1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "nativeInst_ppc.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/icache.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/g1CollectedHeap.inline.hpp"
  45 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  46 #include "gc/g1/heapRegion.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 #ifdef COMPILER2
  49 #include "opto/intrinsicnode.hpp"
  50 #endif
  51 
  52 #ifdef PRODUCT
  53 #define BLOCK_COMMENT(str) // nothing
  54 #else
  55 #define BLOCK_COMMENT(str) block_comment(str)
  56 #endif
  57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  58 
  59 #ifdef ASSERT
  60 // On RISC, there's no benefit to verifying instruction boundaries.
  61 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  62 #endif
  63 
  64 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
  65   assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
  66   if (Assembler::is_simm(si31, 16)) {
  67     ld(d, si31, a);
  68     if (emit_filler_nop) nop();
  69   } else {
  70     const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
  71     const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
  72     addis(d, a, hi);
  73     ld(d, lo, d);
  74   }
  75 }
  76 
  77 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
  78   assert_different_registers(d, a);
  79   ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
  80 }
  81 
  82 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
  83                                       size_t size_in_bytes, bool is_signed) {
  84   switch (size_in_bytes) {
  85   case  8:              ld(dst, offs, base);                         break;
  86   case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
  87   case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
  88   case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
  89   default:  ShouldNotReachHere();
  90   }
  91 }
  92 
  93 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
  94                                        size_t size_in_bytes) {
  95   switch (size_in_bytes) {
  96   case  8:  std(dst, offs, base); break;
  97   case  4:  stw(dst, offs, base); break;
  98   case  2:  sth(dst, offs, base); break;
  99   case  1:  stb(dst, offs, base); break;
 100   default:  ShouldNotReachHere();
 101   }
 102 }
 103 
 104 void MacroAssembler::align(int modulus, int max, int rem) {
 105   int padding = (rem + modulus - (offset() % modulus)) % modulus;
 106   if (padding > max) return;
 107   for (int c = (padding >> 2); c > 0; --c) { nop(); }
 108 }
 109 
 110 // Issue instructions that calculate given TOC from global TOC.
 111 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
 112                                                        bool add_relocation, bool emit_dummy_addr) {
 113   int offset = -1;
 114   if (emit_dummy_addr) {
 115     offset = -128; // dummy address
 116   } else if (addr != (address)(intptr_t)-1) {
 117     offset = MacroAssembler::offset_to_global_toc(addr);
 118   }
 119 
 120   if (hi16) {
 121     addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
 122   }
 123   if (lo16) {
 124     if (add_relocation) {
 125       // Relocate at the addi to avoid confusion with a load from the method's TOC.
 126       relocate(internal_word_Relocation::spec(addr));
 127     }
 128     addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
 129   }
 130 }
 131 
 132 int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
 133   const int offset = MacroAssembler::offset_to_global_toc(addr);
 134 
 135   const address inst2_addr = a;
 136   const int inst2 = *(int *)inst2_addr;
 137 
 138   // The relocation points to the second instruction, the addi,
 139   // and the addi reads and writes the same register dst.
 140   const int dst = inv_rt_field(inst2);
 141   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 142 
 143   // Now, find the preceding addis which writes to dst.
 144   int inst1 = 0;
 145   address inst1_addr = inst2_addr - BytesPerInstWord;
 146   while (inst1_addr >= bound) {
 147     inst1 = *(int *) inst1_addr;
 148     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 149       // Stop, found the addis which writes dst.
 150       break;
 151     }
 152     inst1_addr -= BytesPerInstWord;
 153   }
 154 
 155   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 156   set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
 157   set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
 158   return (int)((intptr_t)addr - (intptr_t)inst1_addr);
 159 }
 160 
 161 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
 162   const address inst2_addr = a;
 163   const int inst2 = *(int *)inst2_addr;
 164 
 165   // The relocation points to the second instruction, the addi,
 166   // and the addi reads and writes the same register dst.
 167   const int dst = inv_rt_field(inst2);
 168   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 169 
 170   // Now, find the preceding addis which writes to dst.
 171   int inst1 = 0;
 172   address inst1_addr = inst2_addr - BytesPerInstWord;
 173   while (inst1_addr >= bound) {
 174     inst1 = *(int *) inst1_addr;
 175     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 176       // stop, found the addis which writes dst
 177       break;
 178     }
 179     inst1_addr -= BytesPerInstWord;
 180   }
 181 
 182   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 183 
 184   int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
 185   // -1 is a special case
 186   if (offset == -1) {
 187     return (address)(intptr_t)-1;
 188   } else {
 189     return global_toc() + offset;
 190   }
 191 }
 192 
 193 #ifdef _LP64
 194 // Patch compressed oops or klass constants.
 195 // Assembler sequence is
 196 // 1) compressed oops:
 197 //    lis  rx = const.hi
 198 //    ori rx = rx | const.lo
 199 // 2) compressed klass:
 200 //    lis  rx = const.hi
 201 //    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
 202 //    ori rx = rx | const.lo
 203 // Clrldi will be passed by.
 204 int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
 205   assert(UseCompressedOops, "Should only patch compressed oops");
 206 
 207   const address inst2_addr = a;
 208   const int inst2 = *(int *)inst2_addr;
 209 
 210   // The relocation points to the second instruction, the ori,
 211   // and the ori reads and writes the same register dst.
 212   const int dst = inv_rta_field(inst2);
 213   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 214   // Now, find the preceding addis which writes to dst.
 215   int inst1 = 0;
 216   address inst1_addr = inst2_addr - BytesPerInstWord;
 217   bool inst1_found = false;
 218   while (inst1_addr >= bound) {
 219     inst1 = *(int *)inst1_addr;
 220     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
 221     inst1_addr -= BytesPerInstWord;
 222   }
 223   assert(inst1_found, "inst is not lis");
 224 
 225   int xc = (data >> 16) & 0xffff;
 226   int xd = (data >>  0) & 0xffff;
 227 
 228   set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
 229   set_imm((int *)inst2_addr,        (xd)); // unsigned int
 230   return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr);
 231 }
 232 
 233 // Get compressed oop or klass constant.
 234 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
 235   assert(UseCompressedOops, "Should only patch compressed oops");
 236 
 237   const address inst2_addr = a;
 238   const int inst2 = *(int *)inst2_addr;
 239 
 240   // The relocation points to the second instruction, the ori,
 241   // and the ori reads and writes the same register dst.
 242   const int dst = inv_rta_field(inst2);
 243   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 244   // Now, find the preceding lis which writes to dst.
 245   int inst1 = 0;
 246   address inst1_addr = inst2_addr - BytesPerInstWord;
 247   bool inst1_found = false;
 248 
 249   while (inst1_addr >= bound) {
 250     inst1 = *(int *) inst1_addr;
 251     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
 252     inst1_addr -= BytesPerInstWord;
 253   }
 254   assert(inst1_found, "inst is not lis");
 255 
 256   uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
 257   uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
 258 
 259   return (int) (xl | xh);
 260 }
 261 #endif // _LP64
 262 
 263 // Returns true if successful.
 264 bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
 265                                                 Register toc, bool fixed_size) {
 266   int toc_offset = 0;
 267   // Use RelocationHolder::none for the constant pool entry, otherwise
 268   // we will end up with a failing NativeCall::verify(x) where x is
 269   // the address of the constant pool entry.
 270   // FIXME: We should insert relocation information for oops at the constant
 271   // pool entries instead of inserting it at the loads; patching of a constant
 272   // pool entry should be less expensive.
 273   address const_address = address_constant((address)a.value(), RelocationHolder::none);
 274   if (const_address == NULL) { return false; } // allocation failure
 275   // Relocate at the pc of the load.
 276   relocate(a.rspec());
 277   toc_offset = (int)(const_address - code()->consts()->start());
 278   ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
 279   return true;
 280 }
 281 
 282 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
 283   const address inst1_addr = a;
 284   const int inst1 = *(int *)inst1_addr;
 285 
 286    // The relocation points to the ld or the addis.
 287    return (is_ld(inst1)) ||
 288           (is_addis(inst1) && inv_ra_field(inst1) != 0);
 289 }
 290 
 291 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
 292   assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
 293 
 294   const address inst1_addr = a;
 295   const int inst1 = *(int *)inst1_addr;
 296 
 297   if (is_ld(inst1)) {
 298     return inv_d1_field(inst1);
 299   } else if (is_addis(inst1)) {
 300     const int dst = inv_rt_field(inst1);
 301 
 302     // Now, find the succeeding ld which reads and writes to dst.
 303     address inst2_addr = inst1_addr + BytesPerInstWord;
 304     int inst2 = 0;
 305     while (true) {
 306       inst2 = *(int *) inst2_addr;
 307       if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
 308         // Stop, found the ld which reads and writes dst.
 309         break;
 310       }
 311       inst2_addr += BytesPerInstWord;
 312     }
 313     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
 314   }
 315   ShouldNotReachHere();
 316   return 0;
 317 }
 318 
 319 // Get the constant from a `load_const' sequence.
 320 long MacroAssembler::get_const(address a) {
 321   assert(is_load_const_at(a), "not a load of a constant");
 322   const int *p = (const int*) a;
 323   unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
 324   if (is_ori(*(p+1))) {
 325     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
 326     x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
 327     x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
 328   } else if (is_lis(*(p+1))) {
 329     x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
 330     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
 331     x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
 332   } else {
 333     ShouldNotReachHere();
 334     return (long) 0;
 335   }
 336   return (long) x;
 337 }
 338 
 339 // Patch the 64 bit constant of a `load_const' sequence. This is a low
 340 // level procedure. It neither flushes the instruction cache nor is it
 341 // mt safe.
 342 void MacroAssembler::patch_const(address a, long x) {
 343   assert(is_load_const_at(a), "not a load of a constant");
 344   int *p = (int*) a;
 345   if (is_ori(*(p+1))) {
 346     set_imm(0 + p, (x >> 48) & 0xffff);
 347     set_imm(1 + p, (x >> 32) & 0xffff);
 348     set_imm(3 + p, (x >> 16) & 0xffff);
 349     set_imm(4 + p, x & 0xffff);
 350   } else if (is_lis(*(p+1))) {
 351     set_imm(0 + p, (x >> 48) & 0xffff);
 352     set_imm(2 + p, (x >> 32) & 0xffff);
 353     set_imm(1 + p, (x >> 16) & 0xffff);
 354     set_imm(3 + p, x & 0xffff);
 355   } else {
 356     ShouldNotReachHere();
 357   }
 358 }
 359 
 360 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
 361   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 362   int index = oop_recorder()->allocate_metadata_index(obj);
 363   RelocationHolder rspec = metadata_Relocation::spec(index);
 364   return AddressLiteral((address)obj, rspec);
 365 }
 366 
 367 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
 368   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 369   int index = oop_recorder()->find_index(obj);
 370   RelocationHolder rspec = metadata_Relocation::spec(index);
 371   return AddressLiteral((address)obj, rspec);
 372 }
 373 
 374 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
 375   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 376   int oop_index = oop_recorder()->allocate_oop_index(obj);
 377   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 378 }
 379 
 380 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
 381   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 382   int oop_index = oop_recorder()->find_index(obj);
 383   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 384 }
 385 
 386 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 387                                                       Register tmp, int offset) {
 388   intptr_t value = *delayed_value_addr;
 389   if (value != 0) {
 390     return RegisterOrConstant(value + offset);
 391   }
 392 
 393   // Load indirectly to solve generation ordering problem.
