second instruction, the ori,
 211   // and the ori reads and writes the same register dst.
 212   const int dst = inv_rta_field(inst2);
 213   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 214   // Now, find the preceding addis which writes to dst.
 215   int inst1 = 0;
 216   address inst1_addr = inst2_addr - BytesPerInstWord;
 217   bool inst1_found = false;
 218   while (inst1_addr >= bound) {
 219     inst1 = *(int *)inst1_addr;
 220     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
 221     inst1_addr -= BytesPerInstWord;
 222   }
 223   assert(inst1_found, "inst is not lis");
 224 
 225   int xc = (data >> 16) & 0xffff;
 226   int xd = (data >>  0) & 0xffff;
 227 
 228   set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
 229   set_imm((int *)inst2_addr,        (xd)); // unsigned int
 230   return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr);
 231 }
 232 
 233 // Get compressed oop or klass constant.
 234 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
 235   assert(UseCompressedOops, "Should only patch compressed oops");
 236 
 237   const address inst2_addr = a;
 238   const int inst2 = *(int *)inst2_addr;
 239 
 240   // The relocation points to the second instruction, the ori,
 241   // and the ori reads and writes the same register dst.
 242   const int dst = inv_rta_field(inst2);
 243   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 244   // Now, find the preceding lis which writes to dst.
 245   int inst1 = 0;
 246   address inst1_addr = inst2_addr - BytesPerInstWord;
 247   bool inst1_found = false;
 248 
 249   while (inst1_addr >= bound) {
 250     inst1 = *(int *) inst1_addr;
 251     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
 252     inst1_addr -= BytesPerInstWord;
 253   }
 254   assert(inst1_found, "inst is not lis");
 255 
 256   uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
 257   uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
 258 
 259   return (int) (xl | xh);
 260 }
 261 #endif // _LP64
 262 
 263 // Returns true if successful.
 264 bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
 265                                                 Register toc, bool fixed_size) {
 266   int toc_offset = 0;
 267   // Use RelocationHolder::none for the constant pool entry, otherwise
 268   // we will end up with a failing NativeCall::verify(x) where x is
 269   // the address of the constant pool entry.
 270   // FIXME: We should insert relocation information for oops at the constant
 271   // pool entries instead of inserting it at the loads; patching of a constant
 272   // pool entry should be less expensive.
 273   address const_address = address_constant((address)a.value(), RelocationHolder::none);
 274   if (const_address == NULL) { return false; } // allocation failure
 275   // Relocate at the pc of the load.
 276   relocate(a.rspec());
 277   toc_offset = (int)(const_address - code()->consts()->start());
 278   ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
 279   return true;
 280 }
 281 
 282 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
 283   const address inst1_addr = a;
 284   const int inst1 = *(int *)inst1_addr;
 285 
 286    // The relocation points to the ld or the addis.
 287    return (is_ld(inst1)) ||
 288           (is_addis(inst1) && inv_ra_field(inst1) != 0);
 289 }
 290 
 291 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
 292   assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
 293 
 294   const address inst1_addr = a;
 295   const int inst1 = *(int *)inst1_addr;
 296 
 297   if (is_ld(inst1)) {
 298     return inv_d1_field(inst1);
 299   } else if (is_addis(inst1)) {
 300     const int dst = inv_rt_field(inst1);
 301 
 302     // Now, find the succeeding ld which reads and writes to dst.
 303     address inst2_addr = inst1_addr + BytesPerInstWord;
 304     int inst2 = 0;
 305     while (true) {
 306       inst2 = *(int *) inst2_addr;
 307       if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
 308         // Stop, found the ld which reads and writes dst.
 309         break;
 310       }
 311       inst2_addr += BytesPerInstWord;
 312     }
 313     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
 314   }
 315   ShouldNotReachHere();
 316   return 0;
 317 }
 318 
 319 // Get the constant from a `load_const' sequence.
 320 long MacroAssembler::get_const(address a) {
 321   assert(is_load_const_at(a), "not a load of a constant");
 322   const int *p = (const int*) a;
 323   unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
 324   if (is_ori(*(p+1))) {
 325     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
 326     x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
 327     x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
 328   } else if (is_lis(*(p+1))) {
 329     x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
 330     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
 331     x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
 332   } else {
 333     ShouldNotReachHere();
 334     return (long) 0;
 335   }
 336   return (long) x;
 337 }
 338 
 339 // Patch the 64 bit constant of a `load_const' sequence. This is a low
 340 // level procedure. It neither flushes the instruction cache nor is it
 341 // mt safe.
 342 void MacroAssembler::patch_const(address a, long x) {
 343   assert(is_load_const_at(a), "not a load of a constant");
 344   int *p = (int*) a;
 345   if (is_ori(*(p+1))) {
 346     set_imm(0 + p, (x >> 48) & 0xffff);
 347     set_imm(1 + p, (x >> 32) & 0xffff);
 348     set_imm(3 + p, (x >> 16) & 0xffff);
 349     set_imm(4 + p, x & 0xffff);
 350   } else if (is_lis(*(p+1))) {
 351     set_imm(0 + p, (x >> 48) & 0xffff);
 352     set_imm(2 + p, (x >> 32) & 0xffff);
 353     set_imm(1 + p, (x >> 16) & 0xffff);
 354     set_imm(3 + p, x & 0xffff);
 355   } else {
 356     ShouldNotReachHere();
 357   }
 358 }
 359 
 360 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
 361   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 362   int index = oop_recorder()->allocate_metadata_index(obj);
 363   RelocationHolder rspec = metadata_Relocation::spec(index);
 364   return AddressLiteral((address)obj, rspec);
 365 }
 366 
 367 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
 368   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 369   int index = oop_recorder()->find_index(obj);
 370   RelocationHolder rspec = metadata_Relocation::spec(index);
 371   return AddressLiteral((address)obj, rspec);
 372 }
 373 
 374 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
 375   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 376   int oop_index = oop_recorder()->allocate_oop_index(obj);
 377   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 378 }
 379 
 380 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
 381   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 382   int oop_index = oop_recorder()->find_index(obj);
 383   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 384 }
 385 
 386 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 387                                                       Register tmp, int offset) {
 388   intptr_t value = *delayed_value_addr;
 389   if (value != 0) {
 390     return RegisterOrConstant(value + offset);
 391   }
 392 
 393   // Load indirectly to solve generation ordering problem.
 394   // static address, no relocation
 395   int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
 396   ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
 397 
 398   if (offset != 0) {
 399     addi(tmp, tmp, offset);
 400   }
 401 
 402   return RegisterOrConstant(tmp);
 403 }
 404 
 405 #ifndef PRODUCT
 406 void MacroAssembler::pd_print_patched_instruction(address branch) {
 407   Unimplemented(); // TODO: PPC port
 408 }
 409 #endif // ndef PRODUCT
 410 
 411 // Conditional far branch for destinations encodable in 24+2 bits.
 412 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
 413 
 414   // If requested by flag optimize, relocate the bc_far as a
 415   // runtime_call and prepare for optimizing it when the code gets
 416   // relocated.
 417   if (optimize == bc_far_optimize_on_relocate) {
 418     relocate(relocInfo::runtime_call_type);
 419   }
 420 
 421   // variant 2:
 422   //
 423   //    b!cxx SKIP
 424   //    bxx   DEST
 425   //  SKIP:
 426   //
 427 
 428   const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 429                                                 opposite_bcond(inv_boint_bcond(boint)));
 430 
 431   // We emit two branches.
 432   // First, a conditional branch which jumps around the far branch.
 433   const address not_taken_pc = pc() + 2 * BytesPerInstWord;
 434   const address bc_pc        = pc();
 435   bc(opposite_boint, biint, not_taken_pc);
 436 
 437   const int bc_instr = *(int*)bc_pc;
 438   assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
 439   assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
 440   assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
 441                                      opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
 442          "postcondition");
 443   assert(biint == inv_bi_field(bc_instr), "postcondition");
 444 
 445   // Second, an unconditional far branch which jumps to dest.
 446   // Note: target(dest) remembers the current pc (see CodeSection::target)
 447   //       and returns the current pc if the label is not bound yet; when
 448   //       the label gets bound, the unconditional far branch will be patched.
 449   const address target_pc = target(dest);
 450   const address b_pc  = pc();
 451   b(target_pc);
 452 
 453   assert(not_taken_pc == pc(),                     "postcondition");
 454   assert(dest.is_bound() || target_pc == b_pc, "postcondition");
 455 }
 456 
 457 // 1 or 2 instructions
 458 void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
 459   if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
 460     bc(boint, biint, dest);
 461   } else {
 462     bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
 463   }
 464 }
 465 
 466 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
 467   return is_bc_far_variant1_at(instruction_addr) ||
 468          is_bc_far_variant2_at(instruction_addr) ||
 469          is_bc_far_variant3_at(instruction_addr);
 470 }
 471 
 472 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
 473   if (is_bc_far_variant1_at(instruction_addr)) {
 474     const address instruction_1_addr = instruction_addr;
 475     const int instruction_1 = *(int*)instruction_1_addr;
 476     return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
 477   } else if (is_bc_far_variant2_at(instruction_addr)) {
 478     const address instruction_2_addr = instruction_addr + 4;
 479     return bxx_destination(instruction_2_addr);
 480   } else if (is_bc_far_variant3_at(instruction_addr)) {
 481     return instruction_addr + 8;
 482   }
 483   // variant 4 ???
 484   ShouldNotReachHere();
 485   return NULL;
 486 }
 487 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
 488 
 489   if (is_bc_far_variant3_at(instruction_addr)) {
 490     // variant 3, far cond branch to the next instruction, already patched to nops:
 491     //
 492     //    nop
 493     //    endgroup
 494     //  SKIP/DEST:
 495     //
 496     return;
 497   }
 498 
 499   // first, extract boint and biint from the current branch
 500   int boint = 0;
 501   int biint = 0;
 502 
 503   ResourceMark rm;
 504   const int code_size = 2 * BytesPerInstWord;
 505   CodeBuffer buf(instruction_addr, code_size);
 506   MacroAssembler masm(&buf);
 507   if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
 508     // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
 509     masm.nop();
 510     masm.endgroup();
 511   } else {
 512     if (is_bc_far_variant1_at(instruction_addr)) {
 513       // variant 1, the 1st instruction contains the destination address:
 514       //
 515       //    bcxx  DEST
 516       //    nop
 517       //
 518       const int instruction_1 = *(int*)(instruction_addr);
 519       boint = inv_bo_field(instruction_1);
 520       biint = inv_bi_field(instruction_1);
 521     } else if (is_bc_far_variant2_at(instruction_addr)) {
 522       // variant 2, the 2nd instruction contains the destination address:
 523       //
 524       //    b!cxx SKIP
 525       //    bxx   DEST
 526       //  SKIP:
 527       //
 528       const int instruction_1 = *(int*)(instruction_addr);
 529       boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
 530           opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
 531       biint = inv_bi_field(instruction_1);
 532     } else {
 533       // variant 4???
 534       ShouldNotReachHere();
 535     }
 536 
 537     // second, set the new branch destination and optimize the code
 538     if (dest != instruction_addr + 4 && // the bc_far is still unbound!
 539         masm.is_within_range_of_bcxx(dest, instruction_addr)) {
 540       // variant 1:
 541       //
 542       //    bcxx  DEST
 543       //    nop
 544       //
 545       masm.bc(boint, biint, dest);
 546       masm.nop();
 547     } else {
 548       // variant 2:
 549       //
 550       //    b!cxx SKIP
 551       //    bxx   DEST
 552       //  SKIP:
 553       //
 554       const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 555                                                     opposite_bcond(inv_boint_bcond(boint)));
 556       const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
 557       masm.bc(opposite_boint, biint, not_taken_pc);
 558       masm.b(dest);
 559     }
 560   }
 561   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 562 }
 563 
 564 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
 565 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
 566   // get current pc
 567   uint64_t start_pc = (uint64_t) pc();
 568 
 569   const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
 570   const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first
 571 
 572   // relocate here
 573   if (rt != relocInfo::none) {
 574     relocate(rt);
 575   }
 576 
 577   if ( ReoptimizeCallSequences &&
 578        (( link && is_within_range_of_b(dest, pc_of_bl)) ||
 579         (!link && is_within_range_of_b(dest, pc_of_b)))) {
 580     // variant 2:
 581     // Emit an optimized, pc-relative call/jump.
 582 
 583     if (link) {
 584       // some padding
 585       nop();
 586       nop();
 587       nop();
 588       nop();
 589       nop();
 590       nop();
 591 
 592       // do the call
 593       assert(pc() == pc_of_bl, "just checking");
 594       bl(dest, relocInfo::none);
 595     } else {
 596       // do the jump
 597       assert(pc() == pc_of_b, "just checking");
 598       b(dest, relocInfo::none);
 599 
 600       // some padding
 601       nop();
 602       nop();
 603       nop();
 604       nop();
 605       nop();
 606       nop();
 607     }
 608 
 609     // Assert that we can identify the emitted call/jump.
 610     assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
 611            "can't identify emitted call");
 612   } else {
 613     // variant 1:
 614     mr(R0, R11);  // spill R11 -> R0.
 615 
 616     // Load the destination address into CTR,
 617     // calculate destination relative to global toc.
 618     calculate_address_from_global_toc(R11, dest, true, true, false);
 619 
 620     mtctr(R11);
 621     mr(R11, R0);  // spill R11 <- R0.
 622     nop();
 623 
 624     // do the call/jump
 625     if (link) {
 626       bctrl();
 627     } else{
 628       bctr();
 629     }
 630     // Assert that we can identify the emitted call/jump.
 631     assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
 632            "can't identify emitted call");
 633   }
 634 
 635   // Assert that we can identify the emitted call/jump.
 636   assert(is_bxx64_patchable_at((address)start_pc, link),
 637          "can't identify emitted call");
 638   assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
 639          "wrong encoding of dest address");
 640 }
 641 
 642 // Identify a bxx64_patchable instruction.
 643 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
 644   return is_bxx64_patchable_variant1b_at(instruction_addr, link)
 645     //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
 646       || is_bxx64_patchable_variant2_at(instruction_addr, link);
 647 }
 648 
 649 // Does the call64_patchable instruction use a pc-relative encoding of
 650 // the call destination?
 651 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
 652   // variant 2 is pc-relative
 653   return is_bxx64_patchable_variant2_at(instruction_addr, link);
 654 }
 655 
 656 // Identify variant 1.
 657 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
 658   unsigned int* instr = (unsigned int*) instruction_addr;
 659   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 660       && is_mtctr(instr[5]) // mtctr
 661     && is_load_const_at(instruction_addr);
 662 }
 663 
 664 // Identify variant 1b: load destination relative to global toc.
 665 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
 666   unsigned int* instr = (unsigned int*) instruction_addr;
 667   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 668     && is_mtctr(instr[3]) // mtctr
 669     && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
 670 }
 671 
 672 // Identify variant 2.
 673 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
 674   unsigned int* instr = (unsigned int*) instruction_addr;
 675   if (link) {
 676     return is_bl (instr[6])  // bl dest is last
 677       && is_nop(instr[0])  // nop
 678       && is_nop(instr[1])  // nop
 679       && is_nop(instr[2])  // nop
 680       && is_nop(instr[3])  // nop
 681       && is_nop(instr[4])  // nop
 682       && is_nop(instr[5]); // nop
 683   } else {
 684     return is_b  (instr[0])  // b  dest is first
 685       && is_nop(instr[1])  // nop
 686       && is_nop(instr[2])  // nop
 687       && is_nop(instr[3])  // nop
 688       && is_nop(instr[4])  // nop
 689       && is_nop(instr[5])  // nop
 690       && is_nop(instr[6]); // nop
 691   }
 692 }
 693 
 694 // Set dest address of a bxx64_patchable instruction.
 695 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
 696   ResourceMark rm;
 697   int code_size = MacroAssembler::bxx64_patchable_size;
 698   CodeBuffer buf(instruction_addr, code_size);
 699   MacroAssembler masm(&buf);
 700   masm.bxx64_patchable(dest, relocInfo::none, link);
 701   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 702 }
 703 
 704 // Get dest address of a bxx64_patchable instruction.
 705 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
 706   if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
 707     return (address) (unsigned long) get_const(instruction_addr);
 708   } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
 709     unsigned int* instr = (unsigned int*) instruction_addr;
 710     if (link) {
 711       const int instr_idx = 6; // bl is last
 712       int branchoffset = branch_destination(instr[instr_idx], 0);
 713       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 714     } else {
 715       const int instr_idx = 0; // b is first
 716       int branchoffset = branch_destination(instr[instr_idx], 0);
 717       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 718     }
 719   // Load dest relative to global toc.
 720   } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
 721     return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
 722                                                                instruction_addr);
 723   } else {
 724     ShouldNotReachHere();
 725     return NULL;
 726   }
 727 }
 728 
 729 // Uses ordering which corresponds to ABI:
 730 //    _savegpr0_14:  std  r14,-144(r1)
 731 //    _savegpr0_15:  std  r15,-136(r1)
 732 //    _savegpr0_16:  std  r16,-128(r1)
 733 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
 734   std(R14, offset, dst);   offset += 8;
 735   std(R15, offset, dst);   offset += 8;
 736   std(R16, offset, dst);   offset += 8;
 737   std(R17, offset, dst);   offset += 8;
 738   std(R18, offset, dst);   offset += 8;
 739   std(R19, offset, dst);   offset += 8;
 740   std(R20, offset, dst);   offset += 8;
 741   std(R21, offset, dst);   offset += 8;
 742   std(R22, offset, dst);   offset += 8;
 743   std(R23, offset, dst);   offset += 8;
 744   std(R24, offset, dst);   offset += 8;
 745   std(R25, offset, dst);   offset += 8;
 746   std(R26, offset, dst);   offset += 8;
 747   std(R27, offset, dst);   offset += 8;
 748   std(R28, offset, dst);   offset += 8;
 749   std(R29, offset, dst);   offset += 8;
 750   std(R30, offset, dst);   offset += 8;
 751   std(R31, offset, dst);   offset += 8;
 752 
 753   stfd(F14, offset, dst);   offset += 8;
 754   stfd(F15, offset, dst);   offset += 8;
 755   stfd(F16, offset, dst);   offset += 8;
 756   stfd(F17, offset, dst);   offset += 8;
 757   stfd(F18, offset, dst);   offset += 8;
 758   stfd(F19, offset, dst);   offset += 8;
 759   stfd(F20, offset, dst);   offset += 8;
 760   stfd(F21, offset, dst);   offset += 8;
 761   stfd(F22, offset, dst);   offset += 8;
 762   stfd(F23, offset, dst);   offset += 8;
 763   stfd(F24, offset, dst);   offset += 8;
 764   stfd(F25, offset, dst);   offset += 8;
 765   stfd(F26, offset, dst);   offset += 8;
 766   stfd(F27, offset, dst);   offset += 8;
 767   stfd(F28, offset, dst);   offset += 8;
 768   stfd(F29, offset, dst);   offset += 8;
 769   stfd(F30, offset, dst);   offset += 8;
 770   stfd(F31, offset, dst);
 771 }
 772 
 773 // Uses ordering which corresponds to ABI:
 774 //    _restgpr0_14:  ld   r14,-144(r1)
 775 //    _restgpr0_15:  ld   r15,-136(r1)
 776 //    _restgpr0_16:  ld   r16,-128(r1)
 777 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
 778   ld(R14, offset, src);   offset += 8;
 779   ld(R15, offset, src);   offset += 8;
 780   ld(R16, offset, src);   offset += 8;
 781   ld(R17, offset, src);   offset += 8;
 782   ld(R18, offset, src);   offset += 8;
 783   ld(R19, offset, src);   offset += 8;
 784   ld(R20, offset, src);   offset += 8;
 785   ld(R21, offset, src);   offset += 8;
 786   ld(R22, offset, src);   offset += 8;
 787   ld(R23, offset, src);   offset += 8;
 788   ld(R24, offset, src);   offset += 8;
 789   ld(R25, offset, src);   offset += 8;
 790   ld(R26, offset, src);   offset += 8;
 791   ld(R27, offset, src);   offset += 8;
 792   ld(R28, offset, src);   offset += 8;
 793   ld(R29, offset, src);   offset += 8;
 794   ld(R30, offset, src);   offset += 8;
 795   ld(R31, offset, src);   offset += 8;
 796 
 797   // FP registers
 798   lfd(F14, offset, src);   offset += 8;
 799   lfd(F15, offset, src);   offset += 8;
 800   lfd(F16, offset, src);   offset += 8;
 801   lfd(F17, offset, src);   offset += 8;
 802   lfd(F18, offset, src);   offset += 8;
 803   lfd(F19, offset, src);   offset += 8;
 804   lfd(F20, offset, src);   offset += 8;
 805   lfd(F21, offset, src);   offset += 8;
 806   lfd(F22, offset, src);   offset += 8;
 807   lfd(F23, offset, src);   offset += 8;
 808   lfd(F24, offset, src);   offset += 8;
 809   lfd(F25, offset, src);   offset += 8;
 810   lfd(F26, offset, src);   offset += 8;
 811   lfd(F27, offset, src);   offset += 8;
 812   lfd(F28, offset, src);   offset += 8;
 813   lfd(F29, offset, src);   offset += 8;
 814   lfd(F30, offset, src);   offset += 8;
 815   lfd(F31, offset, src);
 816 }
 817 
 818 // For verify_oops.
 819 void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
 820   std(R2,  offset, dst);   offset += 8;
 821   std(R3,  offset, dst);   offset += 8;
 822   std(R4,  offset, dst);   offset += 8;
 823   std(R5,  offset, dst);   offset += 8;
 824   std(R6,  offset, dst);   offset += 8;
 825   std(R7,  offset, dst);   offset += 8;
 826   std(R8,  offset, dst);   offset += 8;
 827   std(R9,  offset, dst);   offset += 8;
 828   std(R10, offset, dst);   offset += 8;
 829   std(R11, offset, dst);   offset += 8;
 830   std(R12, offset, dst);   offset += 8;
 831 
 832   stfd(F0, offset, dst);   offset += 8;
 833   stfd(F1, offset, dst);   offset += 8;
 834   stfd(F2, offset, dst);   offset += 8;
 835   stfd(F3, offset, dst);   offset += 8;
 836   stfd(F4, offset, dst);   offset += 8;
 837   stfd(F5, offset, dst);   offset += 8;
 838   stfd(F6, offset, dst);   offset += 8;
 839   stfd(F7, offset, dst);   offset += 8;
 840   stfd(F8, offset, dst);   offset += 8;
 841   stfd(F9, offset, dst);   offset += 8;
 842   stfd(F10, offset, dst);  offset += 8;
 843   stfd(F11, offset, dst);  offset += 8;
 844   stfd(F12, offset, dst);  offset += 8;
 845   stfd(F13, offset, dst);
 846 }
 847 
 848 // For verify_oops.
 849 void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
 850   ld(R2,  offset, src);   offset += 8;
 851   ld(R3,  offset, src);   offset += 8;
 852   ld(R4,  offset, src);   offset += 8;
 853   ld(R5,  offset, src);   offset += 8;
 854   ld(R6,  offset, src);   offset += 8;
 855   ld(R7,  offset, src);   offset += 8;
 856   ld(R8,  offset, src);   offset += 8;
 857   ld(R9,  offset, src);   offset += 8;
 858   ld(R10, offset, src);   offset += 8;
 859   ld(R11, offset, src);   offset += 8;
 860   ld(R12, offset, src);   offset += 8;
 861 
 862   lfd(F0, offset, src);   offset += 8;
 863   lfd(F1, offset, src);   offset += 8;
 864   lfd(F2, offset, src);   offset += 8;
 865   lfd(F3, offset, src);   offset += 8;
 866   lfd(F4, offset, src);   offset += 8;
 867   lfd(F5, offset, src);   offset += 8;
 868   lfd(F6, offset, src);   offset += 8;
 869   lfd(F7, offset, src);   offset += 8;
 870   lfd(F8, offset, src);   offset += 8;
 871   lfd(F9, offset, src);   offset += 8;
 872   lfd(F10, offset, src);  offset += 8;
 873   lfd(F11, offset, src);  offset += 8;
 874   lfd(F12, offset, src);  offset += 8;
 875   lfd(F13, offset, src);
 876 }
 877 
 878 void MacroAssembler::save_LR_CR(Register tmp) {
 879   mfcr(tmp);
 880   std(tmp, _abi(cr), R1_SP);
 881   mflr(tmp);
 882   std(tmp, _abi(lr), R1_SP);
 883   // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
 884 }
 885 
 886 void MacroAssembler::restore_LR_CR(Register tmp) {
 887   assert(tmp != R1_SP, "must be distinct");
 888   ld(tmp, _abi(lr), R1_SP);
 889   mtlr(tmp);
 890   ld(tmp, _abi(cr), R1_SP);
 891   mtcr(tmp);
 892 }
 893 
 894 address MacroAssembler::get_PC_trash_LR(Register result) {
 895   Label L;
 896   bl(L);
 897   bind(L);
 898   address lr_pc = pc();
 899   mflr(result);
 900   return lr_pc;
 901 }
 902 
 903 void MacroAssembler::resize_frame(Register offset, Register tmp) {
 904 #ifdef ASSERT
 905   assert_different_registers(offset, tmp, R1_SP);
 906   andi_(tmp, offset, frame::alignment_in_bytes-1);
 907   asm_assert_eq("resize_frame: unaligned", 0x204);
 908 #endif
 909 
 910   // tmp <- *(SP)
 911   ld(tmp, _abi(callers_sp), R1_SP);
 912   // addr <- SP + offset;
 913   // *(addr) <- tmp;
 914   // SP <- addr
 915   stdux(tmp, R1_SP, offset);
 916 }
 917 
 918 void MacroAssembler::resize_frame(int offset, Register tmp) {
 919   assert(is_simm(offset, 16), "too big an offset");
 920   assert_different_registers(tmp, R1_SP);
 921   assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
 922   // tmp <- *(SP)
 923   ld(tmp, _abi(callers_sp), R1_SP);
 924   // addr <- SP + offset;
 925   // *(addr) <- tmp;
 926   // SP <- addr
 927   stdu(tmp, offset, R1_SP);
 928 }
 929 
 930 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
 931   // (addr == tmp1) || (addr == tmp2) is allowed here!
