1 /*
   2  * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015, 2017, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreterGenerator.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/deoptimization.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/timer.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 #undef __
  52 #define __ _masm->
  53 
  54 // Size of interpreter code.  Increase if too small.  Interpreter will
  55 // fail with a guarantee ("not enough space for interpreter generation");
  56 // if too small.
  57 // Run with +PrintInterpreter to get the VM to print out the size.
  58 // Max size with JVMTI
  59 int TemplateInterpreter::InterpreterCodeSize = 230*K;
  60 
  61 #ifdef PRODUCT
  62 #define BLOCK_COMMENT(str) /* nothing */
  63 #else
  64 #define BLOCK_COMMENT(str) __ block_comment(str)
  65 #endif
  66 
  67 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  68 
  69 //-----------------------------------------------------------------------------
  70 
  71 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  72   // Slow_signature handler that respects the PPC C calling conventions.
  73   //
  74   // We get called by the native entry code with our output register
  75   // area == 8. First we call InterpreterRuntime::get_result_handler
  76   // to copy the pointer to the signature string temporarily to the
  77   // first C-argument and to return the result_handler in
  78   // R3_RET. Since native_entry will copy the jni-pointer to the
  79   // first C-argument slot later on, it is OK to occupy this slot
  80   // temporarilly. Then we copy the argument list on the java
  81   // expression stack into native varargs format on the native stack
  82   // and load arguments into argument registers. Integer arguments in
  83   // the varargs vector will be sign-extended to 8 bytes.
  84   //
  85   // On entry:
  86   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  87   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  88   //     this method
  89   //   R19_method
  90   //
  91   // On exit (just before return instruction):
  92   //   R3_RET            - contains the address of the result_handler.
  93   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  94   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  95   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  96   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
  97 
  98   const int LogSizeOfTwoInstructions = 3;
  99 
 100   // FIXME: use Argument:: GL: Argument names different numbers!
 101   const int max_fp_register_arguments  = 13;
 102   const int max_int_register_arguments = 6;  // first 2 are reserved
 103 
 104   const Register arg_java       = R21_tmp1;
 105   const Register arg_c          = R22_tmp2;
 106   const Register signature      = R23_tmp3;  // is string
 107   const Register sig_byte       = R24_tmp4;
 108   const Register fpcnt          = R25_tmp5;
 109   const Register argcnt         = R26_tmp6;
 110   const Register intSlot        = R27_tmp7;
 111   const Register target_sp      = R28_tmp8;
 112   const FloatRegister floatSlot = F0;
 113 
 114   address entry = __ function_entry();
 115 
 116   __ save_LR_CR(R0);
 117   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 118   // We use target_sp for storing arguments in the C frame.
 119   __ mr(target_sp, R1_SP);
 120   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
 121 
 122   __ mr(arg_java, R3_ARG1);
 123 
 124   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
 125 
 126   // Signature is in R3_RET. Signature is callee saved.
 127   __ mr(signature, R3_RET);
 128 
 129   // Get the result handler.
 130   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
 131 
 132   {
 133     Label L;
 134     // test if static
 135     // _access_flags._flags must be at offset 0.
 136     // TODO PPC port: requires change in shared code.
 137     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
 138     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
 139     // _access_flags must be a 32 bit value.
 140     assert(sizeof(AccessFlags) == 4, "wrong size");
 141     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
 142     // testbit with condition register.
 143     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
 144     __ btrue(CCR0, L);
 145     // For non-static functions, pass "this" in R4_ARG2 and copy it
 146     // to 2nd C-arg slot.
 147     // We need to box the Java object here, so we use arg_java
 148     // (address of current Java stack slot) as argument and don't
 149     // dereference it as in case of ints, floats, etc.
 150     __ mr(R4_ARG2, arg_java);
 151     __ addi(arg_java, arg_java, -BytesPerWord);
 152     __ std(R4_ARG2, _abi(carg_2), target_sp);
 153     __ bind(L);
 154   }
 155 
 156   // Will be incremented directly after loop_start. argcnt=0
 157   // corresponds to 3rd C argument.
 158   __ li(argcnt, -1);
 159   // arg_c points to 3rd C argument
 160   __ addi(arg_c, target_sp, _abi(carg_3));
 161   // no floating-point args parsed so far
 162   __ li(fpcnt, 0);
 163 
 164   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
 165   Label loop_start, loop_end;
 166   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
 167 
 168   // signature points to '(' at entry
 169 #ifdef ASSERT
 170   __ lbz(sig_byte, 0, signature);
 171   __ cmplwi(CCR0, sig_byte, '(');
 172   __ bne(CCR0, do_dontreachhere);
 173 #endif
 174 
 175   __ bind(loop_start);
 176 
 177   __ addi(argcnt, argcnt, 1);
 178   __ lbzu(sig_byte, 1, signature);
 179 
 180   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
 181   __ beq(CCR0, loop_end);
 182 
 183   __ cmplwi(CCR0, sig_byte, 'B'); // byte
 184   __ beq(CCR0, do_int);
 185 
 186   __ cmplwi(CCR0, sig_byte, 'C'); // char
 187   __ beq(CCR0, do_int);
 188 
 189   __ cmplwi(CCR0, sig_byte, 'D'); // double
 190   __ beq(CCR0, do_double);
 191 
 192   __ cmplwi(CCR0, sig_byte, 'F'); // float
 193   __ beq(CCR0, do_float);
 194 
 195   __ cmplwi(CCR0, sig_byte, 'I'); // int
 196   __ beq(CCR0, do_int);
 197 
 198   __ cmplwi(CCR0, sig_byte, 'J'); // long
 199   __ beq(CCR0, do_long);
 200 
 201   __ cmplwi(CCR0, sig_byte, 'S'); // short
 202   __ beq(CCR0, do_int);
 203 
 204   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
 205   __ beq(CCR0, do_int);
 206 
 207   __ cmplwi(CCR0, sig_byte, 'L'); // object
 208   __ beq(CCR0, do_object);
 209 
 210   __ cmplwi(CCR0, sig_byte, '['); // array
 211   __ beq(CCR0, do_array);
 212 
 213   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
 214   //  __ beq(CCR0, do_void);
 215 
 216   __ bind(do_dontreachhere);
 217 
 218   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 219 
 220   __ bind(do_array);
 221 
 222   {
 223     Label start_skip, end_skip;
 224 
 225     __ bind(start_skip);
 226     __ lbzu(sig_byte, 1, signature);
 227     __ cmplwi(CCR0, sig_byte, '[');
 228     __ beq(CCR0, start_skip); // skip further brackets
 229     __ cmplwi(CCR0, sig_byte, '9');
 230     __ bgt(CCR0, end_skip);   // no optional size
 231     __ cmplwi(CCR0, sig_byte, '0');
 232     __ bge(CCR0, start_skip); // skip optional size
 233     __ bind(end_skip);
 234 
 235     __ cmplwi(CCR0, sig_byte, 'L');
 236     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
 237     __ b(do_boxed);          // otherwise, go directly to do_boxed
 238   }
 239 
 240   __ bind(do_object);
 241   {
 242     Label L;
 243     __ bind(L);
 244     __ lbzu(sig_byte, 1, signature);
 245     __ cmplwi(CCR0, sig_byte, ';');
 246     __ bne(CCR0, L);
 247    }
 248   // Need to box the Java object here, so we use arg_java (address of
 249   // current Java stack slot) as argument and don't dereference it as
 250   // in case of ints, floats, etc.
 251   Label do_null;
 252   __ bind(do_boxed);
 253   __ ld(R0,0, arg_java);
 254   __ cmpdi(CCR0, R0, 0);
 255   __ li(intSlot,0);
 256   __ beq(CCR0, do_null);
 257   __ mr(intSlot, arg_java);
 258   __ bind(do_null);
 259   __ std(intSlot, 0, arg_c);
 260   __ addi(arg_java, arg_java, -BytesPerWord);
 261   __ addi(arg_c, arg_c, BytesPerWord);
 262   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 263   __ blt(CCR0, move_intSlot_to_ARG);
 264   __ b(loop_start);
 265 
 266   __ bind(do_int);
 267   __ lwa(intSlot, 0, arg_java);
 268   __ std(intSlot, 0, arg_c);
 269   __ addi(arg_java, arg_java, -BytesPerWord);
 270   __ addi(arg_c, arg_c, BytesPerWord);
 271   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 272   __ blt(CCR0, move_intSlot_to_ARG);
 273   __ b(loop_start);
 274 
 275   __ bind(do_long);
 276   __ ld(intSlot, -BytesPerWord, arg_java);
 277   __ std(intSlot, 0, arg_c);
 278   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 279   __ addi(arg_c, arg_c, BytesPerWord);
 280   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 281   __ blt(CCR0, move_intSlot_to_ARG);
 282   __ b(loop_start);
 283 
 284   __ bind(do_float);
 285   __ lfs(floatSlot, 0, arg_java);
 286 #if defined(LINUX)
 287   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
 288   // in the least significant word of an argument slot.
 289 #if defined(VM_LITTLE_ENDIAN)
 290   __ stfs(floatSlot, 0, arg_c);
 291 #else
 292   __ stfs(floatSlot, 4, arg_c);
 293 #endif
 294 #elif defined(AIX)
 295   // Although AIX runs on big endian CPU, float is in most significant
 296   // word of an argument slot.