 394   // static address, no relocation
 395   int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
 396   ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
 397 
 398   if (offset != 0) {
 399     addi(tmp, tmp, offset);
 400   }
 401 
 402   return RegisterOrConstant(tmp);
 403 }
 404 
 405 #ifndef PRODUCT
 406 void MacroAssembler::pd_print_patched_instruction(address branch) {
 407   Unimplemented(); // TODO: PPC port
 408 }
 409 #endif // ndef PRODUCT
 410 
 411 // Conditional far branch for destinations encodable in 24+2 bits.
 412 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
 413 
 414   // If requested by flag optimize, relocate the bc_far as a
 415   // runtime_call and prepare for optimizing it when the code gets
 416   // relocated.
 417   if (optimize == bc_far_optimize_on_relocate) {
 418     relocate(relocInfo::runtime_call_type);
 419   }
 420 
 421   // variant 2:
 422   //
 423   //    b!cxx SKIP
 424   //    bxx   DEST
 425   //  SKIP:
 426   //
 427 
 428   const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 429                                                 opposite_bcond(inv_boint_bcond(boint)));
 430 
 431   // We emit two branches.
 432   // First, a conditional branch which jumps around the far branch.
 433   const address not_taken_pc = pc() + 2 * BytesPerInstWord;
 434   const address bc_pc        = pc();
 435   bc(opposite_boint, biint, not_taken_pc);
 436 
 437   const int bc_instr = *(int*)bc_pc;
 438   assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
 439   assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
 440   assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
 441                                      opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
 442          "postcondition");
 443   assert(biint == inv_bi_field(bc_instr), "postcondition");
 444 
 445   // Second, an unconditional far branch which jumps to dest.
 446   // Note: target(dest) remembers the current pc (see CodeSection::target)
 447   //       and returns the current pc if the label is not bound yet; when
 448   //       the label gets bound, the unconditional far branch will be patched.
 449   const address target_pc = target(dest);
 450   const address b_pc  = pc();
 451   b(target_pc);
 452 
 453   assert(not_taken_pc == pc(),                     "postcondition");
 454   assert(dest.is_bound() || target_pc == b_pc, "postcondition");
 455 }
 456 
 457 // 1 or 2 instructions
 458 void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
 459   if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
 460     bc(boint, biint, dest);
 461   } else {
 462     bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
 463   }
 464 }
 465 
 466 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
 467   return is_bc_far_variant1_at(instruction_addr) ||
 468          is_bc_far_variant2_at(instruction_addr) ||
 469          is_bc_far_variant3_at(instruction_addr);
 470 }
 471 
 472 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
 473   if (is_bc_far_variant1_at(instruction_addr)) {
 474     const address instruction_1_addr = instruction_addr;
 475     const int instruction_1 = *(int*)instruction_1_addr;
 476     return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
 477   } else if (is_bc_far_variant2_at(instruction_addr)) {
 478     const address instruction_2_addr = instruction_addr + 4;
 479     return bxx_destination(instruction_2_addr);
 480   } else if (is_bc_far_variant3_at(instruction_addr)) {
 481     return instruction_addr + 8;
 482   }
 483   // variant 4 ???
 484   ShouldNotReachHere();
 485   return NULL;
 486 }
 487 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
 488 
 489   if (is_bc_far_variant3_at(instruction_addr)) {
 490     // variant 3, far cond branch to the next instruction, already patched to nops:
 491     //
 492     //    nop
 493     //    endgroup
 494     //  SKIP/DEST:
 495     //
 496     return;
 497   }
 498 
 499   // first, extract boint and biint from the current branch
 500   int boint = 0;
 501   int biint = 0;
 502 
 503   ResourceMark rm;
 504   const int code_size = 2 * BytesPerInstWord;
 505   CodeBuffer buf(instruction_addr, code_size);
 506   MacroAssembler masm(&buf);
 507   if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
 508     // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
 509     masm.nop();
 510     masm.endgroup();
 511   } else {
 512     if (is_bc_far_variant1_at(instruction_addr)) {
 513       // variant 1, the 1st instruction contains the destination address:
 514       //
 515       //    bcxx  DEST
 516       //    nop
 517       //
 518       const int instruction_1 = *(int*)(instruction_addr);
 519       boint = inv_bo_field(instruction_1);
 520       biint = inv_bi_field(instruction_1);
 521     } else if (is_bc_far_variant2_at(instruction_addr)) {
 522       // variant 2, the 2nd instruction contains the destination address:
 523       //
 524       //    b!cxx SKIP
 525       //    bxx   DEST
 526       //  SKIP:
 527       //
 528       const int instruction_1 = *(int*)(instruction_addr);
 529       boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
 530           opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
 531       biint = inv_bi_field(instruction_1);
 532     } else {
 533       // variant 4???
 534       ShouldNotReachHere();
 535     }
 536 
 537     // second, set the new branch destination and optimize the code
 538     if (dest != instruction_addr + 4 && // the bc_far is still unbound!
 539         masm.is_within_range_of_bcxx(dest, instruction_addr)) {
 540       // variant 1:
 541       //
 542       //    bcxx  DEST
 543       //    nop
 544       //
 545       masm.bc(boint, biint, dest);
 546       masm.nop();
 547     } else {
 548       // variant 2:
 549       //
 550       //    b!cxx SKIP
 551       //    bxx   DEST
 552       //  SKIP:
 553       //
 554       const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 555                                                     opposite_bcond(inv_boint_bcond(boint)));
 556       const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
 557       masm.bc(opposite_boint, biint, not_taken_pc);
 558       masm.b(dest);
 559     }
 560   }
 561   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 562 }
 563 
 564 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
 565 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
 566   // get current pc
 567   uint64_t start_pc = (uint64_t) pc();
 568 
 569   const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
 570   const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first
 571 
 572   // relocate here
 573   if (rt != relocInfo::none) {
 574     relocate(rt);
 575   }
 576 
 577   if ( ReoptimizeCallSequences &&
 578        (( link && is_within_range_of_b(dest, pc_of_bl)) ||
 579         (!link && is_within_range_of_b(dest, pc_of_b)))) {
 580     // variant 2:
 581     // Emit an optimized, pc-relative call/jump.
 582 
 583     if (link) {
 584       // some padding
 585       nop();
 586       nop();
 587       nop();
 588       nop();
 589       nop();
 590       nop();
 591 
 592       // do the call
 593       assert(pc() == pc_of_bl, "just checking");
 594       bl(dest, relocInfo::none);
 595     } else {
 596       // do the jump
 597       assert(pc() == pc_of_b, "just checking");
 598       b(dest, relocInfo::none);
 599 
 600       // some padding
 601       nop();
 602       nop();
 603       nop();
 604       nop();
 605       nop();
 606       nop();
 607     }
 608 
 609     // Assert that we can identify the emitted call/jump.
 610     assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
 611            "can't identify emitted call");
 612   } else {
 613     // variant 1:
 614     mr(R0, R11);  // spill R11 -> R0.
 615 
 616     // Load the destination address into CTR,
 617     // calculate destination relative to global toc.
 618     calculate_address_from_global_toc(R11, dest, true, true, false);
 619 
 620     mtctr(R11);
 621     mr(R11, R0);  // spill R11 <- R0.
 622     nop();
 623 
 624     // do the call/jump
 625     if (link) {
 626       bctrl();
 627     } else{
 628       bctr();
 629     }
 630     // Assert that we can identify the emitted call/jump.
 631     assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
 632            "can't identify emitted call");
 633   }
 634 
 635   // Assert that we can identify the emitted call/jump.
 636   assert(is_bxx64_patchable_at((address)start_pc, link),
 637          "can't identify emitted call");
 638   assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
 639          "wrong encoding of dest address");
 640 }
 641 
 642 // Identify a bxx64_patchable instruction.
 643 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
 644   return is_bxx64_patchable_variant1b_at(instruction_addr, link)
 645     //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
 646       || is_bxx64_patchable_variant2_at(instruction_addr, link);
 647 }
 648 
 649 // Does the call64_patchable instruction use a pc-relative encoding of
 650 // the call destination?
 651 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
 652   // variant 2 is pc-relative
 653   return is_bxx64_patchable_variant2_at(instruction_addr, link);
 654 }
 655 
 656 // Identify variant 1.
 657 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
 658   unsigned int* instr = (unsigned int*) instruction_addr;
 659   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 660       && is_mtctr(instr[5]) // mtctr
 661     && is_load_const_at(instruction_addr);
 662 }
 663 
 664 // Identify variant 1b: load destination relative to global toc.
 665 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
 666   unsigned int* instr = (unsigned int*) instruction_addr;
 667   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 668     && is_mtctr(instr[3]) // mtctr
 669     && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
 670 }
 671 
 672 // Identify variant 2.
 673 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
 674   unsigned int* instr = (unsigned int*) instruction_addr;
 675   if (link) {
 676     return is_bl (instr[6])  // bl dest is last
 677       && is_nop(instr[0])  // nop
 678       && is_nop(instr[1])  // nop
 679       && is_nop(instr[2])  // nop
 680       && is_nop(instr[3])  // nop
 681       && is_nop(instr[4])  // nop
 682       && is_nop(instr[5]); // nop
 683   } else {
 684     return is_b  (instr[0])  // b  dest is first
 685       && is_nop(instr[1])  // nop
 686       && is_nop(instr[2])  // nop
 687       && is_nop(instr[3])  // nop
 688       && is_nop(instr[4])  // nop
 689       && is_nop(instr[5])  // nop
 690       && is_nop(instr[6]); // nop
 691   }
 692 }
 693 
 694 // Set dest address of a bxx64_patchable instruction.
 695 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
 696   ResourceMark rm;
 697   int code_size = MacroAssembler::bxx64_patchable_size;
 698   CodeBuffer buf(instruction_addr, code_size);
 699   MacroAssembler masm(&buf);
 700   masm.bxx64_patchable(dest, relocInfo::none, link);
 701   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 702 }
 703 
 704 // Get dest address of a bxx64_patchable instruction.
 705 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
 706   if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
 707     return (address) (unsigned long) get_const(instruction_addr);
 708   } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
 709     unsigned int* instr = (unsigned int*) instruction_addr;
 710     if (link) {
 711       const int instr_idx = 6; // bl is last
 712       int branchoffset = branch_destination(instr[instr_idx], 0);
 713       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 714     } else {
 715       const int instr_idx = 0; // b is first
 716       int branchoffset = branch_destination(instr[instr_idx], 0);
 717       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 718     }
 719   // Load dest relative to global toc.