 932   assert(tmp1 != tmp2, "must be distinct");
 933 
 934   // compute offset w.r.t. current stack pointer
 935   // tmp_1 <- addr - SP (!)
 936   subf(tmp1, R1_SP, addr);
 937 
 938   // atomically update SP keeping back link.
 939   resize_frame(tmp1/* offset */, tmp2/* tmp */);
 940 }
 941 
 942 void MacroAssembler::push_frame(Register bytes, Register tmp) {
 943 #ifdef ASSERT
 944   assert(bytes != R0, "r0 not allowed here");
 945   andi_(R0, bytes, frame::alignment_in_bytes-1);
 946   asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
 947 #endif
 948   neg(tmp, bytes);
 949   stdux(R1_SP, R1_SP, tmp);
 950 }
 951 
 952 // Push a frame of size `bytes'.
 953 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
 954   long offset = align_addr(bytes, frame::alignment_in_bytes);
 955   if (is_simm(-offset, 16)) {
 956     stdu(R1_SP, -offset, R1_SP);
 957   } else {
 958     load_const_optimized(tmp, -offset);
 959     stdux(R1_SP, R1_SP, tmp);
 960   }
 961 }
 962 
 963 // Push a frame of size `bytes' plus abi_reg_args on top.
 964 void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
 965   push_frame(bytes + frame::abi_reg_args_size, tmp);
 966 }
 967 
 968 // Setup up a new C frame with a spill area for non-volatile GPRs and
 969 // additional space for local variables.
 970 void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
 971                                                       Register tmp) {
 972   push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
 973 }
 974 
 975 // Pop current C frame.
 976 void MacroAssembler::pop_frame() {
 977   ld(R1_SP, _abi(callers_sp), R1_SP);
 978 }
 979 
 980 #if defined(ABI_ELFv2)
 981 address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
 982   // TODO(asmundak): make sure the caller uses R12 as function descriptor
 983   // most of the times.
 984   if (R12 != r_function_entry) {
 985     mr(R12, r_function_entry);
 986   }
 987   mtctr(R12);
 988   // Do a call or a branch.
 989   if (and_link) {
 990     bctrl();
 991   } else {
 992     bctr();
 993   }
 994   _last_calls_return_pc = pc();
 995 
 996   return _last_calls_return_pc;
 997 }
 998 
 999 // Call a C function via a function descriptor and use full C
1000 // calling conventions. Updates and returns _last_calls_return_pc.
1001 address MacroAssembler::call_c(Register r_function_entry) {
1002   return branch_to(r_function_entry, /*and_link=*/true);
1003 }
1004 
1005 // For tail calls: only branch, don't link, so callee returns to caller of this function.
1006 address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
1007   return branch_to(r_function_entry, /*and_link=*/false);
1008 }
1009 
1010 address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
1011   load_const(R12, function_entry, R0);
1012   return branch_to(R12,  /*and_link=*/true);
1013 }
1014 
1015 #else
1016 // Generic version of a call to C function via a function descriptor
1017 // with variable support for C calling conventions (TOC, ENV, etc.).
1018 // Updates and returns _last_calls_return_pc.
1019 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
1020                                   bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
1021   // we emit standard ptrgl glue code here
1022   assert((function_descriptor != R0), "function_descriptor cannot be R0");
1023 
1024   // retrieve necessary entries from the function descriptor
1025   ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
1026   mtctr(R0);
1027 
1028   if (load_toc_of_callee) {
1029     ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
1030   }
1031   if (load_env_of_callee) {
1032     ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
1033   } else if (load_toc_of_callee) {
1034     li(R11, 0);
1035   }
1036 
1037   // do a call or a branch
1038   if (and_link) {
1039     bctrl();
1040   } else {
1041     bctr();
1042   }
1043   _last_calls_return_pc = pc();
1044 
1045   return _last_calls_return_pc;
1046 }
1047 
1048 // Call a C function via a function descriptor and use full C calling
1049 // conventions.
1050 // We don't use the TOC in generated code, so there is no need to save
1051 // and restore its value.
1052 address MacroAssembler::call_c(Register fd) {
1053   return branch_to(fd, /*and_link=*/true,
1054                        /*save toc=*/false,
1055                        /*restore toc=*/false,
1056                        /*load toc=*/true,
1057                        /*load env=*/true);
1058 }
1059 
1060 address MacroAssembler::call_c_and_return_to_caller(Register fd) {
1061   return branch_to(fd, /*and_link=*/false,
1062                        /*save toc=*/false,
1063                        /*restore toc=*/false,
1064                        /*load toc=*/true,
1065                        /*load env=*/true);
1066 }
1067 
1068 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
1069   if (rt != relocInfo::none) {
1070     // this call needs to be relocatable
1071     if (!ReoptimizeCallSequences
1072         || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1073         || fd == NULL   // support code-size estimation
1074         || !fd->is_friend_function()
1075         || fd->entry() == NULL) {
1076       // it's not a friend function as defined by class FunctionDescriptor,
1077       // so do a full call-c here.
1078       load_const(R11, (address)fd, R0);
1079 
1080       bool has_env = (fd != NULL && fd->env() != NULL);
1081       return branch_to(R11, /*and_link=*/true,
1082                             /*save toc=*/false,
1083                             /*restore toc=*/false,
1084                             /*load toc=*/true,
1085                             /*load env=*/has_env);
1086     } else {
1087       // It's a friend function. Load the entry point and don't care about
1088       // toc and env. Use an optimizable call instruction, but ensure the
1089       // same code-size as in the case of a non-friend function.
1090       nop();
1091       nop();
1092       nop();
1093       bl64_patchable(fd->entry(), rt);
1094       _last_calls_return_pc = pc();
1095       return _last_calls_return_pc;
1096     }
1097   } else {
1098     // This call does not need to be relocatable, do more aggressive
1099     // optimizations.
1100     if (!ReoptimizeCallSequences
1101       || !fd->is_friend_function()) {
1102       // It's not a friend function as defined by class FunctionDescriptor,
1103       // so do a full call-c here.
1104       load_const(R11, (address)fd, R0);
1105       return branch_to(R11, /*and_link=*/true,
1106                             /*save toc=*/false,
1107                             /*restore toc=*/false,
1108                             /*load toc=*/true,
1109                             /*load env=*/true);
1110     } else {
1111       // it's a friend function, load the entry point and don't care about
1112       // toc and env.
1113       address dest = fd->entry();
1114       if (is_within_range_of_b(dest, pc())) {
1115         bl(dest);
1116       } else {
1117         bl64_patchable(dest, rt);
1118       }
1119       _last_calls_return_pc = pc();
1120       return _last_calls_return_pc;
1121     }
1122   }
1123 }
1124 
1125 // Call a C function.  All constants needed reside in TOC.
1126 //
1127 // Read the address to call from the TOC.
1128 // Read env from TOC, if fd specifies an env.
1129 // Read new TOC from TOC.
1130 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
1131                                          relocInfo::relocType rt, Register toc) {
1132   if (!ReoptimizeCallSequences
1133     || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1134     || !fd->is_friend_function()) {
1135     // It's not a friend function as defined by class FunctionDescriptor,
1136     // so do a full call-c here.
1137     assert(fd->entry() != NULL, "function must be linked");
1138 
1139     AddressLiteral fd_entry(fd->entry());
1140     bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
1141     mtctr(R11);
1142     if (fd->env() == NULL) {
1143       li(R11, 0);
1144       nop();
1145     } else {
1146       AddressLiteral fd_env(fd->env());
1147       success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
1148     }
1149     AddressLiteral fd_toc(fd->toc());
1150     // Set R2_TOC (load from toc)
1151     success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
1152     bctrl();
1153     _last_calls_return_pc = pc();
1154     if (!success) { return NULL; }
1155   } else {
1156     // It's a friend function, load the entry point and don't care about
1157     // toc and env. Use an optimizable call instruction, but ensure the
1158     // same code-size as in the case of a non-friend function.
1159     nop();
1160     bl64_patchable(fd->entry(), rt);
1161     _last_calls_return_pc = pc();
1162   }
1163   return _last_calls_return_pc;
1164 }
1165 #endif // ABI_ELFv2
1166 
1167 void MacroAssembler::call_VM_base(Register oop_result,
1168                                   Register last_java_sp,
1169                                   address  entry_point,
1170                                   bool     check_exceptions) {
1171   BLOCK_COMMENT("call_VM {");
1172   // Determine last_java_sp register.
1173   if (!last_java_sp->is_valid()) {
1174     last_java_sp = R1_SP;
1175   }
1176   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
1177 
1178   // ARG1 must hold thread address.
1179   mr(R3_ARG1, R16_thread);
1180 #if defined(ABI_ELFv2)
1181   address return_pc = call_c(entry_point, relocInfo::none);
1182 #else
1183   address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
1184 #endif
1185 
1186   reset_last_Java_frame();
1187 
1188   // Check for pending exceptions.
1189   if (check_exceptions) {
1190     // We don't check for exceptions here.
1191     ShouldNotReachHere();
1192   }
1193 
1194   // Get oop result if there is one and reset the value in the thread.
1195   if (oop_result->is_valid()) {
1196     get_vm_result(oop_result);
1197   }
1198 
1199   _last_calls_return_pc = return_pc;
1200   BLOCK_COMMENT("} call_VM");
1201 }
1202 
1203 void MacroAssembler::call_VM_leaf_base(address entry_point) {
1204   BLOCK_COMMENT("call_VM_leaf {");
1205 #if defined(ABI_ELFv2)
1206   call_c(entry_point, relocInfo::none);
1207 #else
1208   call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
1209 #endif
1210   BLOCK_COMMENT("} call_VM_leaf");
1211 }
1212 
1213 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1214   call_VM_base(oop_result, noreg, entry_point, check_exceptions);
1215 }
1216 
1217 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
1218                              bool check_exceptions) {
1219   // R3_ARG1 is reserved for the thread.
1220   mr_if_needed(R4_ARG2, arg_1);
1221   call_VM(oop_result, entry_point, check_exceptions);
1222 }
1223 
1224 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
1225                              bool check_exceptions) {
1226   // R3_ARG1 is reserved for the thread
1227   mr_if_needed(R4_ARG2, arg_1);
1228   assert(arg_2 != R4_ARG2, "smashed argument");
1229   mr_if_needed(R5_ARG3, arg_2);
1230   call_VM(oop_result, entry_point, check_exceptions);
1231 }
1232 
1233 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
1234                              bool check_exceptions) {
1235   // R3_ARG1 is reserved for the thread
1236   mr_if_needed(R4_ARG2, arg_1);
1237   assert(arg_2 != R4_ARG2, "smashed argument");
1238   mr_if_needed(R5_ARG3, arg_2);
1239   mr_if_needed(R6_ARG4, arg_3);
1240   call_VM(oop_result, entry_point, check_exceptions);
1241 }
1242 
1243 void MacroAssembler::call_VM_leaf(address entry_point) {
1244   call_VM_leaf_base(entry_point);
1245 }
1246 
1247 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
1248   mr_if_needed(R3_ARG1, arg_1);
1249   call_VM_leaf(entry_point);
1250 }
1251 
1252 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
1253   mr_if_needed(R3_ARG1, arg_1);
1254   assert(arg_2 != R3_ARG1, "smashed argument");
1255   mr_if_needed(R4_ARG2, arg_2);
1256   call_VM_leaf(entry_point);
1257 }
1258 
1259 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1260   mr_if_needed(R3_ARG1, arg_1);
1261   assert(arg_2 != R3_ARG1, "smashed argument");
1262   mr_if_needed(R4_ARG2, arg_2);
1263   assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
1264   mr_if_needed(R5_ARG3, arg_3);
1265   call_VM_leaf(entry_point);
1266 }
1267 
1268 // Check whether instruction is a read access to the polling page
1269 // which was emitted by load_from_polling_page(..).
1270 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
1271                                                address* polling_address_ptr) {
1272   if (!is_ld(instruction))
1273     return false; // It's not a ld. Fail.
1274 
1275   int rt = inv_rt_field(instruction);
1276   int ra = inv_ra_field(instruction);
1277   int ds = inv_ds_field(instruction);
1278   if (!(ds == 0 && ra != 0 && rt == 0)) {
1279     return false; // It's not a ld(r0, X, ra). Fail.
1280   }
1281 
1282   if (!ucontext) {
1283     // Set polling address.
1284     if (polling_address_ptr != NULL) {
1285       *polling_address_ptr = NULL;
1286     }
1287     return true; // No ucontext given. Can't check value of ra. Assume true.
1288   }
1289 
1290 #ifdef LINUX
1291   // Ucontext given. Check that register ra contains the address of
1292   // the safepoing polling page.
1293   ucontext_t* uc = (ucontext_t*) ucontext;
1294   // Set polling address.
1295   address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
1296   if (polling_address_ptr != NULL) {
1297     *polling_address_ptr = addr;
1298   }
1299   return os::is_poll_address(addr);
1300 #else
1301   // Not on Linux, ucontext must be NULL.
1302   ShouldNotReachHere();
1303   return false;
1304 #endif
1305 }
1306 
1307 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
1308 #ifdef LINUX
1309   ucontext_t* uc = (ucontext_t*) ucontext;
1310 
1311   if (is_stwx(instruction) || is_stwux(instruction)) {
1312     int ra = inv_ra_field(instruction);
1313     int rb = inv_rb_field(instruction);
1314 
1315     // look up content of ra and rb in ucontext
1316     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1317     long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
1318     return os::is_memory_serialize_page(thread, ra_val+rb_val);
1319   } else if (is_stw(instruction) || is_stwu(instruction)) {
1320     int ra = inv_ra_field(instruction);
1321     int d1 = inv_d1_field(instruction);
1322 
1323     // look up content of ra in ucontext
1324     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1325     return os::is_memory_serialize_page(thread, ra_val+d1);
1326   } else {
1327     return false;
1328   }
1329 #else
1330   // workaround not needed on !LINUX :-)
1331   ShouldNotCallThis();
1332   return false;
1333 #endif
1334 }
1335 
1336 void MacroAssembler::bang_stack_with_offset(int offset) {
1337   // When increasing the stack, the old stack pointer will be written
1338   // to the new top of stack according to the PPC64 abi.
1339   // Therefore, stack banging is not necessary when increasing
1340   // the stack by <= os::vm_page_size() bytes.
1341   // When increasing the stack by a larger amount, this method is
1342   // called repeatedly to bang the intermediate pages.
1343 
1344   // Stack grows down, caller passes positive offset.
1345   assert(offset > 0, "must bang with positive offset");
1346 
1347   long stdoffset = -offset;
1348 
1349   if (is_simm(stdoffset, 16)) {
1350     // Signed 16 bit offset, a simple std is ok.
1351     if (UseLoadInstructionsForStackBangingPPC64) {
1352       ld(R0, (int)(signed short)stdoffset, R1_SP);
1353     } else {
1354       std(R0,(int)(signed short)stdoffset, R1_SP);
1355     }
1356   } else if (is_simm(stdoffset, 31)) {
1357     const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1358     const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1359 
1360     Register tmp = R11;
1361     addis(tmp, R1_SP, hi);
1362     if (UseLoadInstructionsForStackBangingPPC64) {
1363       ld(R0,  lo, tmp);
1364     } else {
1365       std(R0, lo, tmp);
1366     }
1367   } else {
1368     ShouldNotReachHere();
1369   }
1370 }
1371 
1372 // If instruction is a stack bang of the form
1373 //    std    R0,    x(Ry),       (see bang_stack_with_offset())
1374 //    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
1375 // or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
1376 // return the banged address. Otherwise, return 0.
1377 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
1378 #ifdef LINUX
1379   ucontext_t* uc = (ucontext_t*) ucontext;
1380   int rs = inv_rs_field(instruction);
1381   int ra = inv_ra_field(instruction);
1382   if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
1383       || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
1384       || (is_stdu(instruction) && rs == 1)) {
1385     int ds = inv_ds_field(instruction);
1386     // return banged address
1387     return ds+(address)uc->uc_mcontext.regs->gpr[ra];
1388   } else if (is_stdux(instruction) && rs == 1) {
1389     int rb = inv_rb_field(instruction);
1390     address sp = (address)uc->uc_mcontext.regs->gpr[1];
1391     long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
1392     return ra != 1 || rb_val >= 0 ? NULL         // not a stack bang
1393                                   : sp + rb_val; // banged address
1394   }
1395   return NULL; // not a stack bang
1396 #else
1397   // workaround not needed on !LINUX :-)
1398   ShouldNotCallThis();
1399   return NULL;
1400 #endif
1401 }
1402 
1403 void MacroAssembler::reserved_stack_check(Register return_pc) {
1404   // Test if reserved zone needs to be enabled.
1405   Label no_reserved_zone_enabling;
1406 
1407   ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
1408   cmpld(CCR0, R1_SP, R0);
1409   blt_predict_taken(CCR0, no_reserved_zone_enabling);
1410 
1411   // Enable reserved zone again, throw stack overflow exception.
1412   push_frame_reg_args(0, R0);
1413   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
1414   pop_frame();
1415   mtlr(return_pc);
1416   load_const_optimized(R0, StubRoutines::throw_delayed_StackOverflowError_entry());
1417   mtctr(R0);
1418   bctr();
1419 
1420   should_not_reach_here();
1421 
1422   bind(no_reserved_zone_enabling);
1423 }
1424 
1425 void MacroAssembler::getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
1426                                 bool cmpxchgx_hint) {
1427   Label retry;
1428   bind(retry);
1429   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1430   stdcx_(exchange_value, addr_base);
1431   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1432     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1433   } else {
1434     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1435   }
1436 }
1437 
1438 void MacroAssembler::getandaddd(Register dest_current_value, Register inc_value, Register addr_base,
1439                                 Register tmp, bool cmpxchgx_hint) {
1440   Label retry;
1441   bind(retry);
1442   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1443   add(tmp, dest_current_value, inc_value);
1444   stdcx_(tmp, addr_base);
1445   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1446     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1447   } else {
1448     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1449   }
1450 }
1451 
1452 // Word/sub-word atomic helper functions
1453 
1454 // Temps and addr_base are killed if size < 4 and processor does not support respective instructions.
1455 // Only signed types are supported with size < 4.
1456 // Atomic add always kills tmp1.
1457 void MacroAssembler::atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
1458                                                    Register addr_base, Register tmp1, Register tmp2, Register tmp3,
1459                                                    bool cmpxchgx_hint, bool is_add, int size) {
1460   // Sub-word instructions are available since Power 8.
1461   // For older processors, instruction_type != size holds, and we
1462   // emulate the sub-word instructions by constructing a 4-byte value
1463   // that leaves the other bytes unchanged.
1464   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1465 
1466   Label retry;
1467   Register shift_amount = noreg,
1468            val32 = dest_current_value,
1469            modval = is_add ? tmp1 : exchange_value;
1470 
1471   if (instruction_type != size) {
1472     assert_different_registers(tmp1, tmp2, tmp3, dest_current_value, exchange_value, addr_base);
1473     modval = tmp1;
1474     shift_amount = tmp2;
1475     val32 = tmp3;
1476     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1477 #ifdef VM_LITTLE_ENDIAN
1478     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1479     clrrdi(addr_base, addr_base, 2);
1480 #else
1481     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1482     clrrdi(addr_base, addr_base, 2);
1483     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1484 #endif
1485   }
1486 
1487   // atomic emulation loop
1488   bind(retry);
1489 
1490   switch (instruction_type) {
1491     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1492     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1493     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1494     default: ShouldNotReachHere();
1495   }
1496 
1497   if (instruction_type != size) {
1498     srw(dest_current_value, val32, shift_amount);
1499   }
1500 
1501   if (is_add) { add(modval, dest_current_value, exchange_value); }
1502 
1503   if (instruction_type != size) {
1504     // Transform exchange value such that the replacement can be done by one xor instruction.
1505     xorr(modval, dest_current_value, is_add ? modval : exchange_value);
1506     clrldi(modval, modval, (size == 1) ? 56 : 48);
1507     slw(modval, modval, shift_amount);
1508     xorr(modval, val32, modval);
1509   }
1510 
1511   switch (instruction_type) {
1512     case 4: stwcx_(modval, addr_base); break;
1513     case 2: sthcx_(modval, addr_base); break;
1514     case 1: stbcx_(modval, addr_base); break;
1515     default: ShouldNotReachHere();
1516   }
1517 
1518   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1519     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1520   } else {
1521     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1522   }
1523 
1524   // l?arx zero-extends, but Java wants byte/short values sign-extended.
1525   if (size == 1) {
1526     extsb(dest_current_value, dest_current_value);
1527   } else if (size == 2) {
1528     extsh(dest_current_value, dest_current_value);
1529   };
1530 }
1531 
1532 // Temps, addr_base and exchange_value are killed if size < 4 and processor does not support respective instructions.
1533 // Only signed types are supported with size < 4.
1534 void MacroAssembler::cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
1535                                        Register compare_value, Register exchange_value,
1536                                        Register addr_base, Register tmp1, Register tmp2,
1537                                        Label &retry, Label &failed, bool cmpxchgx_hint, int size) {
1538   // Sub-word instructions are available since Power 8.
1539   // For older processors, instruction_type != size holds, and we
1540   // emulate the sub-word instructions by constructing a 4-byte value
1541   // that leaves the other bytes unchanged.
1542   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1543 
1544   Register shift_amount = noreg,
1545            val32 = dest_current_value,
1546            modval = exchange_value;
1547 
1548   if (instruction_type != size) {
1549     assert_different_registers(tmp1, tmp2, dest_current_value, compare_value, exchange_value, addr_base);
1550     shift_amount = tmp1;
1551     val32 = tmp2;
1552     modval = tmp2;
1553     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1554 #ifdef VM_LITTLE_ENDIAN
1555     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1556     clrrdi(addr_base, addr_base, 2);
1557 #else
1558     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1559     clrrdi(addr_base, addr_base, 2);
1560     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1561 #endif
1562     // Transform exchange value such that the replacement can be done by one xor instruction.
1563     xorr(exchange_value, compare_value, exchange_value);
1564     clrldi(exchange_value, exchange_value, (size == 1) ? 56 : 48);
1565     slw(exchange_value, exchange_value, shift_amount);
1566   }
1567 
1568   // atomic emulation loop
1569   bind(retry);
1570 
1571   switch (instruction_type) {
1572     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1573     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1574     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1575     default: ShouldNotReachHere();
1576   }
1577 
1578   if (instruction_type != size) {
1579     srw(dest_current_value, val32, shift_amount);
1580   }
1581   if (size == 1) {
1582     extsb(dest_current_value, dest_current_value);
1583   } else if (size == 2) {
1584     extsh(dest_current_value, dest_current_value);
1585   };
1586 
1587   cmpw(flag, dest_current_value, compare_value);
1588   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1589     bne_predict_not_taken(flag, failed);
1590   } else {
1591     bne(                  flag, failed);
1592   }
1593   // branch to done  => (flag == ne), (dest_current_value != compare_value)
1594   // fall through    => (flag == eq), (dest_current_value == compare_value)
1595 
1596   if (instruction_type != size) {
1597     xorr(modval, val32, exchange_value);
1598   }
1599 
1600   switch (instruction_type) {
1601     case 4: stwcx_(modval, addr_base); break;
1602     case 2: sthcx_(modval, addr_base); break;
1603     case 1: stbcx_(modval, addr_base); break;
1604     default: ShouldNotReachHere();
1605   }
1606 }
1607 
1608 // CmpxchgX sets condition register to cmpX(current, compare).
