1 /*
   2  * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015, 2017, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreterGenerator.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/deoptimization.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/timer.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 #undef __
  52 #define __ _masm->
  53 
  54 // Size of interpreter code.  Increase if too small.  Interpreter will
  55 // fail with a guarantee ("not enough space for interpreter generation");
  56 // if too small.
  57 // Run with +PrintInterpreter to get the VM to print out the size.
  58 // Max size with JVMTI
  59 int TemplateInterpreter::InterpreterCodeSize = 230*K;
  60 
  61 #ifdef PRODUCT
  62 #define BLOCK_COMMENT(str) /* nothing */
  63 #else
  64 #define BLOCK_COMMENT(str) __ block_comment(str)
  65 #endif
  66 
  67 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  68 
  69 //-----------------------------------------------------------------------------
  70 
  71 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  72   // Slow_signature handler that respects the PPC C calling conventions.
  73   //
  74   // We get called by the native entry code with our output register
  75   // area == 8. First we call InterpreterRuntime::get_result_handler
  76   // to copy the pointer to the signature string temporarily to the
  77   // first C-argument and to return the result_handler in
  78   // R3_RET. Since native_entry will copy the jni-pointer to the
  79   // first C-argument slot later on, it is OK to occupy this slot
  80   // temporarilly. Then we copy the argument list on the java
  81   // expression stack into native varargs format on the native stack
  82   // and load arguments into argument registers. Integer arguments in
  83   // the varargs vector will be sign-extended to 8 bytes.
  84   //
  85   // On entry:
  86   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  87   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  88   //     this method
  89   //   R19_method
  90   //
  91   // On exit (just before return instruction):
  92   //   R3_RET            - contains the address of the result_handler.
  93   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  94   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  95   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  96   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
  97 
  98   const int LogSizeOfTwoInstructions = 3;
  99 
 100   // FIXME: use Argument:: GL: Argument names different numbers!
 101   const int max_fp_register_arguments  = 13;
 102   const int max_int_register_arguments = 6;  // first 2 are reserved
 103 
 104   const Register arg_java       = R21_tmp1;
 105   const Register arg_c          = R22_tmp2;
 106   const Register signature      = R23_tmp3;  // is string
 107   const Register sig_byte       = R24_tmp4;
 108   const Register fpcnt          = R25_tmp5;
 109   const Register argcnt         = R26_tmp6;
 110   const Register intSlot        = R27_tmp7;
 111   const Register target_sp      = R28_tmp8;
 112   const FloatRegister floatSlot = F0;
 113 
 114   address entry = __ function_entry();
 115 
 116   __ save_LR_CR(R0);
 117   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 118   // We use target_sp for storing arguments in the C frame.
 119   __ mr(target_sp, R1_SP);
 120   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
 121 
 122   __ mr(arg_java, R3_ARG1);
 123 
 124   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
 125 
 126   // Signature is in R3_RET. Signature is callee saved.
 127   __ mr(signature, R3_RET);
 128 
 129   // Get the result handler.
 130   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
 131 
 132   {
 133     Label L;
 134     // test if static
 135     // _access_flags._flags must be at offset 0.
 136     // TODO PPC port: requires change in shared code.
 137     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
 138     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
 139     // _access_flags must be a 32 bit value.
 140     assert(sizeof(AccessFlags) == 4, "wrong size");
 141     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
 142     // testbit with condition register.
 143     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
 144     __ btrue(CCR0, L);
 145     // For non-static functions, pass "this" in R4_ARG2 and copy it
 146     // to 2nd C-arg slot.
 147     // We need to box the Java object here, so we use arg_java
 148     // (address of current Java stack slot) as argument and don't
 149     // dereference it as in case of ints, floats, etc.
 150     __ mr(R4_ARG2, arg_java);
 151     __ addi(arg_java, arg_java, -BytesPerWord);
 152     __ std(R4_ARG2, _abi(carg_2), target_sp);
 153     __ bind(L);
 154   }
 155 
 156   // Will be incremented directly after loop_start. argcnt=0
 157   // corresponds to 3rd C argument.
 158   __ li(argcnt, -1);
 159   // arg_c points to 3rd C argument
 160   __ addi(arg_c, target_sp, _abi(carg_3));
 161   // no floating-point args parsed so far
 162   __ li(fpcnt, 0);
 163 
 164   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
 165   Label loop_start, loop_end;
 166   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
 167 
 168   // signature points to '(' at entry
 169 #ifdef ASSERT
 170   __ lbz(sig_byte, 0, signature);
 171   __ cmplwi(CCR0, sig_byte, '(');
 172   __ bne(CCR0, do_dontreachhere);
 173 #endif
 174 
 175   __ bind(loop_start);
 176 
 177   __ addi(argcnt, argcnt, 1);
 178   __ lbzu(sig_byte, 1, signature);
 179 
 180   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
 181   __ beq(CCR0, loop_end);
 182 
 183   __ cmplwi(CCR0, sig_byte, 'B'); // byte
 184   __ beq(CCR0, do_int);
 185 
 186   __ cmplwi(CCR0, sig_byte, 'C'); // char
 187   __ beq(CCR0, do_int);
 188 
 189   __ cmplwi(CCR0, sig_byte, 'D'); // double
 190   __ beq(CCR0, do_double);
 191 
 192   __ cmplwi(CCR0, sig_byte, 'F'); // float
 193   __ beq(CCR0, do_float);
 194 
 195   __ cmplwi(CCR0, sig_byte, 'I'); // int
 196   __ beq(CCR0, do_int);
 197 
 198   __ cmplwi(CCR0, sig_byte, 'J'); // long
 199   __ beq(CCR0, do_long);
 200 
 201   __ cmplwi(CCR0, sig_byte, 'S'); // short
 202   __ beq(CCR0, do_int);
 203 
 204   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
 205   __ beq(CCR0, do_int);
 206 
 207   __ cmplwi(CCR0, sig_byte, 'L'); // object
 208   __ beq(CCR0, do_object);
 209 
 210   __ cmplwi(CCR0, sig_byte, '['); // array
 211   __ beq(CCR0, do_array);
 212 
 213   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
 214   //  __ beq(CCR0, do_void);
 215 
 216   __ bind(do_dontreachhere);
 217 
 218   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 219 
 220   __ bind(do_array);
 221 
 222   {
 223     Label start_skip, end_skip;
 224 
 225     __ bind(start_skip);
 226     __ lbzu(sig_byte, 1, signature);
 227     __ cmplwi(CCR0, sig_byte, '[');
 228     __ beq(CCR0, start_skip); // skip further brackets
 229     __ cmplwi(CCR0, sig_byte, '9');
 230     __ bgt(CCR0, end_skip);   // no optional size
 231     __ cmplwi(CCR0, sig_byte, '0');
 232     __ bge(CCR0, start_skip); // skip optional size
 233     __ bind(end_skip);
 234 
 235     __ cmplwi(CCR0, sig_byte, 'L');
 236     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
 237     __ b(do_boxed);          // otherwise, go directly to do_boxed
 238   }
 239 
 240   __ bind(do_object);
 241   {
 242     Label L;
 243     __ bind(L);
 244     __ lbzu(sig_byte, 1, signature);
 245     __ cmplwi(CCR0, sig_byte, ';');
 246     __ bne(CCR0, L);
 247    }
 248   // Need to box the Java object here, so we use arg_java (address of
 249   // current Java stack slot) as argument and don't dereference it as
 250   // in case of ints, floats, etc.
 251   Label do_null;
 252   __ bind(do_boxed);
 253   __ ld(R0,0, arg_java);
 254   __ cmpdi(CCR0, R0, 0);
 255   __ li(intSlot,0);
 256   __ beq(CCR0, do_null);
 257   __ mr(intSlot, arg_java);
 258   __ bind(do_null);
 259   __ std(intSlot, 0, arg_c);
 260   __ addi(arg_java, arg_java, -BytesPerWord);
 261   __ addi(arg_c, arg_c, BytesPerWord);
 262   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 263   __ blt(CCR0, move_intSlot_to_ARG);
 264   __ b(loop_start);
 265 
 266   __ bind(do_int);
 267   __ lwa(intSlot, 0, arg_java);
 268   __ std(intSlot, 0, arg_c);
 269   __ addi(arg_java, arg_java, -BytesPerWord);
 270   __ addi(arg_c, arg_c, BytesPerWord);
 271   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 272   __ blt(CCR0, move_intSlot_to_ARG);
 273   __ b(loop_start);
 274 
 275   __ bind(do_long);
 276   __ ld(intSlot, -BytesPerWord, arg_java);
 277   __ std(intSlot, 0, arg_c);
 278   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 279   __ addi(arg_c, arg_c, BytesPerWord);
 280   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 281   __ blt(CCR0, move_intSlot_to_ARG);
 282   __ b(loop_start);
 283 
 284   __ bind(do_float);
 285   __ lfs(floatSlot, 0, arg_java);
 286 #if defined(LINUX)
 287   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
 288   // in the least significant word of an argument slot.
 289 #if defined(VM_LITTLE_ENDIAN)
 290   __ stfs(floatSlot, 0, arg_c);
 291 #else
 292   __ stfs(floatSlot, 4, arg_c);
 293 #endif
 294 #elif defined(AIX)
 295   // Although AIX runs on big endian CPU, float is in most significant
 296   // word of an argument slot.