 297   __ stfs(floatSlot, 0, arg_c);
 298 #else
 299 #error "unknown OS"
 300 #endif
 301   __ addi(arg_java, arg_java, -BytesPerWord);
 302   __ addi(arg_c, arg_c, BytesPerWord);
 303   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 304   __ blt(CCR0, move_floatSlot_to_FARG);
 305   __ b(loop_start);
 306 
 307   __ bind(do_double);
 308   __ lfd(floatSlot, - BytesPerWord, arg_java);
 309   __ stfd(floatSlot, 0, arg_c);
 310   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 311   __ addi(arg_c, arg_c, BytesPerWord);
 312   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 313   __ blt(CCR0, move_floatSlot_to_FARG);
 314   __ b(loop_start);
 315 
 316   __ bind(loop_end);
 317 
 318   __ pop_frame();
 319   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 320   __ restore_LR_CR(R0);
 321 
 322   __ blr();
 323 
 324   Label move_int_arg, move_float_arg;
 325   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 326   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
 327   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
 328   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
 329   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
 330   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
 331   __ mr(R10_ARG8, intSlot); __ b(loop_start);
 332 
 333   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 334   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
 335   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
 336   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
 337   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
 338   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
 339   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
 340   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
 341   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
 342   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
 343   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
 344   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
 345   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
 346   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
 347 
 348   __ bind(move_intSlot_to_ARG);
 349   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
 350   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
 351   __ add(R11_scratch1, R0, R11_scratch1);
 352   __ mtctr(R11_scratch1/*branch_target*/);
 353   __ bctr();
 354   __ bind(move_floatSlot_to_FARG);
 355   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
 356   __ addi(fpcnt, fpcnt, 1);
 357   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
 358   __ add(R11_scratch1, R0, R11_scratch1);
 359   __ mtctr(R11_scratch1/*branch_target*/);
 360   __ bctr();
 361 
 362   return entry;
 363 }
 364 
 365 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 366   //
 367   // Registers alive
 368   //   R3_RET
 369   //   LR
 370   //
 371   // Registers updated
 372   //   R3_RET
 373   //
 374 
 375   Label done;
 376   address entry = __ pc();
 377 
 378   switch (type) {
 379   case T_BOOLEAN:
 380     // convert !=0 to 1
 381     __ neg(R0, R3_RET);
 382     __ orr(R0, R3_RET, R0);
 383     __ srwi(R3_RET, R0, 31);
 384     break;
 385   case T_BYTE:
 386      // sign extend 8 bits
 387      __ extsb(R3_RET, R3_RET);
 388      break;
 389   case T_CHAR:
 390      // zero extend 16 bits
 391      __ clrldi(R3_RET, R3_RET, 48);
 392      break;
 393   case T_SHORT:
 394      // sign extend 16 bits
 395      __ extsh(R3_RET, R3_RET);
 396      break;
 397   case T_INT:
 398      // sign extend 32 bits
 399      __ extsw(R3_RET, R3_RET);
 400      break;
 401   case T_LONG:
 402      break;
 403   case T_OBJECT:
 404     // unbox result if not null
 405     __ cmpdi(CCR0, R3_RET, 0);
 406     __ beq(CCR0, done);
 407     __ ld(R3_RET, 0, R3_RET);
 408     __ verify_oop(R3_RET);
 409     break;
 410   case T_FLOAT:
 411      break;
 412   case T_DOUBLE:
 413      break;
 414   case T_VOID:
 415      break;
 416   default: ShouldNotReachHere();
 417   }
 418 
 419   BIND(done);
 420   __ blr();
 421 
 422   return entry;
 423 }
 424 
 425 // Abstract method entry.
 426 //
 427 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 428   address entry = __ pc();
 429 
 430   //
 431   // Registers alive
 432   //   R16_thread     - JavaThread*
 433   //   R19_method     - callee's method (method to be invoked)
 434   //   R1_SP          - SP prepared such that caller's outgoing args are near top
 435   //   LR             - return address to caller
 436   //
 437   // Stack layout at this point:
 438   //
 439   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
 440   //           alignment (optional)
 441   //           [outgoing Java arguments]
 442   //           ...
 443   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
 444   //            ...
 445   //
 446 
 447   // Can't use call_VM here because we have not set up a new
 448   // interpreter state. Make the call to the vm and make it look like
 449   // our caller set up the JavaFrameAnchor.
 450   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 451 
 452   // Push a new C frame and save LR.
 453   __ save_LR_CR(R0);
 454   __ push_frame_reg_args(0, R11_scratch1);
 455 
 456   // This is not a leaf but we have a JavaFrameAnchor now and we will
 457   // check (create) exceptions afterward so this is ok.
 458   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
 459                   R16_thread);
 460 
 461   // Pop the C frame and restore LR.
 462   __ pop_frame();
 463   __ restore_LR_CR(R0);
 464 
 465   // Reset JavaFrameAnchor from call_VM_leaf above.
 466   __ reset_last_Java_frame();
 467 
 468   // We don't know our caller, so jump to the general forward exception stub,
 469   // which will also pop our full frame off. Satisfy the interface of
 470   // SharedRuntime::generate_forward_exception()
 471   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
 472   __ mtctr(R11_scratch1);
 473   __ bctr();
 474 
 475   return entry;
 476 }
 477 
 478 // Interpreter intrinsic for WeakReference.get().
 479 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
 480 //    into R8 and return quickly
 481 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
 482 //    It contains a GC barrier which puts the reference into the satb buffer
 483 //    to indicate that someone holds a strong reference to the object the
 484 //    weak ref points to!
 485 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 486   // Code: _aload_0, _getfield, _areturn
 487   // parameter size = 1
 488   //
 489   // The code that gets generated by this routine is split into 2 parts:
 490   //    1. the "intrinsified" code for G1 (or any SATB based GC),
 491   //    2. the slow path - which is an expansion of the regular method entry.
 492   //
 493   // Notes:
 494   // * In the G1 code we do not check whether we need to block for
 495   //   a safepoint. If G1 is enabled then we must execute the specialized
 496   //   code for Reference.get (except when the Reference object is null)
 497   //   so that we can log the value in the referent field with an SATB
 498   //   update buffer.
 499   //   If the code for the getfield template is modified so that the
 500   //   G1 pre-barrier code is executed when the current method is
 501   //   Reference.get() then going through the normal method entry
 502   //   will be fine.
 503   // * The G1 code can, however, check the receiver object (the instance
 504   //   of java.lang.Reference) and jump to the slow path if null. If the
 505   //   Reference object is null then we obviously cannot fetch the referent
 506   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 507   //   regular method entry code to generate the NPE.
 508   //
 509 
 510   if (UseG1GC) {
 511     address entry = __ pc();
 512 
 513     const int referent_offset = java_lang_ref_Reference::referent_offset;
 514     guarantee(referent_offset > 0, "referent offset not initialized");
 515 
 516     Label slow_path;
 517 
 518     // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
 519 
 520     // In the G1 code we don't check if we need to reach a safepoint. We
 521     // continue and the thread will safepoint at the next bytecode dispatch.
 522 
 523     // If the receiver is null then it is OK to jump to the slow path.
 524     __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
 525 
 526     // Check if receiver == NULL and go the slow path.
 527     __ cmpdi(CCR0, R3_RET, 0);
 528     __ beq(CCR0, slow_path);
 529 
 530     // Load the value of the referent field.
 531     __ load_heap_oop(R3_RET, referent_offset, R3_RET);
 532 
 533     // Generate the G1 pre-barrier code to log the value of
 534     // the referent field in an SATB buffer. Note with
 535     // these parameters the pre-barrier does not generate
 536     // the load of the previous value.
 537 
 538     // Restore caller sp for c2i case.
 539 #ifdef ASSERT
 540       __ ld(R9_ARG7, 0, R1_SP);
 541       __ ld(R10_ARG8, 0, R21_sender_SP);
 542       __ cmpd(CCR0, R9_ARG7, R10_ARG8);
 543       __ asm_assert_eq("backlink", 0x544);
 544 #endif // ASSERT
 545     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
 546 
 547     __ g1_write_barrier_pre(noreg,         // obj
 548                             noreg,         // offset
 549                             R3_RET,        // pre_val
 550                             R11_scratch1,  // tmp
 551                             R12_scratch2,  // tmp
 552                             true);         // needs_frame
 553 
 554     __ blr();
 555 
 556     // Generate regular method entry.
 557     __ bind(slow_path);
 558     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
 559     return entry;
 560   }
 561 
 562   return NULL;
 563 }
 564 
 565 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 566   address entry = __ pc();
 567 
 568   // Expression stack must be empty before entering the VM if an
 569   // exception happened.
 570   __ empty_expression_stack();
 571   // Throw exception.
 572   __ call_VM(noreg,
 573              CAST_FROM_FN_PTR(address,
 574                               InterpreterRuntime::throw_StackOverflowError));
 575   return entry;
 576 }
 577 
 578 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 579   address entry = __ pc();
 580   __ empty_expression_stack();
 581   __ load_const_optimized(R4_ARG2, (address) name);
 582   // Index is in R17_tos.
 583   __ mr(R5_ARG3, R17_tos);
 584   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
 585   return entry;
 586 }
 587 
 588 #if 0
 589 // Call special ClassCastException constructor taking object to cast
 590 // and target class as arguments.
 591 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
 592   address entry = __ pc();
 593 
 594   // Expression stack must be empty before entering the VM if an
 595   // exception happened.
 596   __ empty_expression_stack();
 597 
 598   // Thread will be loaded to R3_ARG1.
 599   // Target class oop is in register R5_ARG3 by convention!
 600   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
 601   // Above call must not return here since exception pending.
 602   DEBUG_ONLY(__ should_not_reach_here();)
 603   return entry;
 604 }
 605 #endif
 606 
 607 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 608   address entry = __ pc();
 609   // Expression stack must be empty before entering the VM if an
 610   // exception happened.
 611   __ empty_expression_stack();
 612 
 613   // Load exception object.
 614   // Thread will be loaded to R3_ARG1.
 615   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 616 #ifdef ASSERT
 617   // Above call must not return here since exception pending.
 618   __ should_not_reach_here();
 619 #endif
 620   return entry;
 621 }
 622 
 623 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 624   address entry = __ pc();
 625   //__ untested("generate_exception_handler_common");
 626   Register Rexception = R17_tos;
 627 
 628   // Expression stack must be empty before entering the VM if an exception happened.