1609 void MacroAssembler::cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
1610                                      Register compare_value, Register exchange_value,
1611                                      Register addr_base, Register tmp1, Register tmp2,
1612                                      int semantics, bool cmpxchgx_hint,
1613                                      Register int_flag_success, bool contention_hint, bool weak, int size) {
1614   Label retry;
1615   Label failed;
1616   Label done;
1617 
1618   // Save one branch if result is returned via register and
1619   // result register is different from the other ones.
1620   bool use_result_reg    = (int_flag_success != noreg);
1621   bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
1622                             int_flag_success != exchange_value && int_flag_success != addr_base &&
1623                             int_flag_success != tmp1 && int_flag_success != tmp2);
1624   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1625   assert(size == 1 || size == 2 || size == 4, "unsupported");
1626 
1627   if (use_result_reg && preset_result_reg) {
1628     li(int_flag_success, 0); // preset (assume cas failed)
1629   }
1630 
1631   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1632   if (contention_hint) { // Don't try to reserve if cmp fails.
1633     switch (size) {
1634       case 1: lbz(dest_current_value, 0, addr_base); extsb(dest_current_value, dest_current_value); break;
1635       case 2: lha(dest_current_value, 0, addr_base); break;
1636       case 4: lwz(dest_current_value, 0, addr_base); break;
1637       default: ShouldNotReachHere();
1638     }
1639     cmpw(flag, dest_current_value, compare_value);
1640     bne(flag, failed);
1641   }
1642 
1643   // release/fence semantics
1644   if (semantics & MemBarRel) {
1645     release();
1646   }
1647 
1648   cmpxchg_loop_body(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
1649                     retry, failed, cmpxchgx_hint, size);
1650   if (!weak || use_result_reg) {
1651     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1652       bne_predict_not_taken(CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1653     } else {
1654       bne(                  CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1655     }
1656   }
1657   // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)
1658 
1659   // Result in register (must do this at the end because int_flag_success can be the
1660   // same register as one above).
1661   if (use_result_reg) {
1662     li(int_flag_success, 1);
1663   }
1664 
1665   if (semantics & MemBarFenceAfter) {
1666     fence();
1667   } else if (semantics & MemBarAcq) {
1668     isync();
1669   }
1670 
1671   if (use_result_reg && !preset_result_reg) {
1672     b(done);
1673   }
1674 
1675   bind(failed);
1676   if (use_result_reg && !preset_result_reg) {
1677     li(int_flag_success, 0);
1678   }
1679 
1680   bind(done);
1681   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1682   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1683 }
1684 
1685 // Preforms atomic compare exchange:
1686 //   if (compare_value == *addr_base)
1687 //     *addr_base = exchange_value
1688 //     int_flag_success = 1;
1689 //   else
1690 //     int_flag_success = 0;
1691 //
1692 // ConditionRegister flag       = cmp(compare_value, *addr_base)
1693 // Register dest_current_value  = *addr_base
1694 // Register compare_value       Used to compare with value in memory
1695 // Register exchange_value      Written to memory if compare_value == *addr_base
1696 // Register addr_base           The memory location to compareXChange
1697 // Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
1698 //
1699 // To avoid the costly compare exchange the value is tested beforehand.
1700 // Several special cases exist to avoid that unnecessary information is generated.
1701 //
1702 void MacroAssembler::cmpxchgd(ConditionRegister flag,
1703                               Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
1704                               Register addr_base, int semantics, bool cmpxchgx_hint,
1705                               Register int_flag_success, Label* failed_ext, bool contention_hint, bool weak) {
1706   Label retry;
1707   Label failed_int;
1708   Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
1709   Label done;
1710 
1711   // Save one branch if result is returned via register and result register is different from the other ones.
1712   bool use_result_reg    = (int_flag_success!=noreg);
1713   bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
1714                             int_flag_success!=exchange_value && int_flag_success!=addr_base);
1715   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1716   assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
1717 
1718   if (use_result_reg && preset_result_reg) {
1719     li(int_flag_success, 0); // preset (assume cas failed)
1720   }
1721 
1722   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1723   if (contention_hint) { // Don't try to reserve if cmp fails.
1724     ld(dest_current_value, 0, addr_base);
1725     cmpd(flag, compare_value, dest_current_value);
1726     bne(flag, failed);
1727   }
1728 
1729   // release/fence semantics
1730   if (semantics & MemBarRel) {
1731     release();
1732   }
1733 
1734   // atomic emulation loop
1735   bind(retry);
1736 
1737   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1738   cmpd(flag, compare_value, dest_current_value);
1739   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1740     bne_predict_not_taken(flag, failed);
1741   } else {
1742     bne(                  flag, failed);
1743   }
1744 
1745   stdcx_(exchange_value, addr_base);
1746   if (!weak || use_result_reg || failed_ext) {
1747     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1748       bne_predict_not_taken(CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1749     } else {
1750       bne(                  CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1751     }
1752   }
1753 
1754   // result in register (must do this at the end because int_flag_success can be the same register as one above)
1755   if (use_result_reg) {
1756     li(int_flag_success, 1);
1757   }
1758 
1759   if (semantics & MemBarFenceAfter) {
1760     fence();
1761   } else if (semantics & MemBarAcq) {
1762     isync();
1763   }
1764 
1765   if (use_result_reg && !preset_result_reg) {
1766     b(done);
1767   }
1768 
1769   bind(failed_int);
1770   if (use_result_reg && !preset_result_reg) {
1771     li(int_flag_success, 0);
1772   }
1773 
1774   bind(done);
1775   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1776   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1777 }
1778 
1779 // Look up the method for a megamorphic invokeinterface call.
1780 // The target method is determined by <intf_klass, itable_index>.
1781 // The receiver klass is in recv_klass.
1782 // On success, the result will be in method_result, and execution falls through.
1783 // On failure, execution transfers to the given label.
1784 void MacroAssembler::lookup_interface_method(Register recv_klass,
1785                                              Register intf_klass,
1786                                              RegisterOrConstant itable_index,
1787                                              Register method_result,
1788                                              Register scan_temp,
1789                                              Register sethi_temp,
1790                                              Label& L_no_such_interface) {
1791   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
1792   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1793          "caller must use same register for non-constant itable index as for method");
1794 
1795   // Compute start of first itableOffsetEntry (which is at the end of the vtable).
1796   int vtable_base = in_bytes(Klass::vtable_start_offset());
1797   int itentry_off = itableMethodEntry::method_offset_in_bytes();
1798   int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
1799   int scan_step   = itableOffsetEntry::size() * wordSize;
1800   int log_vte_size= exact_log2(vtableEntry::size_in_bytes());
1801 
1802   lwz(scan_temp, in_bytes(Klass::vtable_length_offset()), recv_klass);
1803   // %%% We should store the aligned, prescaled offset in the klassoop.
1804   // Then the next several instructions would fold away.
1805 
1806   sldi(scan_temp, scan_temp, log_vte_size);
1807   addi(scan_temp, scan_temp, vtable_base);
1808   add(scan_temp, recv_klass, scan_temp);
1809 
1810   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1811   if (itable_index.is_register()) {
1812     Register itable_offset = itable_index.as_register();
1813     sldi(itable_offset, itable_offset, logMEsize);
1814     if (itentry_off) addi(itable_offset, itable_offset, itentry_off);
1815     add(recv_klass, itable_offset, recv_klass);
1816   } else {
1817     long itable_offset = (long)itable_index.as_constant();
1818     load_const_optimized(sethi_temp, (itable_offset<<logMEsize)+itentry_off); // static address, no relocation
1819     add(recv_klass, sethi_temp, recv_klass);
1820   }
1821 
1822   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
1823   //   if (scan->interface() == intf) {
1824   //     result = (klass + scan->offset() + itable_index);
1825   //   }
1826   // }
1827   Label search, found_method;
1828 
1829   for (int peel = 1; peel >= 0; peel--) {
1830     // %%%% Could load both offset and interface in one ldx, if they were
1831     // in the opposite order. This would save a load.
1832     ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
1833 
1834     // Check that this entry is non-null. A null entry means that
1835     // the receiver class doesn't implement the interface, and wasn't the
1836     // same as when the caller was compiled.
1837     cmpd(CCR0, method_result, intf_klass);
1838 
1839     if (peel) {
1840       beq(CCR0, found_method);
1841     } else {
1842       bne(CCR0, search);
1843       // (invert the test to fall through to found_method...)
1844     }
1845 
1846     if (!peel) break;
1847 
1848     bind(search);
1849 
1850     cmpdi(CCR0, method_result, 0);
1851     beq(CCR0, L_no_such_interface);
1852     addi(scan_temp, scan_temp, scan_step);
1853   }
1854 
1855   bind(found_method);
1856 
1857   // Got a hit.
1858   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
1859   lwz(scan_temp, ito_offset, scan_temp);
1860   ldx(method_result, scan_temp, recv_klass);
1861 }
1862 
1863 // virtual method calling
1864 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1865                                            RegisterOrConstant vtable_index,
1866                                            Register method_result) {
1867 
1868   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
1869 
1870   const int base = in_bytes(Klass::vtable_start_offset());
1871   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1872 
1873   if (vtable_index.is_register()) {
1874     sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
1875     add(recv_klass, vtable_index.as_register(), recv_klass);
1876   } else {
1877     addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
1878   }
1879   ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
1880 }
1881 
1882 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
1883 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1884                                                    Register super_klass,
1885                                                    Register temp1_reg,
1886                                                    Register temp2_reg,
1887                                                    Label* L_success,
1888                                                    Label* L_failure,
1889                                                    Label* L_slow_path,
1890                                                    RegisterOrConstant super_check_offset) {
1891 
1892   const Register check_cache_offset = temp1_reg;
1893   const Register cached_super       = temp2_reg;
1894 
1895   assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
1896 
1897   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1898   int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
1899 
1900   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1901   bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);
1902 
1903   Label L_fallthrough;
1904   int label_nulls = 0;
1905   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1906   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1907   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1908   assert(label_nulls <= 1 ||
1909          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
1910          "at most one NULL in the batch, usually");
1911 
1912   // If the pointers are equal, we are done (e.g., String[] elements).
1913   // This self-check enables sharing of secondary supertype arrays among
1914   // non-primary types such as array-of-interface. Otherwise, each such
1915   // type would need its own customized SSA.
1916   // We move this check to the front of the fast path because many
1917   // type checks are in fact trivially successful in this manner,
1918   // so we get a nicely predicted branch right at the start of the check.
1919   cmpd(CCR0, sub_klass, super_klass);
1920   beq(CCR0, *L_success);
1921 
1922   // Check the supertype display:
1923   if (must_load_sco) {
1924     // The super check offset is always positive...
1925     lwz(check_cache_offset, sco_offset, super_klass);
1926     super_check_offset = RegisterOrConstant(check_cache_offset);
1927     // super_check_offset is register.
1928     assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
1929   }
1930   // The loaded value is the offset from KlassOopDesc.
1931 
1932   ld(cached_super, super_check_offset, sub_klass);
1933   cmpd(CCR0, cached_super, super_klass);
1934 
1935   // This check has worked decisively for primary supers.
1936   // Secondary supers are sought in the super_cache ('super_cache_addr').
1937   // (Secondary supers are interfaces and very deeply nested subtypes.)
1938   // This works in the same check above because of a tricky aliasing
1939   // between the super_cache and the primary super display elements.
1940   // (The 'super_check_addr' can address either, as the case requires.)
1941   // Note that the cache is updated below if it does not help us find
1942   // what we need immediately.
1943   // So if it was a primary super, we can just fail immediately.
1944   // Otherwise, it's the slow path for us (no success at this point).
1945 
1946 #define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }
1947 
1948   if (super_check_offset.is_register()) {
1949     beq(CCR0, *L_success);
1950     cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
1951     if (L_failure == &L_fallthrough) {
1952       beq(CCR0, *L_slow_path);
1953     } else {
1954       bne(CCR0, *L_failure);
1955       FINAL_JUMP(*L_slow_path);
1956     }
1957   } else {
1958     if (super_check_offset.as_constant() == sc_offset) {
1959       // Need a slow path; fast failure is impossible.
1960       if (L_slow_path == &L_fallthrough) {
1961         beq(CCR0, *L_success);
1962       } else {
1963         bne(CCR0, *L_slow_path);
1964         FINAL_JUMP(*L_success);
1965       }
1966     } else {
1967       // No slow path; it's a fast decision.
1968       if (L_failure == &L_fallthrough) {
1969         beq(CCR0, *L_success);
1970       } else {
1971         bne(CCR0, *L_failure);
1972         FINAL_JUMP(*L_success);
1973       }
1974     }
1975   }
1976 
1977   bind(L_fallthrough);
1978 #undef FINAL_JUMP
1979 }
1980 
1981 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1982                                                    Register super_klass,
1983                                                    Register temp1_reg,
1984                                                    Register temp2_reg,
1985                                                    Label* L_success,
1986                                                    Register result_reg) {
1987   const Register array_ptr = temp1_reg; // current value from cache array
1988   const Register temp      = temp2_reg;
1989 
1990   assert_different_registers(sub_klass, super_klass, array_ptr, temp);
1991 
1992   int source_offset = in_bytes(Klass::secondary_supers_offset());
1993   int target_offset = in_bytes(Klass::secondary_super_cache_offset());
1994 
1995   int length_offset = Array<Klass*>::length_offset_in_bytes();
1996   int base_offset   = Array<Klass*>::base_offset_in_bytes();
1997 
1998   Label hit, loop, failure, fallthru;
1999 
2000   ld(array_ptr, source_offset, sub_klass);
2001 
2002   // TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
2003   lwz(temp, length_offset, array_ptr);
2004   cmpwi(CCR0, temp, 0);
2005   beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
2006 
2007   mtctr(temp); // load ctr
2008 
2009   bind(loop);
2010   // Oops in table are NO MORE compressed.
2011   ld(temp, base_offset, array_ptr);
2012   cmpd(CCR0, temp, super_klass);
2013   beq(CCR0, hit);
2014   addi(array_ptr, array_ptr, BytesPerWord);
2015   bdnz(loop);
2016 
2017   bind(failure);
2018   if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
2019   b(fallthru);
2020 
2021   bind(hit);
2022   std(super_klass, target_offset, sub_klass); // save result to cache
2023   if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
2024   if (L_success != NULL) { b(*L_success); }
2025   else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided
2026 
2027   bind(fallthru);
2028 }
2029 
2030 // Try fast path, then go to slow one if not successful
2031 void MacroAssembler::check_klass_subtype(Register sub_klass,
2032                          Register super_klass,
2033                          Register temp1_reg,
2034                          Register temp2_reg,
2035                          Label& L_success) {
2036   Label L_failure;
2037   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
2038   check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
2039   bind(L_failure); // Fallthru if not successful.
2040 }
2041 
2042 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
2043                                               Register temp_reg,
2044                                               Label& wrong_method_type) {
2045   assert_different_registers(mtype_reg, mh_reg, temp_reg);
2046   // Compare method type against that of the receiver.
2047   load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg);
2048   cmpd(CCR0, temp_reg, mtype_reg);
2049   bne(CCR0, wrong_method_type);
2050 }
2051 
2052 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2053                                                    Register temp_reg,
2054                                                    int extra_slot_offset) {
2055   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2056   int stackElementSize = Interpreter::stackElementSize;
2057   int offset = extra_slot_offset * stackElementSize;
2058   if (arg_slot.is_constant()) {
2059     offset += arg_slot.as_constant() * stackElementSize;
2060     return offset;
2061   } else {
2062     assert(temp_reg != noreg, "must specify");
2063     sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
2064     if (offset != 0)
2065       addi(temp_reg, temp_reg, offset);
2066     return temp_reg;
2067   }
2068 }
2069 
2070 // Supports temp2_reg = R0.
2071 void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
2072                                           Register mark_reg, Register temp_reg,
2073                                           Register temp2_reg, Label& done, Label* slow_case) {
2074   assert(UseBiasedLocking, "why call this otherwise?");
2075 
2076 #ifdef ASSERT
2077   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
2078 #endif
2079 
2080   Label cas_label;
2081 
2082   // Branch to done if fast path fails and no slow_case provided.
2083   Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
2084 
2085   // Biased locking
2086   // See whether the lock is currently biased toward our thread and
2087   // whether the epoch is still valid
2088   // Note that the runtime guarantees sufficient alignment of JavaThread
2089   // pointers to allow age to be placed into low bits
2090   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
2091          "biased locking makes assumptions about bit layout");
2092 
2093   if (PrintBiasedLockingStatistics) {
2094     load_const(temp2_reg, (address) BiasedLocking::total_entry_count_addr(), temp_reg);
2095     lwzx(temp_reg, temp2_reg);
2096     addi(temp_reg, temp_reg, 1);
2097     stwx(temp_reg, temp2_reg);
2098   }
2099 
2100   andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
2101   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2102   bne(cr_reg, cas_label);
2103 
2104   load_klass(temp_reg, obj_reg);
2105 
2106   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
2107   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2108   orr(temp_reg, R16_thread, temp_reg);
2109   xorr(temp_reg, mark_reg, temp_reg);
2110   andr(temp_reg, temp_reg, temp2_reg);
2111   cmpdi(cr_reg, temp_reg, 0);
2112   if (PrintBiasedLockingStatistics) {
2113     Label l;
2114     bne(cr_reg, l);
2115     load_const(temp2_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
2116     lwzx(mark_reg, temp2_reg);
2117     addi(mark_reg, mark_reg, 1);
2118     stwx(mark_reg, temp2_reg);
2119     // restore mark_reg
2120     ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2121     bind(l);
2122   }
2123   beq(cr_reg, done);
2124 
2125   Label try_revoke_bias;
2126   Label try_rebias;
2127 
2128   // At this point we know that the header has the bias pattern and
2129   // that we are not the bias owner in the current epoch. We need to
2130   // figure out more details about the state of the header in order to
2131   // know what operations can be legally performed on the object's
2132   // header.
2133 
2134   // If the low three bits in the xor result aren't clear, that means
2135   // the prototype header is no longer biased and we have to revoke
2136   // the bias on this object.
2137   andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2138   cmpwi(cr_reg, temp2_reg, 0);
2139   bne(cr_reg, try_revoke_bias);
2140 
2141   // Biasing is still enabled for this data type. See whether the
2142   // epoch of the current bias is still valid, meaning that the epoch
2143   // bits of the mark word are equal to the epoch bits of the
2144   // prototype header. (Note that the prototype header's epoch bits
2145   // only change at a safepoint.) If not, attempt to rebias the object
2146   // toward the current thread. Note that we must be absolutely sure
2147   // that the current epoch is invalid in order to do this because
2148   // otherwise the manipulations it performs on the mark word are
2149   // illegal.
2150 
2151   int shift_amount = 64 - markOopDesc::epoch_shift;
2152   // rotate epoch bits to right (little) end and set other bits to 0
2153   // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
2154   rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
2155   // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
2156   bne(CCR0, try_rebias);
2157 
2158   // The epoch of the current bias is still valid but we know nothing
2159   // about the owner; it might be set or it might be clear. Try to
2160   // acquire the bias of the object using an atomic operation. If this
2161   // fails we will go in to the runtime to revoke the object's bias.
2162   // Note that we first construct the presumed unbiased header so we
2163   // don't accidentally blow away another thread's valid bias.
2164   andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
2165                                 markOopDesc::age_mask_in_place |
2166                                 markOopDesc::epoch_mask_in_place));
2167   orr(temp_reg, R16_thread, mark_reg);
2168 
2169   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2170 
2171   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2172   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2173            /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2174            /*where=*/obj_reg,
2175            MacroAssembler::MemBarAcq,
2176            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2177            noreg, slow_case_int); // bail out if failed
2178 
2179   // If the biasing toward our thread failed, this means that
2180   // another thread succeeded in biasing it toward itself and we
2181   // need to revoke that bias. The revocation will occur in the
2182   // interpreter runtime in the slow case.
2183   if (PrintBiasedLockingStatistics) {
2184     load_const(temp2_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp_reg);
2185     lwzx(temp_reg, temp2_reg);
2186     addi(temp_reg, temp_reg, 1);
2187     stwx(temp_reg, temp2_reg);
2188   }
2189   b(done);
2190 
2191   bind(try_rebias);
2192   // At this point we know the epoch has expired, meaning that the
2193   // current "bias owner", if any, is actually invalid. Under these
2194   // circumstances _only_, we are allowed to use the current header's
2195   // value as the comparison value when doing the cas to acquire the
2196   // bias in the current epoch. In other words, we allow transfer of
2197   // the bias from one thread to another directly in this situation.
2198   load_klass(temp_reg, obj_reg);
2199   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2200   orr(temp2_reg, R16_thread, temp2_reg);
2201   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2202   orr(temp_reg, temp2_reg, temp_reg);
2203 
2204   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2205 
2206   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2207                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2208                  /*where=*/obj_reg,
2209                  MacroAssembler::MemBarAcq,
2210                  MacroAssembler::cmpxchgx_hint_acquire_lock(),
2211                  noreg, slow_case_int); // bail out if failed
2212 
2213   // If the biasing toward our thread failed, this means that
2214   // another thread succeeded in biasing it toward itself and we
2215   // need to revoke that bias. The revocation will occur in the
2216   // interpreter runtime in the slow case.
2217   if (PrintBiasedLockingStatistics) {
2218     load_const(temp2_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg);
2219     lwzx(temp_reg, temp2_reg);
2220     addi(temp_reg, temp_reg, 1);
2221     stwx(temp_reg, temp2_reg);
2222   }
2223   b(done);
2224 
2225   bind(try_revoke_bias);
2226   // The prototype mark in the klass doesn't have the bias bit set any
2227   // more, indicating that objects of this data type are not supposed
2228   // to be biased any more. We are going to try to reset the mark of
2229   // this object to the prototype value and fall through to the
2230   // CAS-based locking scheme. Note that if our CAS fails, it means
2231   // that another thread raced us for the privilege of revoking the
2232   // bias of this particular object, so it's okay to continue in the
2233   // normal locking code.
2234   load_klass(temp_reg, obj_reg);
2235   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2236   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2237   orr(temp_reg, temp_reg, temp2_reg);
2238 
2239   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2240 
2241   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2242   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2243                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2244                  /*where=*/obj_reg,
2245                  MacroAssembler::MemBarAcq,
2246                  MacroAssembler::cmpxchgx_hint_acquire_lock());
2247 
2248   // reload markOop in mark_reg before continuing with lightweight locking
2249   ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2250 
2251   // Fall through to the normal CAS-based lock, because no matter what
2252   // the result of the above CAS, some thread must have succeeded in
2253   // removing the bias bit from the object's header.
2254   if (PrintBiasedLockingStatistics) {
2255     Label l;
2256     bne(cr_reg, l);
2257     load_const(temp2_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg);
2258     lwzx(temp_reg, temp2_reg);
2259     addi(temp_reg, temp_reg, 1);
2260     stwx(temp_reg, temp2_reg);
2261     bind(l);
2262   }
2263 
2264   bind(cas_label);
2265 }
2266 
2267 void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
2268   // Check for biased locking unlock case, which is a no-op
2269   // Note: we do not have to check the thread ID for two reasons.
2270   // First, the interpreter checks for IllegalMonitorStateException at
2271   // a higher level. Second, if the bias was revoked while we held the
2272   // lock, the object could not be rebiased toward another thread, so
2273   // the bias bit would be clear.