 297   __ stfs(floatSlot, 0, arg_c);
 298 #else
 299 #error "unknown OS"
 300 #endif
 301   __ addi(arg_java, arg_java, -BytesPerWord);
 302   __ addi(arg_c, arg_c, BytesPerWord);
 303   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 304   __ blt(CCR0, move_floatSlot_to_FARG);
 305   __ b(loop_start);
 306 
 307   __ bind(do_double);
 308   __ lfd(floatSlot, - BytesPerWord, arg_java);
 309   __ stfd(floatSlot, 0, arg_c);
 310   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 311   __ addi(arg_c, arg_c, BytesPerWord);
 312   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 313   __ blt(CCR0, move_floatSlot_to_FARG);
 314   __ b(loop_start);
 315 
 316   __ bind(loop_end);
 317 
 318   __ pop_frame();
 319   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 320   __ restore_LR_CR(R0);
 321 
 322   __ blr();
 323 
 324   Label move_int_arg, move_float_arg;
 325   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 326   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
 327   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
 328   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
 329   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
 330   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
 331   __ mr(R10_ARG8, intSlot); __ b(loop_start);
 332 
 333   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 334   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
 335   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
 336   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
 337   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
 338   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
 339   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
 340   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
 341   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
 342   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
 343   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
 344   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
 345   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
 346   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
 347 
 348   __ bind(move_intSlot_to_ARG);
 349   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
 350   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
 351   __ add(R11_scratch1, R0, R11_scratch1);
 352   __ mtctr(R11_scratch1/*branch_target*/);
 353   __ bctr();
 354   __ bind(move_floatSlot_to_FARG);
 355   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
 356   __ addi(fpcnt, fpcnt, 1);
 357   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
 358   __ add(R11_scratch1, R0, R11_scratch1);
 359   __ mtctr(R11_scratch1/*branch_target*/);
 360   __ bctr();
 361 
 362   return entry;
 363 }
 364 
 365 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 366   //
 367   // Registers alive
 368   //   R3_RET
 369   //   LR
 370   //
 371   // Registers updated
 372   //   R3_RET
 373   //
 374 
 375   Label done;
 376   address entry = __ pc();
 377 
 378   switch (type) {
 379   case T_BOOLEAN:
 380     // convert !=0 to 1
 381     __ neg(R0, R3_RET);
 382     __ orr(R0, R3_RET, R0);
 383     __ srwi(R3_RET, R0, 31);
 384     break;
 385   case T_BYTE:
 386      // sign extend 8 bits
 387      __ extsb(R3_RET, R3_RET);
 388      break;
 389   case T_CHAR:
 390      // zero extend 16 bits
 391      __ clrldi(R3_RET, R3_RET, 48);
 392      break;
 393   case T_SHORT:
 394      // sign extend 16 bits
 395      __ extsh(R3_RET, R3_RET);
 396      break;
 397   case T_INT:
 398      // sign extend 32 bits
 399      __ extsw(R3_RET, R3_RET);
 400      break;
 401   case T_LONG:
 402      break;
 403   case T_OBJECT:
 404     // unbox result if not null
 405     __ cmpdi(CCR0, R3_RET, 0);
 406     __ beq(CCR0, done);
 407     __ ld(R3_RET, 0, R3_RET);
 408     __ verify_oop(R3_RET);
 409     break;
 410   case T_FLOAT:
 411      break;
 412   case T_DOUBLE:
 413      break;
 414   case T_VOID:
 415      break;
 416   default: ShouldNotReachHere();
 417   }
 418 
 419   BIND(done);
 420   __ blr();
 421 
 422   return entry;
 423 }
 424 
 425 // Abstract method entry.
 426 //
 427 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 428   address entry = __ pc();
 429 
 430   //
 431   // Registers alive
 432   //   R16_thread     - JavaThread*
 433   //   R19_method     - callee's method (method to be invoked)
 434   //   R1_SP          - SP prepared such that caller's outgoing args are near top
 435   //   LR             - return address to caller
 436   //
 437   // Stack layout at this point:
 438   //
 439   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
 440   //           alignment (optional)
 441   //           [outgoing Java arguments]
 442   //           ...
 443   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
 444   //            ...
 445   //
 446 
 447   // Can't use call_VM here because we have not set up a new
 448   // interpreter state. Make the call to the vm and make it look like
 449   // our caller set up the JavaFrameAnchor.
 450   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 451 
 452   // Push a new C frame and save LR.
 453   __ save_LR_CR(R0);
 454   __ push_frame_reg_args(0, R11_scratch1);
 455 
 456   // This is not a leaf but we have a JavaFrameAnchor now and we will
 457   // check (create) exceptions afterward so this is ok.
 458   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
 459                   R16_thread);
 460 
 461   // Pop the C frame and restore LR.
 462   __ pop_frame();
 463   __ restore_LR_CR(R0);
 464 
 465   // Reset JavaFrameAnchor from call_VM_leaf above.
 466   __ reset_last_Java_frame();
 467 
 468   // We don't know our caller, so jump to the general forward exception stub,
 469   // which will also pop our full frame off. Satisfy the interface of
 470   // SharedRuntime::generate_forward_exception()
 471   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
 472   __ mtctr(R11_scratch1);
 473   __ bctr();
 474 
 475   return entry;
 476 }
 477 
 478 // Interpreter intrinsic for WeakReference.get().
 479 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
 480 //    into R8 and return quickly
 481 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
 482 //    It contains a GC barrier which puts the reference into the satb buffer
 483 //    to indicate that someone holds a strong reference to the object the
 484 //    weak ref points to!
 485 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 486   // Code: _aload_0, _getfield, _areturn
 487   // parameter size = 1
 488   //
 489   // The code that gets generated by this routine is split into 2 parts:
 490   //    1. the "intrinsified" code for G1 (or any SATB based GC),
 491   //    2. the slow path - which is an expansion of the regular method entry.
 492   //
 493   // Notes:
 494   // * In the G1 code we do not check whether we need to block for
 495   //   a safepoint. If G1 is enabled then we must execute the specialized
 496   //   code for Reference.get (except when the Reference object is null)
 497   //   so that we can log the value in the referent field with an SATB
 498   //   update buffer.
 499   //   If the code for the getfield template is modified so that the
 500   //   G1 pre-barrier code is executed when the current method is
 501   //   Reference.get() then going through the normal method entry
 502   //   will be fine.
 503   // * The G1 code can, however, check the receiver object (the instance
 504   //   of java.lang.Reference) and jump to the slow path if null. If the
 505   //   Reference object is null then we obviously cannot fetch the referent
 506   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 507   //   regular method entry code to generate the NPE.
 508   //
 509 
 510   if (UseG1GC) {
 511     address entry = __ pc();
 512 
 513     const int referent_offset = java_lang_ref_Reference::referent_offset;
 514     guarantee(referent_offset > 0, "referent offset not initialized");
 515 
 516     Label slow_path;
 517 
 518     // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
 519 
 520     // In the G1 code we don't check if we need to reach a safepoint. We
 521     // continue and the thread will safepoint at the next bytecode dispatch.
 522 
 523     // If the receiver is null then it is OK to jump to the slow path.
 524     __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
 525 
 526     // Check if receiver == NULL and go the slow path.
 527     __ cmpdi(CCR0, R3_RET, 0);
 528     __ beq(CCR0, slow_path);
 529 
 530     // Load the value of the referent field.
 531     __ load_heap_oop(R3_RET, referent_offset, R3_RET);
 532 
 533     // Generate the G1 pre-barrier code to log the value of
 534     // the referent field in an SATB buffer. Note with
 535     // these parameters the pre-barrier does not generate
 536     // the load of the previous value.
 537 
 538     // Restore caller sp for c2i case.
 539 #ifdef ASSERT
 540       __ ld(R9_ARG7, 0, R1_SP);
 541       __ ld(R10_ARG8, 0, R21_sender_SP);
 542       __ cmpd(CCR0, R9_ARG7, R10_ARG8);
 543       __ asm_assert_eq("backlink", 0x544);
 544 #endif // ASSERT
 545     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
 546 
 547     __ g1_write_barrier_pre(noreg,         // obj
 548                             noreg,         // offset
 549                             R3_RET,        // pre_val
 550                             R11_scratch1,  // tmp
 551                             R12_scratch2,  // tmp
 552                             true);         // needs_frame
 553 
 554     __ blr();
 555 
 556     // Generate regular method entry.
 557     __ bind(slow_path);
 558     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
 559     return entry;
 560   }
 561 
 562   return NULL;
 563 }
 564 
 565 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 566   address entry = __ pc();
 567 
 568   // Expression stack must be empty before entering the VM if an
 569   // exception happened.
 570   __ empty_expression_stack();
 571   // Throw exception.
 572   __ call_VM(noreg,
 573              CAST_FROM_FN_PTR(address,
 574                               InterpreterRuntime::throw_StackOverflowError));
 575   return entry;
 576 }
 577 
 578 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 579   address entry = __ pc();
 580   __ empty_expression_stack();
 581   __ load_const_optimized(R4_ARG2, (address) name);
 582   // Index is in R17_tos.
 583   __ mr(R5_ARG3, R17_tos);
 584   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
 585   return entry;
 586 }
 587 
 588 #if 0
 589 // Call special ClassCastException constructor taking object to cast
 590 // and target class as arguments.
 591 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
 592   address entry = __ pc();
 593 
 594   // Expression stack must be empty before entering the VM if an
 595   // exception happened.
 596   __ empty_expression_stack();
 597 
 598   // Thread will be loaded to R3_ARG1.
 599   // Target class oop is in register R5_ARG3 by convention!
 600   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
 601   // Above call must not return here since exception pending.
 602   DEBUG_ONLY(__ should_not_reach_here();)
 603   return entry;
 604 }
 605 #endif
 606 
 607 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 608   address entry = __ pc();
 609   // Expression stack must be empty before entering the VM if an
 610   // exception happened.
 611   __ empty_expression_stack();
 612 
 613   // Load exception object.
 614   // Thread will be loaded to R3_ARG1.
 615   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 616 #ifdef ASSERT
 617   // Above call must not return here since exception pending.
 618   __ should_not_reach_here();
 619 #endif
 620   return entry;
 621 }
 622 
 623 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 624   address entry = __ pc();
 625   //__ untested("generate_exception_handler_common");
 626   Register Rexception = R17_tos;
 627 
 628   // Expression stack must be empty before entering the VM if an exception happened.