 720   } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
 721     return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
 722                                                                instruction_addr);
 723   } else {
 724     ShouldNotReachHere();
 725     return NULL;
 726   }
 727 }
 728 
 729 // Uses ordering which corresponds to ABI:
 730 //    _savegpr0_14:  std  r14,-144(r1)
 731 //    _savegpr0_15:  std  r15,-136(r1)
 732 //    _savegpr0_16:  std  r16,-128(r1)
 733 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
 734   std(R14, offset, dst);   offset += 8;
 735   std(R15, offset, dst);   offset += 8;
 736   std(R16, offset, dst);   offset += 8;
 737   std(R17, offset, dst);   offset += 8;
 738   std(R18, offset, dst);   offset += 8;
 739   std(R19, offset, dst);   offset += 8;
 740   std(R20, offset, dst);   offset += 8;
 741   std(R21, offset, dst);   offset += 8;
 742   std(R22, offset, dst);   offset += 8;
 743   std(R23, offset, dst);   offset += 8;
 744   std(R24, offset, dst);   offset += 8;
 745   std(R25, offset, dst);   offset += 8;
 746   std(R26, offset, dst);   offset += 8;
 747   std(R27, offset, dst);   offset += 8;
 748   std(R28, offset, dst);   offset += 8;
 749   std(R29, offset, dst);   offset += 8;
 750   std(R30, offset, dst);   offset += 8;
 751   std(R31, offset, dst);   offset += 8;
 752 
 753   stfd(F14, offset, dst);   offset += 8;
 754   stfd(F15, offset, dst);   offset += 8;
 755   stfd(F16, offset, dst);   offset += 8;
 756   stfd(F17, offset, dst);   offset += 8;
 757   stfd(F18, offset, dst);   offset += 8;
 758   stfd(F19, offset, dst);   offset += 8;
 759   stfd(F20, offset, dst);   offset += 8;
 760   stfd(F21, offset, dst);   offset += 8;
 761   stfd(F22, offset, dst);   offset += 8;
 762   stfd(F23, offset, dst);   offset += 8;
 763   stfd(F24, offset, dst);   offset += 8;
 764   stfd(F25, offset, dst);   offset += 8;
 765   stfd(F26, offset, dst);   offset += 8;
 766   stfd(F27, offset, dst);   offset += 8;
 767   stfd(F28, offset, dst);   offset += 8;
 768   stfd(F29, offset, dst);   offset += 8;
 769   stfd(F30, offset, dst);   offset += 8;
 770   stfd(F31, offset, dst);
 771 }
 772 
 773 // Uses ordering which corresponds to ABI:
 774 //    _restgpr0_14:  ld   r14,-144(r1)
 775 //    _restgpr0_15:  ld   r15,-136(r1)
 776 //    _restgpr0_16:  ld   r16,-128(r1)
 777 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
 778   ld(R14, offset, src);   offset += 8;
 779   ld(R15, offset, src);   offset += 8;
 780   ld(R16, offset, src);   offset += 8;
 781   ld(R17, offset, src);   offset += 8;
 782   ld(R18, offset, src);   offset += 8;
 783   ld(R19, offset, src);   offset += 8;
 784   ld(R20, offset, src);   offset += 8;
 785   ld(R21, offset, src);   offset += 8;
 786   ld(R22, offset, src);   offset += 8;
 787   ld(R23, offset, src);   offset += 8;
 788   ld(R24, offset, src);   offset += 8;
 789   ld(R25, offset, src);   offset += 8;
 790   ld(R26, offset, src);   offset += 8;
 791   ld(R27, offset, src);   offset += 8;
 792   ld(R28, offset, src);   offset += 8;
 793   ld(R29, offset, src);   offset += 8;
 794   ld(R30, offset, src);   offset += 8;
 795   ld(R31, offset, src);   offset += 8;
 796 
 797   // FP registers
 798   lfd(F14, offset, src);   offset += 8;
 799   lfd(F15, offset, src);   offset += 8;
 800   lfd(F16, offset, src);   offset += 8;
 801   lfd(F17, offset, src);   offset += 8;
 802   lfd(F18, offset, src);   offset += 8;
 803   lfd(F19, offset, src);   offset += 8;
 804   lfd(F20, offset, src);   offset += 8;
 805   lfd(F21, offset, src);   offset += 8;
 806   lfd(F22, offset, src);   offset += 8;
 807   lfd(F23, offset, src);   offset += 8;
 808   lfd(F24, offset, src);   offset += 8;
 809   lfd(F25, offset, src);   offset += 8;
 810   lfd(F26, offset, src);   offset += 8;
 811   lfd(F27, offset, src);   offset += 8;
 812   lfd(F28, offset, src);   offset += 8;
 813   lfd(F29, offset, src);   offset += 8;
 814   lfd(F30, offset, src);   offset += 8;
 815   lfd(F31, offset, src);
 816 }
 817 
 818 // For verify_oops.
 819 void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
 820   std(R2,  offset, dst);   offset += 8;
 821   std(R3,  offset, dst);   offset += 8;
 822   std(R4,  offset, dst);   offset += 8;
 823   std(R5,  offset, dst);   offset += 8;
 824   std(R6,  offset, dst);   offset += 8;
 825   std(R7,  offset, dst);   offset += 8;
 826   std(R8,  offset, dst);   offset += 8;
 827   std(R9,  offset, dst);   offset += 8;
 828   std(R10, offset, dst);   offset += 8;
 829   std(R11, offset, dst);   offset += 8;
 830   std(R12, offset, dst);   offset += 8;
 831 
 832   stfd(F0, offset, dst);   offset += 8;
 833   stfd(F1, offset, dst);   offset += 8;
 834   stfd(F2, offset, dst);   offset += 8;
 835   stfd(F3, offset, dst);   offset += 8;
 836   stfd(F4, offset, dst);   offset += 8;
 837   stfd(F5, offset, dst);   offset += 8;
 838   stfd(F6, offset, dst);   offset += 8;
 839   stfd(F7, offset, dst);   offset += 8;
 840   stfd(F8, offset, dst);   offset += 8;
 841   stfd(F9, offset, dst);   offset += 8;
 842   stfd(F10, offset, dst);  offset += 8;
 843   stfd(F11, offset, dst);  offset += 8;
 844   stfd(F12, offset, dst);  offset += 8;
 845   stfd(F13, offset, dst);
 846 }
 847 
 848 // For verify_oops.
 849 void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
 850   ld(R2,  offset, src);   offset += 8;
 851   ld(R3,  offset, src);   offset += 8;
 852   ld(R4,  offset, src);   offset += 8;
 853   ld(R5,  offset, src);   offset += 8;
 854   ld(R6,  offset, src);   offset += 8;
 855   ld(R7,  offset, src);   offset += 8;
 856   ld(R8,  offset, src);   offset += 8;
 857   ld(R9,  offset, src);   offset += 8;
 858   ld(R10, offset, src);   offset += 8;
 859   ld(R11, offset, src);   offset += 8;
 860   ld(R12, offset, src);   offset += 8;
 861 
 862   lfd(F0, offset, src);   offset += 8;
 863   lfd(F1, offset, src);   offset += 8;
 864   lfd(F2, offset, src);   offset += 8;
 865   lfd(F3, offset, src);   offset += 8;
 866   lfd(F4, offset, src);   offset += 8;
 867   lfd(F5, offset, src);   offset += 8;
 868   lfd(F6, offset, src);   offset += 8;
 869   lfd(F7, offset, src);   offset += 8;
 870   lfd(F8, offset, src);   offset += 8;
 871   lfd(F9, offset, src);   offset += 8;
 872   lfd(F10, offset, src);  offset += 8;
 873   lfd(F11, offset, src);  offset += 8;
 874   lfd(F12, offset, src);  offset += 8;
 875   lfd(F13, offset, src);
 876 }
 877 
 878 void MacroAssembler::save_LR_CR(Register tmp) {
 879   mfcr(tmp);
 880   std(tmp, _abi(cr), R1_SP);
 881   mflr(tmp);
 882   std(tmp, _abi(lr), R1_SP);
 883   // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
 884 }
 885 
 886 void MacroAssembler::restore_LR_CR(Register tmp) {
 887   assert(tmp != R1_SP, "must be distinct");
 888   ld(tmp, _abi(lr), R1_SP);
 889   mtlr(tmp);
 890   ld(tmp, _abi(cr), R1_SP);
 891   mtcr(tmp);
 892 }
 893 
 894 address MacroAssembler::get_PC_trash_LR(Register result) {
 895   Label L;
 896   bl(L);
 897   bind(L);
 898   address lr_pc = pc();
 899   mflr(result);
 900   return lr_pc;
 901 }
 902 
 903 void MacroAssembler::resize_frame(Register offset, Register tmp) {
 904 #ifdef ASSERT
 905   assert_different_registers(offset, tmp, R1_SP);
 906   andi_(tmp, offset, frame::alignment_in_bytes-1);
 907   asm_assert_eq("resize_frame: unaligned", 0x204);
 908 #endif
 909 
 910   // tmp <- *(SP)
 911   ld(tmp, _abi(callers_sp), R1_SP);
 912   // addr <- SP + offset;
 913   // *(addr) <- tmp;
 914   // SP <- addr
 915   stdux(tmp, R1_SP, offset);
 916 }
 917 
 918 void MacroAssembler::resize_frame(int offset, Register tmp) {
 919   assert(is_simm(offset, 16), "too big an offset");
 920   assert_different_registers(tmp, R1_SP);
 921   assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
 922   // tmp <- *(SP)
 923   ld(tmp, _abi(callers_sp), R1_SP);
 924   // addr <- SP + offset;
 925   // *(addr) <- tmp;
 926   // SP <- addr
 927   stdu(tmp, offset, R1_SP);
 928 }
 929 
 930 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
 931   // (addr == tmp1) || (addr == tmp2) is allowed here!
 932   assert(tmp1 != tmp2, "must be distinct");
 933 
 934   // compute offset w.r.t. current stack pointer
 935   // tmp_1 <- addr - SP (!)
 936   subf(tmp1, R1_SP, addr);
 937 
 938   // atomically update SP keeping back link.
 939   resize_frame(tmp1/* offset */, tmp2/* tmp */);
 940 }
 941 
 942 void MacroAssembler::push_frame(Register bytes, Register tmp) {
 943 #ifdef ASSERT
 944   assert(bytes != R0, "r0 not allowed here");
 945   andi_(R0, bytes, frame::alignment_in_bytes-1);
 946   asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
 947 #endif
 948   neg(tmp, bytes);
 949   stdux(R1_SP, R1_SP, tmp);
 950 }
 951 
 952 // Push a frame of size `bytes'.
 953 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
 954   long offset = align_addr(bytes, frame::alignment_in_bytes);
 955   if (is_simm(-offset, 16)) {
 956     stdu(R1_SP, -offset, R1_SP);
 957   } else {
 958     load_const_optimized(tmp, -offset);
 959     stdux(R1_SP, R1_SP, tmp);
 960   }
 961 }
 962 
 963 // Push a frame of size `bytes' plus abi_reg_args on top.
 964 void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
 965   push_frame(bytes + frame::abi_reg_args_size, tmp);
 966 }
 967 
 968 // Setup up a new C frame with a spill area for non-volatile GPRs and
 969 // additional space for local variables.
 970 void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
 971                                                       Register tmp) {
 972   push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
 973 }
 974 
 975 // Pop current C frame.
 976 void MacroAssembler::pop_frame() {
 977   ld(R1_SP, _abi(callers_sp), R1_SP);
 978 }
 979 
 980 #if defined(ABI_ELFv2)
 981 address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
 982   // TODO(asmundak): make sure the caller uses R12 as function descriptor
 983   // most of the times.
 984   if (R12 != r_function_entry) {
 985     mr(R12, r_function_entry);
 986   }
 987   mtctr(R12);
 988   // Do a call or a branch.