 629   __ empty_expression_stack();
 630 
 631   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 632   if (pass_oop) {
 633     __ mr(R5_ARG3, Rexception);
 634     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
 635   } else {
 636     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 637     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
 638   }
 639 
 640   // Throw exception.
 641   __ mr(R3_ARG1, Rexception);
 642   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 643   __ mtctr(R11_scratch1);
 644   __ bctr();
 645 
 646   return entry;
 647 }
 648 
 649 // This entry is returned to when a call returns to the interpreter.
 650 // When we arrive here, we expect that the callee stack frame is already popped.
 651 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 652   address entry = __ pc();
 653 
 654   // Move the value out of the return register back to the TOS cache of current frame.
 655   switch (state) {
 656     case ltos:
 657     case btos:
 658     case ztos:
 659     case ctos:
 660     case stos:
 661     case atos:
 662     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 663     case ftos:
 664     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 665     case vtos: break;                           // Nothing to do, this was a void return.
 666     default  : ShouldNotReachHere();
 667   }
 668 
 669   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
 670   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
 671   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
 672 
 673   // Compiled code destroys templateTableBase, reload.
 674   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 675 
 676   if (state == atos) {
 677     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 678   }
 679 
 680   const Register cache = R11_scratch1;
 681   const Register size  = R12_scratch2;
 682   __ get_cache_and_index_at_bcp(cache, 1, index_size);
 683 
 684   // Get least significant byte of 64 bit value:
 685 #if defined(VM_LITTLE_ENDIAN)
 686   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
 687 #else
 688   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
 689 #endif
 690   __ sldi(size, size, Interpreter::logStackElementSize);
 691   __ add(R15_esp, R15_esp, size);
 692 
 693  __ check_and_handle_popframe(R11_scratch1);
 694  __ check_and_handle_earlyret(R11_scratch1);
 695 
 696   __ dispatch_next(state, step);
 697   return entry;
 698 }
 699 
 700 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 701   address entry = __ pc();
 702   // If state != vtos, we're returning from a native method, which put it's result
 703   // into the result register. So move the value out of the return register back
 704   // to the TOS cache of current frame.
 705 
 706   switch (state) {
 707     case ltos:
 708     case btos:
 709     case ztos:
 710     case ctos:
 711     case stos:
 712     case atos:
 713     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 714     case ftos:
 715     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 716     case vtos: break;                           // Nothing to do, this was a void return.
 717     default  : ShouldNotReachHere();
 718   }
 719 
 720   // Load LcpoolCache @@@ should be already set!
 721   __ get_constant_pool_cache(R27_constPoolCache);
 722 
 723   // Handle a pending exception, fall through if none.
 724   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 725 
 726   // Start executing bytecodes.
 727   __ dispatch_next(state, step);
 728 
 729   return entry;
 730 }
 731 
 732 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 733   address entry = __ pc();
 734 
 735   __ push(state);
 736   __ call_VM(noreg, runtime_entry);
 737   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 738 
 739   return entry;
 740 }
 741 
 742 // Helpers for commoning out cases in the various type of method entries.
 743 
 744 // Increment invocation count & check for overflow.
 745 //
 746 // Note: checking for negative value instead of overflow
 747 //       so we have a 'sticky' overflow test.
 748 //
 749 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 750   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 751   Register Rscratch1   = R11_scratch1;
 752   Register Rscratch2   = R12_scratch2;
 753   Register R3_counters = R3_ARG1;
 754   Label done;
 755 
 756   if (TieredCompilation) {
 757     const int increment = InvocationCounter::count_increment;
 758     Label no_mdo;
 759     if (ProfileInterpreter) {
 760       const Register Rmdo = R3_counters;
 761       // If no method data exists, go to profile_continue.
 762       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 763       __ cmpdi(CCR0, Rmdo, 0);
 764       __ beq(CCR0, no_mdo);
 765 
 766       // Increment invocation counter in the MDO.
 767       const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 768       __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
 769       __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
 770       __ addi(Rscratch2, Rscratch2, increment);
 771       __ stw(Rscratch2, mdo_ic_offs, Rmdo);
 772       __ and_(Rscratch1, Rscratch2, Rscratch1);
 773       __ bne(CCR0, done);
 774       __ b(*overflow);
 775     }
 776 
 777     // Increment counter in MethodCounters*.
 778     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 779     __ bind(no_mdo);
 780     __ get_method_counters(R19_method, R3_counters, done);
 781     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
 782     __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
 783     __ addi(Rscratch2, Rscratch2, increment);
 784     __ stw(Rscratch2, mo_ic_offs, R3_counters);
 785     __ and_(Rscratch1, Rscratch2, Rscratch1);
 786     __ beq(CCR0, *overflow);
 787 
 788     __ bind(done);
 789 
 790   } else {
 791 
 792     // Update standard invocation counters.
 793     Register Rsum_ivc_bec = R4_ARG2;
 794     __ get_method_counters(R19_method, R3_counters, done);
 795     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
 796     // Increment interpreter invocation counter.
 797     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
 798       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 799       __ addi(R12_scratch2, R12_scratch2, 1);
 800       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 801     }
 802     // Check if we must create a method data obj.
 803     if (ProfileInterpreter && profile_method != NULL) {
 804       const Register profile_limit = Rscratch1;
 805       __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
 806       // Test to see if we should create a method data oop.
 807       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
 808       __ blt(CCR0, *profile_method_continue);
 809       // If no method data exists, go to profile_method.
 810       __ test_method_data_pointer(*profile_method);
 811     }
 812     // Finally check for counter overflow.
 813     if (overflow) {
 814       const Register invocation_limit = Rscratch1;
 815       __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
 816       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
 817       __ bge(CCR0, *overflow);
 818     }
 819 
 820     __ bind(done);
 821   }
 822 }
 823 
 824 // Generate code to initiate compilation on invocation counter overflow.
 825 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 826   // Generate code to initiate compilation on the counter overflow.
 827 
 828   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 829   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 830   // We pass zero in.
 831   // The call returns the address of the verified entry point for the method or NULL
 832   // if the compilation did not complete (either went background or bailed out).
 833   //
 834   // Unlike the C++ interpreter above: Check exceptions!
 835   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 836   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 837 
 838   __ li(R4_ARG2, 0);
 839   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 840 
 841   // Returns verified_entry_point or NULL.
 842   // We ignore it in any case.
 843   __ b(continue_entry);
 844 }
 845 
 846 // See if we've got enough room on the stack for locals plus overhead below
 847 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 848 // without going through the signal handler, i.e., reserved and yellow zones
 849 // will not be made usable. The shadow zone must suffice to handle the
 850 // overflow.
 851 //
 852 // Kills Rmem_frame_size, Rscratch1.
 853 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 854   Label done;
 855   assert_different_registers(Rmem_frame_size, Rscratch1);
 856 
 857   BLOCK_COMMENT("stack_overflow_check_with_compare {");
 858   __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
 859   __ ld(Rscratch1, thread_(stack_overflow_limit));
 860   __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
 861   __ bgt(CCR0/*is_stack_overflow*/, done);
 862 
 863   // The stack overflows. Load target address of the runtime stub and call it.
 864   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
 865   __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
 866   __ mtctr(Rscratch1);
 867   // Restore caller_sp.
 868 #ifdef ASSERT
 869   __ ld(Rscratch1, 0, R1_SP);
 870   __ ld(R0, 0, R21_sender_SP);
 871   __ cmpd(CCR0, R0, Rscratch1);
 872   __ asm_assert_eq("backlink", 0x547);
 873 #endif // ASSERT
 874   __ mr(R1_SP, R21_sender_SP);
 875   __ bctr();
 876 
 877   __ align(32, 12);
 878   __ bind(done);
 879   BLOCK_COMMENT("} stack_overflow_check_with_compare");
 880 }
 881 
 882 // Lock the current method, interpreter register window must be set up!
 883 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 884   const Register Robj_to_lock = Rscratch2;
 885 
 886   {
 887     if (!flags_preloaded) {
 888       __ lwz(Rflags, method_(access_flags));
 889     }
 890 
 891 #ifdef ASSERT
 892     // Check if methods needs synchronization.
 893     {
 894       Label Lok;
 895       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 896       __ btrue(CCR0,Lok);
 897       __ stop("method doesn't need synchronization");
 898       __ bind(Lok);
 899     }
 900 #endif // ASSERT
 901   }
 902 
 903   // Get synchronization object to Rscratch2.
 904   {
 905     Label Lstatic;
 906     Label Ldone;
 907 
 908     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 909     __ btrue(CCR0, Lstatic);
 910 
 911     // Non-static case: load receiver obj from stack and we're done.
 912     __ ld(Robj_to_lock, R18_locals);
 913     __ b(Ldone);
 914 
 915     __ bind(Lstatic); // Static case: Lock the java mirror
 916     // Load mirror from interpreter frame.
 917     __ ld(Robj_to_lock, _abi(callers_sp), R1_SP);
 918     __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
 919 
 920     __ bind(Ldone);
 921     __ verify_oop(Robj_to_lock);
 922   }
 923 
 924   // Got the oop to lock => execute!
 925   __ add_monitor_to_stack(true, Rscratch1, R0);
 926 
 927   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
 928   __ lock_object(R26_monitor, Robj_to_lock);
 929 }
 930 
 931 // Generate a fixed interpreter frame for pure interpreter
 932 // and I2N native transition frames.