2274 
2275   ld(temp_reg, 0, mark_addr);
2276   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2277 
2278   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2279   beq(cr_reg, done);
2280 }
2281 
2282 // allocation (for C1)
2283 void MacroAssembler::eden_allocate(
2284   Register obj,                      // result: pointer to object after successful allocation
2285   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2286   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2287   Register t1,                       // temp register
2288   Register t2,                       // temp register
2289   Label&   slow_case                 // continuation point if fast allocation fails
2290 ) {
2291   b(slow_case);
2292 }
2293 
2294 void MacroAssembler::tlab_allocate(
2295   Register obj,                      // result: pointer to object after successful allocation
2296   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2297   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2298   Register t1,                       // temp register
2299   Label&   slow_case                 // continuation point if fast allocation fails
2300 ) {
2301   // make sure arguments make sense
2302   assert_different_registers(obj, var_size_in_bytes, t1);
2303   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
2304   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
2305 
2306   const Register new_top = t1;
2307   //verify_tlab(); not implemented
2308 
2309   ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2310   ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
2311   if (var_size_in_bytes == noreg) {
2312     addi(new_top, obj, con_size_in_bytes);
2313   } else {
2314     add(new_top, obj, var_size_in_bytes);
2315   }
2316   cmpld(CCR0, new_top, R0);
2317   bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
2318 
2319 #ifdef ASSERT
2320   // make sure new free pointer is properly aligned
2321   {
2322     Label L;
2323     andi_(R0, new_top, MinObjAlignmentInBytesMask);
2324     beq(CCR0, L);
2325     stop("updated TLAB free is not properly aligned", 0x934);
2326     bind(L);
2327   }
2328 #endif // ASSERT
2329 
2330   // update the tlab top pointer
2331   std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2332   //verify_tlab(); not implemented
2333 }
2334 void MacroAssembler::tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case) {
2335   unimplemented("tlab_refill");
2336 }
2337 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2) {
2338   unimplemented("incr_allocated_bytes");
2339 }
2340 
2341 address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
2342                                              int insts_call_instruction_offset, Register Rtoc) {
2343   // Start the stub.
2344   address stub = start_a_stub(64);
2345   if (stub == NULL) { return NULL; } // CodeCache full: bail out
2346 
2347   // Create a trampoline stub relocation which relates this trampoline stub
2348   // with the call instruction at insts_call_instruction_offset in the
2349   // instructions code-section.
2350   relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
2351   const int stub_start_offset = offset();
2352 
2353   // For java_to_interp stubs we use R11_scratch1 as scratch register
2354   // and in call trampoline stubs we use R12_scratch2. This way we
2355   // can distinguish them (see is_NativeCallTrampolineStub_at()).
2356   Register reg_scratch = R12_scratch2;
2357 
2358   // Now, create the trampoline stub's code:
2359   // - load the TOC
2360   // - load the call target from the constant pool
2361   // - call
2362   if (Rtoc == noreg) {
2363     calculate_address_from_global_toc(reg_scratch, method_toc());
2364     Rtoc = reg_scratch;
2365   }
2366 
2367   ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
2368   mtctr(reg_scratch);
2369   bctr();
2370 
2371   const address stub_start_addr = addr_at(stub_start_offset);
2372 
2373   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
2374   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
2375          "encoded offset into the constant pool must match");
2376   // Trampoline_stub_size should be good.
2377   assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
2378   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
2379 
2380   // End the stub.
2381   end_a_stub();
2382   return stub;
2383 }
2384 
2385 // TM on PPC64.
2386 void MacroAssembler::atomic_inc_ptr(Register addr, Register result, int simm16) {
2387   Label retry;
2388   bind(retry);
2389   ldarx(result, addr, /*hint*/ false);
2390   addi(result, result, simm16);
2391   stdcx_(result, addr);
2392   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2393     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2394   } else {
2395     bne(                  CCR0, retry); // stXcx_ sets CCR0
2396   }
2397 }
2398 
2399 void MacroAssembler::atomic_ori_int(Register addr, Register result, int uimm16) {
2400   Label retry;
2401   bind(retry);
2402   lwarx(result, addr, /*hint*/ false);
2403   ori(result, result, uimm16);
2404   stwcx_(result, addr);
2405   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2406     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2407   } else {
2408     bne(                  CCR0, retry); // stXcx_ sets CCR0
2409   }
2410 }
2411 
2412 #if INCLUDE_RTM_OPT
2413 
2414 // Update rtm_counters based on abort status
2415 // input: abort_status
2416 //        rtm_counters (RTMLockingCounters*)
2417 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters_Reg) {
2418   // Mapping to keep PreciseRTMLockingStatistics similar to x86.
2419   // x86 ppc (! means inverted, ? means not the same)
2420   //  0   31  Set if abort caused by XABORT instruction.
2421   //  1  ! 7  If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set.
2422   //  2   13  Set if another logical processor conflicted with a memory address that was part of the transaction that aborted.
2423   //  3   10  Set if an internal buffer overflowed.
2424   //  4  ?12  Set if a debug breakpoint was hit.
2425   //  5  ?32  Set if an abort occurred during execution of a nested transaction.
2426   const  int tm_failure_bit[] = {Assembler::tm_tabort, // Note: Seems like signal handler sets this, too.
2427                                  Assembler::tm_failure_persistent, // inverted: transient
2428                                  Assembler::tm_trans_cf,
2429                                  Assembler::tm_footprint_of,
2430                                  Assembler::tm_non_trans_cf,
2431                                  Assembler::tm_suspended};
2432   const bool tm_failure_inv[] = {false, true, false, false, false, false};
2433   assert(sizeof(tm_failure_bit)/sizeof(int) == RTMLockingCounters::ABORT_STATUS_LIMIT, "adapt mapping!");
2434 
2435   const Register addr_Reg = R0;
2436   // Keep track of offset to where rtm_counters_Reg had pointed to.
2437   int counters_offs = RTMLockingCounters::abort_count_offset();
2438   addi(addr_Reg, rtm_counters_Reg, counters_offs);
2439   const Register temp_Reg = rtm_counters_Reg;
2440 
2441   //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
2442   ldx(temp_Reg, addr_Reg);
2443   addi(temp_Reg, temp_Reg, 1);
2444   stdx(temp_Reg, addr_Reg);
2445 
2446   if (PrintPreciseRTMLockingStatistics) {
2447     int counters_offs_delta = RTMLockingCounters::abortX_count_offset() - counters_offs;
2448 
2449     //mftexasr(abort_status); done by caller
2450     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
2451       counters_offs += counters_offs_delta;
2452       li(temp_Reg, counters_offs_delta); // can't use addi with R0
2453       add(addr_Reg, addr_Reg, temp_Reg); // point to next counter
2454       counters_offs_delta = sizeof(uintx);
2455 
2456       Label check_abort;
2457       rldicr_(temp_Reg, abort_status, tm_failure_bit[i], 0);
2458       if (tm_failure_inv[i]) {
2459         bne(CCR0, check_abort);
2460       } else {
2461         beq(CCR0, check_abort);
2462       }
2463       //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
2464       ldx(temp_Reg, addr_Reg);
2465       addi(temp_Reg, temp_Reg, 1);
2466       stdx(temp_Reg, addr_Reg);
2467       bind(check_abort);
2468     }
2469   }
2470   li(temp_Reg, -counters_offs); // can't use addi with R0
2471   add(rtm_counters_Reg, addr_Reg, temp_Reg); // restore
2472 }
2473 
2474 // Branch if (random & (count-1) != 0), count is 2^n
2475 // tmp and CR0 are killed
2476 void MacroAssembler::branch_on_random_using_tb(Register tmp, int count, Label& brLabel) {
2477   mftb(tmp);
2478   andi_(tmp, tmp, count-1);
2479   bne(CCR0, brLabel);
2480 }
2481 
2482 // Perform abort ratio calculation, set no_rtm bit if high ratio.
2483 // input:  rtm_counters_Reg (RTMLockingCounters* address) - KILLED
2484 void MacroAssembler::rtm_abort_ratio_calculation(Register rtm_counters_Reg,
2485                                                  RTMLockingCounters* rtm_counters,
2486                                                  Metadata* method_data) {
2487   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
2488 
2489   if (RTMLockingCalculationDelay > 0) {
2490     // Delay calculation.
2491     ld(rtm_counters_Reg, (RegisterOrConstant)(intptr_t)RTMLockingCounters::rtm_calculation_flag_addr());
2492     cmpdi(CCR0, rtm_counters_Reg, 0);
2493     beq(CCR0, L_done);
2494     load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2495   }
2496   // Abort ratio calculation only if abort_count > RTMAbortThreshold.
2497   //   Aborted transactions = abort_count * 100
2498   //   All transactions = total_count *  RTMTotalCountIncrRate
2499   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
2500   ld(R0, RTMLockingCounters::abort_count_offset(), rtm_counters_Reg);
2501   cmpdi(CCR0, R0, RTMAbortThreshold);
2502   blt(CCR0, L_check_always_rtm2);
2503   mulli(R0, R0, 100);
2504 
2505   const Register tmpReg = rtm_counters_Reg;
2506   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2507   mulli(tmpReg, tmpReg, RTMTotalCountIncrRate);
2508   mulli(tmpReg, tmpReg, RTMAbortRatio);
2509   cmpd(CCR0, R0, tmpReg);
2510   blt(CCR0, L_check_always_rtm1); // jump to reload
2511   if (method_data != NULL) {
2512     // Set rtm_state to "no rtm" in MDO.
2513     // Not using a metadata relocation. Method and Class Loader are kept alive anyway.
2514     // (See nmethod::metadata_do and CodeBuffer::finalize_oop_references.)
2515     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2516     atomic_ori_int(R0, tmpReg, NoRTM);
2517   }
2518   b(L_done);
2519 
2520   bind(L_check_always_rtm1);
2521   load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2522   bind(L_check_always_rtm2);
2523   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2524   cmpdi(CCR0, tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
2525   blt(CCR0, L_done);
2526   if (method_data != NULL) {
2527     // Set rtm_state to "always rtm" in MDO.
2528     // Not using a metadata relocation. See above.
2529     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2530     atomic_ori_int(R0, tmpReg, UseRTM);
2531   }
2532   bind(L_done);
2533 }
2534 
2535 // Update counters and perform abort ratio calculation.
2536 // input: abort_status_Reg
2537 void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register temp_Reg,
2538                                    RTMLockingCounters* rtm_counters,
2539                                    Metadata* method_data,
2540                                    bool profile_rtm) {
2541 
2542   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2543   // Update rtm counters based on state at abort.
2544   // Reads abort_status_Reg, updates flags.
2545   assert_different_registers(abort_status_Reg, temp_Reg);
2546   load_const_optimized(temp_Reg, (address)rtm_counters, R0);
2547   rtm_counters_update(abort_status_Reg, temp_Reg);
2548   if (profile_rtm) {
2549     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2550     rtm_abort_ratio_calculation(temp_Reg, rtm_counters, method_data);
2551   }
2552 }
2553 
2554 // Retry on abort if abort's status indicates non-persistent failure.
2555 // inputs: retry_count_Reg
2556 //       : abort_status_Reg
2557 // output: retry_count_Reg decremented by 1
2558 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg,
2559                                              Label& retryLabel, Label* checkRetry) {
2560   Label doneRetry;
2561   rldicr_(R0, abort_status_Reg, tm_failure_persistent, 0);
2562   bne(CCR0, doneRetry);
2563   if (checkRetry) { bind(*checkRetry); }
2564   addic_(retry_count_Reg, retry_count_Reg, -1);
2565   blt(CCR0, doneRetry);
2566   smt_yield(); // Can't use wait(). No permission (SIGILL).
2567   b(retryLabel);
2568   bind(doneRetry);
2569 }
2570 
2571 // Spin and retry if lock is busy.
2572 // inputs: owner_addr_Reg (monitor address)
2573 //       : retry_count_Reg
2574 // output: retry_count_Reg decremented by 1
2575 // CTR is killed
2576 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) {
2577   Label SpinLoop, doneRetry;
2578   addic_(retry_count_Reg, retry_count_Reg, -1);
2579   blt(CCR0, doneRetry);
2580 
2581   if (RTMSpinLoopCount > 1) {
2582     li(R0, RTMSpinLoopCount);
2583     mtctr(R0);
2584   }
2585 
2586   bind(SpinLoop);
2587   smt_yield(); // Can't use waitrsv(). No permission (SIGILL).
2588 
2589   if (RTMSpinLoopCount > 1) {
2590     bdz(retryLabel);
2591     ld(R0, 0, owner_addr_Reg);
2592     cmpdi(CCR0, R0, 0);
2593     bne(CCR0, SpinLoop);
2594   }
2595 
2596   b(retryLabel);
2597 
2598   bind(doneRetry);
2599 }
2600 
2601 // Use RTM for normal stack locks.
2602 // Input: objReg (object to lock)
2603 void MacroAssembler::rtm_stack_locking(ConditionRegister flag,
2604                                        Register obj, Register mark_word, Register tmp,
2605                                        Register retry_on_abort_count_Reg,
2606                                        RTMLockingCounters* stack_rtm_counters,
2607                                        Metadata* method_data, bool profile_rtm,
2608                                        Label& DONE_LABEL, Label& IsInflated) {
2609   assert(UseRTMForStackLocks, "why call this otherwise?");
2610   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2611   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2612 
2613   if (RTMRetryCount > 0) {
2614     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
2615     bind(L_rtm_retry);
2616   }
2617   andi_(R0, mark_word, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
2618   bne(CCR0, IsInflated);
2619 
2620   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2621     Label L_noincrement;
2622     if (RTMTotalCountIncrRate > 1) {
2623       branch_on_random_using_tb(tmp, (int)RTMTotalCountIncrRate, L_noincrement);
2624     }
2625     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
2626     load_const_optimized(tmp, (address)stack_rtm_counters->total_count_addr(), R0);
2627     //atomic_inc_ptr(tmp, /*temp, will be reloaded*/mark_word); We don't increment atomically
2628     ldx(mark_word, tmp);
2629     addi(mark_word, mark_word, 1);
2630     stdx(mark_word, tmp);
2631     bind(L_noincrement);
2632   }
2633   tbegin_();
2634   beq(CCR0, L_on_abort);
2635   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);         // Reload in transaction, conflicts need to be tracked.
2636   andi(R0, mark_word, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2637   cmpwi(flag, R0, markOopDesc::unlocked_value);                // bits = 001 unlocked
2638   beq(flag, DONE_LABEL);                                       // all done if unlocked
2639 
2640   if (UseRTMXendForLockBusy) {
2641     tend_();
2642     b(L_decrement_retry);
2643   } else {
2644     tabort_();
2645   }
2646   bind(L_on_abort);
2647   const Register abort_status_Reg = tmp;
2648   mftexasr(abort_status_Reg);
2649   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2650     rtm_profiling(abort_status_Reg, /*temp*/mark_word, stack_rtm_counters, method_data, profile_rtm);
2651   }
2652   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // reload
2653   if (RTMRetryCount > 0) {
2654     // Retry on lock abort if abort status is not permanent.
2655     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry, &L_decrement_retry);
2656   } else {
2657     bind(L_decrement_retry);
2658   }
2659 }
2660 
2661 // Use RTM for inflating locks
2662 // inputs: obj       (object to lock)
2663 //         mark_word (current header - KILLED)
2664 //         boxReg    (on-stack box address (displaced header location) - KILLED)
2665 void MacroAssembler::rtm_inflated_locking(ConditionRegister flag,
2666                                           Register obj, Register mark_word, Register boxReg,
2667                                           Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg,
2668                                           RTMLockingCounters* rtm_counters,
2669                                           Metadata* method_data, bool profile_rtm,
2670                                           Label& DONE_LABEL) {
2671   assert(UseRTMLocking, "why call this otherwise?");
2672   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2673   // Clean monitor_value bit to get valid pointer.
2674   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2675 
2676   // Store non-null, using boxReg instead of (intptr_t)markOopDesc::unused_mark().
2677   std(boxReg, BasicLock::displaced_header_offset_in_bytes(), boxReg);
2678   const Register tmpReg = boxReg;
2679   const Register owner_addr_Reg = mark_word;
2680   addi(owner_addr_Reg, mark_word, owner_offset);
2681 
2682   if (RTMRetryCount > 0) {
2683     load_const_optimized(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy.
2684     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort.
2685     bind(L_rtm_retry);
2686   }
2687   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2688     Label L_noincrement;
2689     if (RTMTotalCountIncrRate > 1) {
2690       branch_on_random_using_tb(R0, (int)RTMTotalCountIncrRate, L_noincrement);
2691     }
2692     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2693     load_const(R0, (address)rtm_counters->total_count_addr(), tmpReg);
2694     //atomic_inc_ptr(R0, tmpReg); We don't increment atomically
2695     ldx(tmpReg, R0);
2696     addi(tmpReg, tmpReg, 1);
2697     stdx(tmpReg, R0);
2698     bind(L_noincrement);
2699   }
2700   tbegin_();
2701   beq(CCR0, L_on_abort);
2702   // We don't reload mark word. Will only be reset at safepoint.
2703   ld(R0, 0, owner_addr_Reg); // Load in transaction, conflicts need to be tracked.
2704   cmpdi(flag, R0, 0);
2705   beq(flag, DONE_LABEL);
2706 
2707   if (UseRTMXendForLockBusy) {
2708     tend_();
2709     b(L_decrement_retry);
2710   } else {
2711     tabort_();
2712   }
2713   bind(L_on_abort);
2714   const Register abort_status_Reg = tmpReg;
2715   mftexasr(abort_status_Reg);
2716   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2717     rtm_profiling(abort_status_Reg, /*temp*/ owner_addr_Reg, rtm_counters, method_data, profile_rtm);
2718     // Restore owner_addr_Reg
2719     ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);
2720 #ifdef ASSERT
2721     andi_(R0, mark_word, markOopDesc::monitor_value);
2722     asm_assert_ne("must be inflated", 0xa754); // Deflating only allowed at safepoint.
2723 #endif
2724     addi(owner_addr_Reg, mark_word, owner_offset);
2725   }
2726   if (RTMRetryCount > 0) {
2727     // Retry on lock abort if abort status is not permanent.
2728     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
2729   }
2730 
2731   // Appears unlocked - try to swing _owner from null to non-null.
2732   cmpxchgd(flag, /*current val*/ R0, (intptr_t)0, /*new val*/ R16_thread, owner_addr_Reg,
2733            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2734            MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &L_decrement_retry, true);
2735 
2736   if (RTMRetryCount > 0) {
2737     // success done else retry
2738     b(DONE_LABEL);
2739     bind(L_decrement_retry);
2740     // Spin and retry if lock is busy.
2741     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, owner_addr_Reg, L_rtm_retry);
2742   } else {
2743     bind(L_decrement_retry);
2744   }
2745 }
2746 
2747 #endif //  INCLUDE_RTM_OPT
2748 
2749 // "The box" is the space on the stack where we copy the object mark.
2750 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
2751                                                Register temp, Register displaced_header, Register current_header,
2752                                                bool try_bias,
2753                                                RTMLockingCounters* rtm_counters,
2754                                                RTMLockingCounters* stack_rtm_counters,
2755                                                Metadata* method_data,
2756                                                bool use_rtm, bool profile_rtm) {
2757   assert_different_registers(oop, box, temp, displaced_header, current_header);
2758   assert(flag != CCR0, "bad condition register");
2759   Label cont;
2760   Label object_has_monitor;
2761   Label cas_failed;
2762 
2763   // Load markOop from object into displaced_header.
2764   ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
2765 
2766 
2767   // Always do locking in runtime.
2768   if (EmitSync & 0x01) {
2769     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2770     return;
2771   }
2772 
2773   if (try_bias) {
2774     biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
2775   }
2776 
2777 #if INCLUDE_RTM_OPT
2778   if (UseRTMForStackLocks && use_rtm) {
2779     rtm_stack_locking(flag, oop, displaced_header, temp, /*temp*/ current_header,
2780                       stack_rtm_counters, method_data, profile_rtm,
2781                       cont, object_has_monitor);
2782   }
2783 #endif // INCLUDE_RTM_OPT
2784 
2785   // Handle existing monitor.
2786   if ((EmitSync & 0x02) == 0) {
2787     // The object has an existing monitor iff (mark & monitor_value) != 0.
2788     andi_(temp, displaced_header, markOopDesc::monitor_value);
2789     bne(CCR0, object_has_monitor);
2790   }
2791 
2792   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
2793   ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
2794 
2795   // Load Compare Value application register.
2796 
2797   // Initialize the box. (Must happen before we update the object mark!)
2798   std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2799 
2800   // Must fence, otherwise, preceding store(s) may float below cmpxchg.
2801   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
2802   cmpxchgd(/*flag=*/flag,
2803            /*current_value=*/current_header,
2804            /*compare_value=*/displaced_header,
2805            /*exchange_value=*/box,
2806            /*where=*/oop,
2807            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2808            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2809            noreg,
2810            &cas_failed,
2811            /*check without membar and ldarx first*/true);
2812   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2813 
2814   // If the compare-and-exchange succeeded, then we found an unlocked
2815   // object and we have now locked it.
2816   b(cont);
2817 
2818   bind(cas_failed);
2819   // We did not see an unlocked object so try the fast recursive case.
2820 
2821   // Check if the owner is self by comparing the value in the markOop of object
2822   // (current_header) with the stack pointer.
2823   sub(current_header, current_header, R1_SP);
2824   load_const_optimized(temp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
2825 
2826   and_(R0/*==0?*/, current_header, temp);
2827   // If condition is true we are cont and hence we can store 0 as the
2828   // displaced header in the box, which indicates that it is a recursive lock.
2829   mcrf(flag,CCR0);
2830   std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
2831 
2832   // Handle existing monitor.
2833   if ((EmitSync & 0x02) == 0) {
2834     b(cont);
2835 
2836     bind(object_has_monitor);
2837     // The object's monitor m is unlocked iff m->owner == NULL,
2838     // otherwise m->owner may contain a thread or a stack address.
2839 
2840 #if INCLUDE_RTM_OPT
2841     // Use the same RTM locking code in 32- and 64-bit VM.
2842     if (use_rtm) {
2843       rtm_inflated_locking(flag, oop, displaced_header, box, temp, /*temp*/ current_header,
2844                            rtm_counters, method_data, profile_rtm, cont);
2845     } else {
2846 #endif // INCLUDE_RTM_OPT
2847 
2848     // Try to CAS m->owner from NULL to current thread.
2849     addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
2850     cmpxchgd(/*flag=*/flag,
2851              /*current_value=*/current_header,
2852              /*compare_value=*/(intptr_t)0,
2853              /*exchange_value=*/R16_thread,
2854              /*where=*/temp,
2855              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2856              MacroAssembler::cmpxchgx_hint_acquire_lock());
2857 
2858     // Store a non-null value into the box.
2859     std(box, BasicLock::displaced_header_offset_in_bytes(), box);
2860 
2861 #   ifdef ASSERT
2862     bne(flag, cont);
2863     // We have acquired the monitor, check some invariants.
2864     addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
2865     // Invariant 1: _recursions should be 0.
2866     //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
2867     asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
2868                             "monitor->_recursions should be 0", -1);
2869     // Invariant 2: OwnerIsThread shouldn't be 0.
2870     //assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
2871     //asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp,
2872     //                           "monitor->OwnerIsThread shouldn't be 0", -1);
2873 #   endif
2874 
2875 #if INCLUDE_RTM_OPT
2876     } // use_rtm()
2877 #endif
2878   }
2879 
2880   bind(cont);
2881   // flag == EQ indicates success
2882   // flag == NE indicates failure
2883 }
2884 
2885 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
2886                                                  Register temp, Register displaced_header, Register current_header,
2887                                                  bool try_bias, bool use_rtm) {
2888   assert_different_registers(oop, box, temp, displaced_header, current_header);
2889   assert(flag != CCR0, "bad condition register");
2890   Label cont;
2891   Label object_has_monitor;
2892 
2893   // Always do locking in runtime.
2894   if (EmitSync & 0x01) {
2895     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2896     return;
2897   }
2898 
2899   if (try_bias) {
2900     biased_locking_exit(flag, oop, current_header, cont);
2901   }
2902 
2903 #if INCLUDE_RTM_OPT
2904   if (UseRTMForStackLocks && use_rtm) {
2905     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2906     Label L_regular_unlock;
2907     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);         // fetch markword
2908     andi(R0, current_header, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2909     cmpwi(flag, R0, markOopDesc::unlocked_value);                     // bits = 001 unlocked
2910     bne(flag, L_regular_unlock);                                      // else RegularLock
2911     tend_();                                                          // otherwise end...
2912     b(cont);                                                          // ... and we're done
2913     bind(L_regular_unlock);
2914   }
2915 #endif
2916 
2917   // Find the lock address and load the displaced header from the stack.
2918   ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2919 
2920   // If the displaced header is 0, we have a recursive unlock.
2921   cmpdi(flag, displaced_header, 0);
2922   beq(flag, cont);
2923 
2924   // Handle existing monitor.
2925   if ((EmitSync & 0x02) == 0) {
2926     // The object has an existing monitor iff (mark & monitor_value) != 0.
2927     RTM_OPT_ONLY( if (!(UseRTMForStackLocks && use_rtm)) ) // skip load if already done
2928     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
2929     andi_(R0, current_header, markOopDesc::monitor_value);
2930     bne(CCR0, object_has_monitor);
2931   }
2932 
2933   // Check if it is still a light weight lock, this is is true if we see
2934   // the stack address of the basicLock in the markOop of the object.
2935   // Cmpxchg sets flag to cmpd(current_header, box).