 989   if (and_link) {
 990     bctrl();
 991   } else {
 992     bctr();
 993   }
 994   _last_calls_return_pc = pc();
 995 
 996   return _last_calls_return_pc;
 997 }
 998 
 999 // Call a C function via a function descriptor and use full C
1000 // calling conventions. Updates and returns _last_calls_return_pc.
1001 address MacroAssembler::call_c(Register r_function_entry) {
1002   return branch_to(r_function_entry, /*and_link=*/true);
1003 }
1004 
1005 // For tail calls: only branch, don't link, so callee returns to caller of this function.
1006 address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
1007   return branch_to(r_function_entry, /*and_link=*/false);
1008 }
1009 
1010 address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
1011   load_const(R12, function_entry, R0);
1012   return branch_to(R12,  /*and_link=*/true);
1013 }
1014 
1015 #else
1016 // Generic version of a call to C function via a function descriptor
1017 // with variable support for C calling conventions (TOC, ENV, etc.).
1018 // Updates and returns _last_calls_return_pc.
1019 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
1020                                   bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
1021   // we emit standard ptrgl glue code here
1022   assert((function_descriptor != R0), "function_descriptor cannot be R0");
1023 
1024   // retrieve necessary entries from the function descriptor
1025   ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
1026   mtctr(R0);
1027 
1028   if (load_toc_of_callee) {
1029     ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
1030   }
1031   if (load_env_of_callee) {
1032     ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
1033   } else if (load_toc_of_callee) {
1034     li(R11, 0);
1035   }
1036 
1037   // do a call or a branch
1038   if (and_link) {
1039     bctrl();
1040   } else {
1041     bctr();
1042   }
1043   _last_calls_return_pc = pc();
1044 
1045   return _last_calls_return_pc;
1046 }
1047 
1048 // Call a C function via a function descriptor and use full C calling
1049 // conventions.
1050 // We don't use the TOC in generated code, so there is no need to save
1051 // and restore its value.
1052 address MacroAssembler::call_c(Register fd) {
1053   return branch_to(fd, /*and_link=*/true,
1054                        /*save toc=*/false,
1055                        /*restore toc=*/false,
1056                        /*load toc=*/true,
1057                        /*load env=*/true);
1058 }
1059 
1060 address MacroAssembler::call_c_and_return_to_caller(Register fd) {
1061   return branch_to(fd, /*and_link=*/false,
1062                        /*save toc=*/false,
1063                        /*restore toc=*/false,
1064                        /*load toc=*/true,
1065                        /*load env=*/true);
1066 }
1067 
1068 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
1069   if (rt != relocInfo::none) {
1070     // this call needs to be relocatable
1071     if (!ReoptimizeCallSequences
1072         || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1073         || fd == NULL   // support code-size estimation
1074         || !fd->is_friend_function()
1075         || fd->entry() == NULL) {
1076       // it's not a friend function as defined by class FunctionDescriptor,
1077       // so do a full call-c here.
1078       load_const(R11, (address)fd, R0);
1079 
1080       bool has_env = (fd != NULL && fd->env() != NULL);
1081       return branch_to(R11, /*and_link=*/true,
1082                             /*save toc=*/false,
1083                             /*restore toc=*/false,
1084                             /*load toc=*/true,
1085                             /*load env=*/has_env);
1086     } else {
1087       // It's a friend function. Load the entry point and don't care about
1088       // toc and env. Use an optimizable call instruction, but ensure the
1089       // same code-size as in the case of a non-friend function.
1090       nop();
1091       nop();
1092       nop();
1093       bl64_patchable(fd->entry(), rt);
1094       _last_calls_return_pc = pc();
1095       return _last_calls_return_pc;
1096     }
1097   } else {
1098     // This call does not need to be relocatable, do more aggressive
1099     // optimizations.
1100     if (!ReoptimizeCallSequences
1101       || !fd->is_friend_function()) {
1102       // It's not a friend function as defined by class FunctionDescriptor,
1103       // so do a full call-c here.
1104       load_const(R11, (address)fd, R0);
1105       return branch_to(R11, /*and_link=*/true,
1106                             /*save toc=*/false,
1107                             /*restore toc=*/false,
1108                             /*load toc=*/true,
1109                             /*load env=*/true);
1110     } else {
1111       // it's a friend function, load the entry point and don't care about
1112       // toc and env.
1113       address dest = fd->entry();
1114       if (is_within_range_of_b(dest, pc())) {
1115         bl(dest);
1116       } else {
1117         bl64_patchable(dest, rt);
1118       }
1119       _last_calls_return_pc = pc();
1120       return _last_calls_return_pc;
1121     }
1122   }
1123 }
1124 
1125 // Call a C function.  All constants needed reside in TOC.
1126 //
1127 // Read the address to call from the TOC.
1128 // Read env from TOC, if fd specifies an env.
1129 // Read new TOC from TOC.
1130 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
1131                                          relocInfo::relocType rt, Register toc) {
1132   if (!ReoptimizeCallSequences
1133     || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1134     || !fd->is_friend_function()) {
1135     // It's not a friend function as defined by class FunctionDescriptor,
1136     // so do a full call-c here.
1137     assert(fd->entry() != NULL, "function must be linked");
1138 
1139     AddressLiteral fd_entry(fd->entry());
1140     bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
1141     mtctr(R11);
1142     if (fd->env() == NULL) {
1143       li(R11, 0);
1144       nop();
1145     } else {
1146       AddressLiteral fd_env(fd->env());
1147       success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
1148     }
1149     AddressLiteral fd_toc(fd->toc());
1150     // Set R2_TOC (load from toc)
1151     success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
1152     bctrl();
1153     _last_calls_return_pc = pc();
1154     if (!success) { return NULL; }
1155   } else {
1156     // It's a friend function, load the entry point and don't care about
1157     // toc and env. Use an optimizable call instruction, but ensure the
1158     // same code-size as in the case of a non-friend function.
1159     nop();
1160     bl64_patchable(fd->entry(), rt);
1161     _last_calls_return_pc = pc();
1162   }
1163   return _last_calls_return_pc;
1164 }
1165 #endif // ABI_ELFv2
1166 
1167 void MacroAssembler::call_VM_base(Register oop_result,
1168                                   Register last_java_sp,
1169                                   address  entry_point,
1170                                   bool     check_exceptions) {
1171   BLOCK_COMMENT("call_VM {");
1172   // Determine last_java_sp register.
1173   if (!last_java_sp->is_valid()) {
1174     last_java_sp = R1_SP;
1175   }
1176   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
1177 
1178   // ARG1 must hold thread address.
1179   mr(R3_ARG1, R16_thread);
1180 #if defined(ABI_ELFv2)
1181   address return_pc = call_c(entry_point, relocInfo::none);
1182 #else
1183   address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
1184 #endif
1185 
1186   reset_last_Java_frame();
1187 
1188   // Check for pending exceptions.
1189   if (check_exceptions) {
1190     // We don't check for exceptions here.
1191     ShouldNotReachHere();
1192   }
1193 
1194   // Get oop result if there is one and reset the value in the thread.
1195   if (oop_result->is_valid()) {
1196     get_vm_result(oop_result);
1197   }
1198 
1199   _last_calls_return_pc = return_pc;
1200   BLOCK_COMMENT("} call_VM");
1201 }
1202 
1203 void MacroAssembler::call_VM_leaf_base(address entry_point) {
1204   BLOCK_COMMENT("call_VM_leaf {");
1205 #if defined(ABI_ELFv2)
1206   call_c(entry_point, relocInfo::none);
1207 #else
1208   call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
1209 #endif
1210   BLOCK_COMMENT("} call_VM_leaf");
1211 }
1212 
1213 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1214   call_VM_base(oop_result, noreg, entry_point, check_exceptions);
1215 }
1216 
1217 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
1218                              bool check_exceptions) {
1219   // R3_ARG1 is reserved for the thread.
1220   mr_if_needed(R4_ARG2, arg_1);
1221   call_VM(oop_result, entry_point, check_exceptions);
1222 }
1223 
1224 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
1225                              bool check_exceptions) {
1226   // R3_ARG1 is reserved for the thread
1227   mr_if_needed(R4_ARG2, arg_1);
1228   assert(arg_2 != R4_ARG2, "smashed argument");
1229   mr_if_needed(R5_ARG3, arg_2);
1230   call_VM(oop_result, entry_point, check_exceptions);
1231 }
1232 
1233 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
1234                              bool check_exceptions) {
1235   // R3_ARG1 is reserved for the thread
1236   mr_if_needed(R4_ARG2, arg_1);
1237   assert(arg_2 != R4_ARG2, "smashed argument");
1238   mr_if_needed(R5_ARG3, arg_2);
1239   mr_if_needed(R6_ARG4, arg_3);
1240   call_VM(oop_result, entry_point, check_exceptions);
1241 }
1242 
1243 void MacroAssembler::call_VM_leaf(address entry_point) {
1244   call_VM_leaf_base(entry_point);
1245 }
1246 
1247 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
1248   mr_if_needed(R3_ARG1, arg_1);
1249   call_VM_leaf(entry_point);
1250 }
1251 
1252 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
1253   mr_if_needed(R3_ARG1, arg_1);
1254   assert(arg_2 != R3_ARG1, "smashed argument");
1255   mr_if_needed(R4_ARG2, arg_2);
1256   call_VM_leaf(entry_point);
1257 }
1258 
1259 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1260   mr_if_needed(R3_ARG1, arg_1);
1261   assert(arg_2 != R3_ARG1, "smashed argument");
1262   mr_if_needed(R4_ARG2, arg_2);
1263   assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
1264   mr_if_needed(R5_ARG3, arg_3);
1265   call_VM_leaf(entry_point);
1266 }
1267 
1268 // Check whether instruction is a read access to the polling page
1269 // which was emitted by load_from_polling_page(..).
1270 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
1271                                                address* polling_address_ptr) {
1272   if (!is_ld(instruction))
1273     return false; // It's not a ld. Fail.
1274 
1275   int rt = inv_rt_field(instruction);
1276   int ra = inv_ra_field(instruction);
1277   int ds = inv_ds_field(instruction);
1278   if (!(ds == 0 && ra != 0 && rt == 0)) {
1279     return false; // It's not a ld(r0, X, ra). Fail.
1280   }
1281 
1282   if (!ucontext) {
1283     // Set polling address.
1284     if (polling_address_ptr != NULL) {
1285       *polling_address_ptr = NULL;
1286     }
1287     return true; // No ucontext given. Can't check value of ra. Assume true.
1288   }
1289 
1290 #ifdef LINUX
1291   // Ucontext given. Check that register ra contains the address of
1292   // the safepoing polling page.
1293   ucontext_t* uc = (ucontext_t*) ucontext;
1294   // Set polling address.
1295   address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
1296   if (polling_address_ptr != NULL) {
1297     *polling_address_ptr = addr;
1298   }
1299   return os::is_poll_address(addr);
1300 #else
1301   // Not on Linux, ucontext must be NULL.