 629   __ empty_expression_stack();
 630 
 631   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 632   if (pass_oop) {
 633     __ mr(R5_ARG3, Rexception);
 634     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
 635   } else {
 636     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 637     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
 638   }
 639 
 640   // Throw exception.
 641   __ mr(R3_ARG1, Rexception);
 642   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 643   __ mtctr(R11_scratch1);
 644   __ bctr();
 645 
 646   return entry;
 647 }
 648 
 649 // This entry is returned to when a call returns to the interpreter.
 650 // When we arrive here, we expect that the callee stack frame is already popped.
 651 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 652   address entry = __ pc();
 653 
 654   // Move the value out of the return register back to the TOS cache of current frame.
 655   switch (state) {
 656     case ltos:
 657     case btos:
 658     case ztos:
 659     case ctos:
 660     case stos:
 661     case atos:
 662     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 663     case ftos:
 664     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 665     case vtos: break;                           // Nothing to do, this was a void return.
 666     default  : ShouldNotReachHere();
 667   }
 668 
 669   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
 670   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
 671   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
 672 
 673   // Compiled code destroys templateTableBase, reload.
 674   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 675 
 676   if (state == atos) {
 677     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 678   }
 679 
 680   const Register cache = R11_scratch1;
 681   const Register size  = R12_scratch2;
 682   __ get_cache_and_index_at_bcp(cache, 1, index_size);
 683 
 684   // Get least significant byte of 64 bit value:
 685 #if defined(VM_LITTLE_ENDIAN)
 686   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
 687 #else
 688   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
 689 #endif
 690   __ sldi(size, size, Interpreter::logStackElementSize);
 691   __ add(R15_esp, R15_esp, size);
 692   __ dispatch_next(state, step);
 693   return entry;
 694 }
 695 
 696 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 697   address entry = __ pc();
 698   // If state != vtos, we're returning from a native method, which put it's result
 699   // into the result register. So move the value out of the return register back
 700   // to the TOS cache of current frame.
 701 
 702   switch (state) {
 703     case ltos:
 704     case btos:
 705     case ztos:
 706     case ctos:
 707     case stos:
 708     case atos:
 709     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 710     case ftos:
 711     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 712     case vtos: break;                           // Nothing to do, this was a void return.
 713     default  : ShouldNotReachHere();
 714   }
 715 
 716   // Load LcpoolCache @@@ should be already set!
 717   __ get_constant_pool_cache(R27_constPoolCache);
 718 
 719   // Handle a pending exception, fall through if none.
 720   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 721 
 722   // Start executing bytecodes.
 723   __ dispatch_next(state, step);
 724 
 725   return entry;
 726 }
 727 
 728 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 729   address entry = __ pc();
 730 
 731   __ push(state);
 732   __ call_VM(noreg, runtime_entry);
 733   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 734 
 735   return entry;
 736 }
 737 
 738 // Helpers for commoning out cases in the various type of method entries.
 739 
 740 // Increment invocation count & check for overflow.
 741 //
 742 // Note: checking for negative value instead of overflow
 743 //       so we have a 'sticky' overflow test.
 744 //
 745 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 746   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 747   Register Rscratch1   = R11_scratch1;
 748   Register Rscratch2   = R12_scratch2;
 749   Register R3_counters = R3_ARG1;
 750   Label done;
 751 
 752   if (TieredCompilation) {
 753     const int increment = InvocationCounter::count_increment;
 754     Label no_mdo;
 755     if (ProfileInterpreter) {
 756       const Register Rmdo = R3_counters;
 757       // If no method data exists, go to profile_continue.
 758       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 759       __ cmpdi(CCR0, Rmdo, 0);
 760       __ beq(CCR0, no_mdo);
 761 
 762       // Increment invocation counter in the MDO.
 763       const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 764       __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
 765       __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
 766       __ addi(Rscratch2, Rscratch2, increment);
 767       __ stw(Rscratch2, mdo_ic_offs, Rmdo);
 768       __ and_(Rscratch1, Rscratch2, Rscratch1);
 769       __ bne(CCR0, done);
 770       __ b(*overflow);
 771     }
 772 
 773     // Increment counter in MethodCounters*.
 774     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 775     __ bind(no_mdo);
 776     __ get_method_counters(R19_method, R3_counters, done);
 777     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
 778     __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
 779     __ addi(Rscratch2, Rscratch2, increment);
 780     __ stw(Rscratch2, mo_ic_offs, R3_counters);
 781     __ and_(Rscratch1, Rscratch2, Rscratch1);
 782     __ beq(CCR0, *overflow);
 783 
 784     __ bind(done);
 785 
 786   } else {
 787 
 788     // Update standard invocation counters.
 789     Register Rsum_ivc_bec = R4_ARG2;
 790     __ get_method_counters(R19_method, R3_counters, done);
 791     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
 792     // Increment interpreter invocation counter.
 793     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
 794       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 795       __ addi(R12_scratch2, R12_scratch2, 1);
 796       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 797     }
 798     // Check if we must create a method data obj.
 799     if (ProfileInterpreter && profile_method != NULL) {
 800       const Register profile_limit = Rscratch1;
 801       __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
 802       // Test to see if we should create a method data oop.
 803       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
 804       __ blt(CCR0, *profile_method_continue);
 805       // If no method data exists, go to profile_method.
 806       __ test_method_data_pointer(*profile_method);
 807     }
 808     // Finally check for counter overflow.
 809     if (overflow) {
 810       const Register invocation_limit = Rscratch1;
 811       __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
 812       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
 813       __ bge(CCR0, *overflow);
 814     }
 815 
 816     __ bind(done);
 817   }
 818 }
 819 
 820 // Generate code to initiate compilation on invocation counter overflow.
 821 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 822   // Generate code to initiate compilation on the counter overflow.
 823 
 824   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 825   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 826   // We pass zero in.
 827   // The call returns the address of the verified entry point for the method or NULL
 828   // if the compilation did not complete (either went background or bailed out).
 829   //
 830   // Unlike the C++ interpreter above: Check exceptions!
 831   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 832   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 833 
 834   __ li(R4_ARG2, 0);
 835   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 836 
 837   // Returns verified_entry_point or NULL.
 838   // We ignore it in any case.
 839   __ b(continue_entry);
 840 }
 841 
 842 // See if we've got enough room on the stack for locals plus overhead below
 843 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 844 // without going through the signal handler, i.e., reserved and yellow zones
 845 // will not be made usable. The shadow zone must suffice to handle the
 846 // overflow.
 847 //
 848 // Kills Rmem_frame_size, Rscratch1.
 849 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 850   Label done;
 851   assert_different_registers(Rmem_frame_size, Rscratch1);
 852 
 853   BLOCK_COMMENT("stack_overflow_check_with_compare {");
 854   __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
 855   __ ld(Rscratch1, thread_(stack_overflow_limit));
 856   __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
 857   __ bgt(CCR0/*is_stack_overflow*/, done);
 858 
 859   // The stack overflows. Load target address of the runtime stub and call it.
 860   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
 861   __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
 862   __ mtctr(Rscratch1);
 863   // Restore caller_sp.
 864 #ifdef ASSERT
 865   __ ld(Rscratch1, 0, R1_SP);
 866   __ ld(R0, 0, R21_sender_SP);
 867   __ cmpd(CCR0, R0, Rscratch1);
 868   __ asm_assert_eq("backlink", 0x547);
 869 #endif // ASSERT
 870   __ mr(R1_SP, R21_sender_SP);
 871   __ bctr();
 872 
 873   __ align(32, 12);
 874   __ bind(done);
 875   BLOCK_COMMENT("} stack_overflow_check_with_compare");
 876 }
 877 
 878 // Lock the current method, interpreter register window must be set up!
 879 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 880   const Register Robj_to_lock = Rscratch2;
 881 
 882   {
 883     if (!flags_preloaded) {
 884       __ lwz(Rflags, method_(access_flags));
 885     }
 886 
 887 #ifdef ASSERT
 888     // Check if methods needs synchronization.
 889     {
 890       Label Lok;
 891       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 892       __ btrue(CCR0,Lok);
 893       __ stop("method doesn't need synchronization");
 894       __ bind(Lok);
 895     }
 896 #endif // ASSERT
 897   }
 898 
 899   // Get synchronization object to Rscratch2.
 900   {
 901     Label Lstatic;
 902     Label Ldone;
 903 
 904     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 905     __ btrue(CCR0, Lstatic);
 906 
 907     // Non-static case: load receiver obj from stack and we're done.
 908     __ ld(Robj_to_lock, R18_locals);
 909     __ b(Ldone);
 910 
 911     __ bind(Lstatic); // Static case: Lock the java mirror
 912     // Load mirror from interpreter frame.
 913     __ ld(Robj_to_lock, _abi(callers_sp), R1_SP);
 914     __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
 915 
 916     __ bind(Ldone);
 917     __ verify_oop(Robj_to_lock);
 918   }
 919 
 920   // Got the oop to lock => execute!
 921   __ add_monitor_to_stack(true, Rscratch1, R0);
 922 
 923   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
 924   __ lock_object(R26_monitor, Robj_to_lock);
 925 }
 926 
 927 // Generate a fixed interpreter frame for pure interpreter
 928 // and I2N native transition frames.