2936   cmpxchgd(/*flag=*/flag,
2937            /*current_value=*/current_header,
2938            /*compare_value=*/box,
2939            /*exchange_value=*/displaced_header,
2940            /*where=*/oop,
2941            MacroAssembler::MemBarRel,
2942            MacroAssembler::cmpxchgx_hint_release_lock(),
2943            noreg,
2944            &cont);
2945 
2946   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2947 
2948   // Handle existing monitor.
2949   if ((EmitSync & 0x02) == 0) {
2950     b(cont);
2951 
2952     bind(object_has_monitor);
2953     addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
2954     ld(temp,             ObjectMonitor::owner_offset_in_bytes(), current_header);
2955 
2956     // It's inflated.
2957 #if INCLUDE_RTM_OPT
2958     if (use_rtm) {
2959       Label L_regular_inflated_unlock;
2960       // Clean monitor_value bit to get valid pointer
2961       cmpdi(flag, temp, 0);
2962       bne(flag, L_regular_inflated_unlock);
2963       tend_();
2964       b(cont);
2965       bind(L_regular_inflated_unlock);
2966     }
2967 #endif
2968 
2969     ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
2970     xorr(temp, R16_thread, temp);      // Will be 0 if we are the owner.
2971     orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
2972     cmpdi(flag, temp, 0);
2973     bne(flag, cont);
2974 
2975     ld(temp,             ObjectMonitor::EntryList_offset_in_bytes(), current_header);
2976     ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
2977     orr(temp, temp, displaced_header); // Will be 0 if both are 0.
2978     cmpdi(flag, temp, 0);
2979     bne(flag, cont);
2980     release();
2981     std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
2982   }
2983 
2984   bind(cont);
2985   // flag == EQ indicates success
2986   // flag == NE indicates failure
2987 }
2988 
2989 // Write serialization page so VM thread can do a pseudo remote membar.
2990 // We use the current thread pointer to calculate a thread specific
2991 // offset to write to within the page. This minimizes bus traffic
2992 // due to cache line collision.
2993 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
2994   srdi(tmp2, thread, os::get_serialize_page_shift_count());
2995 
2996   int mask = os::vm_page_size() - sizeof(int);
2997   if (Assembler::is_simm(mask, 16)) {
2998     andi(tmp2, tmp2, mask);
2999   } else {
3000     lis(tmp1, (int)((signed short) (mask >> 16)));
3001     ori(tmp1, tmp1, mask & 0x0000ffff);
3002     andr(tmp2, tmp2, tmp1);
3003   }
3004 
3005   load_const(tmp1, (long) os::get_memory_serialize_page());
3006   release();
3007   stwx(R0, tmp1, tmp2);
3008 }
3009 
3010 
3011 // GC barrier helper macros
3012 
3013 // Write the card table byte if needed.
3014 void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) {
3015   CardTableModRefBS* bs =
3016     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3017   assert(bs->kind() == BarrierSet::CardTableForRS ||
3018          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3019 #ifdef ASSERT
3020   cmpdi(CCR0, Rnew_val, 0);
3021   asm_assert_ne("null oop not allowed", 0x321);
3022 #endif
3023   card_table_write(bs->byte_map_base, Rtmp, Rstore_addr);
3024 }
3025 
3026 // Write the card table byte.
3027 void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) {
3028   assert_different_registers(Robj, Rtmp, R0);
3029   load_const_optimized(Rtmp, (address)byte_map_base, R0);
3030   srdi(Robj, Robj, CardTableModRefBS::card_shift);
3031   li(R0, 0); // dirty
3032   if (UseConcMarkSweepGC) membar(Assembler::StoreStore);
3033   stbx(R0, Rtmp, Robj);
3034 }
3035 
3036 #if INCLUDE_ALL_GCS
3037 // General G1 pre-barrier generator.
3038 // Goal: record the previous value if it is not null.
3039 void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
3040                                           Register Rtmp1, Register Rtmp2, bool needs_frame) {
3041   Label runtime, filtered;
3042 
3043   // Is marking active?
3044   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3045     lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
3046   } else {
3047     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
3048     lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
3049   }
3050   cmpdi(CCR0, Rtmp1, 0);
3051   beq(CCR0, filtered);
3052 
3053   // Do we need to load the previous value?
3054   if (Robj != noreg) {
3055     // Load the previous value...
3056     if (UseCompressedOops) {
3057       lwz(Rpre_val, offset, Robj);
3058     } else {
3059       ld(Rpre_val, offset, Robj);
3060     }
3061     // Previous value has been loaded into Rpre_val.
3062   }
3063   assert(Rpre_val != noreg, "must have a real register");
3064 
3065   // Is the previous value null?
3066   cmpdi(CCR0, Rpre_val, 0);
3067   beq(CCR0, filtered);
3068 
3069   if (Robj != noreg && UseCompressedOops) {
3070     decode_heap_oop_not_null(Rpre_val);
3071   }
3072 
3073   // OK, it's not filtered, so we'll need to call enqueue. In the normal
3074   // case, pre_val will be a scratch G-reg, but there are some cases in
3075   // which it's an O-reg. In the first case, do a normal call. In the
3076   // latter, do a save here and call the frameless version.
3077 
3078   // Can we store original value in the thread's buffer?
3079   // Is index == 0?
3080   // (The index field is typed as size_t.)
3081   const Register Rbuffer = Rtmp1, Rindex = Rtmp2;
3082 
3083   ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
3084   cmpdi(CCR0, Rindex, 0);
3085   beq(CCR0, runtime); // If index == 0, goto runtime.
3086   ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_buf()), R16_thread);
3087 
3088   addi(Rindex, Rindex, -wordSize); // Decrement index.
3089   std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
3090 
3091   // Record the previous value.
3092   stdx(Rpre_val, Rbuffer, Rindex);
3093   b(filtered);
3094 
3095   bind(runtime);
3096 
3097   // VM call need frame to access(write) O register.
3098   if (needs_frame) {
3099     save_LR_CR(Rtmp1);
3100     push_frame_reg_args(0, Rtmp2);
3101   }
3102 
3103   if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
3104   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread);
3105   if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore
3106 
3107   if (needs_frame) {
3108     pop_frame();
3109     restore_LR_CR(Rtmp1);
3110   }
3111 
3112   bind(filtered);
3113 }
3114 
3115 // General G1 post-barrier generator
3116 // Store cross-region card.
3117 void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) {
3118   Label runtime, filtered_int;
3119   Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int;
3120   assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2);
3121 
3122   G1SATBCardTableLoggingModRefBS* bs =
3123     barrier_set_cast<G1SATBCardTableLoggingModRefBS>(Universe::heap()->barrier_set());
3124 
3125   // Does store cross heap regions?
3126   if (G1RSBarrierRegionFilter) {
3127     xorr(Rtmp1, Rstore_addr, Rnew_val);
3128     srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
3129     beq(CCR0, filtered);
3130   }
3131 
3132   // Crosses regions, storing NULL?
3133 #ifdef ASSERT
3134   cmpdi(CCR0, Rnew_val, 0);
3135   asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete:
3136   //beq(CCR0, filtered);
3137 #endif
3138 
3139   // Storing region crossing non-NULL, is card already dirty?
3140   assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code");
3141   const Register Rcard_addr = Rtmp1;
3142   Register Rbase = Rtmp2;
3143   load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3);
3144 
3145   srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift);
3146 
3147   // Get the address of the card.
3148   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
3149   cmpwi(CCR0, Rtmp3, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3150   beq(CCR0, filtered);
3151 
3152   membar(Assembler::StoreLoad);
3153   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);  // Reload after membar.
3154   cmpwi(CCR0, Rtmp3 /* card value */, CardTableModRefBS::dirty_card_val());
3155   beq(CCR0, filtered);
3156 
3157   // Storing a region crossing, non-NULL oop, card is clean.
3158   // Dirty card and log.
3159   li(Rtmp3, CardTableModRefBS::dirty_card_val());
3160   //release(); // G1: oops are allowed to get visible after dirty marking.
3161   stbx(Rtmp3, Rbase, Rcard_addr);
3162 
3163   add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
3164   Rbase = noreg; // end of lifetime
3165 
3166   const Register Rqueue_index = Rtmp2,
3167                  Rqueue_buf   = Rtmp3;
3168   ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
3169   cmpdi(CCR0, Rqueue_index, 0);
3170   beq(CCR0, runtime); // index == 0 then jump to runtime
3171   ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_buf()), R16_thread);
3172 
3173   addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
3174   std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
3175 
3176   stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
3177   b(filtered);
3178 
3179   bind(runtime);
3180 
3181   // Save the live input values.
3182   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
3183 
3184   bind(filtered_int);
3185 }
3186 #endif // INCLUDE_ALL_GCS
3187 
3188 // Values for last_Java_pc, and last_Java_sp must comply to the rules
3189 // in frame_ppc.hpp.
3190 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
3191   // Always set last_Java_pc and flags first because once last_Java_sp
3192   // is visible has_last_Java_frame is true and users will look at the
3193   // rest of the fields. (Note: flags should always be zero before we
3194   // get here so doesn't need to be set.)
3195 
3196   // Verify that last_Java_pc was zeroed on return to Java
3197   asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
3198                           "last_Java_pc not zeroed before leaving Java", 0x200);
3199 
3200   // When returning from calling out from Java mode the frame anchor's
3201   // last_Java_pc will always be set to NULL. It is set here so that
3202   // if we are doing a call to native (not VM) that we capture the
3203   // known pc and don't have to rely on the native call having a
3204   // standard frame linkage where we can find the pc.
3205   if (last_Java_pc != noreg)
3206     std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3207 
3208   // Set last_Java_sp last.
3209   std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3210 }
3211 
3212 void MacroAssembler::reset_last_Java_frame(void) {
3213   asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3214                              R16_thread, "SP was not set, still zero", 0x202);
3215 
3216   BLOCK_COMMENT("reset_last_Java_frame {");
3217   li(R0, 0);
3218 
3219   // _last_Java_sp = 0
3220   std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3221 
3222   // _last_Java_pc = 0
3223   std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3224   BLOCK_COMMENT("} reset_last_Java_frame");
3225 }
3226 
3227 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
3228   assert_different_registers(sp, tmp1);
3229 
3230   // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
3231   // TOP_IJAVA_FRAME_ABI.
3232   // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
3233   address entry = pc();
3234   load_const_optimized(tmp1, entry);
3235 
3236   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
3237 }
3238 
3239 void MacroAssembler::get_vm_result(Register oop_result) {
3240   // Read:
3241   //   R16_thread
3242   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3243   //
3244   // Updated:
3245   //   oop_result
3246   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3247 
3248   verify_thread();
3249 
3250   ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3251   li(R0, 0);
3252   std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3253 
3254   verify_oop(oop_result);
3255 }
3256 
3257 void MacroAssembler::get_vm_result_2(Register metadata_result) {
3258   // Read:
3259   //   R16_thread
3260   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3261   //
3262   // Updated:
3263   //   metadata_result
3264   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3265 
3266   ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3267   li(R0, 0);
3268   std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3269 }
3270 
3271 Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3272   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
3273   if (Universe::narrow_klass_base() != 0) {
3274     // Use dst as temp if it is free.
3275     sub_const_optimized(dst, current, Universe::narrow_klass_base(), R0);
3276     current = dst;
3277   }
3278   if (Universe::narrow_klass_shift() != 0) {
3279     srdi(dst, current, Universe::narrow_klass_shift());
3280     current = dst;
3281   }
3282   return current;
3283 }
3284 
3285 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
3286   if (UseCompressedClassPointers) {
3287     Register compressedKlass = encode_klass_not_null(ck, klass);
3288     stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
3289   } else {
3290     std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
3291   }
3292 }
3293 
3294 void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
3295   if (UseCompressedClassPointers) {
3296     if (val == noreg) {
3297       val = R0;
3298       li(val, 0);
3299     }
3300     stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
3301   }
3302 }
3303 
3304 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3305   if (!UseCompressedClassPointers) return 0;
3306   int num_instrs = 1;  // shift or move
3307   if (Universe::narrow_klass_base() != 0) num_instrs = 7;  // shift + load const + add
3308   return num_instrs * BytesPerInstWord;
3309 }
3310 
3311 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3312   assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
3313   if (src == noreg) src = dst;
3314   Register shifted_src = src;
3315   if (Universe::narrow_klass_shift() != 0 ||
3316       Universe::narrow_klass_base() == 0 && src != dst) {  // Move required.
3317     shifted_src = dst;
3318     sldi(shifted_src, src, Universe::narrow_klass_shift());
3319   }
3320   if (Universe::narrow_klass_base() != 0) {
3321     add_const_optimized(dst, shifted_src, Universe::narrow_klass_base(), R0);
3322   }
3323 }
3324 
3325 void MacroAssembler::load_klass(Register dst, Register src) {
3326   if (UseCompressedClassPointers) {
3327     lwz(dst, oopDesc::klass_offset_in_bytes(), src);
3328     // Attention: no null check here!
3329     decode_klass_not_null(dst, dst);
3330   } else {
3331     ld(dst, oopDesc::klass_offset_in_bytes(), src);
3332   }
3333 }
3334 
3335 void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
3336   ld(mirror, in_bytes(ConstMethod::constants_offset()), const_method);
3337   ld(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
3338   ld(mirror, in_bytes(Klass::java_mirror_offset()), mirror);
3339 }
3340 
3341 // Clear Array
3342 // For very short arrays. tmp == R0 is allowed.
3343 void MacroAssembler::clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp, int offset) {
3344   if (cnt_dwords > 0) { li(tmp, 0); }
3345   for (int i = 0; i < cnt_dwords; ++i) { std(tmp, offset + i * 8, base_ptr); }
3346 }
3347 
3348 // Version for constant short array length. Kills base_ptr. tmp == R0 is allowed.
3349 void MacroAssembler::clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp) {
3350   if (cnt_dwords < 8) {
3351     clear_memory_unrolled(base_ptr, cnt_dwords, tmp);
3352     return;
3353   }
3354 
3355   Label loop;
3356   const long loopcnt   = cnt_dwords >> 1,
3357              remainder = cnt_dwords & 1;
3358 
3359   li(tmp, loopcnt);
3360   mtctr(tmp);
3361   li(tmp, 0);
3362   bind(loop);
3363     std(tmp, 0, base_ptr);
3364     std(tmp, 8, base_ptr);
3365     addi(base_ptr, base_ptr, 16);
3366     bdnz(loop);
3367   if (remainder) { std(tmp, 0, base_ptr); }
3368 }
3369 
3370 // Kills both input registers. tmp == R0 is allowed.
3371 void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp, long const_cnt) {
3372   // Procedure for large arrays (uses data cache block zero instruction).
3373     Label startloop, fast, fastloop, small_rest, restloop, done;
3374     const int cl_size         = VM_Version::L1_data_cache_line_size(),
3375               cl_dwords       = cl_size >> 3,
3376               cl_dw_addr_bits = exact_log2(cl_dwords),
3377               dcbz_min        = 1,  // Min count of dcbz executions, needs to be >0.
3378               min_cnt         = ((dcbz_min + 1) << cl_dw_addr_bits) - 1;
3379 
3380   if (const_cnt >= 0) {
3381     // Constant case.
3382     if (const_cnt < min_cnt) {
3383       clear_memory_constlen(base_ptr, const_cnt, tmp);
3384       return;
3385     }
3386     load_const_optimized(cnt_dwords, const_cnt, tmp);
3387   } else {
3388     // cnt_dwords already loaded in register. Need to check size.
3389     cmpdi(CCR1, cnt_dwords, min_cnt); // Big enough? (ensure >= dcbz_min lines included).
3390     blt(CCR1, small_rest);
3391   }
3392     rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
3393     beq(CCR0, fast);                                  // Already 128byte aligned.
3394 
3395     subfic(tmp, tmp, cl_dwords);
3396     mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
3397     subf(cnt_dwords, tmp, cnt_dwords); // rest.
3398     li(tmp, 0);
3399 
3400   bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
3401     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3402     addi(base_ptr, base_ptr, 8);
3403     bdnz(startloop);
3404 
3405   bind(fast);                                  // Clear 128byte blocks.
3406     srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
3407     andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
3408     mtctr(tmp);                                // Load counter.
3409 
3410   bind(fastloop);
3411     dcbz(base_ptr);                    // Clear 128byte aligned block.
3412     addi(base_ptr, base_ptr, cl_size);
3413     bdnz(fastloop);
3414 
3415   bind(small_rest);
3416     cmpdi(CCR0, cnt_dwords, 0);        // size 0?
3417     beq(CCR0, done);                   // rest == 0
3418     li(tmp, 0);
3419     mtctr(cnt_dwords);                 // Load counter.
3420 
3421   bind(restloop);                      // Clear rest.
3422     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3423     addi(base_ptr, base_ptr, 8);
3424     bdnz(restloop);
3425 
3426   bind(done);
3427 }
3428 
3429 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
3430 
3431 #ifdef COMPILER2
3432 // Intrinsics for CompactStrings
3433 
3434 // Compress char[] to byte[] by compressing 16 bytes at once.
3435 void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt,
3436                                         Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
3437                                         Label& Lfailure) {
3438 
3439   const Register tmp0 = R0;
3440   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3441   Label Lloop, Lslow;
3442 
3443   // Check if cnt >= 8 (= 16 bytes)
3444   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF00FF00FF
3445   srwi_(tmp2, cnt, 3);
3446   beq(CCR0, Lslow);
3447   ori(tmp1, tmp1, 0xFF);
3448   rldimi(tmp1, tmp1, 32, 0);
3449   mtctr(tmp2);
3450 
3451   // 2x unrolled loop
3452   bind(Lloop);
3453   ld(tmp2, 0, src);               // _0_1_2_3 (Big Endian)
3454   ld(tmp4, 8, src);               // _4_5_6_7
3455 
3456   orr(tmp0, tmp2, tmp4);
3457   rldicl(tmp3, tmp2, 6*8, 64-24); // _____1_2
3458   rldimi(tmp2, tmp2, 2*8, 2*8);   // _0_2_3_3
3459   rldicl(tmp5, tmp4, 6*8, 64-24); // _____5_6
3460   rldimi(tmp4, tmp4, 2*8, 2*8);   // _4_6_7_7
3461 
3462   andc_(tmp0, tmp0, tmp1);
3463   bne(CCR0, Lfailure);            // Not latin1.
3464   addi(src, src, 16);
3465 
3466   rlwimi(tmp3, tmp2, 0*8, 24, 31);// _____1_3
3467   srdi(tmp2, tmp2, 3*8);          // ____0_2_
3468   rlwimi(tmp5, tmp4, 0*8, 24, 31);// _____5_7
3469   srdi(tmp4, tmp4, 3*8);          // ____4_6_
3470 
3471   orr(tmp2, tmp2, tmp3);          // ____0123
3472   orr(tmp4, tmp4, tmp5);          // ____4567
3473 
3474   stw(tmp2, 0, dst);
3475   stw(tmp4, 4, dst);
3476   addi(dst, dst, 8);
3477   bdnz(Lloop);
3478 
3479   bind(Lslow);                    // Fallback to slow version
3480 }
3481 
3482 // Compress char[] to byte[]. cnt must be positive int.
3483 void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure) {
3484   Label Lloop;
3485   mtctr(cnt);
3486 
3487   bind(Lloop);
3488   lhz(tmp, 0, src);
3489   cmplwi(CCR0, tmp, 0xff);
3490   bgt(CCR0, Lfailure);            // Not latin1.
3491   addi(src, src, 2);
3492   stb(tmp, 0, dst);
3493   addi(dst, dst, 1);
3494   bdnz(Lloop);
3495 }
3496 
3497 // Inflate byte[] to char[] by inflating 16 bytes at once.
3498 void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt,
3499                                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
3500   const Register tmp0 = R0;
3501   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3502   Label Lloop, Lslow;
3503 
3504   // Check if cnt >= 8
3505   srwi_(tmp2, cnt, 3);
3506   beq(CCR0, Lslow);
3507   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF
3508   ori(tmp1, tmp1, 0xFF);
3509   mtctr(tmp2);
3510 
3511   // 2x unrolled loop
3512   bind(Lloop);
3513   lwz(tmp2, 0, src);              // ____0123 (Big Endian)
3514   lwz(tmp4, 4, src);              // ____4567
3515   addi(src, src, 8);
3516 
3517   rldicl(tmp3, tmp2, 7*8, 64-8);  // _______2
3518   rlwimi(tmp2, tmp2, 3*8, 16, 23);// ____0113
3519   rldicl(tmp5, tmp4, 7*8, 64-8);  // _______6
3520   rlwimi(tmp4, tmp4, 3*8, 16, 23);// ____4557
3521 
3522   andc(tmp0, tmp2, tmp1);         // ____0_1_
3523   rlwimi(tmp2, tmp3, 2*8, 0, 23); // _____2_3
3524   andc(tmp3, tmp4, tmp1);         // ____4_5_
3525   rlwimi(tmp4, tmp5, 2*8, 0, 23); // _____6_7
3526 
3527   rldimi(tmp2, tmp0, 3*8, 0*8);   // _0_1_2_3
3528   rldimi(tmp4, tmp3, 3*8, 0*8);   // _4_5_6_7
3529 
3530   std(tmp2, 0, dst);
3531   std(tmp4, 8, dst);
3532   addi(dst, dst, 16);
3533   bdnz(Lloop);
3534 
3535   bind(Lslow);                    // Fallback to slow version
3536 }
3537 
3538 // Inflate byte[] to char[]. cnt must be positive int.
3539 void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
3540   Label Lloop;
3541   mtctr(cnt);
3542 
3543   bind(Lloop);
3544   lbz(tmp, 0, src);
3545   addi(src, src, 1);
3546   sth(tmp, 0, dst);
3547   addi(dst, dst, 2);
3548   bdnz(Lloop);
3549 }
3550 
3551 void MacroAssembler::string_compare(Register str1, Register str2,
3552                                     Register cnt1, Register cnt2,
3553                                     Register tmp1, Register result, int ae) {
3554   const Register tmp0 = R0,
3555                  diff = tmp1;
3556 
3557   assert_different_registers(str1, str2, cnt1, cnt2, tmp0, tmp1, result);
3558   Label Ldone, Lslow, Lloop, Lreturn_diff;
3559 
3560   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
3561   // we interchange str1 and str2 in the UL case and negate the result.
3562   // Like this, str1 is always latin1 encoded, except for the UU case.
3563   // In addition, we need 0 (or sign which is 0) extend.
3564 
3565   if (ae == StrIntrinsicNode::UU) {
3566     srwi(cnt1, cnt1, 1);
3567   } else {
3568     clrldi(cnt1, cnt1, 32);
3569   }
3570 
3571   if (ae != StrIntrinsicNode::LL) {
3572     srwi(cnt2, cnt2, 1);
3573   } else {
3574     clrldi(cnt2, cnt2, 32);
3575   }
3576 
3577   // See if the lengths are different, and calculate min in cnt1.
3578   // Save diff in case we need it for a tie-breaker.
3579   subf_(diff, cnt2, cnt1); // diff = cnt1 - cnt2
3580   // if (diff > 0) { cnt1 = cnt2; }
3581   if (VM_Version::has_isel()) {
3582     isel(cnt1, CCR0, Assembler::greater, /*invert*/ false, cnt2);
3583   } else {
3584     Label Lskip;
3585     blt(CCR0, Lskip);
3586     mr(cnt1, cnt2);
3587     bind(Lskip);
3588   }
3589 
3590   // Rename registers
3591   Register chr1 = result;
3592   Register chr2 = tmp0;
3593 
3594   // Compare multiple characters in fast loop (only implemented for same encoding).
3595   int stride1 = 8, stride2 = 8;
3596   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
3597     int log2_chars_per_iter = (ae == StrIntrinsicNode::LL) ? 3 : 2;
3598     Label Lfastloop, Lskipfast;
3599 
3600     srwi_(tmp0, cnt1, log2_chars_per_iter);
3601     beq(CCR0, Lskipfast);
3602     rldicl(cnt2, cnt1, 0, 64 - log2_chars_per_iter); // Remaining characters.
3603     li(cnt1, 1 << log2_chars_per_iter); // Initialize for failure case: Rescan characters from current iteration.
3604     mtctr(tmp0);
3605 
3606     bind(Lfastloop);
3607     ld(chr1, 0, str1);
3608     ld(chr2, 0, str2);
3609     cmpd(CCR0, chr1, chr2);
3610     bne(CCR0, Lslow);
3611     addi(str1, str1, stride1);
3612     addi(str2, str2, stride2);
3613     bdnz(Lfastloop);
3614     mr(cnt1, cnt2); // Remaining characters.
3615     bind(Lskipfast);
3616   }
3617 
3618   // Loop which searches the first difference character by character.