 933 //
 934 // Before (stack grows downwards):
 935 //
 936 //         |  ...         |
 937 //         |------------- |
 938 //         |  java arg0   |
 939 //         |  ...         |
 940 //         |  java argn   |
 941 //         |              |   <-   R15_esp
 942 //         |              |
 943 //         |--------------|
 944 //         | abi_112      |
 945 //         |              |   <-   R1_SP
 946 //         |==============|
 947 //
 948 //
 949 // After:
 950 //
 951 //         |  ...         |
 952 //         |  java arg0   |<-   R18_locals
 953 //         |  ...         |
 954 //         |  java argn   |
 955 //         |--------------|
 956 //         |              |
 957 //         |  java locals |
 958 //         |              |
 959 //         |--------------|
 960 //         |  abi_48      |
 961 //         |==============|
 962 //         |              |
 963 //         |   istate     |
 964 //         |              |
 965 //         |--------------|
 966 //         |   monitor    |<-   R26_monitor
 967 //         |--------------|
 968 //         |              |<-   R15_esp
 969 //         | expression   |
 970 //         | stack        |
 971 //         |              |
 972 //         |--------------|
 973 //         |              |
 974 //         | abi_112      |<-   R1_SP
 975 //         |==============|
 976 //
 977 // The top most frame needs an abi space of 112 bytes. This space is needed,
 978 // since we call to c. The c function may spill their arguments to the caller
 979 // frame. When we call to java, we don't need these spill slots. In order to save
 980 // space on the stack, we resize the caller. However, java locals reside in
 981 // the caller frame and the frame has to be increased. The frame_size for the
 982 // current frame was calculated based on max_stack as size for the expression
 983 // stack. At the call, just a part of the expression stack might be used.
 984 // We don't want to waste this space and cut the frame back accordingly.
 985 // The resulting amount for resizing is calculated as follows:
 986 // resize =   (number_of_locals - number_of_arguments) * slot_size
 987 //          + (R1_SP - R15_esp) + 48
 988 //
 989 // The size for the callee frame is calculated:
 990 // framesize = 112 + max_stack + monitor + state_size
 991 //
 992 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 993 // monitor:    We statically reserve room for one monitor object.
 994 // state_size: We save the current state of the interpreter to this area.
 995 //
 996 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 997   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 998            top_frame_size      = R7_ARG5,
 999            Rconst_method       = R8_ARG6;
1000 
1001   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
1002 
1003   __ ld(Rconst_method, method_(const));
1004   __ lhz(Rsize_of_parameters /* number of params */,
1005          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
1006   if (native_call) {
1007     // If we're calling a native method, we reserve space for the worst-case signature
1008     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
1009     // We add two slots to the parameter_count, one for the jni
1010     // environment and one for a possible native mirror.
1011     Label skip_native_calculate_max_stack;
1012     __ addi(top_frame_size, Rsize_of_parameters, 2);
1013     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
1014     __ bge(CCR0, skip_native_calculate_max_stack);
1015     __ li(top_frame_size, Argument::n_register_parameters);
1016     __ bind(skip_native_calculate_max_stack);
1017     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1018     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1019     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1020     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
1021   } else {
1022     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
1023     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1024     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
1025     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
1026     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
1027     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1028     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1029     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
1030   }
1031 
1032   // Compute top frame size.
1033   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
1034 
1035   // Cut back area between esp and max_stack.
1036   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
1037 
1038   __ round_to(top_frame_size, frame::alignment_in_bytes);
1039   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
1040   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
1041   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
1042 
1043   if (!native_call) {
1044     // Stack overflow check.
1045     // Native calls don't need the stack size check since they have no
1046     // expression stack and the arguments are already on the stack and
1047     // we only add a handful of words to the stack.
1048     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
1049     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
1050   }
1051 
1052   // Set up interpreter state registers.
1053 
1054   __ add(R18_locals, R15_esp, Rsize_of_parameters);
1055   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1056   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
1057 
1058   // Set method data pointer.
1059   if (ProfileInterpreter) {
1060     Label zero_continue;
1061     __ ld(R28_mdx, method_(method_data));
1062     __ cmpdi(CCR0, R28_mdx, 0);
1063     __ beq(CCR0, zero_continue);
1064     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1065     __ bind(zero_continue);
1066   }
1067 
1068   if (native_call) {
1069     __ li(R14_bcp, 0); // Must initialize.
1070   } else {
1071     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
1072   }
1073 
1074   // Resize parent frame.
1075   __ mflr(R12_scratch2);
1076   __ neg(parent_frame_resize, parent_frame_resize);
1077   __ resize_frame(parent_frame_resize, R11_scratch1);
1078   __ std(R12_scratch2, _abi(lr), R1_SP);
1079 
1080   // Get mirror and store it in the frame as GC root for this Method*.
1081   __ load_mirror_from_const_method(R12_scratch2, Rconst_method);
1082 
1083   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
1084   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
1085 
1086   // Store values.
1087   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
1088   // in InterpreterMacroAssembler::call_from_interpreter.
1089   __ std(R19_method, _ijava_state_neg(method), R1_SP);
1090   __ std(R12_scratch2, _ijava_state_neg(mirror), R1_SP);
1091   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1092   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1093   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
1094 
1095   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1096   // be found in the frame after save_interpreter_state is done. This is always true
1097   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1098   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1099   // (Enhanced Stack Trace).
1100   // The signal handler does not save the interpreter state into the frame.
1101   __ li(R0, 0);
1102 #ifdef ASSERT
1103   // Fill remaining slots with constants.
1104   __ load_const_optimized(R11_scratch1, 0x5afe);
1105   __ load_const_optimized(R12_scratch2, 0xdead);
1106 #endif
1107   // We have to initialize some frame slots for native calls (accessed by GC).
1108   if (native_call) {
1109     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
1110     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1111     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1112   }
1113 #ifdef ASSERT
1114   else {
1115     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1116     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
1117     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
1118   }
1119   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
1120   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1121   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
1122   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
1123 #endif
1124   __ subf(R12_scratch2, top_frame_size, R1_SP);
1125   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
1126   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1127 
1128   // Push top frame.
1129   __ push_frame(top_frame_size, R11_scratch1);
1130 }
1131 
1132 // End of helpers
1133 
1134 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1135 
1136   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1137   bool use_instruction = false;
1138   address runtime_entry = NULL;
1139   int num_args = 1;
1140   bool double_precision = true;
1141 
1142   // PPC64 specific:
1143   switch (kind) {
1144     case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
1145     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1146     case Interpreter::java_lang_math_fmaF:
1147     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1148     default: break; // Fall back to runtime call.
1149   }
1150 
1151   switch (kind) {
1152     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1153     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1154     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1155     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1156     case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
1157     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1158     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1159     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1160     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1161     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1162     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1163     default: ShouldNotReachHere();
1164   }
1165 
1166   // Use normal entry if neither instruction nor runtime call is used.
1167   if (!use_instruction && runtime_entry == NULL) return NULL;
1168 
1169   address entry = __ pc();
1170 
1171   // Load arguments
1172   assert(num_args <= 13, "passed in registers");
1173   if (double_precision) {
1174     int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1175     for (int i = 0; i < num_args; ++i) {
1176       __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1177       offset -= 2 * Interpreter::stackElementSize;
1178     }
1179   } else {
1180     int offset = num_args * Interpreter::stackElementSize;
1181     for (int i = 0; i < num_args; ++i) {
1182       __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1183       offset -= Interpreter::stackElementSize;
1184     }
1185   }
1186 
1187   // Pop c2i arguments (if any) off when we return.
1188 #ifdef ASSERT
1189   __ ld(R9_ARG7, 0, R1_SP);
1190   __ ld(R10_ARG8, 0, R21_sender_SP);
1191   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
1192   __ asm_assert_eq("backlink", 0x545);
1193 #endif // ASSERT
1194   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1195 
1196   if (use_instruction) {
1197     switch (kind) {
1198       case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
1199       case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
1200       case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1201       case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
1202       default: ShouldNotReachHere();
1203     }
1204   } else {
1205     // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1206     //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1207     //__ call_c_and_return_to_caller(R12_scratch2);
1208 
1209     // Push a new C frame and save LR.
1210     __ save_LR_CR(R0);
1211     __ push_frame_reg_args(0, R11_scratch1);
1212 
1213     __ call_VM_leaf(runtime_entry);
1214 
1215     // Pop the C frame and restore LR.
1216     __ pop_frame();
1217     __ restore_LR_CR(R0);
1218   }
1219 
1220   __ blr();
1221 
1222   __ flush();
1223 
1224   return entry;
1225 }
1226 
1227 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1228   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1229   // Note that we do the banging after the frame is setup, since the exception
1230   // handling code expects to find a valid interpreter frame on the stack.
1231   // Doing the banging earlier fails if the caller frame is not an interpreter
1232   // frame.
1233   // (Also, the exception throwing code expects to unlock any synchronized
1234   // method receiever, so do the banging after locking the receiver.)
1235 
1236   // Bang each page in the shadow zone. We can't assume it's been done for
1237   // an interpreter frame with greater than a page of locals, so each page
1238   // needs to be checked.  Only true for non-native.
1239   if (UseStackBanging) {
1240     const int page_size = os::vm_page_size();
1241     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1242     const int start_page = native_call ? n_shadow_pages : 1;
1243     BLOCK_COMMENT("bang_stack_shadow_pages:");
1244     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1245       __ bang_stack_with_offset(pages*page_size);
1246     }
1247   }
1248 }
1249 
1250 // Interpreter stub for calling a native method. (asm interpreter)
1251 // This sets up a somewhat different looking stack for calling the
1252 // native method than the typical interpreter frame setup.
1253 //
1254 // On entry:
1255 //   R19_method    - method
1256 //   R16_thread    - JavaThread*
1257 //   R15_esp       - intptr_t* sender tos
1258 //
1259 //   abstract stack (grows up)
1260 //     [  IJava (caller of JNI callee)  ]  <-- ASP
1261 //        ...
1262 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1263 
1264   address entry = __ pc();
1265 
1266   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1267 
1268   // -----------------------------------------------------------------------------
1269   // Allocate a new frame that represents the native callee (i2n frame).
1270   // This is not a full-blown interpreter frame, but in particular, the
1271   // following registers are valid after this:
1272   // - R19_method
1273   // - R18_local (points to start of arguments to native function)
1274   //
1275   //   abstract stack (grows up)
1276   //     [  IJava (caller of JNI callee)  ]  <-- ASP
1277   //        ...