1302   ShouldNotReachHere();
1303   return false;
1304 #endif
1305 }
1306 
1307 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
1308 #ifdef LINUX
1309   ucontext_t* uc = (ucontext_t*) ucontext;
1310 
1311   if (is_stwx(instruction) || is_stwux(instruction)) {
1312     int ra = inv_ra_field(instruction);
1313     int rb = inv_rb_field(instruction);
1314 
1315     // look up content of ra and rb in ucontext
1316     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1317     long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
1318     return os::is_memory_serialize_page(thread, ra_val+rb_val);
1319   } else if (is_stw(instruction) || is_stwu(instruction)) {
1320     int ra = inv_ra_field(instruction);
1321     int d1 = inv_d1_field(instruction);
1322 
1323     // look up content of ra in ucontext
1324     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1325     return os::is_memory_serialize_page(thread, ra_val+d1);
1326   } else {
1327     return false;
1328   }
1329 #else
1330   // workaround not needed on !LINUX :-)
1331   ShouldNotCallThis();
1332   return false;
1333 #endif
1334 }
1335 
1336 void MacroAssembler::bang_stack_with_offset(int offset) {
1337   // When increasing the stack, the old stack pointer will be written
1338   // to the new top of stack according to the PPC64 abi.
1339   // Therefore, stack banging is not necessary when increasing
1340   // the stack by <= os::vm_page_size() bytes.
1341   // When increasing the stack by a larger amount, this method is
1342   // called repeatedly to bang the intermediate pages.
1343 
1344   // Stack grows down, caller passes positive offset.
1345   assert(offset > 0, "must bang with positive offset");
1346 
1347   long stdoffset = -offset;
1348 
1349   if (is_simm(stdoffset, 16)) {
1350     // Signed 16 bit offset, a simple std is ok.
1351     if (UseLoadInstructionsForStackBangingPPC64) {
1352       ld(R0, (int)(signed short)stdoffset, R1_SP);
1353     } else {
1354       std(R0,(int)(signed short)stdoffset, R1_SP);
1355     }
1356   } else if (is_simm(stdoffset, 31)) {
1357     const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1358     const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1359 
1360     Register tmp = R11;
1361     addis(tmp, R1_SP, hi);
1362     if (UseLoadInstructionsForStackBangingPPC64) {
1363       ld(R0,  lo, tmp);
1364     } else {
1365       std(R0, lo, tmp);
1366     }
1367   } else {
1368     ShouldNotReachHere();
1369   }
1370 }
1371 
1372 // If instruction is a stack bang of the form
1373 //    std    R0,    x(Ry),       (see bang_stack_with_offset())
1374 //    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
1375 // or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
1376 // return the banged address. Otherwise, return 0.
1377 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
1378 #ifdef LINUX
1379   ucontext_t* uc = (ucontext_t*) ucontext;
1380   int rs = inv_rs_field(instruction);
1381   int ra = inv_ra_field(instruction);
1382   if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
1383       || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
1384       || (is_stdu(instruction) && rs == 1)) {
1385     int ds = inv_ds_field(instruction);
1386     // return banged address
1387     return ds+(address)uc->uc_mcontext.regs->gpr[ra];
1388   } else if (is_stdux(instruction) && rs == 1) {
1389     int rb = inv_rb_field(instruction);
1390     address sp = (address)uc->uc_mcontext.regs->gpr[1];
1391     long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
1392     return ra != 1 || rb_val >= 0 ? NULL         // not a stack bang
1393                                   : sp + rb_val; // banged address
1394   }
1395   return NULL; // not a stack bang
1396 #else
1397   // workaround not needed on !LINUX :-)
1398   ShouldNotCallThis();
1399   return NULL;
1400 #endif
1401 }
1402 
1403 void MacroAssembler::reserved_stack_check(Register return_pc) {
1404   // Test if reserved zone needs to be enabled.
1405   Label no_reserved_zone_enabling;
1406 
1407   ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
1408   cmpld(CCR0, R1_SP, R0);
1409   blt_predict_taken(CCR0, no_reserved_zone_enabling);
1410 
1411   // Enable reserved zone again, throw stack overflow exception.
1412   push_frame_reg_args(0, R0);
1413   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
1414   pop_frame();
1415   mtlr(return_pc);
1416   load_const_optimized(R0, StubRoutines::throw_delayed_StackOverflowError_entry());
1417   mtctr(R0);
1418   bctr();
1419 
1420   should_not_reach_here();
1421 
1422   bind(no_reserved_zone_enabling);
1423 }
1424 
1425 void MacroAssembler::getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
1426                                 bool cmpxchgx_hint) {
1427   Label retry;
1428   bind(retry);
1429   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1430   stdcx_(exchange_value, addr_base);
1431   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1432     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1433   } else {
1434     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1435   }
1436 }
1437 
1438 void MacroAssembler::getandaddd(Register dest_current_value, Register inc_value, Register addr_base,
1439                                 Register tmp, bool cmpxchgx_hint) {
1440   Label retry;
1441   bind(retry);
1442   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1443   add(tmp, dest_current_value, inc_value);
1444   stdcx_(tmp, addr_base);
1445   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1446     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1447   } else {
1448     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1449   }
1450 }
1451 
1452 // Word/sub-word atomic helper functions
1453 
1454 // Temps and addr_base are killed if size < 4 and processor does not support respective instructions.
1455 // Only signed types are supported with size < 4.
1456 // Atomic add always kills tmp1.
1457 void MacroAssembler::atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
1458                                                    Register addr_base, Register tmp1, Register tmp2, Register tmp3,
1459                                                    bool cmpxchgx_hint, bool is_add, int size) {
1460   // Sub-word instructions are available since Power 8.
1461   // For older processors, instruction_type != size holds, and we
1462   // emulate the sub-word instructions by constructing a 4-byte value
1463   // that leaves the other bytes unchanged.
1464   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1465 
1466   Label retry;
1467   Register shift_amount = noreg,
1468            val32 = dest_current_value,
1469            modval = is_add ? tmp1 : exchange_value;
1470 
1471   if (instruction_type != size) {
1472     assert_different_registers(tmp1, tmp2, tmp3, dest_current_value, exchange_value, addr_base);
1473     modval = tmp1;
1474     shift_amount = tmp2;
1475     val32 = tmp3;
1476     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1477 #ifdef VM_LITTLE_ENDIAN
1478     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1479     clrrdi(addr_base, addr_base, 2);
1480 #else
1481     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1482     clrrdi(addr_base, addr_base, 2);
1483     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1484 #endif
1485   }
1486 
1487   // atomic emulation loop
1488   bind(retry);
1489 
1490   switch (instruction_type) {
1491     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1492     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1493     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1494     default: ShouldNotReachHere();
1495   }
1496 
1497   if (instruction_type != size) {
1498     srw(dest_current_value, val32, shift_amount);
1499   }
1500 
1501   if (is_add) { add(modval, dest_current_value, exchange_value); }
1502 
1503   if (instruction_type != size) {
1504     // Transform exchange value such that the replacement can be done by one xor instruction.
1505     xorr(modval, dest_current_value, is_add ? modval : exchange_value);
1506     clrldi(modval, modval, (size == 1) ? 56 : 48);
1507     slw(modval, modval, shift_amount);
1508     xorr(modval, val32, modval);
1509   }
1510 
1511   switch (instruction_type) {
1512     case 4: stwcx_(modval, addr_base); break;
1513     case 2: sthcx_(modval, addr_base); break;
1514     case 1: stbcx_(modval, addr_base); break;
1515     default: ShouldNotReachHere();
1516   }
1517 
1518   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1519     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1520   } else {
1521     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1522   }
1523 
1524   // l?arx zero-extends, but Java wants byte/short values sign-extended.
1525   if (size == 1) {
1526     extsb(dest_current_value, dest_current_value);
1527   } else if (size == 2) {
1528     extsh(dest_current_value, dest_current_value);
1529   };
1530 }
1531 
1532 // Temps, addr_base and exchange_value are killed if size < 4 and processor does not support respective instructions.
1533 // Only signed types are supported with size < 4.
1534 void MacroAssembler::cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
1535                                        Register compare_value, Register exchange_value,
1536                                        Register addr_base, Register tmp1, Register tmp2,
1537                                        Label &retry, Label &failed, bool cmpxchgx_hint, int size) {
1538   // Sub-word instructions are available since Power 8.
1539   // For older processors, instruction_type != size holds, and we
1540   // emulate the sub-word instructions by constructing a 4-byte value
1541   // that leaves the other bytes unchanged.
1542   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1543 
1544   Register shift_amount = noreg,
1545            val32 = dest_current_value,
1546            modval = exchange_value;
1547 
1548   if (instruction_type != size) {
1549     assert_different_registers(tmp1, tmp2, dest_current_value, compare_value, exchange_value, addr_base);
1550     shift_amount = tmp1;
1551     val32 = tmp2;
1552     modval = tmp2;
1553     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1554 #ifdef VM_LITTLE_ENDIAN
1555     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1556     clrrdi(addr_base, addr_base, 2);
1557 #else
1558     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1559     clrrdi(addr_base, addr_base, 2);
1560     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1561 #endif
1562     // Transform exchange value such that the replacement can be done by one xor instruction.
1563     xorr(exchange_value, compare_value, exchange_value);
1564     clrldi(exchange_value, exchange_value, (size == 1) ? 56 : 48);
1565     slw(exchange_value, exchange_value, shift_amount);
1566   }
1567 
1568   // atomic emulation loop
1569   bind(retry);
1570 
1571   switch (instruction_type) {
1572     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1573     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1574     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1575     default: ShouldNotReachHere();
1576   }
1577 
1578   if (instruction_type != size) {
1579     srw(dest_current_value, val32, shift_amount);
1580   }
1581   if (size == 1) {
1582     extsb(dest_current_value, dest_current_value);
1583   } else if (size == 2) {
1584     extsh(dest_current_value, dest_current_value);
1585   };
1586 
1587   cmpw(flag, dest_current_value, compare_value);
1588   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1589     bne_predict_not_taken(flag, failed);
1590   } else {
1591     bne(                  flag, failed);
1592   }
1593   // branch to done  => (flag == ne), (dest_current_value != compare_value)
1594   // fall through    => (flag == eq), (dest_current_value == compare_value)
1595 
1596   if (instruction_type != size) {
1597     xorr(modval, val32, exchange_value);
1598   }
1599 
1600   switch (instruction_type) {
1601     case 4: stwcx_(modval, addr_base); break;
1602     case 2: sthcx_(modval, addr_base); break;
1603     case 1: stbcx_(modval, addr_base); break;
1604     default: ShouldNotReachHere();
1605   }
1606 }
1607 
1608 // CmpxchgX sets condition register to cmpX(current, compare).
1609 void MacroAssembler::cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
1610                                      Register compare_value, Register exchange_value,
1611                                      Register addr_base, Register tmp1, Register tmp2,
1612                                      int semantics, bool cmpxchgx_hint,
1613                                      Register int_flag_success, bool contention_hint, bool weak, int size) {
1614   Label retry;
1615   Label failed;
1616   Label done;
1617 
1618   // Save one branch if result is returned via register and
1619   // result register is different from the other ones.
1620   bool use_result_reg    = (int_flag_success != noreg);
1621   bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
1622                             int_flag_success != exchange_value && int_flag_success != addr_base &&
1623                             int_flag_success != tmp1 && int_flag_success != tmp2);
1624   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1625   assert(size == 1 || size == 2 || size == 4, "unsupported");
1626 
1627   if (use_result_reg && preset_result_reg) {
1628     li(int_flag_success, 0); // preset (assume cas failed)
1629   }
1630 
1631   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1632   if (contention_hint) { // Don't try to reserve if cmp fails.