 929 //
 930 // Before (stack grows downwards):
 931 //
 932 //         |  ...         |
 933 //         |------------- |
 934 //         |  java arg0   |
 935 //         |  ...         |
 936 //         |  java argn   |
 937 //         |              |   <-   R15_esp
 938 //         |              |
 939 //         |--------------|
 940 //         | abi_112      |
 941 //         |              |   <-   R1_SP
 942 //         |==============|
 943 //
 944 //
 945 // After:
 946 //
 947 //         |  ...         |
 948 //         |  java arg0   |<-   R18_locals
 949 //         |  ...         |
 950 //         |  java argn   |
 951 //         |--------------|
 952 //         |              |
 953 //         |  java locals |
 954 //         |              |
 955 //         |--------------|
 956 //         |  abi_48      |
 957 //         |==============|
 958 //         |              |
 959 //         |   istate     |
 960 //         |              |
 961 //         |--------------|
 962 //         |   monitor    |<-   R26_monitor
 963 //         |--------------|
 964 //         |              |<-   R15_esp
 965 //         | expression   |
 966 //         | stack        |
 967 //         |              |
 968 //         |--------------|
 969 //         |              |
 970 //         | abi_112      |<-   R1_SP
 971 //         |==============|
 972 //
 973 // The top most frame needs an abi space of 112 bytes. This space is needed,
 974 // since we call to c. The c function may spill their arguments to the caller
 975 // frame. When we call to java, we don't need these spill slots. In order to save
 976 // space on the stack, we resize the caller. However, java locals reside in
 977 // the caller frame and the frame has to be increased. The frame_size for the
 978 // current frame was calculated based on max_stack as size for the expression
 979 // stack. At the call, just a part of the expression stack might be used.
 980 // We don't want to waste this space and cut the frame back accordingly.
 981 // The resulting amount for resizing is calculated as follows:
 982 // resize =   (number_of_locals - number_of_arguments) * slot_size
 983 //          + (R1_SP - R15_esp) + 48
 984 //
 985 // The size for the callee frame is calculated:
 986 // framesize = 112 + max_stack + monitor + state_size
 987 //
 988 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 989 // monitor:    We statically reserve room for one monitor object.
 990 // state_size: We save the current state of the interpreter to this area.
 991 //
 992 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 993   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 994            top_frame_size      = R7_ARG5,
 995            Rconst_method       = R8_ARG6;
 996 
 997   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
 998 
 999   __ ld(Rconst_method, method_(const));
1000   __ lhz(Rsize_of_parameters /* number of params */,
1001          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
1002   if (native_call) {
1003     // If we're calling a native method, we reserve space for the worst-case signature
1004     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
1005     // We add two slots to the parameter_count, one for the jni
1006     // environment and one for a possible native mirror.
1007     Label skip_native_calculate_max_stack;
1008     __ addi(top_frame_size, Rsize_of_parameters, 2);
1009     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
1010     __ bge(CCR0, skip_native_calculate_max_stack);
1011     __ li(top_frame_size, Argument::n_register_parameters);
1012     __ bind(skip_native_calculate_max_stack);
1013     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1014     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1015     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1016     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
1017   } else {
1018     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
1019     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1020     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
1021     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
1022     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
1023     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1024     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1025     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
1026   }
1027 
1028   // Compute top frame size.
1029   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
1030 
1031   // Cut back area between esp and max_stack.
1032   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
1033 
1034   __ round_to(top_frame_size, frame::alignment_in_bytes);
1035   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
1036   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
1037   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
1038 
1039   if (!native_call) {
1040     // Stack overflow check.
1041     // Native calls don't need the stack size check since they have no
1042     // expression stack and the arguments are already on the stack and
1043     // we only add a handful of words to the stack.
1044     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
1045     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
1046   }
1047 
1048   // Set up interpreter state registers.
1049 
1050   __ add(R18_locals, R15_esp, Rsize_of_parameters);
1051   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1052   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
1053 
1054   // Set method data pointer.
1055   if (ProfileInterpreter) {
1056     Label zero_continue;
1057     __ ld(R28_mdx, method_(method_data));
1058     __ cmpdi(CCR0, R28_mdx, 0);
1059     __ beq(CCR0, zero_continue);
1060     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1061     __ bind(zero_continue);
1062   }
1063 
1064   if (native_call) {
1065     __ li(R14_bcp, 0); // Must initialize.
1066   } else {
1067     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
1068   }
1069 
1070   // Resize parent frame.
1071   __ mflr(R12_scratch2);
1072   __ neg(parent_frame_resize, parent_frame_resize);
1073   __ resize_frame(parent_frame_resize, R11_scratch1);
1074   __ std(R12_scratch2, _abi(lr), R1_SP);
1075 
1076   // Get mirror and store it in the frame as GC root for this Method*.
1077   __ load_mirror_from_const_method(R12_scratch2, Rconst_method);
1078 
1079   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
1080   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
1081 
1082   // Store values.
1083   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
1084   // in InterpreterMacroAssembler::call_from_interpreter.
1085   __ std(R19_method, _ijava_state_neg(method), R1_SP);
1086   __ std(R12_scratch2, _ijava_state_neg(mirror), R1_SP);
1087   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1088   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1089   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
1090 
1091   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1092   // be found in the frame after save_interpreter_state is done. This is always true
1093   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1094   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1095   // (Enhanced Stack Trace).
1096   // The signal handler does not save the interpreter state into the frame.
1097   __ li(R0, 0);
1098 #ifdef ASSERT
1099   // Fill remaining slots with constants.
1100   __ load_const_optimized(R11_scratch1, 0x5afe);
1101   __ load_const_optimized(R12_scratch2, 0xdead);
1102 #endif
1103   // We have to initialize some frame slots for native calls (accessed by GC).
1104   if (native_call) {
1105     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
1106     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1107     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1108   }
1109 #ifdef ASSERT
1110   else {
1111     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1112     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
1113     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
1114   }
1115   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
1116   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1117   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
1118   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
1119 #endif
1120   __ subf(R12_scratch2, top_frame_size, R1_SP);
1121   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
1122   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1123 
1124   // Push top frame.
1125   __ push_frame(top_frame_size, R11_scratch1);
1126 }
1127 
1128 // End of helpers
1129 
1130 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1131 
1132   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1133   bool use_instruction = false;
1134   address runtime_entry = NULL;
1135   int num_args = 1;
1136   bool double_precision = true;
1137 
1138   // PPC64 specific:
1139   switch (kind) {
1140     case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
1141     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1142     case Interpreter::java_lang_math_fmaF:
1143     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1144     default: break; // Fall back to runtime call.
1145   }
1146 
1147   switch (kind) {
1148     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1149     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1150     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1151     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1152     case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
1153     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1154     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1155     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1156     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1157     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1158     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1159     default: ShouldNotReachHere();
1160   }
1161 
1162   // Use normal entry if neither instruction nor runtime call is used.
1163   if (!use_instruction && runtime_entry == NULL) return NULL;
1164 
1165   address entry = __ pc();
1166 
1167   // Load arguments
1168   assert(num_args <= 13, "passed in registers");
1169   if (double_precision) {
1170     int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1171     for (int i = 0; i < num_args; ++i) {
1172       __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1173       offset -= 2 * Interpreter::stackElementSize;
1174     }
1175   } else {
1176     int offset = num_args * Interpreter::stackElementSize;
1177     for (int i = 0; i < num_args; ++i) {
1178       __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1179       offset -= Interpreter::stackElementSize;
1180     }
1181   }
1182 
1183   // Pop c2i arguments (if any) off when we return.
1184 #ifdef ASSERT
1185   __ ld(R9_ARG7, 0, R1_SP);
1186   __ ld(R10_ARG8, 0, R21_sender_SP);
1187   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
1188   __ asm_assert_eq("backlink", 0x545);
1189 #endif // ASSERT
1190   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1191 
1192   if (use_instruction) {
1193     switch (kind) {
1194       case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
1195       case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
1196       case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1197       case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
1198       default: ShouldNotReachHere();
1199     }
1200   } else {
1201     // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1202     //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1203     //__ call_c_and_return_to_caller(R12_scratch2);
1204 
1205     // Push a new C frame and save LR.
1206     __ save_LR_CR(R0);
1207     __ push_frame_reg_args(0, R11_scratch1);
1208 
1209     __ call_VM_leaf(runtime_entry);
1210 
1211     // Pop the C frame and restore LR.
1212     __ pop_frame();
1213     __ restore_LR_CR(R0);
1214   }
1215 
1216   __ blr();
1217 
1218   __ flush();
1219 
1220   return entry;
1221 }
1222 
1223 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1224   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1225   // Note that we do the banging after the frame is setup, since the exception
1226   // handling code expects to find a valid interpreter frame on the stack.
1227   // Doing the banging earlier fails if the caller frame is not an interpreter
1228   // frame.
1229   // (Also, the exception throwing code expects to unlock any synchronized
1230   // method receiever, so do the banging after locking the receiver.)
1231 
1232   // Bang each page in the shadow zone. We can't assume it's been done for
1233   // an interpreter frame with greater than a page of locals, so each page
1234   // needs to be checked.  Only true for non-native.
1235   if (UseStackBanging) {
1236     const int page_size = os::vm_page_size();
1237     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1238     const int start_page = native_call ? n_shadow_pages : 1;
1239     BLOCK_COMMENT("bang_stack_shadow_pages:");
1240     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1241       __ bang_stack_with_offset(pages*page_size);
1242     }
1243   }
1244 }
1245 
1246 // Interpreter stub for calling a native method. (asm interpreter)
1247 // This sets up a somewhat different looking stack for calling the
1248 // native method than the typical interpreter frame setup.
1249 //
1250 // On entry:
1251 //   R19_method    - method
1252 //   R16_thread    - JavaThread*
1253 //   R15_esp       - intptr_t* sender tos
1254 //
1255 //   abstract stack (grows up)
1256 //     [  IJava (caller of JNI callee)  ]  <-- ASP
1257 //        ...
1258 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1259 
1260   address entry = __ pc();
1261 
1262   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1263 
1264   // -----------------------------------------------------------------------------
1265   // Allocate a new frame that represents the native callee (i2n frame).
1266   // This is not a full-blown interpreter frame, but in particular, the
1267   // following registers are valid after this:
1268   // - R19_method
1269   // - R18_local (points to start of arguments to native function)
1270   //
1271   //   abstract stack (grows up)
1272   //     [  IJava (caller of JNI callee)  ]  <-- ASP
1273   //        ...
1274 
1275   const Register signature_handler_fd = R11_scratch1;
1276   const Register pending_exception    = R0;
1277   const Register result_handler_addr  = R31;
1278   const Register native_method_fd     = R11_scratch1;
1279   const Register access_flags         = R22_tmp2;
1280   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1281   const Register sync_state           = R12_scratch2;
1282   const Register sync_state_addr      = sync_state;   // Address is dead after use.