1278 
1279   const Register signature_handler_fd = R11_scratch1;
1280   const Register pending_exception    = R0;
1281   const Register result_handler_addr  = R31;
1282   const Register native_method_fd     = R11_scratch1;
1283   const Register access_flags         = R22_tmp2;
1284   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1285   const Register sync_state           = R12_scratch2;
1286   const Register sync_state_addr      = sync_state;   // Address is dead after use.
1287   const Register suspend_flags        = R11_scratch1;
1288 
1289   //=============================================================================
1290   // Allocate new frame and initialize interpreter state.
1291 
1292   Label exception_return;
1293   Label exception_return_sync_check;
1294   Label stack_overflow_return;
1295 
1296   // Generate new interpreter state and jump to stack_overflow_return in case of
1297   // a stack overflow.
1298   //generate_compute_interpreter_state(stack_overflow_return);
1299 
1300   Register size_of_parameters = R22_tmp2;
1301 
1302   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1303 
1304   //=============================================================================
1305   // Increment invocation counter. On overflow, entry to JNI method
1306   // will be compiled.
1307   Label invocation_counter_overflow, continue_after_compile;
1308   if (inc_counter) {
1309     if (synchronized) {
1310       // Since at this point in the method invocation the exception handler
1311       // would try to exit the monitor of synchronized methods which hasn't
1312       // been entered yet, we set the thread local variable
1313       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1314       // runtime, exception handling i.e. unlock_if_synchronized_method will
1315       // check this thread local flag.
1316       // This flag has two effects, one is to force an unwind in the topmost
1317       // interpreter frame and not perform an unlock while doing so.
1318       __ li(R0, 1);
1319       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1320     }
1321     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1322 
1323     BIND(continue_after_compile);
1324   }
1325 
1326   bang_stack_shadow_pages(true);
1327 
1328   if (inc_counter) {
1329     // Reset the _do_not_unlock_if_synchronized flag.
1330     if (synchronized) {
1331       __ li(R0, 0);
1332       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1333     }
1334   }
1335 
1336   // access_flags = method->access_flags();
1337   // Load access flags.
1338   assert(access_flags->is_nonvolatile(),
1339          "access_flags must be in a non-volatile register");
1340   // Type check.
1341   assert(4 == sizeof(AccessFlags), "unexpected field size");
1342   __ lwz(access_flags, method_(access_flags));
1343 
1344   // We don't want to reload R19_method and access_flags after calls
1345   // to some helper functions.
1346   assert(R19_method->is_nonvolatile(),
1347          "R19_method must be a non-volatile register");
1348 
1349   // Check for synchronized methods. Must happen AFTER invocation counter
1350   // check, so method is not locked if counter overflows.
1351 
1352   if (synchronized) {
1353     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1354 
1355     // Update monitor in state.
1356     __ ld(R11_scratch1, 0, R1_SP);
1357     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
1358   }
1359 
1360   // jvmti/jvmpi support
1361   __ notify_method_entry();
1362 
1363   //=============================================================================
1364   // Get and call the signature handler.
1365 
1366   __ ld(signature_handler_fd, method_(signature_handler));
1367   Label call_signature_handler;
1368 
1369   __ cmpdi(CCR0, signature_handler_fd, 0);
1370   __ bne(CCR0, call_signature_handler);
1371 
1372   // Method has never been called. Either generate a specialized
1373   // handler or point to the slow one.
1374   //
1375   // Pass parameter 'false' to avoid exception check in call_VM.
1376   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1377 
1378   // Check for an exception while looking up the target method. If we
1379   // incurred one, bail.
1380   __ ld(pending_exception, thread_(pending_exception));
1381   __ cmpdi(CCR0, pending_exception, 0);
1382   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1383 
1384   // Reload signature handler, it may have been created/assigned in the meanwhile.
1385   __ ld(signature_handler_fd, method_(signature_handler));
1386   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1387 
1388   BIND(call_signature_handler);
1389 
1390   // Before we call the signature handler we push a new frame to
1391   // protect the interpreter frame volatile registers when we return
1392   // from jni but before we can get back to Java.
1393 
1394   // First set the frame anchor while the SP/FP registers are
1395   // convenient and the slow signature handler can use this same frame
1396   // anchor.
1397 
1398   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1399   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1400 
1401   // Now the interpreter frame (and its call chain) have been
1402   // invalidated and flushed. We are now protected against eager
1403   // being enabled in native code. Even if it goes eager the
1404   // registers will be reloaded as clean and we will invalidate after
1405   // the call so no spurious flush should be possible.
1406 
1407   // Call signature handler and pass locals address.
1408   //
1409   // Our signature handlers copy required arguments to the C stack
1410   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1411   __ mr(R3_ARG1, R18_locals);
1412 #if !defined(ABI_ELFv2)
1413   __ ld(signature_handler_fd, 0, signature_handler_fd);
1414 #endif
1415 
1416   __ call_stub(signature_handler_fd);
1417 
1418   // Remove the register parameter varargs slots we allocated in
1419   // compute_interpreter_state. SP+16 ends up pointing to the ABI
1420   // outgoing argument area.
1421   //
1422   // Not needed on PPC64.
1423   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
1424 
1425   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1426   // Save across call to native method.
1427   __ mr(result_handler_addr, R3_RET);
1428 
1429   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1430 
1431   // Set up fixed parameters and call the native method.
1432   // If the method is static, get mirror into R4_ARG2.
1433   {
1434     Label method_is_not_static;
1435     // Access_flags is non-volatile and still, no need to restore it.
1436 
1437     // Restore access flags.
1438     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1439     __ bfalse(CCR0, method_is_not_static);
1440 
1441     __ ld(R11_scratch1, _abi(callers_sp), R1_SP);
1442     // Load mirror from interpreter frame.
1443     __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
1444     // R4_ARG2 = &state->_oop_temp;
1445     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1446     __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1447     BIND(method_is_not_static);
1448   }
1449 
1450   // At this point, arguments have been copied off the stack into
1451   // their JNI positions. Oops are boxed in-place on the stack, with
1452   // handles copied to arguments. The result handler address is in a
1453   // register.
1454 
1455   // Pass JNIEnv address as first parameter.
1456   __ addir(R3_ARG1, thread_(jni_environment));
1457 
1458   // Load the native_method entry before we change the thread state.
1459   __ ld(native_method_fd, method_(native_function));
1460 
1461   //=============================================================================
1462   // Transition from _thread_in_Java to _thread_in_native. As soon as
1463   // we make this change the safepoint code needs to be certain that
1464   // the last Java frame we established is good. The pc in that frame
1465   // just needs to be near here not an actual return address.
1466 
1467   // We use release_store_fence to update values like the thread state, where
1468   // we don't want the current thread to continue until all our prior memory
1469   // accesses (including the new thread state) are visible to other threads.
1470   __ li(R0, _thread_in_native);
1471   __ release();
1472 
1473   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1474   __ stw(R0, thread_(thread_state));
1475 
1476   if (UseMembar) {
1477     __ fence();
1478   }
1479 
1480   //=============================================================================
1481   // Call the native method. Argument registers must not have been
1482   // overwritten since "__ call_stub(signature_handler);" (except for
1483   // ARG1 and ARG2 for static methods).
1484   __ call_c(native_method_fd);
1485 
1486   __ li(R0, 0);
1487   __ ld(R11_scratch1, 0, R1_SP);
1488   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1489   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1490   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1491 
1492   // Note: C++ interpreter needs the following here:
1493   // The frame_manager_lr field, which we use for setting the last
1494   // java frame, gets overwritten by the signature handler. Restore
1495   // it now.
1496   //__ get_PC_trash_LR(R11_scratch1);
1497   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1498 
1499   // Because of GC R19_method may no longer be valid.
1500 
1501   // Block, if necessary, before resuming in _thread_in_Java state.
1502   // In order for GC to work, don't clear the last_Java_sp until after
1503   // blocking.
1504 
1505   //=============================================================================
1506   // Switch thread to "native transition" state before reading the
1507   // synchronization state. This additional state is necessary
1508   // because reading and testing the synchronization state is not
1509   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1510   // in _thread_in_native state, loads _not_synchronized and is
1511   // preempted. VM thread changes sync state to synchronizing and
1512   // suspends threads for GC. Thread A is resumed to finish this
1513   // native method, but doesn't block here since it didn't see any
1514   // synchronization in progress, and escapes.
1515 
1516   // We use release_store_fence to update values like the thread state, where
1517   // we don't want the current thread to continue until all our prior memory
1518   // accesses (including the new thread state) are visible to other threads.
1519   __ li(R0/*thread_state*/, _thread_in_native_trans);
1520   __ release();
1521   __ stw(R0/*thread_state*/, thread_(thread_state));
1522   if (UseMembar) {
1523     __ fence();
1524   }
1525   // Write serialization page so that the VM thread can do a pseudo remote
1526   // membar. We use the current thread pointer to calculate a thread
1527   // specific offset to write to within the page. This minimizes bus
1528   // traffic due to cache line collision.
1529   else {
1530     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
1531   }
1532 
1533   // Now before we return to java we must look for a current safepoint
1534   // (a new safepoint can not start since we entered native_trans).
1535   // We must check here because a current safepoint could be modifying
1536   // the callers registers right this moment.
1537 
1538   // Acquire isn't strictly necessary here because of the fence, but
1539   // sync_state is declared to be volatile, so we do it anyway
1540   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1541   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1542 
1543   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
1544   __ lwz(sync_state, sync_state_offs, sync_state_addr);
1545 
1546   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1547   __ lwz(suspend_flags, thread_(suspend_flags));
1548 
1549   Label sync_check_done;
1550   Label do_safepoint;
1551   // No synchronization in progress nor yet synchronized.
1552   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1553   // Not suspended.
1554   __ cmpwi(CCR1, suspend_flags, 0);
1555 
1556   __ bne(CCR0, do_safepoint);
1557   __ beq(CCR1, sync_check_done);
1558   __ bind(do_safepoint);
1559   __ isync();
1560   // Block. We do the call directly and leave the current
1561   // last_Java_frame setup undisturbed. We must save any possible
1562   // native result across the call. No oop is present.