1633     switch (size) {
1634       case 1: lbz(dest_current_value, 0, addr_base); extsb(dest_current_value, dest_current_value); break;
1635       case 2: lha(dest_current_value, 0, addr_base); break;
1636       case 4: lwz(dest_current_value, 0, addr_base); break;
1637       default: ShouldNotReachHere();
1638     }
1639     cmpw(flag, dest_current_value, compare_value);
1640     bne(flag, failed);
1641   }
1642 
1643   // release/fence semantics
1644   if (semantics & MemBarRel) {
1645     release();
1646   }
1647 
1648   cmpxchg_loop_body(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
1649                     retry, failed, cmpxchgx_hint, size);
1650   if (!weak || use_result_reg) {
1651     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1652       bne_predict_not_taken(CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1653     } else {
1654       bne(                  CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1655     }
1656   }
1657   // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)
1658 
1659   // Result in register (must do this at the end because int_flag_success can be the
1660   // same register as one above).
1661   if (use_result_reg) {
1662     li(int_flag_success, 1);
1663   }
1664 
1665   if (semantics & MemBarFenceAfter) {
1666     fence();
1667   } else if (semantics & MemBarAcq) {
1668     isync();
1669   }
1670 
1671   if (use_result_reg && !preset_result_reg) {
1672     b(done);
1673   }
1674 
1675   bind(failed);
1676   if (use_result_reg && !preset_result_reg) {
1677     li(int_flag_success, 0);
1678   }
1679 
1680   bind(done);
1681   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1682   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1683 }
1684 
1685 // Preforms atomic compare exchange:
1686 //   if (compare_value == *addr_base)
1687 //     *addr_base = exchange_value
1688 //     int_flag_success = 1;
1689 //   else
1690 //     int_flag_success = 0;
1691 //
1692 // ConditionRegister flag       = cmp(compare_value, *addr_base)
1693 // Register dest_current_value  = *addr_base
1694 // Register compare_value       Used to compare with value in memory
1695 // Register exchange_value      Written to memory if compare_value == *addr_base
1696 // Register addr_base           The memory location to compareXChange
1697 // Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
1698 //
1699 // To avoid the costly compare exchange the value is tested beforehand.
1700 // Several special cases exist to avoid that unnecessary information is generated.
1701 //
1702 void MacroAssembler::cmpxchgd(ConditionRegister flag,
1703                               Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
1704                               Register addr_base, int semantics, bool cmpxchgx_hint,
1705                               Register int_flag_success, Label* failed_ext, bool contention_hint, bool weak) {
1706   Label retry;
1707   Label failed_int;
1708   Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
1709   Label done;
1710 
1711   // Save one branch if result is returned via register and result register is different from the other ones.
1712   bool use_result_reg    = (int_flag_success!=noreg);
1713   bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
1714                             int_flag_success!=exchange_value && int_flag_success!=addr_base);
1715   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1716   assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
1717 
1718   if (use_result_reg && preset_result_reg) {
1719     li(int_flag_success, 0); // preset (assume cas failed)
1720   }
1721 
1722   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1723   if (contention_hint) { // Don't try to reserve if cmp fails.
1724     ld(dest_current_value, 0, addr_base);
1725     cmpd(flag, compare_value, dest_current_value);
1726     bne(flag, failed);
1727   }
1728 
1729   // release/fence semantics
1730   if (semantics & MemBarRel) {
1731     release();
1732   }
1733 
1734   // atomic emulation loop
1735   bind(retry);
1736 
1737   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1738   cmpd(flag, compare_value, dest_current_value);
1739   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1740     bne_predict_not_taken(flag, failed);
1741   } else {
1742     bne(                  flag, failed);
1743   }
1744 
1745   stdcx_(exchange_value, addr_base);
1746   if (!weak || use_result_reg || failed_ext) {
1747     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1748       bne_predict_not_taken(CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1749     } else {
1750       bne(                  CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1751     }
1752   }
1753 
1754   // result in register (must do this at the end because int_flag_success can be the same register as one above)
1755   if (use_result_reg) {
1756     li(int_flag_success, 1);
1757   }
1758 
1759   if (semantics & MemBarFenceAfter) {
1760     fence();
1761   } else if (semantics & MemBarAcq) {
1762     isync();
1763   }
1764 
1765   if (use_result_reg && !preset_result_reg) {
1766     b(done);
1767   }
1768 
1769   bind(failed_int);
1770   if (use_result_reg && !preset_result_reg) {
1771     li(int_flag_success, 0);
1772   }
1773 
1774   bind(done);
1775   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1776   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1777 }
1778 
1779 // Look up the method for a megamorphic invokeinterface call.
1780 // The target method is determined by <intf_klass, itable_index>.
1781 // The receiver klass is in recv_klass.
1782 // On success, the result will be in method_result, and execution falls through.
1783 // On failure, execution transfers to the given label.
1784 void MacroAssembler::lookup_interface_method(Register recv_klass,
1785                                              Register intf_klass,
1786                                              RegisterOrConstant itable_index,
1787                                              Register method_result,
1788                                              Register scan_temp,
1789                                              Register sethi_temp,
1790                                              Label& L_no_such_interface) {
1791   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
1792   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1793          "caller must use same register for non-constant itable index as for method");
1794 
1795   // Compute start of first itableOffsetEntry (which is at the end of the vtable).
1796   int vtable_base = in_bytes(Klass::vtable_start_offset());
1797   int itentry_off = itableMethodEntry::method_offset_in_bytes();
1798   int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
1799   int scan_step   = itableOffsetEntry::size() * wordSize;
1800   int log_vte_size= exact_log2(vtableEntry::size_in_bytes());
1801 
1802   lwz(scan_temp, in_bytes(Klass::vtable_length_offset()), recv_klass);
1803   // %%% We should store the aligned, prescaled offset in the klassoop.
1804   // Then the next several instructions would fold away.
1805 
1806   sldi(scan_temp, scan_temp, log_vte_size);
1807   addi(scan_temp, scan_temp, vtable_base);
1808   add(scan_temp, recv_klass, scan_temp);
1809 
1810   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1811   if (itable_index.is_register()) {
1812     Register itable_offset = itable_index.as_register();
1813     sldi(itable_offset, itable_offset, logMEsize);
1814     if (itentry_off) addi(itable_offset, itable_offset, itentry_off);
1815     add(recv_klass, itable_offset, recv_klass);
1816   } else {
1817     long itable_offset = (long)itable_index.as_constant();
1818     load_const_optimized(sethi_temp, (itable_offset<<logMEsize)+itentry_off); // static address, no relocation
1819     add(recv_klass, sethi_temp, recv_klass);
1820   }
1821 
1822   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
1823   //   if (scan->interface() == intf) {
1824   //     result = (klass + scan->offset() + itable_index);
1825   //   }
1826   // }
1827   Label search, found_method;
1828 
1829   for (int peel = 1; peel >= 0; peel--) {
1830     // %%%% Could load both offset and interface in one ldx, if they were
1831     // in the opposite order. This would save a load.
1832     ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
1833 
1834     // Check that this entry is non-null. A null entry means that
1835     // the receiver class doesn't implement the interface, and wasn't the
1836     // same as when the caller was compiled.
1837     cmpd(CCR0, method_result, intf_klass);
1838 
1839     if (peel) {
1840       beq(CCR0, found_method);
1841     } else {
1842       bne(CCR0, search);
1843       // (invert the test to fall through to found_method...)
1844     }
1845 
1846     if (!peel) break;
1847 
1848     bind(search);
1849 
1850     cmpdi(CCR0, method_result, 0);
1851     beq(CCR0, L_no_such_interface);
1852     addi(scan_temp, scan_temp, scan_step);
1853   }
1854 
1855   bind(found_method);
1856 
1857   // Got a hit.
1858   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
1859   lwz(scan_temp, ito_offset, scan_temp);
1860   ldx(method_result, scan_temp, recv_klass);
1861 }
1862 
1863 // virtual method calling
1864 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1865                                            RegisterOrConstant vtable_index,
1866                                            Register method_result) {
1867 
1868   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
1869 
1870   const int base = in_bytes(Klass::vtable_start_offset());
1871   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1872 
1873   if (vtable_index.is_register()) {
1874     sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
1875     add(recv_klass, vtable_index.as_register(), recv_klass);
1876   } else {
1877     addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
1878   }
1879   ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
1880 }
1881 
1882 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
1883 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1884                                                    Register super_klass,
1885                                                    Register temp1_reg,
1886                                                    Register temp2_reg,
1887                                                    Label* L_success,
1888                                                    Label* L_failure,
1889                                                    Label* L_slow_path,
1890                                                    RegisterOrConstant super_check_offset) {
1891 
1892   const Register check_cache_offset = temp1_reg;
1893   const Register cached_super       = temp2_reg;
1894 
1895   assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
1896 
1897   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1898   int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
1899 
1900   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1901   bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);
1902 
1903   Label L_fallthrough;
1904   int label_nulls = 0;
1905   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1906   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1907   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1908   assert(label_nulls <= 1 ||
1909          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
1910          "at most one NULL in the batch, usually");
1911 
1912   // If the pointers are equal, we are done (e.g., String[] elements).
1913   // This self-check enables sharing of secondary supertype arrays among
1914   // non-primary types such as array-of-interface. Otherwise, each such
1915   // type would need its own customized SSA.
1916   // We move this check to the front of the fast path because many
1917   // type checks are in fact trivially successful in this manner,
1918   // so we get a nicely predicted branch right at the start of the check.
1919   cmpd(CCR0, sub_klass, super_klass);
1920   beq(CCR0, *L_success);
1921 
1922   // Check the supertype display:
1923   if (must_load_sco) {
1924     // The super check offset is always positive...
1925     lwz(check_cache_offset, sco_offset, super_klass);
1926     super_check_offset = RegisterOrConstant(check_cache_offset);
1927     // super_check_offset is register.
1928     assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
1929   }
1930   // The loaded value is the offset from KlassOopDesc.
1931 
1932   ld(cached_super, super_check_offset, sub_klass);
1933   cmpd(CCR0, cached_super, super_klass);
1934 
1935   // This check has worked decisively for primary supers.
1936   // Secondary supers are sought in the super_cache ('super_cache_addr').
1937   // (Secondary supers are interfaces and very deeply nested subtypes.)
1938   // This works in the same check above because of a tricky aliasing
1939   // between the super_cache and the primary super display elements.
1940   // (The 'super_check_addr' can address either, as the case requires.)
1941   // Note that the cache is updated below if it does not help us find
1942   // what we need immediately.
1943   // So if it was a primary super, we can just fail immediately.
1944   // Otherwise, it's the slow path for us (no success at this point).
1945 
1946 #define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }
1947 
1948   if (super_check_offset.is_register()) {
1949     beq(CCR0, *L_success);
1950     cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
1951     if (L_failure == &L_fallthrough) {
1952       beq(CCR0, *L_slow_path);
1953     } else {
1954       bne(CCR0, *L_failure);
1955       FINAL_JUMP(*L_slow_path);
1956     }
1957   } else {
1958     if (super_check_offset.as_constant() == sc_offset) {
1959       // Need a slow path; fast failure is impossible.
1960       if (L_slow_path == &L_fallthrough) {
1961         beq(CCR0, *L_success);
1962       } else {
1963         bne(CCR0, *L_slow_path);
1964         FINAL_JUMP(*L_success);
1965       }
1966     } else {
1967       // No slow path; it's a fast decision.