3619   cmpwi(CCR0, cnt1, 0);
3620   beq(CCR0, Lreturn_diff);
3621   bind(Lslow);
3622   mtctr(cnt1);
3623 
3624   switch (ae) {
3625     case StrIntrinsicNode::LL: stride1 = 1; stride2 = 1; break;
3626     case StrIntrinsicNode::UL: // fallthru (see comment above)
3627     case StrIntrinsicNode::LU: stride1 = 1; stride2 = 2; break;
3628     case StrIntrinsicNode::UU: stride1 = 2; stride2 = 2; break;
3629     default: ShouldNotReachHere(); break;
3630   }
3631 
3632   bind(Lloop);
3633   if (stride1 == 1) { lbz(chr1, 0, str1); } else { lhz(chr1, 0, str1); }
3634   if (stride2 == 1) { lbz(chr2, 0, str2); } else { lhz(chr2, 0, str2); }
3635   subf_(result, chr2, chr1); // result = chr1 - chr2
3636   bne(CCR0, Ldone);
3637   addi(str1, str1, stride1);
3638   addi(str2, str2, stride2);
3639   bdnz(Lloop);
3640 
3641   // If strings are equal up to min length, return the length difference.
3642   bind(Lreturn_diff);
3643   mr(result, diff);
3644 
3645   // Otherwise, return the difference between the first mismatched chars.
3646   bind(Ldone);
3647   if (ae == StrIntrinsicNode::UL) {
3648     neg(result, result); // Negate result (see note above).
3649   }
3650 }
3651 
3652 void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
3653                                   Register limit, Register tmp1, Register result, bool is_byte) {
3654   const Register tmp0 = R0;
3655   assert_different_registers(ary1, ary2, limit, tmp0, tmp1, result);
3656   Label Ldone, Lskiploop, Lloop, Lfastloop, Lskipfast;
3657   bool limit_needs_shift = false;
3658 
3659   if (is_array_equ) {
3660     const int length_offset = arrayOopDesc::length_offset_in_bytes();
3661     const int base_offset   = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
3662 
3663     // Return true if the same array.
3664     cmpd(CCR0, ary1, ary2);
3665     beq(CCR0, Lskiploop);
3666 
3667     // Return false if one of them is NULL.
3668     cmpdi(CCR0, ary1, 0);
3669     cmpdi(CCR1, ary2, 0);
3670     li(result, 0);
3671     cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
3672     beq(CCR0, Ldone);
3673 
3674     // Load the lengths of arrays.
3675     lwz(limit, length_offset, ary1);
3676     lwz(tmp0, length_offset, ary2);
3677 
3678     // Return false if the two arrays are not equal length.
3679     cmpw(CCR0, limit, tmp0);
3680     bne(CCR0, Ldone);
3681 
3682     // Load array addresses.
3683     addi(ary1, ary1, base_offset);
3684     addi(ary2, ary2, base_offset);
3685   } else {
3686     limit_needs_shift = !is_byte;
3687     li(result, 0); // Assume not equal.
3688   }
3689 
3690   // Rename registers
3691   Register chr1 = tmp0;
3692   Register chr2 = tmp1;
3693 
3694   // Compare 8 bytes per iteration in fast loop.
3695   const int log2_chars_per_iter = is_byte ? 3 : 2;
3696 
3697   srwi_(tmp0, limit, log2_chars_per_iter + (limit_needs_shift ? 1 : 0));
3698   beq(CCR0, Lskipfast);
3699   mtctr(tmp0);
3700 
3701   bind(Lfastloop);
3702   ld(chr1, 0, ary1);
3703   ld(chr2, 0, ary2);
3704   addi(ary1, ary1, 8);
3705   addi(ary2, ary2, 8);
3706   cmpd(CCR0, chr1, chr2);
3707   bne(CCR0, Ldone);
3708   bdnz(Lfastloop);
3709 
3710   bind(Lskipfast);
3711   rldicl_(limit, limit, limit_needs_shift ? 64 - 1 : 0, 64 - log2_chars_per_iter); // Remaining characters.
3712   beq(CCR0, Lskiploop);
3713   mtctr(limit);
3714 
3715   // Character by character.
3716   bind(Lloop);
3717   if (is_byte) {
3718     lbz(chr1, 0, ary1);
3719     lbz(chr2, 0, ary2);
3720     addi(ary1, ary1, 1);
3721     addi(ary2, ary2, 1);
3722   } else {
3723     lhz(chr1, 0, ary1);
3724     lhz(chr2, 0, ary2);
3725     addi(ary1, ary1, 2);
3726     addi(ary2, ary2, 2);
3727   }
3728   cmpw(CCR0, chr1, chr2);
3729   bne(CCR0, Ldone);
3730   bdnz(Lloop);
3731 
3732   bind(Lskiploop);
3733   li(result, 1); // All characters are equal.
3734   bind(Ldone);
3735 }
3736 
3737 void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
3738                                     Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
3739                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae) {
3740 
3741   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
3742   Label L_TooShort, L_Found, L_NotFound, L_End;
3743   Register last_addr = haycnt, // Kill haycnt at the beginning.
3744   addr      = tmp1,
3745   n_start   = tmp2,
3746   ch1       = tmp3,
3747   ch2       = R0;
3748 
3749   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
3750   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
3751   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
3752 
3753   // **************************************************************************************************
3754   // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
3755   // **************************************************************************************************
3756 
3757   // Compute last haystack addr to use if no match gets found.
3758   clrldi(haycnt, haycnt, 32);         // Ensure positive int is valid as 64 bit value.
3759   addi(addr, haystack, -h_csize);     // Accesses use pre-increment.
3760   if (needlecntval == 0) { // variable needlecnt
3761    cmpwi(CCR6, needlecnt, 2);
3762    clrldi(needlecnt, needlecnt, 32);  // Ensure positive int is valid as 64 bit value.
3763    blt(CCR6, L_TooShort);             // Variable needlecnt: handle short needle separately.
3764   }
3765 
3766   if (n_csize == 2) { lwz(n_start, 0, needle); } else { lhz(n_start, 0, needle); } // Load first 2 characters of needle.
3767 
3768   if (needlecntval == 0) { // variable needlecnt
3769    subf(ch1, needlecnt, haycnt);      // Last character index to compare is haycnt-needlecnt.
3770    addi(needlecnt, needlecnt, -2);    // Rest of needle.
3771   } else { // constant needlecnt
3772   guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
3773   assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
3774    addi(ch1, haycnt, -needlecntval);  // Last character index to compare is haycnt-needlecnt.
3775    if (needlecntval > 3) { li(needlecnt, needlecntval - 2); } // Rest of needle.
3776   }
3777 
3778   if (h_csize == 2) { slwi(ch1, ch1, 1); } // Scale to number of bytes.
3779 
3780   if (ae ==StrIntrinsicNode::UL) {
3781    srwi(tmp4, n_start, 1*8);          // ___0
3782    rlwimi(n_start, tmp4, 2*8, 0, 23); // _0_1
3783   }
3784 
3785   add(last_addr, haystack, ch1);      // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
3786 
3787   // Main Loop (now we have at least 2 characters).
3788   Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2;
3789   bind(L_OuterLoop); // Search for 1st 2 characters.
3790   Register addr_diff = tmp4;
3791    subf(addr_diff, addr, last_addr);  // Difference between already checked address and last address to check.
3792    addi(addr, addr, h_csize);         // This is the new address we want to use for comparing.
3793    srdi_(ch2, addr_diff, h_csize);
3794    beq(CCR0, L_FinalCheck);           // 2 characters left?
3795    mtctr(ch2);                        // num of characters / 2
3796   bind(L_InnerLoop);                  // Main work horse (2x unrolled search loop)
3797    if (h_csize == 2) {                // Load 2 characters of haystack (ignore alignment).
3798     lwz(ch1, 0, addr);
3799     lwz(ch2, 2, addr);
3800    } else {
3801     lhz(ch1, 0, addr);
3802     lhz(ch2, 1, addr);
3803    }
3804    cmpw(CCR0, ch1, n_start);          // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
3805    cmpw(CCR1, ch2, n_start);
3806    beq(CCR0, L_Comp1);                // Did we find the needle start?
3807    beq(CCR1, L_Comp2);
3808    addi(addr, addr, 2 * h_csize);
3809    bdnz(L_InnerLoop);
3810   bind(L_FinalCheck);
3811    andi_(addr_diff, addr_diff, h_csize); // Remaining characters not covered by InnerLoop: (num of characters) & 1.
3812    beq(CCR0, L_NotFound);
3813    if (h_csize == 2) { lwz(ch1, 0, addr); } else { lhz(ch1, 0, addr); } // One position left at which we have to compare.
3814    cmpw(CCR1, ch1, n_start);
3815    beq(CCR1, L_Comp1);
3816   bind(L_NotFound);
3817    li(result, -1);                    // not found
3818    b(L_End);
3819 
3820    // **************************************************************************************************
3821    // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
3822    // **************************************************************************************************
3823   if (needlecntval == 0) {           // We have to handle these cases separately.
3824   Label L_OneCharLoop;
3825   bind(L_TooShort);
3826    mtctr(haycnt);
3827    if (n_csize == 2) { lhz(n_start, 0, needle); } else { lbz(n_start, 0, needle); } // First character of needle
3828   bind(L_OneCharLoop);
3829    if (h_csize == 2) { lhzu(ch1, 2, addr); } else { lbzu(ch1, 1, addr); }
3830    cmpw(CCR1, ch1, n_start);
3831    beq(CCR1, L_Found);               // Did we find the one character needle?
3832    bdnz(L_OneCharLoop);
3833    li(result, -1);                   // Not found.
3834    b(L_End);
3835   }
3836 
3837   // **************************************************************************************************
3838   // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
3839   // **************************************************************************************************
3840 
3841   // Compare the rest
3842   bind(L_Comp2);
3843    addi(addr, addr, h_csize);        // First comparison has failed, 2nd one hit.
3844   bind(L_Comp1);                     // Addr points to possible needle start.
3845   if (needlecntval != 2) {           // Const needlecnt==2?
3846    if (needlecntval != 3) {
3847     if (needlecntval == 0) { beq(CCR6, L_Found); } // Variable needlecnt==2?
3848     Register n_ind = tmp4,
3849              h_ind = n_ind;
3850     li(n_ind, 2 * n_csize);          // First 2 characters are already compared, use index 2.
3851     mtctr(needlecnt);                // Decremented by 2, still > 0.
3852    Label L_CompLoop;
3853    bind(L_CompLoop);
3854     if (ae ==StrIntrinsicNode::UL) {
3855       h_ind = ch1;
3856       sldi(h_ind, n_ind, 1);
3857     }
3858     if (n_csize == 2) { lhzx(ch2, needle, n_ind); } else { lbzx(ch2, needle, n_ind); }
3859     if (h_csize == 2) { lhzx(ch1, addr, h_ind); } else { lbzx(ch1, addr, h_ind); }
3860     cmpw(CCR1, ch1, ch2);
3861     bne(CCR1, L_OuterLoop);
3862     addi(n_ind, n_ind, n_csize);
3863     bdnz(L_CompLoop);
3864    } else { // No loop required if there's only one needle character left.
3865     if (n_csize == 2) { lhz(ch2, 2 * 2, needle); } else { lbz(ch2, 2 * 1, needle); }
3866     if (h_csize == 2) { lhz(ch1, 2 * 2, addr); } else { lbz(ch1, 2 * 1, addr); }
3867     cmpw(CCR1, ch1, ch2);
3868     bne(CCR1, L_OuterLoop);
3869    }
3870   }
3871   // Return index ...
3872   bind(L_Found);
3873    subf(result, haystack, addr);     // relative to haystack, ...
3874    if (h_csize == 2) { srdi(result, result, 1); } // in characters.
3875   bind(L_End);
3876 } // string_indexof
3877 
3878 void MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
3879                                          Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte) {
3880   assert_different_registers(haystack, haycnt, needle, tmp1, tmp2);
3881 
3882   Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_NotFound, L_End;
3883   Register addr = tmp1,
3884            ch1 = tmp2,
3885            ch2 = R0;
3886 
3887   const int h_csize = is_byte ? 1 : 2;
3888 
3889 //4:
3890    srwi_(tmp2, haycnt, 1);   // Shift right by exact_log2(UNROLL_FACTOR).
3891    mr(addr, haystack);
3892    beq(CCR0, L_FinalCheck);
3893    mtctr(tmp2);              // Move to count register.
3894 //8:
3895   bind(L_InnerLoop);         // Main work horse (2x unrolled search loop).
3896    if (!is_byte) {
3897     lhz(ch1, 0, addr);
3898     lhz(ch2, 2, addr);
3899    } else {
3900     lbz(ch1, 0, addr);
3901     lbz(ch2, 1, addr);
3902    }
3903    (needle != R0) ? cmpw(CCR0, ch1, needle) : cmplwi(CCR0, ch1, (unsigned int)needleChar);
3904    (needle != R0) ? cmpw(CCR1, ch2, needle) : cmplwi(CCR1, ch2, (unsigned int)needleChar);
3905    beq(CCR0, L_Found1);      // Did we find the needle?
3906    beq(CCR1, L_Found2);
3907    addi(addr, addr, 2 * h_csize);
3908    bdnz(L_InnerLoop);
3909 //16:
3910   bind(L_FinalCheck);
3911    andi_(R0, haycnt, 1);
3912    beq(CCR0, L_NotFound);
3913    if (!is_byte) { lhz(ch1, 0, addr); } else { lbz(ch1, 0, addr); } // One position left at which we have to compare.
3914    (needle != R0) ? cmpw(CCR1, ch1, needle) : cmplwi(CCR1, ch1, (unsigned int)needleChar);
3915    beq(CCR1, L_Found1);
3916 //21:
3917   bind(L_NotFound);
3918    li(result, -1);           // Not found.
3919    b(L_End);
3920 
3921   bind(L_Found2);
3922    addi(addr, addr, h_csize);
3923 //24:
3924   bind(L_Found1);            // Return index ...
3925    subf(result, haystack, addr); // relative to haystack, ...
3926    if (!is_byte) { srdi(result, result, 1); } // in characters.
3927   bind(L_End);
3928 } // string_indexof_char
3929 
3930 
3931 void MacroAssembler::has_negatives(Register src, Register cnt, Register result,
3932                                    Register tmp1, Register tmp2) {
3933   const Register tmp0 = R0;
3934   assert_different_registers(src, result, cnt, tmp0, tmp1, tmp2);
3935   Label Lfastloop, Lslow, Lloop, Lnoneg, Ldone;
3936 
3937   // Check if cnt >= 8 (= 16 bytes)
3938   lis(tmp1, (int)(short)0x8080);  // tmp1 = 0x8080808080808080
3939   srwi_(tmp2, cnt, 4);
3940   li(result, 1);                  // Assume there's a negative byte.
3941   beq(CCR0, Lslow);
3942   ori(tmp1, tmp1, 0x8080);
3943   rldimi(tmp1, tmp1, 32, 0);
3944   mtctr(tmp2);
3945 
3946   // 2x unrolled loop
3947   bind(Lfastloop);
3948   ld(tmp2, 0, src);
3949   ld(tmp0, 8, src);
3950 
3951   orr(tmp0, tmp2, tmp0);
3952 
3953   and_(tmp0, tmp0, tmp1);
3954   bne(CCR0, Ldone);               // Found negative byte.
3955   addi(src, src, 16);
3956 
3957   bdnz(Lfastloop);
3958 
3959   bind(Lslow);                    // Fallback to slow version
3960   rldicl_(tmp0, cnt, 0, 64-4);
3961   beq(CCR0, Lnoneg);
3962   mtctr(tmp0);
3963   bind(Lloop);
3964   lbz(tmp0, 0, src);
3965   addi(src, src, 1);
3966   andi_(tmp0, tmp0, 0x80);
3967   bne(CCR0, Ldone);               // Found negative byte.
3968   bdnz(Lloop);
3969   bind(Lnoneg);
3970   li(result, 0);
3971 
3972   bind(Ldone);
3973 }
3974 
3975 #endif // Compiler2
3976 
3977 // Helpers for Intrinsic Emitters
3978 //
3979 // Revert the byte order of a 32bit value in a register
3980 //   src: 0x44556677
3981 //   dst: 0x77665544
3982 // Three steps to obtain the result:
3983 //  1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
3984 //     into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
3985 //     This value initializes dst.
3986 //  2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
3987 //     byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
3988 //     This value is mask inserted into dst with a [0..23] mask of 1s.
3989 //  3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
3990 //     This value is mask inserted into dst with a [8..15] mask of 1s.
3991 void MacroAssembler::load_reverse_32(Register dst, Register src) {
3992   assert_different_registers(dst, src);
3993 
3994   rldicl(dst, src, (4+1)*8, 56);       // Rotate byte 4 into position 7 (rightmost), clear all to the left.
3995   rlwimi(dst, src,     3*8,  0, 23);   // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
3996   rlwimi(dst, src,     1*8,  8, 15);   // Insert byte 6 into position 5, leave the rest alone.
3997 }
3998 
3999 // Calculate the column addresses of the crc32 lookup table into distinct registers.
4000 // This loop-invariant calculation is moved out of the loop body, reducing the loop
4001 // body size from 20 to 16 instructions.
4002 // Returns the offset that was used to calculate the address of column tc3.
4003 // Due to register shortage, setting tc3 may overwrite table. With the return offset
4004 // at hand, the original table address can be easily reconstructed.
4005 int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
4006 
4007 #ifdef VM_LITTLE_ENDIAN
4008   // This is what we implement (the DOLIT4 part):
4009   // ========================================================================= */
4010   // #define DOLIT4 c ^= *buf4++; \
4011   //         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
4012   //             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
4013   // #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
4014   // ========================================================================= */
4015   const int ix0 = 3*(4*CRC32_COLUMN_SIZE);
4016   const int ix1 = 2*(4*CRC32_COLUMN_SIZE);
4017   const int ix2 = 1*(4*CRC32_COLUMN_SIZE);
4018   const int ix3 = 0*(4*CRC32_COLUMN_SIZE);
4019 #else
4020   // This is what we implement (the DOBIG4 part):
4021   // =========================================================================
4022   // #define DOBIG4 c ^= *++buf4; \
4023   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
4024   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
4025   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
4026   // =========================================================================
4027   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
4028   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
4029   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
4030   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
4031 #endif
4032   assert_different_registers(table, tc0, tc1, tc2);
4033   assert(table == tc3, "must be!");
4034 
4035   addi(tc0, table, ix0);
4036   addi(tc1, table, ix1);
4037   addi(tc2, table, ix2);
4038   if (ix3 != 0) addi(tc3, table, ix3);
4039 
4040   return ix3;
4041 }
4042 
4043 /**
4044  * uint32_t crc;
4045  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4046  */
4047 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
4048   assert_different_registers(crc, table, tmp);
4049   assert_different_registers(val, table);
4050 
4051   if (crc == val) {                   // Must rotate first to use the unmodified value.
4052     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4053                                       // As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
4054     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
4055   } else {
4056     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
4057     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4058   }
4059   lwzx(tmp, table, tmp);
4060   xorr(crc, crc, tmp);
4061 }
4062 
4063 /**
4064  * uint32_t crc;
4065  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4066  */
4067 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
4068   fold_byte_crc32(crc, crc, table, tmp);
4069 }
4070 
4071 /**
4072  * Emits code to update CRC-32 with a byte value according to constants in table.
4073  *
4074  * @param [in,out]crc   Register containing the crc.
4075  * @param [in]val       Register containing the byte to fold into the CRC.
4076  * @param [in]table     Register containing the table of crc constants.
4077  *
4078  * uint32_t crc;
4079  * val = crc_table[(val ^ crc) & 0xFF];
4080  * crc = val ^ (crc >> 8);
4081  */
4082 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4083   BLOCK_COMMENT("update_byte_crc32:");
4084   xorr(val, val, crc);
4085   fold_byte_crc32(crc, val, table, val);
4086 }
4087 
4088 /**
4089  * @param crc   register containing existing CRC (32-bit)
4090  * @param buf   register pointing to input byte buffer (byte*)
4091  * @param len   register containing number of bytes
4092  * @param table register pointing to CRC table
4093  */
4094 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
4095                                            Register data, bool loopAlignment) {
4096   assert_different_registers(crc, buf, len, table, data);
4097 
4098   Label L_mainLoop, L_done;
4099   const int mainLoop_stepping  = 1;
4100   const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;
4101 
4102   // Process all bytes in a single-byte loop.
4103   clrldi_(len, len, 32);                         // Enforce 32 bit. Anything to do?
4104   beq(CCR0, L_done);
4105 
4106   mtctr(len);
4107   align(mainLoop_alignment);
4108   BIND(L_mainLoop);
4109     lbz(data, 0, buf);                           // Byte from buffer, zero-extended.
4110     addi(buf, buf, mainLoop_stepping);           // Advance buffer position.
4111     update_byte_crc32(crc, data, table);
4112     bdnz(L_mainLoop);                            // Iterate.
4113 
4114   bind(L_done);
4115 }
4116 
4117 /**
4118  * Emits code to update CRC-32 with a 4-byte value according to constants in table
4119  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
4120  */
4121 // A not on the lookup table address(es):
4122 // The lookup table consists of two sets of four columns each.
4123 // The columns {0..3} are used for little-endian machines.
4124 // The columns {4..7} are used for big-endian machines.
4125 // To save the effort of adding the column offset to the table address each time
4126 // a table element is looked up, it is possible to pass the pre-calculated
4127 // column addresses.
4128 // Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
4129 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
4130                                         Register t0,  Register t1,  Register t2,  Register t3,
4131                                         Register tc0, Register tc1, Register tc2, Register tc3) {
4132   assert_different_registers(crc, t3);
4133 
4134   // XOR crc with next four bytes of buffer.
4135   lwz(t3, bufDisp, buf);
4136   if (bufInc != 0) {
4137     addi(buf, buf, bufInc);
4138   }
4139   xorr(t3, t3, crc);
4140 
4141   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
4142   rlwinm(t0, t3,  2,         24-2, 31-2);  // ((t1 >>  0) & 0xff) << 2
4143   rlwinm(t1, t3,  32+(2- 8), 24-2, 31-2);  // ((t1 >>  8) & 0xff) << 2
4144   rlwinm(t2, t3,  32+(2-16), 24-2, 31-2);  // ((t1 >> 16) & 0xff) << 2
4145   rlwinm(t3, t3,  32+(2-24), 24-2, 31-2);  // ((t1 >> 24) & 0xff) << 2
4146 
4147   // Use the pre-calculated column addresses.
4148   // Load pre-calculated table values.
4149   lwzx(t0, tc0, t0);
4150   lwzx(t1, tc1, t1);
4151   lwzx(t2, tc2, t2);
4152   lwzx(t3, tc3, t3);
4153 
4154   // Calculate new crc from table values.
4155   xorr(t0,  t0, t1);
4156   xorr(t2,  t2, t3);
4157   xorr(crc, t0, t2);  // Now crc contains the final checksum value.
4158 }
4159 
4160 /**
4161  * @param crc   register containing existing CRC (32-bit)
4162  * @param buf   register pointing to input byte buffer (byte*)
4163  * @param len   register containing number of bytes
4164  * @param table register pointing to CRC table
4165  *
4166  * Uses R9..R12 as work register. Must be saved/restored by caller!
4167  */
4168 void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
4169                                         Register t0,  Register t1,  Register t2,  Register t3,
4170                                         Register tc0, Register tc1, Register tc2, Register tc3,
4171                                         bool invertCRC) {
4172   assert_different_registers(crc, buf, len, table);
4173 
4174   Label L_mainLoop, L_tail;
4175   Register  tmp  = t0;
4176   Register  data = t0;
4177   Register  tmp2 = t1;
4178   const int mainLoop_stepping  = 8;
4179   const int tailLoop_stepping  = 1;
4180   const int log_stepping       = exact_log2(mainLoop_stepping);
4181   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4182   const int complexThreshold   = 2*mainLoop_stepping;
4183 
4184   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4185   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
4186   // for all well-behaved cases. The situation itself is detected and handled correctly
4187   // within update_byteLoop_crc32.
4188   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4189 
4190   BLOCK_COMMENT("kernel_crc32_2word {");
4191 
4192   if (invertCRC) {
4193     nand(crc, crc, crc);                      // 1s complement of crc
4194   }
4195 
4196   // Check for short (<mainLoop_stepping) buffer.
4197   cmpdi(CCR0, len, complexThreshold);
4198   blt(CCR0, L_tail);
4199 
4200   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4201   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4202   {
4203     // Align buf addr to mainLoop_stepping boundary.
4204     neg(tmp2, buf);                           // Calculate # preLoop iterations for alignment.