1283   const Register suspend_flags        = R11_scratch1;
1284 
1285   //=============================================================================
1286   // Allocate new frame and initialize interpreter state.
1287 
1288   Label exception_return;
1289   Label exception_return_sync_check;
1290   Label stack_overflow_return;
1291 
1292   // Generate new interpreter state and jump to stack_overflow_return in case of
1293   // a stack overflow.
1294   //generate_compute_interpreter_state(stack_overflow_return);
1295 
1296   Register size_of_parameters = R22_tmp2;
1297 
1298   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1299 
1300   //=============================================================================
1301   // Increment invocation counter. On overflow, entry to JNI method
1302   // will be compiled.
1303   Label invocation_counter_overflow, continue_after_compile;
1304   if (inc_counter) {
1305     if (synchronized) {
1306       // Since at this point in the method invocation the exception handler
1307       // would try to exit the monitor of synchronized methods which hasn't
1308       // been entered yet, we set the thread local variable
1309       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1310       // runtime, exception handling i.e. unlock_if_synchronized_method will
1311       // check this thread local flag.
1312       // This flag has two effects, one is to force an unwind in the topmost
1313       // interpreter frame and not perform an unlock while doing so.
1314       __ li(R0, 1);
1315       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1316     }
1317     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1318 
1319     BIND(continue_after_compile);
1320   }
1321 
1322   bang_stack_shadow_pages(true);
1323 
1324   if (inc_counter) {
1325     // Reset the _do_not_unlock_if_synchronized flag.
1326     if (synchronized) {
1327       __ li(R0, 0);
1328       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1329     }
1330   }
1331 
1332   // access_flags = method->access_flags();
1333   // Load access flags.
1334   assert(access_flags->is_nonvolatile(),
1335          "access_flags must be in a non-volatile register");
1336   // Type check.
1337   assert(4 == sizeof(AccessFlags), "unexpected field size");
1338   __ lwz(access_flags, method_(access_flags));
1339 
1340   // We don't want to reload R19_method and access_flags after calls
1341   // to some helper functions.
1342   assert(R19_method->is_nonvolatile(),
1343          "R19_method must be a non-volatile register");
1344 
1345   // Check for synchronized methods. Must happen AFTER invocation counter
1346   // check, so method is not locked if counter overflows.
1347 
1348   if (synchronized) {
1349     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1350 
1351     // Update monitor in state.
1352     __ ld(R11_scratch1, 0, R1_SP);
1353     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
1354   }
1355 
1356   // jvmti/jvmpi support
1357   __ notify_method_entry();
1358 
1359   //=============================================================================
1360   // Get and call the signature handler.
1361 
1362   __ ld(signature_handler_fd, method_(signature_handler));
1363   Label call_signature_handler;
1364 
1365   __ cmpdi(CCR0, signature_handler_fd, 0);
1366   __ bne(CCR0, call_signature_handler);
1367 
1368   // Method has never been called. Either generate a specialized
1369   // handler or point to the slow one.
1370   //
1371   // Pass parameter 'false' to avoid exception check in call_VM.
1372   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1373 
1374   // Check for an exception while looking up the target method. If we
1375   // incurred one, bail.
1376   __ ld(pending_exception, thread_(pending_exception));
1377   __ cmpdi(CCR0, pending_exception, 0);
1378   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1379 
1380   // Reload signature handler, it may have been created/assigned in the meanwhile.
1381   __ ld(signature_handler_fd, method_(signature_handler));
1382   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1383 
1384   BIND(call_signature_handler);
1385 
1386   // Before we call the signature handler we push a new frame to
1387   // protect the interpreter frame volatile registers when we return
1388   // from jni but before we can get back to Java.
1389 
1390   // First set the frame anchor while the SP/FP registers are
1391   // convenient and the slow signature handler can use this same frame
1392   // anchor.
1393 
1394   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1395   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1396 
1397   // Now the interpreter frame (and its call chain) have been
1398   // invalidated and flushed. We are now protected against eager
1399   // being enabled in native code. Even if it goes eager the
1400   // registers will be reloaded as clean and we will invalidate after
1401   // the call so no spurious flush should be possible.
1402 
1403   // Call signature handler and pass locals address.
1404   //
1405   // Our signature handlers copy required arguments to the C stack
1406   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1407   __ mr(R3_ARG1, R18_locals);
1408 #if !defined(ABI_ELFv2)
1409   __ ld(signature_handler_fd, 0, signature_handler_fd);
1410 #endif
1411 
1412   __ call_stub(signature_handler_fd);
1413 
1414   // Remove the register parameter varargs slots we allocated in
1415   // compute_interpreter_state. SP+16 ends up pointing to the ABI
1416   // outgoing argument area.
1417   //
1418   // Not needed on PPC64.
1419   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
1420 
1421   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1422   // Save across call to native method.
1423   __ mr(result_handler_addr, R3_RET);
1424 
1425   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1426 
1427   // Set up fixed parameters and call the native method.
1428   // If the method is static, get mirror into R4_ARG2.
1429   {
1430     Label method_is_not_static;
1431     // Access_flags is non-volatile and still, no need to restore it.
1432 
1433     // Restore access flags.
1434     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1435     __ bfalse(CCR0, method_is_not_static);
1436 
1437     __ ld(R11_scratch1, _abi(callers_sp), R1_SP);
1438     // Load mirror from interpreter frame.
1439     __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
1440     // R4_ARG2 = &state->_oop_temp;
1441     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1442     __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1443     BIND(method_is_not_static);
1444   }
1445 
1446   // At this point, arguments have been copied off the stack into
1447   // their JNI positions. Oops are boxed in-place on the stack, with
1448   // handles copied to arguments. The result handler address is in a
1449   // register.
1450 
1451   // Pass JNIEnv address as first parameter.
1452   __ addir(R3_ARG1, thread_(jni_environment));
1453 
1454   // Load the native_method entry before we change the thread state.
1455   __ ld(native_method_fd, method_(native_function));
1456 
1457   //=============================================================================
1458   // Transition from _thread_in_Java to _thread_in_native. As soon as
1459   // we make this change the safepoint code needs to be certain that
1460   // the last Java frame we established is good. The pc in that frame
1461   // just needs to be near here not an actual return address.
1462 
1463   // We use release_store_fence to update values like the thread state, where
1464   // we don't want the current thread to continue until all our prior memory
1465   // accesses (including the new thread state) are visible to other threads.
1466   __ li(R0, _thread_in_native);
1467   __ release();
1468 
1469   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1470   __ stw(R0, thread_(thread_state));
1471 
1472   if (UseMembar) {
1473     __ fence();
1474   }
1475 
1476   //=============================================================================
1477   // Call the native method. Argument registers must not have been
1478   // overwritten since "__ call_stub(signature_handler);" (except for
1479   // ARG1 and ARG2 for static methods).
1480   __ call_c(native_method_fd);
1481 
1482   __ li(R0, 0);
1483   __ ld(R11_scratch1, 0, R1_SP);
1484   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1485   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1486   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1487 
1488   // Note: C++ interpreter needs the following here:
1489   // The frame_manager_lr field, which we use for setting the last
1490   // java frame, gets overwritten by the signature handler. Restore
1491   // it now.
1492   //__ get_PC_trash_LR(R11_scratch1);
1493   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1494 
1495   // Because of GC R19_method may no longer be valid.
1496 
1497   // Block, if necessary, before resuming in _thread_in_Java state.
1498   // In order for GC to work, don't clear the last_Java_sp until after
1499   // blocking.
1500 
1501   //=============================================================================
1502   // Switch thread to "native transition" state before reading the
1503   // synchronization state. This additional state is necessary
1504   // because reading and testing the synchronization state is not
1505   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1506   // in _thread_in_native state, loads _not_synchronized and is
1507   // preempted. VM thread changes sync state to synchronizing and
1508   // suspends threads for GC. Thread A is resumed to finish this
1509   // native method, but doesn't block here since it didn't see any
1510   // synchronization in progress, and escapes.
1511 
1512   // We use release_store_fence to update values like the thread state, where
1513   // we don't want the current thread to continue until all our prior memory
1514   // accesses (including the new thread state) are visible to other threads.
1515   __ li(R0/*thread_state*/, _thread_in_native_trans);
1516   __ release();
1517   __ stw(R0/*thread_state*/, thread_(thread_state));
1518   if (UseMembar) {
1519     __ fence();
1520   }
1521   // Write serialization page so that the VM thread can do a pseudo remote
1522   // membar. We use the current thread pointer to calculate a thread
1523   // specific offset to write to within the page. This minimizes bus
1524   // traffic due to cache line collision.
1525   else {
1526     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
1527   }
1528 
1529   // Now before we return to java we must look for a current safepoint
1530   // (a new safepoint can not start since we entered native_trans).
1531   // We must check here because a current safepoint could be modifying
1532   // the callers registers right this moment.
1533 
1534   // Acquire isn't strictly necessary here because of the fence, but
1535   // sync_state is declared to be volatile, so we do it anyway
1536   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1537   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1538 
1539   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
1540   __ lwz(sync_state, sync_state_offs, sync_state_addr);
1541 
1542   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1543   __ lwz(suspend_flags, thread_(suspend_flags));
1544 
1545   Label sync_check_done;
1546   Label do_safepoint;
1547   // No synchronization in progress nor yet synchronized.
1548   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1549   // Not suspended.
1550   __ cmpwi(CCR1, suspend_flags, 0);
1551 
1552   __ bne(CCR0, do_safepoint);
1553   __ beq(CCR1, sync_check_done);
1554   __ bind(do_safepoint);
1555   __ isync();
1556   // Block. We do the call directly and leave the current
1557   // last_Java_frame setup undisturbed. We must save any possible
1558   // native result across the call. No oop is present.