1968       if (L_failure == &L_fallthrough) {
1969         beq(CCR0, *L_success);
1970       } else {
1971         bne(CCR0, *L_failure);
1972         FINAL_JUMP(*L_success);
1973       }
1974     }
1975   }
1976 
1977   bind(L_fallthrough);
1978 #undef FINAL_JUMP
1979 }
1980 
1981 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1982                                                    Register super_klass,
1983                                                    Register temp1_reg,
1984                                                    Register temp2_reg,
1985                                                    Label* L_success,
1986                                                    Register result_reg) {
1987   const Register array_ptr = temp1_reg; // current value from cache array
1988   const Register temp      = temp2_reg;
1989 
1990   assert_different_registers(sub_klass, super_klass, array_ptr, temp);
1991 
1992   int source_offset = in_bytes(Klass::secondary_supers_offset());
1993   int target_offset = in_bytes(Klass::secondary_super_cache_offset());
1994 
1995   int length_offset = Array<Klass*>::length_offset_in_bytes();
1996   int base_offset   = Array<Klass*>::base_offset_in_bytes();
1997 
1998   Label hit, loop, failure, fallthru;
1999 
2000   ld(array_ptr, source_offset, sub_klass);
2001 
2002   // TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
2003   lwz(temp, length_offset, array_ptr);
2004   cmpwi(CCR0, temp, 0);
2005   beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
2006 
2007   mtctr(temp); // load ctr
2008 
2009   bind(loop);
2010   // Oops in table are NO MORE compressed.
2011   ld(temp, base_offset, array_ptr);
2012   cmpd(CCR0, temp, super_klass);
2013   beq(CCR0, hit);
2014   addi(array_ptr, array_ptr, BytesPerWord);
2015   bdnz(loop);
2016 
2017   bind(failure);
2018   if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
2019   b(fallthru);
2020 
2021   bind(hit);
2022   std(super_klass, target_offset, sub_klass); // save result to cache
2023   if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
2024   if (L_success != NULL) { b(*L_success); }
2025   else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided
2026 
2027   bind(fallthru);
2028 }
2029 
2030 // Try fast path, then go to slow one if not successful
2031 void MacroAssembler::check_klass_subtype(Register sub_klass,
2032                          Register super_klass,
2033                          Register temp1_reg,
2034                          Register temp2_reg,
2035                          Label& L_success) {
2036   Label L_failure;
2037   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
2038   check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
2039   bind(L_failure); // Fallthru if not successful.
2040 }
2041 
2042 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
2043                                               Register temp_reg,
2044                                               Label& wrong_method_type) {
2045   assert_different_registers(mtype_reg, mh_reg, temp_reg);
2046   // Compare method type against that of the receiver.
2047   load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg);
2048   cmpd(CCR0, temp_reg, mtype_reg);
2049   bne(CCR0, wrong_method_type);
2050 }
2051 
2052 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2053                                                    Register temp_reg,
2054                                                    int extra_slot_offset) {
2055   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2056   int stackElementSize = Interpreter::stackElementSize;
2057   int offset = extra_slot_offset * stackElementSize;
2058   if (arg_slot.is_constant()) {
2059     offset += arg_slot.as_constant() * stackElementSize;
2060     return offset;
2061   } else {
2062     assert(temp_reg != noreg, "must specify");
2063     sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
2064     if (offset != 0)
2065       addi(temp_reg, temp_reg, offset);
2066     return temp_reg;
2067   }
2068 }
2069 
2070 // Supports temp2_reg = R0.
2071 void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
2072                                           Register mark_reg, Register temp_reg,
2073                                           Register temp2_reg, Label& done, Label* slow_case) {
2074   assert(UseBiasedLocking, "why call this otherwise?");
2075 
2076 #ifdef ASSERT
2077   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
2078 #endif
2079 
2080   Label cas_label;
2081 
2082   // Branch to done if fast path fails and no slow_case provided.
2083   Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
2084 
2085   // Biased locking
2086   // See whether the lock is currently biased toward our thread and
2087   // whether the epoch is still valid
2088   // Note that the runtime guarantees sufficient alignment of JavaThread
2089   // pointers to allow age to be placed into low bits
2090   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
2091          "biased locking makes assumptions about bit layout");
2092 
2093   if (PrintBiasedLockingStatistics) {
2094     load_const(temp2_reg, (address) BiasedLocking::total_entry_count_addr(), temp_reg);
2095     lwzx(temp_reg, temp2_reg);
2096     addi(temp_reg, temp_reg, 1);
2097     stwx(temp_reg, temp2_reg);
2098   }
2099 
2100   andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
2101   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2102   bne(cr_reg, cas_label);
2103 
2104   load_klass(temp_reg, obj_reg);
2105 
2106   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
2107   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2108   orr(temp_reg, R16_thread, temp_reg);
2109   xorr(temp_reg, mark_reg, temp_reg);
2110   andr(temp_reg, temp_reg, temp2_reg);
2111   cmpdi(cr_reg, temp_reg, 0);
2112   if (PrintBiasedLockingStatistics) {
2113     Label l;
2114     bne(cr_reg, l);
2115     load_const(temp2_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
2116     lwzx(mark_reg, temp2_reg);
2117     addi(mark_reg, mark_reg, 1);
2118     stwx(mark_reg, temp2_reg);
2119     // restore mark_reg
2120     ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2121     bind(l);
2122   }
2123   beq(cr_reg, done);
2124 
2125   Label try_revoke_bias;
2126   Label try_rebias;
2127 
2128   // At this point we know that the header has the bias pattern and
2129   // that we are not the bias owner in the current epoch. We need to
2130   // figure out more details about the state of the header in order to
2131   // know what operations can be legally performed on the object's
2132   // header.
2133 
2134   // If the low three bits in the xor result aren't clear, that means
2135   // the prototype header is no longer biased and we have to revoke
2136   // the bias on this object.
2137   andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2138   cmpwi(cr_reg, temp2_reg, 0);
2139   bne(cr_reg, try_revoke_bias);
2140 
2141   // Biasing is still enabled for this data type. See whether the
2142   // epoch of the current bias is still valid, meaning that the epoch
2143   // bits of the mark word are equal to the epoch bits of the
2144   // prototype header. (Note that the prototype header's epoch bits
2145   // only change at a safepoint.) If not, attempt to rebias the object
2146   // toward the current thread. Note that we must be absolutely sure
2147   // that the current epoch is invalid in order to do this because
2148   // otherwise the manipulations it performs on the mark word are
2149   // illegal.
2150 
2151   int shift_amount = 64 - markOopDesc::epoch_shift;
2152   // rotate epoch bits to right (little) end and set other bits to 0
2153   // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
2154   rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
2155   // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
2156   bne(CCR0, try_rebias);
2157 
2158   // The epoch of the current bias is still valid but we know nothing
2159   // about the owner; it might be set or it might be clear. Try to
2160   // acquire the bias of the object using an atomic operation. If this
2161   // fails we will go in to the runtime to revoke the object's bias.
2162   // Note that we first construct the presumed unbiased header so we
2163   // don't accidentally blow away another thread's valid bias.
2164   andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
2165                                 markOopDesc::age_mask_in_place |
2166                                 markOopDesc::epoch_mask_in_place));
2167   orr(temp_reg, R16_thread, mark_reg);
2168 
2169   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2170 
2171   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2172   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2173            /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2174            /*where=*/obj_reg,
2175            MacroAssembler::MemBarAcq,
2176            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2177            noreg, slow_case_int); // bail out if failed
2178 
2179   // If the biasing toward our thread failed, this means that
2180   // another thread succeeded in biasing it toward itself and we
2181   // need to revoke that bias. The revocation will occur in the
2182   // interpreter runtime in the slow case.
2183   if (PrintBiasedLockingStatistics) {
2184     load_const(temp2_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp_reg);
2185     lwzx(temp_reg, temp2_reg);
2186     addi(temp_reg, temp_reg, 1);
2187     stwx(temp_reg, temp2_reg);
2188   }
2189   b(done);
2190 
2191   bind(try_rebias);
2192   // At this point we know the epoch has expired, meaning that the
2193   // current "bias owner", if any, is actually invalid. Under these
2194   // circumstances _only_, we are allowed to use the current header's
2195   // value as the comparison value when doing the cas to acquire the
2196   // bias in the current epoch. In other words, we allow transfer of
2197   // the bias from one thread to another directly in this situation.
2198   load_klass(temp_reg, obj_reg);
2199   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2200   orr(temp2_reg, R16_thread, temp2_reg);
2201   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2202   orr(temp_reg, temp2_reg, temp_reg);
2203 
2204   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2205 
2206   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2207                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2208                  /*where=*/obj_reg,
2209                  MacroAssembler::MemBarAcq,
2210                  MacroAssembler::cmpxchgx_hint_acquire_lock(),
2211                  noreg, slow_case_int); // bail out if failed
2212 
2213   // If the biasing toward our thread failed, this means that
2214   // another thread succeeded in biasing it toward itself and we
2215   // need to revoke that bias. The revocation will occur in the
2216   // interpreter runtime in the slow case.
2217   if (PrintBiasedLockingStatistics) {
2218     load_const(temp2_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg);
2219     lwzx(temp_reg, temp2_reg);
2220     addi(temp_reg, temp_reg, 1);
2221     stwx(temp_reg, temp2_reg);
2222   }
2223   b(done);
2224 
2225   bind(try_revoke_bias);
2226   // The prototype mark in the klass doesn't have the bias bit set any
2227   // more, indicating that objects of this data type are not supposed
2228   // to be biased any more. We are going to try to reset the mark of
2229   // this object to the prototype value and fall through to the
2230   // CAS-based locking scheme. Note that if our CAS fails, it means
2231   // that another thread raced us for the privilege of revoking the
2232   // bias of this particular object, so it's okay to continue in the
2233   // normal locking code.
2234   load_klass(temp_reg, obj_reg);
2235   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2236   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2237   orr(temp_reg, temp_reg, temp2_reg);
2238 
2239   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2240 
2241   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2242   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2243                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2244                  /*where=*/obj_reg,
2245                  MacroAssembler::MemBarAcq,
2246                  MacroAssembler::cmpxchgx_hint_acquire_lock());
2247 
2248   // reload markOop in mark_reg before continuing with lightweight locking
2249   ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2250 
2251   // Fall through to the normal CAS-based lock, because no matter what
2252   // the result of the above CAS, some thread must have succeeded in
2253   // removing the bias bit from the object's header.
2254   if (PrintBiasedLockingStatistics) {
2255     Label l;
2256     bne(cr_reg, l);
2257     load_const(temp2_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg);
2258     lwzx(temp_reg, temp2_reg);
2259     addi(temp_reg, temp_reg, 1);
2260     stwx(temp_reg, temp2_reg);
2261     bind(l);
2262   }
2263 
2264   bind(cas_label);
2265 }
2266 
2267 void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
2268   // Check for biased locking unlock case, which is a no-op
2269   // Note: we do not have to check the thread ID for two reasons.
2270   // First, the interpreter checks for IllegalMonitorStateException at
2271   // a higher level. Second, if the bias was revoked while we held the
2272   // lock, the object could not be rebiased toward another thread, so
2273   // the bias bit would be clear.