4205     rldicl(tmp2, tmp2, 0, 64-log_stepping);   // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4206 
4207     if (complexThreshold > mainLoop_stepping) {
4208       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4209     } else {
4210       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4211       cmpdi(CCR0, tmp, mainLoop_stepping);
4212       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4213       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4214     }
4215     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
4216   }
4217 
4218   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4219   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4220   mtctr(tmp2);
4221 
4222 #ifdef VM_LITTLE_ENDIAN
4223   Register crc_rv = crc;
4224 #else
4225   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4226                                                  // Occupies tmp, but frees up crc.
4227   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4228   tmp = crc;
4229 #endif
4230 
4231   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4232 
4233   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4234   BIND(L_mainLoop);
4235     update_1word_crc32(crc_rv, buf, table, 0, 0, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4236     update_1word_crc32(crc_rv, buf, table, 4, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4237     bdnz(L_mainLoop);
4238 
4239 #ifndef VM_LITTLE_ENDIAN
4240   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4241   tmp = crc_rv;                                  // Tmp uses it's original register again.
4242 #endif
4243 
4244   // Restore original table address for tailLoop.
4245   if (reconstructTableOffset != 0) {
4246     addi(table, table, -reconstructTableOffset);
4247   }
4248 
4249   // Process last few (<complexThreshold) bytes of buffer.
4250   BIND(L_tail);
4251   update_byteLoop_crc32(crc, buf, len, table, data, false);
4252 
4253   if (invertCRC) {
4254     nand(crc, crc, crc);                      // 1s complement of crc
4255   }
4256   BLOCK_COMMENT("} kernel_crc32_2word");
4257 }
4258 
4259 /**
4260  * @param crc   register containing existing CRC (32-bit)
4261  * @param buf   register pointing to input byte buffer (byte*)
4262  * @param len   register containing number of bytes
4263  * @param table register pointing to CRC table
4264  *
4265  * uses R9..R12 as work register. Must be saved/restored by caller!
4266  */
4267 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
4268                                         Register t0,  Register t1,  Register t2,  Register t3,
4269                                         Register tc0, Register tc1, Register tc2, Register tc3,
4270                                         bool invertCRC) {
4271   assert_different_registers(crc, buf, len, table);
4272 
4273   Label L_mainLoop, L_tail;
4274   Register  tmp          = t0;
4275   Register  data         = t0;
4276   Register  tmp2         = t1;
4277   const int mainLoop_stepping  = 4;
4278   const int tailLoop_stepping  = 1;
4279   const int log_stepping       = exact_log2(mainLoop_stepping);
4280   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4281   const int complexThreshold   = 2*mainLoop_stepping;
4282 
4283   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4284   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
4285   // for all well-behaved cases. The situation itself is detected and handled correctly
4286   // within update_byteLoop_crc32.
4287   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4288 
4289   BLOCK_COMMENT("kernel_crc32_1word {");
4290 
4291   if (invertCRC) {
4292     nand(crc, crc, crc);                      // 1s complement of crc
4293   }
4294 
4295   // Check for short (<mainLoop_stepping) buffer.
4296   cmpdi(CCR0, len, complexThreshold);
4297   blt(CCR0, L_tail);
4298 
4299   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4300   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4301   {
4302     // Align buf addr to mainLoop_stepping boundary.
4303     neg(tmp2, buf);                              // Calculate # preLoop iterations for alignment.
4304     rldicl(tmp2, tmp2, 0, 64-log_stepping);      // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4305 
4306     if (complexThreshold > mainLoop_stepping) {
4307       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4308     } else {
4309       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4310       cmpdi(CCR0, tmp, mainLoop_stepping);
4311       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4312       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4313     }
4314     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
4315   }
4316 
4317   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4318   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4319   mtctr(tmp2);
4320 
4321 #ifdef VM_LITTLE_ENDIAN
4322   Register crc_rv = crc;
4323 #else
4324   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4325                                                  // Occupies tmp, but frees up crc.
4326   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4327   tmp = crc;
4328 #endif
4329 
4330   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4331 
4332   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4333   BIND(L_mainLoop);
4334     update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4335     bdnz(L_mainLoop);
4336 
4337 #ifndef VM_LITTLE_ENDIAN
4338   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4339   tmp = crc_rv;                                  // Tmp uses it's original register again.
4340 #endif
4341 
4342   // Restore original table address for tailLoop.
4343   if (reconstructTableOffset != 0) {
4344     addi(table, table, -reconstructTableOffset);
4345   }
4346 
4347   // Process last few (<complexThreshold) bytes of buffer.
4348   BIND(L_tail);
4349   update_byteLoop_crc32(crc, buf, len, table, data, false);
4350 
4351   if (invertCRC) {
4352     nand(crc, crc, crc);                      // 1s complement of crc
4353   }
4354   BLOCK_COMMENT("} kernel_crc32_1word");
4355 }
4356 
4357 /**
4358  * @param crc   register containing existing CRC (32-bit)
4359  * @param buf   register pointing to input byte buffer (byte*)
4360  * @param len   register containing number of bytes
4361  * @param table register pointing to CRC table
4362  *
4363  * Uses R7_ARG5, R8_ARG6 as work registers.
4364  */
4365 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
4366                                         Register t0,  Register t1,  Register t2,  Register t3,
4367                                         bool invertCRC) {
4368   assert_different_registers(crc, buf, len, table);
4369 
4370   Register  data = t0;                   // Holds the current byte to be folded into crc.
4371 
4372   BLOCK_COMMENT("kernel_crc32_1byte {");
4373 
4374   if (invertCRC) {
4375     nand(crc, crc, crc);                      // 1s complement of crc
4376   }
4377 
4378   // Process all bytes in a single-byte loop.
4379   update_byteLoop_crc32(crc, buf, len, table, data, true);
4380 
4381   if (invertCRC) {
4382     nand(crc, crc, crc);                      // 1s complement of crc
4383   }
4384   BLOCK_COMMENT("} kernel_crc32_1byte");
4385 }
4386 
4387 /**
4388  * @param crc             register containing existing CRC (32-bit)
4389  * @param buf             register pointing to input byte buffer (byte*)
4390  * @param len             register containing number of bytes
4391  * @param table           register pointing to CRC table
4392  * @param constants       register pointing to CRC table for 128-bit aligned memory
4393  * @param barretConstants register pointing to table for barrett reduction
4394  * @param t0              volatile register
4395  * @param t1              volatile register
4396  * @param t2              volatile register
4397  * @param t3              volatile register
4398  */
4399 void MacroAssembler::kernel_crc32_1word_vpmsumd(Register crc, Register buf, Register len, Register table,
4400                                                 Register constants,  Register barretConstants,
4401                                                 Register t0,  Register t1, Register t2, Register t3, Register t4,
4402                                                 bool invertCRC) {
4403   assert_different_registers(crc, buf, len, table);
4404 
4405   Label L_alignedHead, L_tail, L_alignTail, L_start, L_end;
4406 
4407   Register  prealign     = t0;
4408   Register  postalign    = t0;
4409 
4410   BLOCK_COMMENT("kernel_crc32_1word_vpmsumb {");
4411 
4412   // 1. use kernel_crc32_1word for shorter than 384bit
4413   clrldi(len, len, 32);
4414   cmpdi(CCR0, len, 384);
4415   bge(CCR0, L_start);
4416 
4417     Register tc0 = t4;
4418     Register tc1 = constants;
4419     Register tc2 = barretConstants;
4420     kernel_crc32_1word(crc, buf, len, table,t0, t1, t2, t3, tc0, tc1, tc2, table, invertCRC);
4421     b(L_end);
4422 
4423   BIND(L_start);
4424 
4425     // 2. ~c
4426     if (invertCRC) {
4427       nand(crc, crc, crc);                      // 1s complement of crc
4428     }
4429 
4430     // 3. calculate from 0 to first 128bit-aligned address
4431     clrldi_(prealign, buf, 57);
4432     beq(CCR0, L_alignedHead);
4433 
4434     subfic(prealign, prealign, 128);
4435 
4436     subf(len, prealign, len);
4437     update_byteLoop_crc32(crc, buf, prealign, table, t2, false);
4438 
4439     // 4. calculate from first 128bit-aligned address to last 128bit-aligned address
4440     BIND(L_alignedHead);
4441 
4442     clrldi(postalign, len, 57);
4443     subf(len, postalign, len);
4444 
4445     // len must be more than 256bit
4446     kernel_crc32_1word_aligned(crc, buf, len, constants, barretConstants, t1, t2, t3);
4447 
4448     // 5. calculate remaining
4449     cmpdi(CCR0, postalign, 0);
4450     beq(CCR0, L_tail);
4451 
4452     update_byteLoop_crc32(crc, buf, postalign, table, t2, false);
4453 
4454     BIND(L_tail);
4455 
4456     // 6. ~c
4457     if (invertCRC) {
4458       nand(crc, crc, crc);                      // 1s complement of crc
4459     }
4460 
4461   BIND(L_end);
4462 
4463   BLOCK_COMMENT("} kernel_crc32_1word_vpmsumb");
4464 }
4465 
4466 /**
4467  * @param crc             register containing existing CRC (32-bit)
4468  * @param buf             register pointing to input byte buffer (byte*)
4469  * @param len             register containing number of bytes
4470  * @param constants       register pointing to CRC table for 128-bit aligned memory
4471  * @param barretConstants register pointing to table for barrett reduction
4472  * @param t0              volatile register
4473  * @param t1              volatile register
4474  * @param t2              volatile register
4475  */
4476 void MacroAssembler::kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
4477     Register constants, Register barretConstants, Register t0, Register t1, Register t2) {
4478   Label L_mainLoop, L_tail, L_alignTail, L_barrett_reduction, L_end, L_first_warm_up_done, L_first_cool_down, L_second_cool_down, L_XOR, L_test;
4479   Label L_lv0, L_lv1, L_lv2, L_lv3, L_lv4, L_lv5, L_lv6, L_lv7, L_lv8, L_lv9, L_lv10, L_lv11, L_lv12, L_lv13, L_lv14, L_lv15;
4480   Label L_1, L_2, L_3, L_4;
4481 
4482   Register  rLoaded      = t0;
4483   Register  rTmp1        = t1;
4484   Register  rTmp2        = t2;
4485   Register  off16        = R22;
4486   Register  off32        = R23;
4487   Register  off48        = R24;
4488   Register  off64        = R25;
4489   Register  off80        = R26;
4490   Register  off96        = R27;
4491   Register  off112       = R28;
4492   Register  rIdx         = R29;
4493   Register  rMax         = R30;
4494   Register  constantsPos = R31;
4495 
4496   VectorRegister mask_32bit = VR24;
4497   VectorRegister mask_64bit = VR25;
4498   VectorRegister zeroes     = VR26;
4499   VectorRegister const1     = VR27;
4500   VectorRegister const2     = VR28;
4501 
4502   // Save non-volatile vector registers (frameless).
4503   Register offset = t1;   int offsetInt = 0;
4504   offsetInt -= 16; li(offset, -16);           stvx(VR20, offset, R1_SP);
4505   offsetInt -= 16; addi(offset, offset, -16); stvx(VR21, offset, R1_SP);
4506   offsetInt -= 16; addi(offset, offset, -16); stvx(VR22, offset, R1_SP);
4507   offsetInt -= 16; addi(offset, offset, -16); stvx(VR23, offset, R1_SP);
4508   offsetInt -= 16; addi(offset, offset, -16); stvx(VR24, offset, R1_SP);
4509   offsetInt -= 16; addi(offset, offset, -16); stvx(VR25, offset, R1_SP);
4510   offsetInt -= 16; addi(offset, offset, -16); stvx(VR26, offset, R1_SP);
4511   offsetInt -= 16; addi(offset, offset, -16); stvx(VR27, offset, R1_SP);
4512   offsetInt -= 16; addi(offset, offset, -16); stvx(VR28, offset, R1_SP);
4513   offsetInt -= 8; std(R22, offsetInt, R1_SP);
4514   offsetInt -= 8; std(R23, offsetInt, R1_SP);
4515   offsetInt -= 8; std(R24, offsetInt, R1_SP);
4516   offsetInt -= 8; std(R25, offsetInt, R1_SP);
4517   offsetInt -= 8; std(R26, offsetInt, R1_SP);
4518   offsetInt -= 8; std(R27, offsetInt, R1_SP);
4519   offsetInt -= 8; std(R28, offsetInt, R1_SP);
4520   offsetInt -= 8; std(R29, offsetInt, R1_SP);
4521   offsetInt -= 8; std(R30, offsetInt, R1_SP);
4522   offsetInt -= 8; std(R31, offsetInt, R1_SP);
4523 
4524   // Set constants
4525   li(off16, 16);
4526   li(off32, 32);
4527   li(off48, 48);
4528   li(off64, 64);
4529   li(off80, 80);
4530   li(off96, 96);
4531   li(off112, 112);
4532 
4533   clrldi(crc, crc, 32);
4534 
4535   vxor(zeroes, zeroes, zeroes);
4536   vspltisw(VR0, -1);
4537 
4538   vsldoi(mask_32bit, zeroes, VR0, 4);
4539   vsldoi(mask_64bit, zeroes, VR0, -8);
4540 
4541   // Get the initial value into v8
4542   vxor(VR8, VR8, VR8);
4543   mtvrd(VR8, crc);
4544   vsldoi(VR8, zeroes, VR8, -8); // shift into bottom 32 bits
4545 
4546   li (rLoaded, 0);
4547 
4548   rldicr(rIdx, len, 0, 56);
4549 
4550   {
4551     BIND(L_1);
4552     // Checksum in blocks of MAX_SIZE (32768)
4553     lis(rMax, 0);
4554     ori(rMax, rMax, 32768);
4555     mr(rTmp2, rMax);
4556     cmpd(CCR0, rIdx, rMax);
4557     bgt(CCR0, L_2);
4558     mr(rMax, rIdx);
4559 
4560     BIND(L_2);
4561     subf(rIdx, rMax, rIdx);
4562 
4563     // our main loop does 128 bytes at a time
4564     srdi(rMax, rMax, 7);
4565 
4566     /*
4567      * Work out the offset into the constants table to start at. Each
4568      * constant is 16 bytes, and it is used against 128 bytes of input
4569      * data - 128 / 16 = 8
4570      */
4571     sldi(rTmp1, rMax, 4);
4572     srdi(rTmp2, rTmp2, 3);
4573     subf(rTmp1, rTmp1, rTmp2);
4574 
4575     // We reduce our final 128 bytes in a separate step
4576     addi(rMax, rMax, -1);
4577     mtctr(rMax);
4578 
4579     // Find the start of our constants
4580     add(constantsPos, constants, rTmp1);
4581 
4582     // zero VR0-v7 which will contain our checksums
4583     vxor(VR0, VR0, VR0);
4584     vxor(VR1, VR1, VR1);
4585     vxor(VR2, VR2, VR2);
4586     vxor(VR3, VR3, VR3);
4587     vxor(VR4, VR4, VR4);
4588     vxor(VR5, VR5, VR5);
4589     vxor(VR6, VR6, VR6);
4590     vxor(VR7, VR7, VR7);
4591 
4592     lvx(const1, constantsPos);
4593 
4594     /*
4595      * If we are looping back to consume more data we use the values
4596      * already in VR16-v23.
4597      */
4598     cmpdi(CCR0, rLoaded, 1);
4599     beq(CCR0, L_3);
4600     {
4601 
4602       // First warm up pass
4603       lvx(VR16, buf);
4604       lvx(VR17, off16, buf);
4605       lvx(VR18, off32, buf);
4606       lvx(VR19, off48, buf);
4607       lvx(VR20, off64, buf);
4608       lvx(VR21, off80, buf);
4609       lvx(VR22, off96, buf);
4610       lvx(VR23, off112, buf);
4611       addi(buf, buf, 8*16);
4612 
4613       // xor in initial value
4614       vxor(VR16, VR16, VR8);
4615     }
4616 
4617     BIND(L_3);
4618     bdz(L_first_warm_up_done);
4619 
4620     addi(constantsPos, constantsPos, 16);
4621     lvx(const2, constantsPos);
4622 
4623     // Second warm up pass
4624     vpmsumd(VR8, VR16, const1);
4625     lvx(VR16, buf);
4626 
4627     vpmsumd(VR9, VR17, const1);
4628     lvx(VR17, off16, buf);
4629 
4630     vpmsumd(VR10, VR18, const1);
4631     lvx(VR18, off32, buf);
4632 
4633     vpmsumd(VR11, VR19, const1);
4634     lvx(VR19, off48, buf);
4635 
4636     vpmsumd(VR12, VR20, const1);
4637     lvx(VR20, off64, buf);
4638 
4639     vpmsumd(VR13, VR21, const1);
4640     lvx(VR21, off80, buf);
4641 
4642     vpmsumd(VR14, VR22, const1);
4643     lvx(VR22, off96, buf);
4644 
4645     vpmsumd(VR15, VR23, const1);
4646     lvx(VR23, off112, buf);
4647 
4648     addi(buf, buf, 8 * 16);
4649 
4650     bdz(L_first_cool_down);
4651 
4652     /*
4653      * main loop. We modulo schedule it such that it takes three iterations
4654      * to complete - first iteration load, second iteration vpmsum, third
4655      * iteration xor.
4656      */
4657     {
4658       BIND(L_4);
4659       lvx(const1, constantsPos); addi(constantsPos, constantsPos, 16);
4660 
4661       vxor(VR0, VR0, VR8);
4662       vpmsumd(VR8, VR16, const2);
4663       lvx(VR16, buf);
4664 
4665       vxor(VR1, VR1, VR9);
4666       vpmsumd(VR9, VR17, const2);
4667       lvx(VR17, off16, buf);
4668 
4669       vxor(VR2, VR2, VR10);
4670       vpmsumd(VR10, VR18, const2);
4671       lvx(VR18, off32, buf);
4672 
4673       vxor(VR3, VR3, VR11);
4674       vpmsumd(VR11, VR19, const2);
4675       lvx(VR19, off48, buf);
4676       lvx(const2, constantsPos);
4677 
4678       vxor(VR4, VR4, VR12);
4679       vpmsumd(VR12, VR20, const1);
4680       lvx(VR20, off64, buf);
4681 
4682       vxor(VR5, VR5, VR13);
4683       vpmsumd(VR13, VR21, const1);
4684       lvx(VR21, off80, buf);
4685 
4686       vxor(VR6, VR6, VR14);
4687       vpmsumd(VR14, VR22, const1);
4688       lvx(VR22, off96, buf);
4689 
4690       vxor(VR7, VR7, VR15);
4691       vpmsumd(VR15, VR23, const1);
4692       lvx(VR23, off112, buf);
4693 
4694       addi(buf, buf, 8 * 16);
4695 
4696       bdnz(L_4);
4697     }
4698 
4699     BIND(L_first_cool_down);
4700 
4701     // First cool down pass
4702     lvx(const1, constantsPos);
4703     addi(constantsPos, constantsPos, 16);
4704 
4705     vxor(VR0, VR0, VR8);
4706     vpmsumd(VR8, VR16, const1);
4707 
4708     vxor(VR1, VR1, VR9);
4709     vpmsumd(VR9, VR17, const1);
4710 
4711     vxor(VR2, VR2, VR10);
4712     vpmsumd(VR10, VR18, const1);
4713 
4714     vxor(VR3, VR3, VR11);
4715     vpmsumd(VR11, VR19, const1);
4716 
4717     vxor(VR4, VR4, VR12);
4718     vpmsumd(VR12, VR20, const1);
4719 
4720     vxor(VR5, VR5, VR13);
4721     vpmsumd(VR13, VR21, const1);
4722 
4723     vxor(VR6, VR6, VR14);
4724     vpmsumd(VR14, VR22, const1);
4725 
4726     vxor(VR7, VR7, VR15);
4727     vpmsumd(VR15, VR23, const1);
4728 
4729     BIND(L_second_cool_down);
4730     // Second cool down pass
4731     vxor(VR0, VR0, VR8);
4732     vxor(VR1, VR1, VR9);
4733     vxor(VR2, VR2, VR10);
4734     vxor(VR3, VR3, VR11);
4735     vxor(VR4, VR4, VR12);
4736     vxor(VR5, VR5, VR13);
4737     vxor(VR6, VR6, VR14);
4738     vxor(VR7, VR7, VR15);
4739 
4740     /*
4741      * vpmsumd produces a 96 bit result in the least significant bits
4742      * of the register. Since we are bit reflected we have to shift it
4743      * left 32 bits so it occupies the least significant bits in the
4744      * bit reflected domain.
4745      */
4746     vsldoi(VR0, VR0, zeroes, 4);
4747     vsldoi(VR1, VR1, zeroes, 4);
4748     vsldoi(VR2, VR2, zeroes, 4);
4749     vsldoi(VR3, VR3, zeroes, 4);
4750     vsldoi(VR4, VR4, zeroes, 4);
4751     vsldoi(VR5, VR5, zeroes, 4);
4752     vsldoi(VR6, VR6, zeroes, 4);
4753     vsldoi(VR7, VR7, zeroes, 4);
4754 
4755     // xor with last 1024 bits
4756     lvx(VR8, buf);
4757     lvx(VR9, off16, buf);
4758     lvx(VR10, off32, buf);
4759     lvx(VR11, off48, buf);
4760     lvx(VR12, off64, buf);
4761     lvx(VR13, off80, buf);
4762     lvx(VR14, off96, buf);
4763     lvx(VR15, off112, buf);
4764     addi(buf, buf, 8 * 16);
4765 
4766     vxor(VR16, VR0, VR8);
4767     vxor(VR17, VR1, VR9);
4768     vxor(VR18, VR2, VR10);
4769     vxor(VR19, VR3, VR11);
4770     vxor(VR20, VR4, VR12);
4771     vxor(VR21, VR5, VR13);
4772     vxor(VR22, VR6, VR14);
4773     vxor(VR23, VR7, VR15);
4774 
4775     li(rLoaded, 1);
4776     cmpdi(CCR0, rIdx, 0);
4777     addi(rIdx, rIdx, 128);
4778     bne(CCR0, L_1);
4779   }
4780 
4781   // Work out how many bytes we have left
4782   andi_(len, len, 127);
4783 
4784   // Calculate where in the constant table we need to start
4785   subfic(rTmp1, len, 128);
4786   add(constantsPos, constantsPos, rTmp1);
4787 
4788   // How many 16 byte chunks are in the tail
4789   srdi(rIdx, len, 4);
4790   mtctr(rIdx);
4791 
4792   /*
4793    * Reduce the previously calculated 1024 bits to 64 bits, shifting
4794    * 32 bits to include the trailing 32 bits of zeros
4795    */
4796   lvx(VR0, constantsPos);
4797   lvx(VR1, off16, constantsPos);
4798   lvx(VR2, off32, constantsPos);
4799   lvx(VR3, off48, constantsPos);
4800   lvx(VR4, off64, constantsPos);
4801   lvx(VR5, off80, constantsPos);
4802   lvx(VR6, off96, constantsPos);
4803   lvx(VR7, off112, constantsPos);
4804   addi(constantsPos, constantsPos, 8 * 16);
4805 
4806   vpmsumw(VR0, VR16, VR0);
4807   vpmsumw(VR1, VR17, VR1);
4808   vpmsumw(VR2, VR18, VR2);
4809   vpmsumw(VR3, VR19, VR3);
4810   vpmsumw(VR4, VR20, VR4);
4811   vpmsumw(VR5, VR21, VR5);
4812   vpmsumw(VR6, VR22, VR6);
4813   vpmsumw(VR7, VR23, VR7);
4814 
4815   // Now reduce the tail (0 - 112 bytes)
4816   cmpdi(CCR0, rIdx, 0);
4817   beq(CCR0, L_XOR);
4818 
4819   lvx(VR16, buf); addi(buf, buf, 16);
4820   lvx(VR17, constantsPos);
4821   vpmsumw(VR16, VR16, VR17);
4822   vxor(VR0, VR0, VR16);
4823   beq(CCR0, L_XOR);
4824 
4825   lvx(VR16, buf); addi(buf, buf, 16);
4826   lvx(VR17, off16, constantsPos);
4827   vpmsumw(VR16, VR16, VR17);
4828   vxor(VR0, VR0, VR16);
4829   beq(CCR0, L_XOR);
4830 
4831   lvx(VR16, buf); addi(buf, buf, 16);
4832   lvx(VR17, off32, constantsPos);
4833   vpmsumw(VR16, VR16, VR17);
4834   vxor(VR0, VR0, VR16);
4835   beq(CCR0, L_XOR);
4836 
4837   lvx(VR16, buf); addi(buf, buf, 16);
4838   lvx(VR17, off48,constantsPos);
4839   vpmsumw(VR16, VR16, VR17);
4840   vxor(VR0, VR0, VR16);
4841   beq(CCR0, L_XOR);
4842 
4843   lvx(VR16, buf); addi(buf, buf, 16);
4844   lvx(VR17, off64, constantsPos);
4845   vpmsumw(VR16, VR16, VR17);
4846   vxor(VR0, VR0, VR16);
4847   beq(CCR0, L_XOR);
4848 
4849   lvx(VR16, buf); addi(buf, buf, 16);
4850   lvx(VR17, off80, constantsPos);
4851   vpmsumw(VR16, VR16, VR17);
4852   vxor(VR0, VR0, VR16);
4853   beq(CCR0, L_XOR);
4854 
4855   lvx(VR16, buf); addi(buf, buf, 16);
4856   lvx(VR17, off96, constantsPos);
4857   vpmsumw(VR16, VR16, VR17);
4858   vxor(VR0, VR0, VR16);
4859 
4860   // Now xor all the parallel chunks together
4861   BIND(L_XOR);
4862   vxor(VR0, VR0, VR1);
4863   vxor(VR2, VR2, VR3);
4864   vxor(VR4, VR4, VR5);
4865   vxor(VR6, VR6, VR7);
4866 
4867   vxor(VR0, VR0, VR2);
4868   vxor(VR4, VR4, VR6);
4869 
4870   vxor(VR0, VR0, VR4);
4871 
4872   b(L_barrett_reduction);
4873 
4874   BIND(L_first_warm_up_done);
4875   lvx(const1, constantsPos);
4876   addi(constantsPos, constantsPos, 16);
4877   vpmsumd(VR8,  VR16, const1);
4878   vpmsumd(VR9,  VR17, const1);
4879   vpmsumd(VR10, VR18, const1);
4880   vpmsumd(VR11, VR19, const1);
4881   vpmsumd(VR12, VR20, const1);
4882   vpmsumd(VR13, VR21, const1);
4883   vpmsumd(VR14, VR22, const1);
4884   vpmsumd(VR15, VR23, const1);
4885   b(L_second_cool_down);
4886 
4887   BIND(L_barrett_reduction);
4888 
4889   lvx(const1, barretConstants);
4890   addi(barretConstants, barretConstants, 16);
4891   lvx(const2, barretConstants);
4892 
4893   vsldoi(VR1, VR0, VR0, -8);
4894   vxor(VR0, VR0, VR1);    // xor two 64 bit results together
4895 
4896   // shift left one bit
4897   vspltisb(VR1, 1);
4898   vsl(VR0, VR0, VR1);
4899 
4900   vand(VR0, VR0, mask_64bit);
4901 
4902   /*
4903    * The reflected version of Barrett reduction. Instead of bit
4904    * reflecting our data (which is expensive to do), we bit reflect our
4905    * constants and our algorithm, which means the intermediate data in
4906    * our vector registers goes from 0-63 instead of 63-0. We can reflect
4907    * the algorithm because we don't carry in mod 2 arithmetic.