1563 
1564   __ mr(R3_ARG1, R16_thread);
1565 #if defined(ABI_ELFv2)
1566   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1567             relocInfo::none);
1568 #else
1569   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1570             relocInfo::none);
1571 #endif
1572 
1573   __ bind(sync_check_done);
1574 
1575   //=============================================================================
1576   // <<<<<< Back in Interpreter Frame >>>>>
1577 
1578   // We are in thread_in_native_trans here and back in the normal
1579   // interpreter frame. We don't have to do anything special about
1580   // safepoints and we can switch to Java mode anytime we are ready.
1581 
1582   // Note: frame::interpreter_frame_result has a dependency on how the
1583   // method result is saved across the call to post_method_exit. For
1584   // native methods it assumes that the non-FPU/non-void result is
1585   // saved in _native_lresult and a FPU result in _native_fresult. If
1586   // this changes then the interpreter_frame_result implementation
1587   // will need to be updated too.
1588 
1589   // On PPC64, we have stored the result directly after the native call.
1590 
1591   //=============================================================================
1592   // Back in Java
1593 
1594   // We use release_store_fence to update values like the thread state, where
1595   // we don't want the current thread to continue until all our prior memory
1596   // accesses (including the new thread state) are visible to other threads.
1597   __ li(R0/*thread_state*/, _thread_in_Java);
1598   __ release();
1599   __ stw(R0/*thread_state*/, thread_(thread_state));
1600   if (UseMembar) {
1601     __ fence();
1602   }
1603 
1604   if (CheckJNICalls) {
1605     // clear_pending_jni_exception_check
1606     __ load_const_optimized(R0, 0L);
1607     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1608   }
1609 
1610   __ reset_last_Java_frame();
1611 
1612   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1613   // not, and whether unlocking throws an exception or not, we notify
1614   // on native method exit. If we do have an exception, we'll end up
1615   // in the caller's context to handle it, so if we don't do the
1616   // notify here, we'll drop it on the floor.
1617   __ notify_method_exit(true/*native method*/,
1618                         ilgl /*illegal state (not used for native methods)*/,
1619                         InterpreterMacroAssembler::NotifyJVMTI,
1620                         false /*check_exceptions*/);
1621 
1622   //=============================================================================
1623   // Handle exceptions
1624 
1625   if (synchronized) {
1626     // Don't check for exceptions since we're still in the i2n frame. Do that
1627     // manually afterwards.
1628     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1629   }
1630 
1631   // Reset active handles after returning from native.
1632   // thread->active_handles()->clear();
1633   __ ld(active_handles, thread_(active_handles));
1634   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1635   __ li(R0, 0);
1636   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1637 
1638   Label exception_return_sync_check_already_unlocked;
1639   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1640   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1641   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1642 
1643   //-----------------------------------------------------------------------------
1644   // No exception pending.
1645 
1646   // Move native method result back into proper registers and return.
1647   // Invoke result handler (may unbox/promote).
1648   __ ld(R11_scratch1, 0, R1_SP);
1649   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1650   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1651   __ call_stub(result_handler_addr);
1652 
1653   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1654 
1655   // Must use the return pc which was loaded from the caller's frame
1656   // as the VM uses return-pc-patching for deoptimization.
1657   __ mtlr(R0);
1658   __ blr();
1659 
1660   //-----------------------------------------------------------------------------
1661   // An exception is pending. We call into the runtime only if the
1662   // caller was not interpreted. If it was interpreted the
1663   // interpreter will do the correct thing. If it isn't interpreted
1664   // (call stub/compiled code) we will change our return and continue.
1665 
1666   BIND(exception_return_sync_check);
1667 
1668   if (synchronized) {
1669     // Don't check for exceptions since we're still in the i2n frame. Do that
1670     // manually afterwards.
1671     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1672   }
1673   BIND(exception_return_sync_check_already_unlocked);
1674 
1675   const Register return_pc = R31;
1676 
1677   __ ld(return_pc, 0, R1_SP);
1678   __ ld(return_pc, _abi(lr), return_pc);
1679 
1680   // Get the address of the exception handler.
1681   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1682                   R16_thread,
1683                   return_pc /* return pc */);
1684   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1685 
1686   // Load the PC of the the exception handler into LR.
1687   __ mtlr(R3_RET);
1688 
1689   // Load exception into R3_ARG1 and clear pending exception in thread.
1690   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1691   __ li(R4_ARG2, 0);
1692   __ std(R4_ARG2, thread_(pending_exception));
1693 
1694   // Load the original return pc into R4_ARG2.
1695   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1696 
1697   // Return to exception handler.
1698   __ blr();
1699 
1700   //=============================================================================
1701   // Counter overflow.
1702 
1703   if (inc_counter) {
1704     // Handle invocation counter overflow.
1705     __ bind(invocation_counter_overflow);
1706 
1707     generate_counter_overflow(continue_after_compile);
1708   }
1709 
1710   return entry;
1711 }
1712 
1713 // Generic interpreted method entry to (asm) interpreter.
1714 //
1715 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1716   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1717   address entry = __ pc();
1718   // Generate the code to allocate the interpreter stack frame.
1719   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1720            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1721 
1722   // Does also a stack check to assure this frame fits on the stack.
1723   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1724 
1725   // --------------------------------------------------------------------------
1726   // Zero out non-parameter locals.
1727   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1728   // worth to ask the flag, just do it.
1729   Register Rslot_addr = R6_ARG4,
1730            Rnum       = R7_ARG5;
1731   Label Lno_locals, Lzero_loop;
1732 
1733   // Set up the zeroing loop.
1734   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1735   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1736   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1737   __ beq(CCR0, Lno_locals);
1738   __ li(R0, 0);
1739   __ mtctr(Rnum);
1740 
1741   // The zero locals loop.
1742   __ bind(Lzero_loop);
1743   __ std(R0, 0, Rslot_addr);
1744   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1745   __ bdnz(Lzero_loop);
1746 
1747   __ bind(Lno_locals);
1748 
1749   // --------------------------------------------------------------------------
1750   // Counter increment and overflow check.
1751   Label invocation_counter_overflow,
1752         profile_method,
1753         profile_method_continue;
1754   if (inc_counter || ProfileInterpreter) {
1755 
1756     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1757     if (synchronized) {
1758       // Since at this point in the method invocation the exception handler
1759       // would try to exit the monitor of synchronized methods which hasn't
1760       // been entered yet, we set the thread local variable
1761       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1762       // runtime, exception handling i.e. unlock_if_synchronized_method will
1763       // check this thread local flag.
1764       // This flag has two effects, one is to force an unwind in the topmost
1765       // interpreter frame and not perform an unlock while doing so.
1766       __ li(R0, 1);
1767       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1768     }
1769 
1770     // Argument and return type profiling.
1771     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1772 
1773     // Increment invocation counter and check for overflow.
1774     if (inc_counter) {
1775       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1776     }
1777 
1778     __ bind(profile_method_continue);
1779   }
1780 
1781   bang_stack_shadow_pages(false);
1782 
1783   if (inc_counter || ProfileInterpreter) {
1784     // Reset the _do_not_unlock_if_synchronized flag.
1785     if (synchronized) {
1786       __ li(R0, 0);
1787       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1788     }
1789   }
1790 
1791   // --------------------------------------------------------------------------
1792   // Locking of synchronized methods. Must happen AFTER invocation_counter
1793   // check and stack overflow check, so method is not locked if overflows.
1794   if (synchronized) {
1795     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1796   }
1797 #ifdef ASSERT
1798   else {
1799     Label Lok;
1800     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1801     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1802     __ asm_assert_eq("method needs synchronization", 0x8521);
1803     __ bind(Lok);
1804   }
1805 #endif // ASSERT
1806 
1807   __ verify_thread();
1808 
1809   // --------------------------------------------------------------------------
1810   // JVMTI support
1811   __ notify_method_entry();
1812 
1813   // --------------------------------------------------------------------------
1814   // Start executing instructions.
1815   __ dispatch_next(vtos);
1816 
1817   // --------------------------------------------------------------------------
1818   // Out of line counter overflow and MDO creation code.
1819   if (ProfileInterpreter) {
1820     // We have decided to profile this method in the interpreter.
1821     __ bind(profile_method);
1822     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1823     __ set_method_data_pointer_for_bcp();
1824     __ b(profile_method_continue);
1825   }
1826 
1827   if (inc_counter) {
1828     // Handle invocation counter overflow.
1829     __ bind(invocation_counter_overflow);
1830     generate_counter_overflow(profile_method_continue);
1831   }
1832   return entry;
1833 }
1834 
1835 // CRC32 Intrinsics.
1836 //
1837 // Contract on scratch and work registers.
1838 // =======================================
1839 //
1840 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1841 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1842 // You can't rely on these registers across calls.
1843 //
1844 // The generators for CRC32_update and for CRC32_updateBytes use the
1845 // scratch/work register set internally, passing the work registers
1846 // as arguments to the MacroAssembler emitters as required.
1847 //
1848 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1849 // Their contents is not constant but may change according to the requirements
1850 // of the emitted code.
1851 //
1852 // All other registers from the scratch/work register set are used "internally"
1853 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1854 // Basically, only R3_RET contains a defined value which is the function result.
1855 //
1856 /**
1857  * Method entry for static native methods:
1858  *   int java.util.zip.CRC32.update(int crc, int b)
1859  */
1860 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1861   if (UseCRC32Intrinsics) {
1862     address start = __ pc();  // Remember stub start address (is rtn value).
1863     Label slow_path;
1864 
1865     // Safepoint check
1866     const Register sync_state = R11_scratch1;
1867     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1868     __ lwz(sync_state, sync_state_offs, sync_state);
1869     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1870     __ bne(CCR0, slow_path);
1871 
1872     // We don't generate local frame and don't align stack because
1873     // we not even call stub code (we generate the code inline)
1874     // and there is no safepoint on this path.