1559 
1560   __ mr(R3_ARG1, R16_thread);
1561 #if defined(ABI_ELFv2)
1562   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1563             relocInfo::none);
1564 #else
1565   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1566             relocInfo::none);
1567 #endif
1568 
1569   __ bind(sync_check_done);
1570 
1571   //=============================================================================
1572   // <<<<<< Back in Interpreter Frame >>>>>
1573 
1574   // We are in thread_in_native_trans here and back in the normal
1575   // interpreter frame. We don't have to do anything special about
1576   // safepoints and we can switch to Java mode anytime we are ready.
1577 
1578   // Note: frame::interpreter_frame_result has a dependency on how the
1579   // method result is saved across the call to post_method_exit. For
1580   // native methods it assumes that the non-FPU/non-void result is
1581   // saved in _native_lresult and a FPU result in _native_fresult. If
1582   // this changes then the interpreter_frame_result implementation
1583   // will need to be updated too.
1584 
1585   // On PPC64, we have stored the result directly after the native call.
1586 
1587   //=============================================================================
1588   // Back in Java
1589 
1590   // We use release_store_fence to update values like the thread state, where
1591   // we don't want the current thread to continue until all our prior memory
1592   // accesses (including the new thread state) are visible to other threads.
1593   __ li(R0/*thread_state*/, _thread_in_Java);
1594   __ release();
1595   __ stw(R0/*thread_state*/, thread_(thread_state));
1596   if (UseMembar) {
1597     __ fence();
1598   }
1599 
1600   if (CheckJNICalls) {
1601     // clear_pending_jni_exception_check
1602     __ load_const_optimized(R0, 0L);
1603     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1604   }
1605 
1606   __ reset_last_Java_frame();
1607 
1608   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1609   // not, and whether unlocking throws an exception or not, we notify
1610   // on native method exit. If we do have an exception, we'll end up
1611   // in the caller's context to handle it, so if we don't do the
1612   // notify here, we'll drop it on the floor.
1613   __ notify_method_exit(true/*native method*/,
1614                         ilgl /*illegal state (not used for native methods)*/,
1615                         InterpreterMacroAssembler::NotifyJVMTI,
1616                         false /*check_exceptions*/);
1617 
1618   //=============================================================================
1619   // Handle exceptions
1620 
1621   if (synchronized) {
1622     // Don't check for exceptions since we're still in the i2n frame. Do that
1623     // manually afterwards.
1624     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1625   }
1626 
1627   // Reset active handles after returning from native.
1628   // thread->active_handles()->clear();
1629   __ ld(active_handles, thread_(active_handles));
1630   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1631   __ li(R0, 0);
1632   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1633 
1634   Label exception_return_sync_check_already_unlocked;
1635   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1636   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1637   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1638 
1639   //-----------------------------------------------------------------------------
1640   // No exception pending.
1641 
1642   // Move native method result back into proper registers and return.
1643   // Invoke result handler (may unbox/promote).
1644   __ ld(R11_scratch1, 0, R1_SP);
1645   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1646   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1647   __ call_stub(result_handler_addr);
1648 
1649   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1650 
1651   // Must use the return pc which was loaded from the caller's frame
1652   // as the VM uses return-pc-patching for deoptimization.
1653   __ mtlr(R0);
1654   __ blr();
1655 
1656   //-----------------------------------------------------------------------------
1657   // An exception is pending. We call into the runtime only if the
1658   // caller was not interpreted. If it was interpreted the
1659   // interpreter will do the correct thing. If it isn't interpreted
1660   // (call stub/compiled code) we will change our return and continue.
1661 
1662   BIND(exception_return_sync_check);
1663 
1664   if (synchronized) {
1665     // Don't check for exceptions since we're still in the i2n frame. Do that
1666     // manually afterwards.
1667     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1668   }
1669   BIND(exception_return_sync_check_already_unlocked);
1670 
1671   const Register return_pc = R31;
1672 
1673   __ ld(return_pc, 0, R1_SP);
1674   __ ld(return_pc, _abi(lr), return_pc);
1675 
1676   // Get the address of the exception handler.
1677   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1678                   R16_thread,
1679                   return_pc /* return pc */);
1680   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1681 
1682   // Load the PC of the the exception handler into LR.
1683   __ mtlr(R3_RET);
1684 
1685   // Load exception into R3_ARG1 and clear pending exception in thread.
1686   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1687   __ li(R4_ARG2, 0);
1688   __ std(R4_ARG2, thread_(pending_exception));
1689 
1690   // Load the original return pc into R4_ARG2.
1691   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1692 
1693   // Return to exception handler.
1694   __ blr();
1695 
1696   //=============================================================================
1697   // Counter overflow.
1698 
1699   if (inc_counter) {
1700     // Handle invocation counter overflow.
1701     __ bind(invocation_counter_overflow);
1702 
1703     generate_counter_overflow(continue_after_compile);
1704   }
1705 
1706   return entry;
1707 }
1708 
1709 // Generic interpreted method entry to (asm) interpreter.
1710 //
1711 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1712   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1713   address entry = __ pc();
1714   // Generate the code to allocate the interpreter stack frame.
1715   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1716            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1717 
1718   // Does also a stack check to assure this frame fits on the stack.
1719   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1720 
1721   // --------------------------------------------------------------------------
1722   // Zero out non-parameter locals.
1723   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1724   // worth to ask the flag, just do it.
1725   Register Rslot_addr = R6_ARG4,
1726            Rnum       = R7_ARG5;
1727   Label Lno_locals, Lzero_loop;
1728 
1729   // Set up the zeroing loop.
1730   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1731   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1732   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1733   __ beq(CCR0, Lno_locals);
1734   __ li(R0, 0);
1735   __ mtctr(Rnum);
1736 
1737   // The zero locals loop.
1738   __ bind(Lzero_loop);
1739   __ std(R0, 0, Rslot_addr);
1740   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1741   __ bdnz(Lzero_loop);
1742 
1743   __ bind(Lno_locals);
1744 
1745   // --------------------------------------------------------------------------
1746   // Counter increment and overflow check.
1747   Label invocation_counter_overflow,
1748         profile_method,
1749         profile_method_continue;
1750   if (inc_counter || ProfileInterpreter) {
1751 
1752     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1753     if (synchronized) {
1754       // Since at this point in the method invocation the exception handler
1755       // would try to exit the monitor of synchronized methods which hasn't
1756       // been entered yet, we set the thread local variable
1757       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1758       // runtime, exception handling i.e. unlock_if_synchronized_method will
1759       // check this thread local flag.
1760       // This flag has two effects, one is to force an unwind in the topmost
1761       // interpreter frame and not perform an unlock while doing so.
1762       __ li(R0, 1);
1763       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1764     }
1765 
1766     // Argument and return type profiling.
1767     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1768 
1769     // Increment invocation counter and check for overflow.
1770     if (inc_counter) {
1771       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1772     }
1773 
1774     __ bind(profile_method_continue);
1775   }
1776 
1777   bang_stack_shadow_pages(false);
1778 
1779   if (inc_counter || ProfileInterpreter) {
1780     // Reset the _do_not_unlock_if_synchronized flag.
1781     if (synchronized) {
1782       __ li(R0, 0);
1783       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1784     }
1785   }
1786 
1787   // --------------------------------------------------------------------------
1788   // Locking of synchronized methods. Must happen AFTER invocation_counter
1789   // check and stack overflow check, so method is not locked if overflows.
1790   if (synchronized) {
1791     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1792   }
1793 #ifdef ASSERT
1794   else {
1795     Label Lok;
1796     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1797     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1798     __ asm_assert_eq("method needs synchronization", 0x8521);
1799     __ bind(Lok);
1800   }
1801 #endif // ASSERT
1802 
1803   __ verify_thread();
1804 
1805   // --------------------------------------------------------------------------
1806   // JVMTI support
1807   __ notify_method_entry();
1808 
1809   // --------------------------------------------------------------------------
1810   // Start executing instructions.
1811   __ dispatch_next(vtos);
1812 
1813   // --------------------------------------------------------------------------
1814   // Out of line counter overflow and MDO creation code.
1815   if (ProfileInterpreter) {
1816     // We have decided to profile this method in the interpreter.
1817     __ bind(profile_method);
1818     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1819     __ set_method_data_pointer_for_bcp();
1820     __ b(profile_method_continue);
1821   }
1822 
1823   if (inc_counter) {
1824     // Handle invocation counter overflow.
1825     __ bind(invocation_counter_overflow);
1826     generate_counter_overflow(profile_method_continue);
1827   }
1828   return entry;
1829 }
1830 
1831 // CRC32 Intrinsics.
1832 //
1833 // Contract on scratch and work registers.
1834 // =======================================
1835 //
1836 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1837 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1838 // You can't rely on these registers across calls.
1839 //
1840 // The generators for CRC32_update and for CRC32_updateBytes use the
1841 // scratch/work register set internally, passing the work registers
1842 // as arguments to the MacroAssembler emitters as required.
1843 //
1844 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1845 // Their contents is not constant but may change according to the requirements
1846 // of the emitted code.
1847 //
1848 // All other registers from the scratch/work register set are used "internally"
1849 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1850 // Basically, only R3_RET contains a defined value which is the function result.
1851 //
1852 /**
1853  * Method entry for static native methods:
1854  *   int java.util.zip.CRC32.update(int crc, int b)
1855  */
1856 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1857   if (UseCRC32Intrinsics) {
1858     address start = __ pc();  // Remember stub start address (is rtn value).
1859     Label slow_path;
1860 
1861     // Safepoint check
1862     const Register sync_state = R11_scratch1;
1863     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1864     __ lwz(sync_state, sync_state_offs, sync_state);
1865     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1866     __ bne(CCR0, slow_path);
1867 
1868     // We don't generate local frame and don't align stack because
1869     // we not even call stub code (we generate the code inline)
1870     // and there is no safepoint on this path.
1871 
1872     // Load java parameters.