4908    */
4909   vand(VR1, VR0, mask_32bit);  // bottom 32 bits of a
4910   vpmsumd(VR1, VR1, const1);   // ma
4911   vand(VR1, VR1, mask_32bit);  // bottom 32bits of ma
4912   vpmsumd(VR1, VR1, const2);   // qn */
4913   vxor(VR0, VR0, VR1);         // a - qn, subtraction is xor in GF(2)
4914 
4915   /*
4916    * Since we are bit reflected, the result (ie the low 32 bits) is in
4917    * the high 32 bits. We just need to shift it left 4 bytes
4918    * V0 [ 0 1 X 3 ]
4919    * V0 [ 0 X 2 3 ]
4920    */
4921   vsldoi(VR0, VR0, zeroes, 4);    // shift result into top 64 bits of
4922 
4923   // Get it into r3
4924   mfvrd(crc, VR0);
4925 
4926   BIND(L_end);
4927 
4928   offsetInt = 0;
4929   // Restore non-volatile Vector registers (frameless).
4930   offsetInt -= 16; li(offset, -16);           lvx(VR20, offset, R1_SP);
4931   offsetInt -= 16; addi(offset, offset, -16); lvx(VR21, offset, R1_SP);
4932   offsetInt -= 16; addi(offset, offset, -16); lvx(VR22, offset, R1_SP);
4933   offsetInt -= 16; addi(offset, offset, -16); lvx(VR23, offset, R1_SP);
4934   offsetInt -= 16; addi(offset, offset, -16); lvx(VR24, offset, R1_SP);
4935   offsetInt -= 16; addi(offset, offset, -16); lvx(VR25, offset, R1_SP);
4936   offsetInt -= 16; addi(offset, offset, -16); lvx(VR26, offset, R1_SP);
4937   offsetInt -= 16; addi(offset, offset, -16); lvx(VR27, offset, R1_SP);
4938   offsetInt -= 16; addi(offset, offset, -16); lvx(VR28, offset, R1_SP);
4939   offsetInt -= 8;  ld(R22, offsetInt, R1_SP);
4940   offsetInt -= 8;  ld(R23, offsetInt, R1_SP);
4941   offsetInt -= 8;  ld(R24, offsetInt, R1_SP);
4942   offsetInt -= 8;  ld(R25, offsetInt, R1_SP);
4943   offsetInt -= 8;  ld(R26, offsetInt, R1_SP);
4944   offsetInt -= 8;  ld(R27, offsetInt, R1_SP);
4945   offsetInt -= 8;  ld(R28, offsetInt, R1_SP);
4946   offsetInt -= 8;  ld(R29, offsetInt, R1_SP);
4947   offsetInt -= 8;  ld(R30, offsetInt, R1_SP);
4948   offsetInt -= 8;  ld(R31, offsetInt, R1_SP);
4949 }
4950 
4951 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp, bool invertCRC) {
4952   assert_different_registers(crc, buf, /* len,  not used!! */ table, tmp);
4953 
4954   BLOCK_COMMENT("kernel_crc32_singleByte:");
4955   if (invertCRC) {
4956     nand(crc, crc, crc);                // 1s complement of crc
4957   }
4958 
4959   lbz(tmp, 0, buf);                     // Byte from buffer, zero-extended.
4960   update_byte_crc32(crc, tmp, table);
4961 
4962   if (invertCRC) {
4963     nand(crc, crc, crc);                // 1s complement of crc
4964   }
4965 }
4966 
4967 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table, bool invertCRC) {
4968   assert_different_registers(crc, val, table);
4969 
4970   BLOCK_COMMENT("kernel_crc32_singleByteReg:");
4971   if (invertCRC) {
4972     nand(crc, crc, crc);                // 1s complement of crc
4973   }
4974 
4975   update_byte_crc32(crc, val, table);
4976 
4977   if (invertCRC) {
4978     nand(crc, crc, crc);                // 1s complement of crc
4979   }
4980 }
4981 
4982 // dest_lo += src1 + src2
4983 // dest_hi += carry1 + carry2
4984 void MacroAssembler::add2_with_carry(Register dest_hi,
4985                                      Register dest_lo,
4986                                      Register src1, Register src2) {
4987   li(R0, 0);
4988   addc(dest_lo, dest_lo, src1);
4989   adde(dest_hi, dest_hi, R0);
4990   addc(dest_lo, dest_lo, src2);
4991   adde(dest_hi, dest_hi, R0);
4992 }
4993 
4994 // Multiply 64 bit by 64 bit first loop.
4995 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
4996                                            Register x_xstart,
4997                                            Register y, Register y_idx,
4998                                            Register z,
4999                                            Register carry,
5000                                            Register product_high, Register product,
5001                                            Register idx, Register kdx,
5002                                            Register tmp) {
5003   //  jlong carry, x[], y[], z[];
5004   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
5005   //    huge_128 product = y[idx] * x[xstart] + carry;
5006   //    z[kdx] = (jlong)product;
5007   //    carry  = (jlong)(product >>> 64);
5008   //  }
5009   //  z[xstart] = carry;
5010 
5011   Label L_first_loop, L_first_loop_exit;
5012   Label L_one_x, L_one_y, L_multiply;
5013 
5014   addic_(xstart, xstart, -1);
5015   blt(CCR0, L_one_x);   // Special case: length of x is 1.
5016 
5017   // Load next two integers of x.
5018   sldi(tmp, xstart, LogBytesPerInt);
5019   ldx(x_xstart, x, tmp);
5020 #ifdef VM_LITTLE_ENDIAN
5021   rldicl(x_xstart, x_xstart, 32, 0);
5022 #endif
5023 
5024   align(32, 16);
5025   bind(L_first_loop);
5026 
5027   cmpdi(CCR0, idx, 1);
5028   blt(CCR0, L_first_loop_exit);
5029   addi(idx, idx, -2);
5030   beq(CCR0, L_one_y);
5031 
5032   // Load next two integers of y.
5033   sldi(tmp, idx, LogBytesPerInt);
5034   ldx(y_idx, y, tmp);
5035 #ifdef VM_LITTLE_ENDIAN
5036   rldicl(y_idx, y_idx, 32, 0);
5037 #endif
5038 
5039 
5040   bind(L_multiply);
5041   multiply64(product_high, product, x_xstart, y_idx);
5042 
5043   li(tmp, 0);
5044   addc(product, product, carry);         // Add carry to result.
5045   adde(product_high, product_high, tmp); // Add carry of the last addition.
5046   addi(kdx, kdx, -2);
5047 
5048   // Store result.
5049 #ifdef VM_LITTLE_ENDIAN
5050   rldicl(product, product, 32, 0);
5051 #endif
5052   sldi(tmp, kdx, LogBytesPerInt);
5053   stdx(product, z, tmp);
5054   mr_if_needed(carry, product_high);
5055   b(L_first_loop);
5056 
5057 
5058   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
5059 
5060   lwz(y_idx, 0, y);
5061   b(L_multiply);
5062 
5063 
5064   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
5065 
5066   lwz(x_xstart, 0, x);
5067   b(L_first_loop);
5068 
5069   bind(L_first_loop_exit);
5070 }
5071 
5072 // Multiply 64 bit by 64 bit and add 128 bit.
5073 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
5074                                             Register z, Register yz_idx,
5075                                             Register idx, Register carry,
5076                                             Register product_high, Register product,
5077                                             Register tmp, int offset) {
5078 
5079   //  huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
5080   //  z[kdx] = (jlong)product;
5081 
5082   sldi(tmp, idx, LogBytesPerInt);
5083   if (offset) {
5084     addi(tmp, tmp, offset);
5085   }
5086   ldx(yz_idx, y, tmp);
5087 #ifdef VM_LITTLE_ENDIAN
5088   rldicl(yz_idx, yz_idx, 32, 0);
5089 #endif
5090 
5091   multiply64(product_high, product, x_xstart, yz_idx);
5092   ldx(yz_idx, z, tmp);
5093 #ifdef VM_LITTLE_ENDIAN
5094   rldicl(yz_idx, yz_idx, 32, 0);
5095 #endif
5096 
5097   add2_with_carry(product_high, product, carry, yz_idx);
5098 
5099   sldi(tmp, idx, LogBytesPerInt);
5100   if (offset) {
5101     addi(tmp, tmp, offset);
5102   }
5103 #ifdef VM_LITTLE_ENDIAN
5104   rldicl(product, product, 32, 0);
5105 #endif
5106   stdx(product, z, tmp);
5107 }
5108 
5109 // Multiply 128 bit by 128 bit. Unrolled inner loop.
5110 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
5111                                              Register y, Register z,
5112                                              Register yz_idx, Register idx, Register carry,
5113                                              Register product_high, Register product,
5114                                              Register carry2, Register tmp) {
5115 
5116   //  jlong carry, x[], y[], z[];
5117   //  int kdx = ystart+1;
5118   //  for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
5119   //    huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
5120   //    z[kdx+idx+1] = (jlong)product;
5121   //    jlong carry2 = (jlong)(product >>> 64);
5122   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
5123   //    z[kdx+idx] = (jlong)product;
5124   //    carry = (jlong)(product >>> 64);
5125   //  }
5126   //  idx += 2;
5127   //  if (idx > 0) {
5128   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
5129   //    z[kdx+idx] = (jlong)product;
5130   //    carry = (jlong)(product >>> 64);
5131   //  }
5132 
5133   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
5134   const Register jdx = R0;
5135 
5136   // Scale the index.
5137   srdi_(jdx, idx, 2);
5138   beq(CCR0, L_third_loop_exit);
5139   mtctr(jdx);
5140 
5141   align(32, 16);
5142   bind(L_third_loop);
5143 
5144   addi(idx, idx, -4);
5145 
5146   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8);
5147   mr_if_needed(carry2, product_high);
5148 
5149   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0);
5150   mr_if_needed(carry, product_high);
5151   bdnz(L_third_loop);
5152 
5153   bind(L_third_loop_exit);  // Handle any left-over operand parts.
5154 
5155   andi_(idx, idx, 0x3);
5156   beq(CCR0, L_post_third_loop_done);
5157 
5158   Label L_check_1;
5159 
5160   addic_(idx, idx, -2);
5161   blt(CCR0, L_check_1);
5162 
5163   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0);
5164   mr_if_needed(carry, product_high);
5165 
5166   bind(L_check_1);
5167 
5168   addi(idx, idx, 0x2);
5169   andi_(idx, idx, 0x1);
5170   addic_(idx, idx, -1);
5171   blt(CCR0, L_post_third_loop_done);
5172 
5173   sldi(tmp, idx, LogBytesPerInt);
5174   lwzx(yz_idx, y, tmp);
5175   multiply64(product_high, product, x_xstart, yz_idx);
5176   lwzx(yz_idx, z, tmp);
5177 
5178   add2_with_carry(product_high, product, yz_idx, carry);
5179 
5180   sldi(tmp, idx, LogBytesPerInt);
5181   stwx(product, z, tmp);
5182   srdi(product, product, 32);
5183 
5184   sldi(product_high, product_high, 32);
5185   orr(product, product, product_high);
5186   mr_if_needed(carry, product);
5187 
5188   bind(L_post_third_loop_done);
5189 }   // multiply_128_x_128_loop
5190 
5191 void MacroAssembler::multiply_to_len(Register x, Register xlen,
5192                                      Register y, Register ylen,
5193                                      Register z, Register zlen,
5194                                      Register tmp1, Register tmp2,
5195                                      Register tmp3, Register tmp4,
5196                                      Register tmp5, Register tmp6,
5197                                      Register tmp7, Register tmp8,
5198                                      Register tmp9, Register tmp10,
5199                                      Register tmp11, Register tmp12,
5200                                      Register tmp13) {
5201 
5202   ShortBranchVerifier sbv(this);
5203 
5204   assert_different_registers(x, xlen, y, ylen, z, zlen,
5205                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
5206   assert_different_registers(x, xlen, y, ylen, z, zlen,
5207                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp7);
5208   assert_different_registers(x, xlen, y, ylen, z, zlen,
5209                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp8);
5210 
5211   const Register idx = tmp1;
5212   const Register kdx = tmp2;
5213   const Register xstart = tmp3;
5214 
5215   const Register y_idx = tmp4;
5216   const Register carry = tmp5;
5217   const Register product = tmp6;
5218   const Register product_high = tmp7;
5219   const Register x_xstart = tmp8;
5220   const Register tmp = tmp9;
5221 
5222   // First Loop.
5223   //
5224   //  final static long LONG_MASK = 0xffffffffL;
5225   //  int xstart = xlen - 1;
5226   //  int ystart = ylen - 1;
5227   //  long carry = 0;
5228   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
5229   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
5230   //    z[kdx] = (int)product;
5231   //    carry = product >>> 32;
5232   //  }
5233   //  z[xstart] = (int)carry;
5234 
5235   mr_if_needed(idx, ylen);        // idx = ylen
5236   mr_if_needed(kdx, zlen);        // kdx = xlen + ylen
5237   li(carry, 0);                   // carry = 0
5238 
5239   Label L_done;
5240 
5241   addic_(xstart, xlen, -1);
5242   blt(CCR0, L_done);
5243 
5244   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z,
5245                         carry, product_high, product, idx, kdx, tmp);
5246 
5247   Label L_second_loop;
5248 
5249   cmpdi(CCR0, kdx, 0);
5250   beq(CCR0, L_second_loop);
5251 
5252   Label L_carry;
5253 
5254   addic_(kdx, kdx, -1);
5255   beq(CCR0, L_carry);
5256 
5257   // Store lower 32 bits of carry.
5258   sldi(tmp, kdx, LogBytesPerInt);
5259   stwx(carry, z, tmp);
5260   srdi(carry, carry, 32);
5261   addi(kdx, kdx, -1);
5262 
5263 
5264   bind(L_carry);
5265 
5266   // Store upper 32 bits of carry.
5267   sldi(tmp, kdx, LogBytesPerInt);
5268   stwx(carry, z, tmp);
5269 
5270   // Second and third (nested) loops.
5271   //
5272   //  for (int i = xstart-1; i >= 0; i--) { // Second loop
5273   //    carry = 0;
5274   //    for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
5275   //      long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
5276   //                     (z[k] & LONG_MASK) + carry;
5277   //      z[k] = (int)product;
5278   //      carry = product >>> 32;
5279   //    }
5280   //    z[i] = (int)carry;
5281   //  }
5282   //
5283   //  i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
5284 
5285   bind(L_second_loop);
5286 
5287   li(carry, 0);                   // carry = 0;
5288 
5289   addic_(xstart, xstart, -1);     // i = xstart-1;
5290   blt(CCR0, L_done);
5291 
5292   Register zsave = tmp10;
5293 
5294   mr(zsave, z);
5295 
5296 
5297   Label L_last_x;
5298 
5299   sldi(tmp, xstart, LogBytesPerInt);
5300   add(z, z, tmp);                 // z = z + k - j
5301   addi(z, z, 4);
5302   addic_(xstart, xstart, -1);     // i = xstart-1;
5303   blt(CCR0, L_last_x);
5304 
5305   sldi(tmp, xstart, LogBytesPerInt);
5306   ldx(x_xstart, x, tmp);
5307 #ifdef VM_LITTLE_ENDIAN
5308   rldicl(x_xstart, x_xstart, 32, 0);
5309 #endif
5310 
5311 
5312   Label L_third_loop_prologue;
5313 
5314   bind(L_third_loop_prologue);
5315 
5316   Register xsave = tmp11;
5317   Register xlensave = tmp12;
5318   Register ylensave = tmp13;
5319 
5320   mr(xsave, x);
5321   mr(xlensave, xstart);
5322   mr(ylensave, ylen);
5323 
5324 
5325   multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen,
5326                           carry, product_high, product, x, tmp);
5327 
5328   mr(z, zsave);
5329   mr(x, xsave);
5330   mr(xlen, xlensave);   // This is the decrement of the loop counter!
5331   mr(ylen, ylensave);
5332 
5333   addi(tmp3, xlen, 1);
5334   sldi(tmp, tmp3, LogBytesPerInt);
5335   stwx(carry, z, tmp);
5336   addic_(tmp3, tmp3, -1);
5337   blt(CCR0, L_done);
5338 
5339   srdi(carry, carry, 32);
5340   sldi(tmp, tmp3, LogBytesPerInt);
5341   stwx(carry, z, tmp);
5342   b(L_second_loop);
5343 
5344   // Next infrequent code is moved outside loops.
5345   bind(L_last_x);
5346 
5347   lwz(x_xstart, 0, x);
5348   b(L_third_loop_prologue);
5349 
5350   bind(L_done);
5351 }   // multiply_to_len
5352 
5353 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
5354 #ifdef ASSERT
5355   Label ok;
5356   if (check_equal) {
5357     beq(CCR0, ok);
5358   } else {
5359     bne(CCR0, ok);
5360   }
5361   stop(msg, id);
5362   bind(ok);
5363 #endif
5364 }
5365 
5366 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
5367                                           Register mem_base, const char* msg, int id) {
5368 #ifdef ASSERT
5369   switch (size) {
5370     case 4:
5371       lwz(R0, mem_offset, mem_base);
5372       cmpwi(CCR0, R0, 0);
5373       break;
5374     case 8:
5375       ld(R0, mem_offset, mem_base);
5376       cmpdi(CCR0, R0, 0);
5377       break;
5378     default:
5379       ShouldNotReachHere();
5380   }
5381   asm_assert(check_equal, msg, id);
5382 #endif // ASSERT
5383 }
5384 
5385 void MacroAssembler::verify_thread() {
5386   if (VerifyThread) {
5387     unimplemented("'VerifyThread' currently not implemented on PPC");
5388   }
5389 }
5390 
5391 // READ: oop. KILL: R0. Volatile floats perhaps.
5392 void MacroAssembler::verify_oop(Register oop, const char* msg) {
5393   if (!VerifyOops) {
5394     return;
5395   }
5396 
5397   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5398   const Register tmp = R11; // Will be preserved.
5399   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5400   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5401 
5402   mr_if_needed(R4_ARG2, oop);
5403   save_LR_CR(tmp); // save in old frame
5404   push_frame_reg_args(nbytes_save, tmp);
5405   // load FunctionDescriptor** / entry_address *
5406   load_const_optimized(tmp, fd, R0);
5407   // load FunctionDescriptor* / entry_address
5408   ld(tmp, 0, tmp);
5409   load_const_optimized(R3_ARG1, (address)msg, R0);
5410   // Call destination for its side effect.
5411   call_c(tmp);
5412 
5413   pop_frame();
5414   restore_LR_CR(tmp);
5415   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5416 }
5417 
5418 void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) {
5419   if (!VerifyOops) {
5420     return;
5421   }
5422 
5423   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5424   const Register tmp = R11; // Will be preserved.
5425   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5426   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5427 
5428   ld(R4_ARG2, offs, base);
5429   save_LR_CR(tmp); // save in old frame
5430   push_frame_reg_args(nbytes_save, tmp);
5431   // load FunctionDescriptor** / entry_address *
5432   load_const_optimized(tmp, fd, R0);
5433   // load FunctionDescriptor* / entry_address
5434   ld(tmp, 0, tmp);
5435   load_const_optimized(R3_ARG1, (address)msg, R0);
5436   // Call destination for its side effect.
5437   call_c(tmp);
5438 
5439   pop_frame();
5440   restore_LR_CR(tmp);
5441   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5442 }
5443 
5444 const char* stop_types[] = {
5445   "stop",
5446   "untested",
5447   "unimplemented",
5448   "shouldnotreachhere"
5449 };
5450 
5451 static void stop_on_request(int tp, const char* msg) {
5452   tty->print("PPC assembly code requires stop: (%s) %s\n", stop_types[tp%/*stop_end*/4], msg);
5453   guarantee(false, "PPC assembly code requires stop: %s", msg);
5454 }
5455 
5456 // Call a C-function that prints output.
5457 void MacroAssembler::stop(int type, const char* msg, int id) {
5458 #ifndef PRODUCT
5459   block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
5460 #else
5461   block_comment("stop {");
5462 #endif
5463 
5464   // setup arguments
5465   load_const_optimized(R3_ARG1, type);
5466   load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
5467   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
5468   illtrap();
5469   emit_int32(id);
5470   block_comment("} stop;");
5471 }
5472 
5473 #ifndef PRODUCT
5474 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
5475 // Val, addr are temp registers.
5476 // If low == addr, addr is killed.
5477 // High is preserved.
5478 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
5479   if (!ZapMemory) return;
5480 
5481   assert_different_registers(low, val);
5482 
5483   BLOCK_COMMENT("zap memory region {");
5484   load_const_optimized(val, 0x0101010101010101);
5485   int size = before + after;
5486   if (low == high && size < 5 && size > 0) {
5487     int offset = -before*BytesPerWord;
5488     for (int i = 0; i < size; ++i) {
5489       std(val, offset, low);
5490       offset += (1*BytesPerWord);
5491     }
5492   } else {
5493     addi(addr, low, -before*BytesPerWord);
5494     assert_different_registers(high, val);
5495     if (after) addi(high, high, after * BytesPerWord);
5496     Label loop;
5497     bind(loop);
5498     std(val, 0, addr);
5499     addi(addr, addr, 8);
5500     cmpd(CCR6, addr, high);
5501     ble(CCR6, loop);
5502     if (after) addi(high, high, -after * BytesPerWord);  // Correct back to old value.
5503   }
5504   BLOCK_COMMENT("} zap memory region");
5505 }
5506 
5507 #endif // !PRODUCT
5508 
5509 SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
5510   int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
5511   assert(sizeof(bool) == 1, "PowerPC ABI");
5512   masm->lbz(temp, simm16_offset, temp);
5513   masm->cmpwi(CCR0, temp, 0);
5514   masm->beq(CCR0, _label);
5515 }
5516 
5517 SkipIfEqualZero::~SkipIfEqualZero() {
5518   _masm->bind(_label);
5519 }