1875 
1876     // Load java parameters.
1877     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1878     const Register argP    = R15_esp;
1879     const Register crc     = R3_ARG1;  // crc value
1880     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1881     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1882     const Register table   = R6_ARG4;  // address of crc32 table
1883     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1884 
1885     BLOCK_COMMENT("CRC32_update {");
1886 
1887     // Arguments are reversed on java expression stack
1888 #ifdef VM_LITTLE_ENDIAN
1889     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1890                                        // Being passed as an int, the single byte is at offset +0.
1891 #else
1892     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1893                                        // Being passed from java as an int, the single byte is at offset +3.
1894 #endif
1895     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1896 
1897     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1898     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp, true);
1899 
1900     // Restore caller sp for c2i case and return.
1901     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1902     __ blr();
1903 
1904     // Generate a vanilla native entry as the slow path.
1905     BLOCK_COMMENT("} CRC32_update");
1906     BIND(slow_path);
1907     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1908     return start;
1909   }
1910 
1911   return NULL;
1912 }
1913 
1914 
1915 /**
1916  * Method entry for static native methods:
1917  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1918  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1919  */
1920 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1921   if (UseCRC32Intrinsics) {
1922     address start = __ pc();  // Remember stub start address (is rtn value).
1923     Label slow_path;
1924 
1925     // Safepoint check
1926     const Register sync_state = R11_scratch1;
1927     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1928     __ lwz(sync_state, sync_state_offs, sync_state);
1929     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1930     __ bne(CCR0, slow_path);
1931 
1932     // We don't generate local frame and don't align stack because
1933     // we not even call stub code (we generate the code inline)
1934     // and there is no safepoint on this path.
1935 
1936     // Load parameters.
1937     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1938     const Register argP    = R15_esp;
1939     const Register crc     = R3_ARG1;  // crc value
1940     const Register data    = R4_ARG2;  // address of java byte array
1941     const Register dataLen = R5_ARG3;  // source data len
1942     const Register table   = R6_ARG4;  // address of crc32 table
1943 
1944     const Register t0      = R9;       // scratch registers for crc calculation
1945     const Register t1      = R10;
1946     const Register t2      = R11;
1947     const Register t3      = R12;
1948 
1949     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1950     const Register tc1     = R7;
1951     const Register tc2     = R8;
1952     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1953 
1954     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1955 
1956     // Arguments are reversed on java expression stack.
1957     // Calculate address of start element.
1958     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1959       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1960       // crc     @ (SP + 5W) (32bit)
1961       // buf     @ (SP + 3W) (64bit ptr to long array)
1962       // off     @ (SP + 2W) (32bit)
1963       // dataLen @ (SP + 1W) (32bit)
1964       // data = buf + off
1965       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1966       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1967       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1968       __ lwz( crc,     5*wordSize, argP);  // current crc state
1969       __ add( data, data, tmp);            // Add byte buffer offset.
1970     } else {                                                         // Used for "updateBytes update".
1971       BLOCK_COMMENT("CRC32_updateBytes {");
1972       // crc     @ (SP + 4W) (32bit)
1973       // buf     @ (SP + 3W) (64bit ptr to byte array)
1974       // off     @ (SP + 2W) (32bit)
1975       // dataLen @ (SP + 1W) (32bit)
1976       // data = buf + off + base_offset
1977       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1978       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1979       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1980       __ add( data, data, tmp);            // add byte buffer offset
1981       __ lwz( crc,     4*wordSize, argP);  // current crc state
1982       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1983     }
1984 
1985     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1986 
1987     // Performance measurements show the 1word and 2word variants to be almost equivalent,
1988     // with very light advantages for the 1word variant. We chose the 1word variant for
1989     // code compactness.
1990     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, true);
1991 
1992     // Restore caller sp for c2i case and return.
1993     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1994     __ blr();
1995 
1996     // Generate a vanilla native entry as the slow path.
1997     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1998     BIND(slow_path);
1999     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
2000     return start;
2001   }
2002 
2003   return NULL;
2004 }
2005 
2006 
2007 /**
2008  * Method entry for intrinsic-candidate (non-native) methods:
2009  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
2010  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
2011  * Unlike CRC32, CRC32C does not have any methods marked as native
2012  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
2013  **/
2014 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
2015   if (UseCRC32CIntrinsics) {
2016     address start = __ pc();  // Remember stub start address (is rtn value).
2017 
2018     // We don't generate local frame and don't align stack because
2019     // we not even call stub code (we generate the code inline)
2020     // and there is no safepoint on this path.
2021 
2022     // Load parameters.
2023     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
2024     const Register argP    = R15_esp;
2025     const Register crc     = R3_ARG1;  // crc value
2026     const Register data    = R4_ARG2;  // address of java byte array
2027     const Register dataLen = R5_ARG3;  // source data len
2028     const Register table   = R6_ARG4;  // address of crc32c table
2029 
2030     const Register t0      = R9;       // scratch registers for crc calculation
2031     const Register t1      = R10;
2032     const Register t2      = R11;
2033     const Register t3      = R12;
2034 
2035     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
2036     const Register tc1     = R7;
2037     const Register tc2     = R8;
2038     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
2039 
2040     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
2041 
2042     // Arguments are reversed on java expression stack.
2043     // Calculate address of start element.
2044     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
2045       BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
2046       // crc     @ (SP + 5W) (32bit)
2047       // buf     @ (SP + 3W) (64bit ptr to long array)
2048       // off     @ (SP + 2W) (32bit)
2049       // dataLen @ (SP + 1W) (32bit)
2050       // data = buf + off
2051       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2052       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2053       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2054       __ lwz( crc,     5*wordSize, argP);  // current crc state
2055       __ add( data, data, tmp);            // Add byte buffer offset.
2056       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
2057     } else {                                                         // Used for "updateBytes update".
2058       BLOCK_COMMENT("CRC32C_updateBytes {");
2059       // crc     @ (SP + 4W) (32bit)
2060       // buf     @ (SP + 3W) (64bit ptr to byte array)
2061       // off     @ (SP + 2W) (32bit)
2062       // dataLen @ (SP + 1W) (32bit)
2063       // data = buf + off + base_offset
2064       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2065       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2066       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2067       __ add( data, data, tmp);            // add byte buffer offset
2068       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
2069       __ lwz( crc,     4*wordSize, argP);  // current crc state
2070       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2071     }
2072 
2073     StubRoutines::ppc64::generate_load_crc32c_table_addr(_masm, table);
2074 
2075     // Performance measurements show the 1word and 2word variants to be almost equivalent,
2076     // with very light advantages for the 1word variant. We chose the 1word variant for
2077     // code compactness.
2078     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, false);
2079 
2080     // Restore caller sp for c2i case and return.
2081     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
2082     __ blr();
2083 
2084     BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2085     return start;
2086   }
2087 
2088   return NULL;
2089 }
2090 
2091 // =============================================================================
2092 // Exceptions
2093 
2094 void TemplateInterpreterGenerator::generate_throw_exception() {
2095   Register Rexception    = R17_tos,
2096            Rcontinuation = R3_RET;
2097 
2098   // --------------------------------------------------------------------------
2099   // Entry point if an method returns with a pending exception (rethrow).
2100   Interpreter::_rethrow_exception_entry = __ pc();
2101   {
2102     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
2103     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2104     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2105 
2106     // Compiled code destroys templateTableBase, reload.
2107     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
2108   }
2109 
2110   // Entry point if a interpreted method throws an exception (throw).
2111   Interpreter::_throw_exception_entry = __ pc();
2112   {
2113     __ mr(Rexception, R3_RET);
2114 
2115     __ verify_thread();
2116     __ verify_oop(Rexception);
2117 
2118     // Expression stack must be empty before entering the VM in case of an exception.
2119     __ empty_expression_stack();
2120     // Find exception handler address and preserve exception oop.
2121     // Call C routine to find handler and jump to it.
2122     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
2123     __ mtctr(Rcontinuation);
2124     // Push exception for exception handler bytecodes.
2125     __ push_ptr(Rexception);
2126 
2127     // Jump to exception handler (may be remove activation entry!).
2128     __ bctr();
2129   }
2130 
2131   // If the exception is not handled in the current frame the frame is
2132   // removed and the exception is rethrown (i.e. exception
2133   // continuation is _rethrow_exception).
2134   //
2135   // Note: At this point the bci is still the bxi for the instruction
2136   // which caused the exception and the expression stack is
2137   // empty. Thus, for any VM calls at this point, GC will find a legal
2138   // oop map (with empty expression stack).
2139 
2140   // In current activation
2141   // tos: exception
2142   // bcp: exception bcp
2143 
2144   // --------------------------------------------------------------------------
2145   // JVMTI PopFrame support
2146 
2147   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2148   {
2149     // Set the popframe_processing bit in popframe_condition indicating that we are
2150     // currently handling popframe, so that call_VMs that may happen later do not
2151     // trigger new popframe handling cycles.
2152     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2153     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
2154     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2155 
2156     // Empty the expression stack, as in normal exception handling.
2157     __ empty_expression_stack();
2158     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2159 
2160     // Check to see whether we are returning to a deoptimized frame.
2161     // (The PopFrame call ensures that the caller of the popped frame is
2162     // either interpreted or compiled and deoptimizes it if compiled.)
2163     // Note that we don't compare the return PC against the
2164     // deoptimization blob's unpack entry because of the presence of
2165     // adapter frames in C2.
2166     Label Lcaller_not_deoptimized;
2167     Register return_pc = R3_ARG1;
2168     __ ld(return_pc, 0, R1_SP);
2169     __ ld(return_pc, _abi(lr), return_pc);
2170     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2171     __ cmpdi(CCR0, R3_RET, 0);
2172     __ bne(CCR0, Lcaller_not_deoptimized);
2173 
2174     // The deoptimized case.
2175     // In this case, we can't call dispatch_next() after the frame is
2176     // popped, but instead must save the incoming arguments and restore
2177     // them after deoptimization has occurred.