1873     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1874     const Register argP    = R15_esp;
1875     const Register crc     = R3_ARG1;  // crc value
1876     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1877     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1878     const Register table   = R6_ARG4;  // address of crc32 table
1879     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1880 
1881     BLOCK_COMMENT("CRC32_update {");
1882 
1883     // Arguments are reversed on java expression stack
1884 #ifdef VM_LITTLE_ENDIAN
1885     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1886                                        // Being passed as an int, the single byte is at offset +0.
1887 #else
1888     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1889                                        // Being passed from java as an int, the single byte is at offset +3.
1890 #endif
1891     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1892 
1893     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1894     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp, true);
1895 
1896     // Restore caller sp for c2i case and return.
1897     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1898     __ blr();
1899 
1900     // Generate a vanilla native entry as the slow path.
1901     BLOCK_COMMENT("} CRC32_update");
1902     BIND(slow_path);
1903     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1904     return start;
1905   }
1906 
1907   return NULL;
1908 }
1909 
1910 // TODO: generate_CRC32_updateBytes_entry and generate_CRC32C_updateBytes_entry are identical
1911 //       except for using different crc tables and some block comment strings.
1912 //       We should provide a common implementation.
1913 
1914 // CRC32 Intrinsics.
1915 /**
1916  * Method entry for static native methods:
1917  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1918  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1919  */
1920 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1921   if (UseCRC32Intrinsics) {
1922     address start = __ pc();  // Remember stub start address (is rtn value).
1923     Label slow_path;
1924 
1925     // Safepoint check
1926     const Register sync_state = R11_scratch1;
1927     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1928     __ lwz(sync_state, sync_state_offs, sync_state);
1929     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1930     __ bne(CCR0, slow_path);
1931 
1932     // We don't generate local frame and don't align stack because
1933     // we not even call stub code (we generate the code inline)
1934     // and there is no safepoint on this path.
1935 
1936     // Load parameters.
1937     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1938     const Register argP    = R15_esp;
1939     const Register crc     = R3_ARG1;  // crc value
1940     const Register data    = R4_ARG2;  // address of java byte array
1941     const Register dataLen = R5_ARG3;  // source data len
1942     const Register table   = R6_ARG4;  // address of crc32 table
1943 
1944     const Register t0      = R9;       // scratch registers for crc calculation
1945     const Register t1      = R10;
1946     const Register t2      = R11;
1947     const Register t3      = R12;
1948 
1949     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1950     const Register tc1     = R7;
1951     const Register tc2     = R8;
1952     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1953 
1954     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1955 
1956     // Arguments are reversed on java expression stack.
1957     // Calculate address of start element.
1958     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1959       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1960       // crc     @ (SP + 5W) (32bit)
1961       // buf     @ (SP + 3W) (64bit ptr to long array)
1962       // off     @ (SP + 2W) (32bit)
1963       // dataLen @ (SP + 1W) (32bit)
1964       // data = buf + off
1965       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1966       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1967       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1968       __ lwz( crc,     5*wordSize, argP);  // current crc state
1969       __ add( data, data, tmp);            // Add byte buffer offset.
1970     } else {                                                         // Used for "updateBytes update".
1971       BLOCK_COMMENT("CRC32_updateBytes {");
1972       // crc     @ (SP + 4W) (32bit)
1973       // buf     @ (SP + 3W) (64bit ptr to byte array)
1974       // off     @ (SP + 2W) (32bit)
1975       // dataLen @ (SP + 1W) (32bit)
1976       // data = buf + off + base_offset
1977       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1978       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1979       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1980       __ add( data, data, tmp);            // add byte buffer offset
1981       __ lwz( crc,     4*wordSize, argP);  // current crc state
1982       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1983     }
1984 
1985     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1986 
1987     // Performance measurements show the 1word and 2word variants to be almost equivalent,
1988     // with very light advantages for the 1word variant. We chose the 1word variant for
1989     // code compactness.
1990     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, true);
1991 
1992     // Restore caller sp for c2i case and return.
1993     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1994     __ blr();
1995 
1996     // Generate a vanilla native entry as the slow path.
1997     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1998     BIND(slow_path);
1999     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
2000     return start;
2001   }
2002 
2003   return NULL;
2004 }
2005 
2006 // CRC32C Intrinsics.
2007 /**
2008  * Method entry for static native methods:
2009  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int len)
2010  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int len)
2011  **/
2012 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
2013   if (UseCRC32CIntrinsics) {
2014     address start = __ pc();  // Remember stub start address (is rtn value).
2015 
2016     // We don't generate local frame and don't align stack because
2017     // we not even call stub code (we generate the code inline)
2018     // and there is no safepoint on this path.
2019 
2020     // Load parameters.
2021     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
2022     const Register argP    = R15_esp;
2023     const Register crc     = R3_ARG1;  // crc value
2024     const Register data    = R4_ARG2;  // address of java byte array
2025     const Register dataLen = R5_ARG3;  // source data len
2026     const Register table   = R6_ARG4;  // address of crc32c table
2027 
2028     const Register t0      = R9;       // scratch registers for crc calculation
2029     const Register t1      = R10;
2030     const Register t2      = R11;
2031     const Register t3      = R12;
2032 
2033     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
2034     const Register tc1     = R7;
2035     const Register tc2     = R8;
2036     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
2037 
2038     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
2039 
2040     // Arguments are reversed on java expression stack.
2041     // Calculate address of start element.
2042     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
2043       BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
2044       // crc     @ (SP + 5W) (32bit)
2045       // buf     @ (SP + 3W) (64bit ptr to long array)
2046       // off     @ (SP + 2W) (32bit)
2047       // dataLen @ (SP + 1W) (32bit)
2048       // data = buf + off
2049       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2050       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2051       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2052       __ lwz( crc,     5*wordSize, argP);  // current crc state
2053       __ add( data, data, tmp);            // Add byte buffer offset.
2054     } else {                                                         // Used for "updateBytes update".
2055       BLOCK_COMMENT("CRC32C_updateBytes {");
2056       // crc     @ (SP + 4W) (32bit)
2057       // buf     @ (SP + 3W) (64bit ptr to byte array)
2058       // off     @ (SP + 2W) (32bit)
2059       // dataLen @ (SP + 1W) (32bit)
2060       // data = buf + off + base_offset
2061       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2062       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2063       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2064       __ add( data, data, tmp);            // add byte buffer offset
2065       __ lwz( crc,     4*wordSize, argP);  // current crc state
2066       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2067     }
2068 
2069     StubRoutines::ppc64::generate_load_crc32c_table_addr(_masm, table);
2070 
2071     // Performance measurements show the 1word and 2word variants to be almost equivalent,
2072     // with very light advantages for the 1word variant. We chose the 1word variant for
2073     // code compactness.
2074     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, false);
2075 
2076     // Restore caller sp for c2i case and return.
2077     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
2078     __ blr();
2079 
2080     BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2081     return start;
2082   }
2083 
2084   return NULL;
2085 }
2086 
2087 // =============================================================================
2088 // Exceptions
2089 
2090 void TemplateInterpreterGenerator::generate_throw_exception() {
2091   Register Rexception    = R17_tos,
2092            Rcontinuation = R3_RET;
2093 
2094   // --------------------------------------------------------------------------
2095   // Entry point if an method returns with a pending exception (rethrow).
2096   Interpreter::_rethrow_exception_entry = __ pc();
2097   {
2098     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
2099     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2100     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2101 
2102     // Compiled code destroys templateTableBase, reload.
2103     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
2104   }
2105 
2106   // Entry point if a interpreted method throws an exception (throw).
2107   Interpreter::_throw_exception_entry = __ pc();
2108   {
2109     __ mr(Rexception, R3_RET);
2110 
2111     __ verify_thread();
2112     __ verify_oop(Rexception);
2113 
2114     // Expression stack must be empty before entering the VM in case of an exception.
2115     __ empty_expression_stack();
2116     // Find exception handler address and preserve exception oop.
2117     // Call C routine to find handler and jump to it.
2118     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
2119     __ mtctr(Rcontinuation);
2120     // Push exception for exception handler bytecodes.
2121     __ push_ptr(Rexception);
2122 
2123     // Jump to exception handler (may be remove activation entry!).
2124     __ bctr();
2125   }
2126 
2127   // If the exception is not handled in the current frame the frame is
2128   // removed and the exception is rethrown (i.e. exception
2129   // continuation is _rethrow_exception).
2130   //
2131   // Note: At this point the bci is still the bxi for the instruction
2132   // which caused the exception and the expression stack is
2133   // empty. Thus, for any VM calls at this point, GC will find a legal
2134   // oop map (with empty expression stack).
2135 
2136   // In current activation
2137   // tos: exception
2138   // bcp: exception bcp
2139 
2140   // --------------------------------------------------------------------------
2141   // JVMTI PopFrame support
2142 
2143   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2144   {
2145     // Set the popframe_processing bit in popframe_condition indicating that we are
2146     // currently handling popframe, so that call_VMs that may happen later do not
2147     // trigger new popframe handling cycles.
2148     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2149     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
2150     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2151 
2152     // Empty the expression stack, as in normal exception handling.
2153     __ empty_expression_stack();
2154     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2155 
2156     // Check to see whether we are returning to a deoptimized frame.
2157     // (The PopFrame call ensures that the caller of the popped frame is
2158     // either interpreted or compiled and deoptimizes it if compiled.)
2159     // Note that we don't compare the return PC against the
2160     // deoptimization blob's unpack entry because of the presence of
2161     // adapter frames in C2.
2162     Label Lcaller_not_deoptimized;
2163     Register return_pc = R3_ARG1;
2164     __ ld(return_pc, 0, R1_SP);
2165     __ ld(return_pc, _abi(lr), return_pc);
2166     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2167     __ cmpdi(CCR0, R3_RET, 0);
2168     __ bne(CCR0, Lcaller_not_deoptimized);
2169 
2170     // The deoptimized case.
2171     // In this case, we can't call dispatch_next() after the frame is
2172     // popped, but instead must save the incoming arguments and restore
2173     // them after deoptimization has occurred.