2178     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2179     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2180     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2181     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2182     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2183     // Save these arguments.
2184     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2185 
2186     // Inform deoptimization that it is responsible for restoring these arguments.
2187     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2188     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2189 
2190     // Return from the current method into the deoptimization blob. Will eventually
2191     // end up in the deopt interpeter entry, deoptimization prepared everything that
2192     // we will reexecute the call that called us.
2193     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2194     __ mtlr(return_pc);
2195     __ blr();
2196 
2197     // The non-deoptimized case.
2198     __ bind(Lcaller_not_deoptimized);
2199 
2200     // Clear the popframe condition flag.
2201     __ li(R0, 0);
2202     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2203 
2204     // Get out of the current method and re-execute the call that called us.
2205     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2206     __ restore_interpreter_state(R11_scratch1);
2207     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2208     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2209     if (ProfileInterpreter) {
2210       __ set_method_data_pointer_for_bcp();
2211       __ ld(R11_scratch1, 0, R1_SP);
2212       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2213     }
2214 #if INCLUDE_JVMTI
2215     Label L_done;
2216 
2217     __ lbz(R11_scratch1, 0, R14_bcp);
2218     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2219     __ bne(CCR0, L_done);
2220 
2221     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2222     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
2223     __ ld(R4_ARG2, 0, R18_locals);
2224     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
2225     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2226     __ cmpdi(CCR0, R4_ARG2, 0);
2227     __ beq(CCR0, L_done);
2228     __ std(R4_ARG2, wordSize, R15_esp);
2229     __ bind(L_done);
2230 #endif // INCLUDE_JVMTI
2231     __ dispatch_next(vtos);
2232   }
2233   // end of JVMTI PopFrame support
2234 
2235   // --------------------------------------------------------------------------
2236   // Remove activation exception entry.
2237   // This is jumped to if an interpreted method can't handle an exception itself
2238   // (we come from the throw/rethrow exception entry above). We're going to call
2239   // into the VM to find the exception handler in the caller, pop the current
2240   // frame and return the handler we calculated.
2241   Interpreter::_remove_activation_entry = __ pc();
2242   {
2243     __ pop_ptr(Rexception);
2244     __ verify_thread();
2245     __ verify_oop(Rexception);
2246     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2247 
2248     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2249     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2250 
2251     __ get_vm_result(Rexception);
2252 
2253     // We are done with this activation frame; find out where to go next.
2254     // The continuation point will be an exception handler, which expects
2255     // the following registers set up:
2256     //
2257     // RET:  exception oop
2258     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2259 
2260     Register return_pc = R31; // Needs to survive the runtime call.
2261     __ ld(return_pc, 0, R1_SP);
2262     __ ld(return_pc, _abi(lr), return_pc);
2263     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2264 
2265     // Remove the current activation.
2266     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2267 
2268     __ mr(R4_ARG2, return_pc);
2269     __ mtlr(R3_RET);
2270     __ mr(R3_RET, Rexception);
2271     __ blr();
2272   }
2273 }
2274 
2275 // JVMTI ForceEarlyReturn support.
2276 // Returns "in the middle" of a method with a "fake" return value.
2277 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2278 
2279   Register Rscratch1 = R11_scratch1,
2280            Rscratch2 = R12_scratch2;
2281 
2282   address entry = __ pc();
2283   __ empty_expression_stack();
2284 
2285   __ load_earlyret_value(state, Rscratch1);
2286 
2287   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2288   // Clear the earlyret state.
2289   __ li(R0, 0);
2290   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2291 
2292   __ remove_activation(state, false, false);
2293   // Copied from TemplateTable::_return.
2294   // Restoration of lr done by remove_activation.
2295   switch (state) {
2296     // Narrow result if state is itos but result type is smaller.
2297     case btos:
2298     case ztos:
2299     case ctos:
2300     case stos:
2301     case itos: __ narrow(R17_tos); /* fall through */
2302     case ltos:
2303     case atos: __ mr(R3_RET, R17_tos); break;
2304     case ftos:
2305     case dtos: __ fmr(F1_RET, F15_ftos); break;
2306     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2307                // to get visible before the reference to the object gets stored anywhere.
2308                __ membar(Assembler::StoreStore); break;
2309     default  : ShouldNotReachHere();
2310   }
2311   __ blr();
2312 
2313   return entry;
2314 } // end of ForceEarlyReturn support
2315 
2316 //-----------------------------------------------------------------------------
2317 // Helper for vtos entry point generation
2318 
2319 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2320                                                          address& bep,
2321                                                          address& cep,
2322                                                          address& sep,
2323                                                          address& aep,
2324                                                          address& iep,
2325                                                          address& lep,
2326                                                          address& fep,
2327                                                          address& dep,
2328                                                          address& vep) {
2329   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2330   Label L;
2331 
2332   aep = __ pc();  __ push_ptr();  __ b(L);
2333   fep = __ pc();  __ push_f();    __ b(L);
2334   dep = __ pc();  __ push_d();    __ b(L);
2335   lep = __ pc();  __ push_l();    __ b(L);
2336   __ align(32, 12, 24); // align L
2337   bep = cep = sep =
2338   iep = __ pc();  __ push_i();
2339   vep = __ pc();
2340   __ bind(L);
2341   generate_and_dispatch(t);
2342 }
2343 
2344 //-----------------------------------------------------------------------------
2345 
2346 // Non-product code
2347 #ifndef PRODUCT
2348 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2349   //__ flush_bundle();
2350   address entry = __ pc();
2351 
2352   const char *bname = NULL;
2353   uint tsize = 0;
2354   switch(state) {
2355   case ftos:
2356     bname = "trace_code_ftos {";
2357     tsize = 2;
2358     break;
2359   case btos:
2360     bname = "trace_code_btos {";
2361     tsize = 2;
2362     break;
2363   case ztos:
2364     bname = "trace_code_ztos {";
2365     tsize = 2;
2366     break;
2367   case ctos:
2368     bname = "trace_code_ctos {";
2369     tsize = 2;
2370     break;
2371   case stos:
2372     bname = "trace_code_stos {";
2373     tsize = 2;
2374     break;
2375   case itos:
2376     bname = "trace_code_itos {";
2377     tsize = 2;
2378     break;
2379   case ltos:
2380     bname = "trace_code_ltos {";
2381     tsize = 3;
2382     break;
2383   case atos:
2384     bname = "trace_code_atos {";
2385     tsize = 2;
2386     break;
2387   case vtos:
2388     // Note: In case of vtos, the topmost of stack value could be a int or doubl
2389     // In case of a double (2 slots) we won't see the 2nd stack value.
2390     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2391     bname = "trace_code_vtos {";
2392     tsize = 2;
2393 
2394     break;
2395   case dtos:
2396     bname = "trace_code_dtos {";
2397     tsize = 3;
2398     break;
2399   default:
2400     ShouldNotReachHere();
2401   }
2402   BLOCK_COMMENT(bname);
2403 
2404   // Support short-cut for TraceBytecodesAt.
2405   // Don't call into the VM if we don't want to trace to speed up things.
2406   Label Lskip_vm_call;
2407   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2408     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2409     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2410     __ ld(R11_scratch1, offs1, R11_scratch1);
2411     __ lwa(R12_scratch2, offs2, R12_scratch2);
2412     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2413     __ blt(CCR0, Lskip_vm_call);
2414   }
2415 
2416   __ push(state);
2417   // Load 2 topmost expression stack values.
2418   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2419   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2420   __ mflr(R31);
2421   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2422   __ mtlr(R31);
2423   __ pop(state);
2424 
2425   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2426     __ bind(Lskip_vm_call);
2427   }
2428   __ blr();
2429   BLOCK_COMMENT("} trace_code");
2430   return entry;
2431 }
2432 
2433 void TemplateInterpreterGenerator::count_bytecode() {
2434   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2435   __ lwz(R12_scratch2, offs, R11_scratch1);
2436   __ addi(R12_scratch2, R12_scratch2, 1);
2437   __ stw(R12_scratch2, offs, R11_scratch1);
2438 }
2439 
2440 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2441   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2442   __ lwz(R12_scratch2, offs, R11_scratch1);
2443   __ addi(R12_scratch2, R12_scratch2, 1);
2444   __ stw(R12_scratch2, offs, R11_scratch1);
2445 }
2446 
2447 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2448   const Register addr = R11_scratch1,
2449                  tmp  = R12_scratch2;
2450   // Get index, shift out old bytecode, bring in new bytecode, and store it.
2451   // _index = (_index >> log2_number_of_codes) |
2452   //          (bytecode << log2_number_of_codes);
2453   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2454   __ lwz(tmp, offs1, addr);
2455   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2456   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2457   __ stw(tmp, offs1, addr);
2458 
2459   // Bump bucket contents.
2460   // _counters[_index] ++;
2461   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2462   __ sldi(tmp, tmp, LogBytesPerInt);
2463   __ add(addr, tmp, addr);
2464   __ lwz(tmp, offs2, addr);
2465   __ addi(tmp, tmp, 1);
2466   __ stw(tmp, offs2, addr);
2467 }
2468 
2469 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2470   // Call a little run-time stub to avoid blow-up for each bytecode.
2471   // The run-time runtime saves the right registers, depending on
2472   // the tosca in-state for the given template.
2473 
2474   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2475          "entry must have been generated");
2476 
2477   // Note: we destroy LR here.
2478   __ bl(Interpreter::trace_code(t->tos_in()));
2479 }
2480 
2481 void TemplateInterpreterGenerator::stop_interpreter_at() {
2482   Label L;
2483   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2484   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2485   __ ld(R11_scratch1, offs1, R11_scratch1);
2486   __ lwa(R12_scratch2, offs2, R12_scratch2);
2487   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2488   __ bne(CCR0, L);
2489   __ illtrap();
2490   __ bind(L);
2491 }
2492 
2493 #endif // !PRODUCT