2174     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2175     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2176     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2177     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2178     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2179     // Save these arguments.
2180     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2181 
2182     // Inform deoptimization that it is responsible for restoring these arguments.
2183     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2184     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2185 
2186     // Return from the current method into the deoptimization blob. Will eventually
2187     // end up in the deopt interpeter entry, deoptimization prepared everything that
2188     // we will reexecute the call that called us.
2189     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2190     __ mtlr(return_pc);
2191     __ blr();
2192 
2193     // The non-deoptimized case.
2194     __ bind(Lcaller_not_deoptimized);
2195 
2196     // Clear the popframe condition flag.
2197     __ li(R0, 0);
2198     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2199 
2200     // Get out of the current method and re-execute the call that called us.
2201     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2202     __ restore_interpreter_state(R11_scratch1);
2203     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2204     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2205     if (ProfileInterpreter) {
2206       __ set_method_data_pointer_for_bcp();
2207       __ ld(R11_scratch1, 0, R1_SP);
2208       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2209     }
2210 #if INCLUDE_JVMTI
2211     Label L_done;
2212 
2213     __ lbz(R11_scratch1, 0, R14_bcp);
2214     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2215     __ bne(CCR0, L_done);
2216 
2217     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2218     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
2219     __ ld(R4_ARG2, 0, R18_locals);
2220     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
2221     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2222     __ cmpdi(CCR0, R4_ARG2, 0);
2223     __ beq(CCR0, L_done);
2224     __ std(R4_ARG2, wordSize, R15_esp);
2225     __ bind(L_done);
2226 #endif // INCLUDE_JVMTI
2227     __ dispatch_next(vtos);
2228   }
2229   // end of JVMTI PopFrame support
2230 
2231   // --------------------------------------------------------------------------
2232   // Remove activation exception entry.
2233   // This is jumped to if an interpreted method can't handle an exception itself
2234   // (we come from the throw/rethrow exception entry above). We're going to call
2235   // into the VM to find the exception handler in the caller, pop the current
2236   // frame and return the handler we calculated.
2237   Interpreter::_remove_activation_entry = __ pc();
2238   {
2239     __ pop_ptr(Rexception);
2240     __ verify_thread();
2241     __ verify_oop(Rexception);
2242     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2243 
2244     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2245     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2246 
2247     __ get_vm_result(Rexception);
2248 
2249     // We are done with this activation frame; find out where to go next.
2250     // The continuation point will be an exception handler, which expects
2251     // the following registers set up:
2252     //
2253     // RET:  exception oop
2254     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2255 
2256     Register return_pc = R31; // Needs to survive the runtime call.
2257     __ ld(return_pc, 0, R1_SP);
2258     __ ld(return_pc, _abi(lr), return_pc);
2259     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2260 
2261     // Remove the current activation.
2262     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2263 
2264     __ mr(R4_ARG2, return_pc);
2265     __ mtlr(R3_RET);
2266     __ mr(R3_RET, Rexception);
2267     __ blr();
2268   }
2269 }
2270 
2271 // JVMTI ForceEarlyReturn support.
2272 // Returns "in the middle" of a method with a "fake" return value.
2273 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2274 
2275   Register Rscratch1 = R11_scratch1,
2276            Rscratch2 = R12_scratch2;
2277 
2278   address entry = __ pc();
2279   __ empty_expression_stack();
2280 
2281   __ load_earlyret_value(state, Rscratch1);
2282 
2283   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2284   // Clear the earlyret state.
2285   __ li(R0, 0);
2286   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2287 
2288   __ remove_activation(state, false, false);
2289   // Copied from TemplateTable::_return.
2290   // Restoration of lr done by remove_activation.
2291   switch (state) {
2292     // Narrow result if state is itos but result type is smaller.
2293     case btos:
2294     case ztos:
2295     case ctos:
2296     case stos:
2297     case itos: __ narrow(R17_tos); /* fall through */
2298     case ltos:
2299     case atos: __ mr(R3_RET, R17_tos); break;
2300     case ftos:
2301     case dtos: __ fmr(F1_RET, F15_ftos); break;
2302     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2303                // to get visible before the reference to the object gets stored anywhere.
2304                __ membar(Assembler::StoreStore); break;
2305     default  : ShouldNotReachHere();
2306   }
2307   __ blr();
2308 
2309   return entry;
2310 } // end of ForceEarlyReturn support
2311 
2312 //-----------------------------------------------------------------------------
2313 // Helper for vtos entry point generation
2314 
2315 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2316                                                          address& bep,
2317                                                          address& cep,
2318                                                          address& sep,
2319                                                          address& aep,
2320                                                          address& iep,
2321                                                          address& lep,
2322                                                          address& fep,
2323                                                          address& dep,
2324                                                          address& vep) {
2325   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2326   Label L;
2327 
2328   aep = __ pc();  __ push_ptr();  __ b(L);
2329   fep = __ pc();  __ push_f();    __ b(L);
2330   dep = __ pc();  __ push_d();    __ b(L);
2331   lep = __ pc();  __ push_l();    __ b(L);
2332   __ align(32, 12, 24); // align L
2333   bep = cep = sep =
2334   iep = __ pc();  __ push_i();
2335   vep = __ pc();
2336   __ bind(L);
2337   generate_and_dispatch(t);
2338 }
2339 
2340 //-----------------------------------------------------------------------------
2341 
2342 // Non-product code
2343 #ifndef PRODUCT
2344 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2345   //__ flush_bundle();
2346   address entry = __ pc();
2347 
2348   const char *bname = NULL;
2349   uint tsize = 0;
2350   switch(state) {
2351   case ftos:
2352     bname = "trace_code_ftos {";
2353     tsize = 2;
2354     break;
2355   case btos:
2356     bname = "trace_code_btos {";
2357     tsize = 2;
2358     break;
2359   case ztos:
2360     bname = "trace_code_ztos {";
2361     tsize = 2;
2362     break;
2363   case ctos:
2364     bname = "trace_code_ctos {";
2365     tsize = 2;
2366     break;
2367   case stos:
2368     bname = "trace_code_stos {";
2369     tsize = 2;
2370     break;
2371   case itos:
2372     bname = "trace_code_itos {";
2373     tsize = 2;
2374     break;
2375   case ltos:
2376     bname = "trace_code_ltos {";
2377     tsize = 3;
2378     break;
2379   case atos:
2380     bname = "trace_code_atos {";
2381     tsize = 2;
2382     break;
2383   case vtos:
2384     // Note: In case of vtos, the topmost of stack value could be a int or doubl
2385     // In case of a double (2 slots) we won't see the 2nd stack value.
2386     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2387     bname = "trace_code_vtos {";
2388     tsize = 2;
2389 
2390     break;
2391   case dtos:
2392     bname = "trace_code_dtos {";
2393     tsize = 3;
2394     break;
2395   default:
2396     ShouldNotReachHere();
2397   }
2398   BLOCK_COMMENT(bname);
2399 
2400   // Support short-cut for TraceBytecodesAt.
2401   // Don't call into the VM if we don't want to trace to speed up things.
2402   Label Lskip_vm_call;
2403   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2404     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2405     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2406     __ ld(R11_scratch1, offs1, R11_scratch1);
2407     __ lwa(R12_scratch2, offs2, R12_scratch2);
2408     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2409     __ blt(CCR0, Lskip_vm_call);
2410   }
2411 
2412   __ push(state);
2413   // Load 2 topmost expression stack values.
2414   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2415   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2416   __ mflr(R31);
2417   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2418   __ mtlr(R31);
2419   __ pop(state);
2420 
2421   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2422     __ bind(Lskip_vm_call);
2423   }
2424   __ blr();
2425   BLOCK_COMMENT("} trace_code");
2426   return entry;
2427 }
2428 
2429 void TemplateInterpreterGenerator::count_bytecode() {
2430   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2431   __ lwz(R12_scratch2, offs, R11_scratch1);
2432   __ addi(R12_scratch2, R12_scratch2, 1);
2433   __ stw(R12_scratch2, offs, R11_scratch1);
2434 }
2435 
2436 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2437   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2438   __ lwz(R12_scratch2, offs, R11_scratch1);
2439   __ addi(R12_scratch2, R12_scratch2, 1);
2440   __ stw(R12_scratch2, offs, R11_scratch1);
2441 }
2442 
2443 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2444   const Register addr = R11_scratch1,
2445                  tmp  = R12_scratch2;
2446   // Get index, shift out old bytecode, bring in new bytecode, and store it.
2447   // _index = (_index >> log2_number_of_codes) |
2448   //          (bytecode << log2_number_of_codes);
2449   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2450   __ lwz(tmp, offs1, addr);
2451   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2452   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2453   __ stw(tmp, offs1, addr);
2454 
2455   // Bump bucket contents.
2456   // _counters[_index] ++;
2457   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2458   __ sldi(tmp, tmp, LogBytesPerInt);
2459   __ add(addr, tmp, addr);
2460   __ lwz(tmp, offs2, addr);
2461   __ addi(tmp, tmp, 1);
2462   __ stw(tmp, offs2, addr);
2463 }
2464 
2465 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2466   // Call a little run-time stub to avoid blow-up for each bytecode.
2467   // The run-time runtime saves the right registers, depending on
2468   // the tosca in-state for the given template.
2469 
2470   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2471          "entry must have been generated");
2472 
2473   // Note: we destroy LR here.
2474   __ bl(Interpreter::trace_code(t->tos_in()));
2475 }
2476 
2477 void TemplateInterpreterGenerator::stop_interpreter_at() {
2478   Label L;
2479   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2480   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2481   __ ld(R11_scratch1, offs1, R11_scratch1);
2482   __ lwa(R12_scratch2, offs2, R12_scratch2);
2483   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2484   __ bne(CCR0, L);
2485   __ illtrap();
2486   __ bind(L);
2487 }
2488 
2489 #endif // !PRODUCT