2274 
2275   ld(temp_reg, 0, mark_addr);
2276   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2277 
2278   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2279   beq(cr_reg, done);
2280 }
2281 
2282 // allocation (for C1)
2283 void MacroAssembler::eden_allocate(
2284   Register obj,                      // result: pointer to object after successful allocation
2285   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2286   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2287   Register t1,                       // temp register
2288   Register t2,                       // temp register
2289   Label&   slow_case                 // continuation point if fast allocation fails
2290 ) {
2291   b(slow_case);
2292 }
2293 
2294 void MacroAssembler::tlab_allocate(
2295   Register obj,                      // result: pointer to object after successful allocation
2296   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2297   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2298   Register t1,                       // temp register
2299   Label&   slow_case                 // continuation point if fast allocation fails
2300 ) {
2301   // make sure arguments make sense
2302   assert_different_registers(obj, var_size_in_bytes, t1);
2303   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
2304   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
2305 
2306   const Register new_top = t1;
2307   //verify_tlab(); not implemented
2308 
2309   ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2310   ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
2311   if (var_size_in_bytes == noreg) {
2312     addi(new_top, obj, con_size_in_bytes);
2313   } else {
2314     add(new_top, obj, var_size_in_bytes);
2315   }
2316   cmpld(CCR0, new_top, R0);
2317   bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
2318 
2319 #ifdef ASSERT
2320   // make sure new free pointer is properly aligned
2321   {
2322     Label L;
2323     andi_(R0, new_top, MinObjAlignmentInBytesMask);
2324     beq(CCR0, L);
2325     stop("updated TLAB free is not properly aligned", 0x934);
2326     bind(L);
2327   }
2328 #endif // ASSERT
2329 
2330   // update the tlab top pointer
2331   std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2332   //verify_tlab(); not implemented
2333 }
2334 void MacroAssembler::tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case) {
2335   unimplemented("tlab_refill");
2336 }
2337 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2) {
2338   unimplemented("incr_allocated_bytes");
2339 }
2340 
2341 address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
2342                                              int insts_call_instruction_offset, Register Rtoc) {
2343   // Start the stub.
2344   address stub = start_a_stub(64);
2345   if (stub == NULL) { return NULL; } // CodeCache full: bail out
2346 
2347   // Create a trampoline stub relocation which relates this trampoline stub
2348   // with the call instruction at insts_call_instruction_offset in the
2349   // instructions code-section.
2350   relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
2351   const int stub_start_offset = offset();
2352 
2353   // For java_to_interp stubs we use R11_scratch1 as scratch register
2354   // and in call trampoline stubs we use R12_scratch2. This way we
2355   // can distinguish them (see is_NativeCallTrampolineStub_at()).
2356   Register reg_scratch = R12_scratch2;
2357 
2358   // Now, create the trampoline stub's code:
2359   // - load the TOC
2360   // - load the call target from the constant pool
2361   // - call
2362   if (Rtoc == noreg) {
2363     calculate_address_from_global_toc(reg_scratch, method_toc());
2364     Rtoc = reg_scratch;
2365   }
2366 
2367   ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
2368   mtctr(reg_scratch);
2369   bctr();
2370 
2371   const address stub_start_addr = addr_at(stub_start_offset);
2372 
2373   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
2374   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
2375          "encoded offset into the constant pool must match");
2376   // Trampoline_stub_size should be good.
2377   assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
2378   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
2379 
2380   // End the stub.
2381   end_a_stub();
2382   return stub;
2383 }
2384 
2385 // TM on PPC64.
2386 void MacroAssembler::atomic_inc_ptr(Register addr, Register result, int simm16) {
2387   Label retry;
2388   bind(retry);
2389   ldarx(result, addr, /*hint*/ false);
2390   addi(result, result, simm16);
2391   stdcx_(result, addr);
2392   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2393     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2394   } else {
2395     bne(                  CCR0, retry); // stXcx_ sets CCR0
2396   }
2397 }
2398 
2399 void MacroAssembler::atomic_ori_int(Register addr, Register result, int uimm16) {
2400   Label retry;
2401   bind(retry);
2402   lwarx(result, addr, /*hint*/ false);
2403   ori(result, result, uimm16);
2404   stwcx_(result, addr);
2405   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2406     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2407   } else {
2408     bne(                  CCR0, retry); // stXcx_ sets CCR0
2409   }
2410 }
2411 
2412 #if INCLUDE_RTM_OPT
2413 
2414 // Update rtm_counters based on abort status
2415 // input: abort_status
2416 //        rtm_counters (RTMLockingCounters*)
2417 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters_Reg) {
2418   // Mapping to keep PreciseRTMLockingStatistics similar to x86.
2419   // x86 ppc (! means inverted, ? means not the same)
2420   //  0   31  Set if abort caused by XABORT instruction.
2421   //  1  ! 7  If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set.
2422   //  2   13  Set if another logical processor conflicted with a memory address that was part of the transaction that aborted.
2423   //  3   10  Set if an internal buffer overflowed.
2424   //  4  ?12  Set if a debug breakpoint was hit.
2425   //  5  ?32  Set if an abort occurred during execution of a nested transaction.
2426   const  int tm_failure_bit[] = {Assembler::tm_tabort, // Note: Seems like signal handler sets this, too.
2427                                  Assembler::tm_failure_persistent, // inverted: transient
2428                                  Assembler::tm_trans_cf,
2429                                  Assembler::tm_footprint_of,
2430                                  Assembler::tm_non_trans_cf,
2431                                  Assembler::tm_suspended};
2432   const bool tm_failure_inv[] = {false, true, false, false, false, false};
2433   assert(sizeof(tm_failure_bit)/sizeof(int) == RTMLockingCounters::ABORT_STATUS_LIMIT, "adapt mapping!");
2434 
2435   const Register addr_Reg = R0;
2436   // Keep track of offset to where rtm_counters_Reg had pointed to.
2437   int counters_offs = RTMLockingCounters::abort_count_offset();
2438   addi(addr_Reg, rtm_counters_Reg, counters_offs);
2439   const Register temp_Reg = rtm_counters_Reg;
2440 
2441   //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
2442   ldx(temp_Reg, addr_Reg);
2443   addi(temp_Reg, temp_Reg, 1);
2444   stdx(temp_Reg, addr_Reg);
2445 
2446   if (PrintPreciseRTMLockingStatistics) {
2447     int counters_offs_delta = RTMLockingCounters::abortX_count_offset() - counters_offs;
2448 
2449     //mftexasr(abort_status); done by caller
2450     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
2451       counters_offs += counters_offs_delta;
2452       li(temp_Reg, counters_offs_delta); // can't use addi with R0
2453       add(addr_Reg, addr_Reg, temp_Reg); // point to next counter
2454       counters_offs_delta = sizeof(uintx);
2455 
2456       Label check_abort;
2457       rldicr_(temp_Reg, abort_status, tm_failure_bit[i], 0);
2458       if (tm_failure_inv[i]) {
2459         bne(CCR0, check_abort);
2460       } else {
2461         beq(CCR0, check_abort);
2462       }
2463       //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
2464       ldx(temp_Reg, addr_Reg);
2465       addi(temp_Reg, temp_Reg, 1);
2466       stdx(temp_Reg, addr_Reg);
2467       bind(check_abort);
2468     }
2469   }
2470   li(temp_Reg, -counters_offs); // can't use addi with R0
2471   add(rtm_counters_Reg, addr_Reg, temp_Reg); // restore
2472 }
2473 
2474 // Branch if (random & (count-1) != 0), count is 2^n
2475 // tmp and CR0 are killed
2476 void MacroAssembler::branch_on_random_using_tb(Register tmp, int count, Label& brLabel) {
2477   mftb(tmp);
2478   andi_(tmp, tmp, count-1);
2479   bne(CCR0, brLabel);
2480 }
2481 
2482 // Perform abort ratio calculation, set no_rtm bit if high ratio.
2483 // input:  rtm_counters_Reg (RTMLockingCounters* address) - KILLED
2484 void MacroAssembler::rtm_abort_ratio_calculation(Register rtm_counters_Reg,
2485                                                  RTMLockingCounters* rtm_counters,
2486                                                  Metadata* method_data) {
2487   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
2488 
2489   if (RTMLockingCalculationDelay > 0) {
2490     // Delay calculation.
2491     ld(rtm_counters_Reg, (RegisterOrConstant)(intptr_t)RTMLockingCounters::rtm_calculation_flag_addr());
2492     cmpdi(CCR0, rtm_counters_Reg, 0);
2493     beq(CCR0, L_done);
2494     load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2495   }
2496   // Abort ratio calculation only if abort_count > RTMAbortThreshold.
2497   //   Aborted transactions = abort_count * 100
2498   //   All transactions = total_count *  RTMTotalCountIncrRate
2499   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
2500   ld(R0, RTMLockingCounters::abort_count_offset(), rtm_counters_Reg);
2501   cmpdi(CCR0, R0, RTMAbortThreshold);
2502   blt(CCR0, L_check_always_rtm2);
2503   mulli(R0, R0, 100);
2504 
2505   const Register tmpReg = rtm_counters_Reg;
2506   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2507   mulli(tmpReg, tmpReg, RTMTotalCountIncrRate);
2508   mulli(tmpReg, tmpReg, RTMAbortRatio);
2509   cmpd(CCR0, R0, tmpReg);
2510   blt(CCR0, L_check_always_rtm1); // jump to reload
2511   if (method_data != NULL) {
2512     // Set rtm_state to "no rtm" in MDO.
2513     // Not using a metadata relocation. Method and Class Loader are kept alive anyway.
2514     // (See nmethod::metadata_do and CodeBuffer::finalize_oop_references.)
2515     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2516     atomic_ori_int(R0, tmpReg, NoRTM);
2517   }
2518   b(L_done);
2519 
2520   bind(L_check_always_rtm1);
2521   load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2522   bind(L_check_always_rtm2);
2523   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2524   int64_t thresholdValue = RTMLockingThreshold / RTMTotalCountIncrRate;
2525   if (is_simm(thresholdValue, 16)) {   // cmpdi can handle 16bit immediate only.
2526     cmpdi(CCR0, tmpReg, thresholdValue);
2527   } else {
2528     load_const_optimized(R0, thresholdValue);
2529     cmpd(CCR0, tmpReg, R0);
2530   }
2531   blt(CCR0, L_done);
2532   if (method_data != NULL) {
2533     // Set rtm_state to "always rtm" in MDO.
2534     // Not using a metadata relocation. See above.
2535     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2536     atomic_ori_int(R0, tmpReg, UseRTM);
2537   }
2538   bind(L_done);
2539 }
2540 
2541 // Update counters and perform abort ratio calculation.
2542 // input: abort_status_Reg
2543 void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register temp_Reg,
2544                                    RTMLockingCounters* rtm_counters,
2545                                    Metadata* method_data,
2546                                    bool profile_rtm) {
2547 
2548   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2549   // Update rtm counters based on state at abort.
2550   // Reads abort_status_Reg, updates flags.
2551   assert_different_registers(abort_status_Reg, temp_Reg);
2552   load_const_optimized(temp_Reg, (address)rtm_counters, R0);
2553   rtm_counters_update(abort_status_Reg, temp_Reg);
2554   if (profile_rtm) {
2555     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2556     rtm_abort_ratio_calculation(temp_Reg, rtm_counters, method_data);
2557   }
2558 }
2559 
2560 // Retry on abort if abort's status indicates non-persistent failure.
2561 // inputs: retry_count_Reg
2562 //       : abort_status_Reg
2563 // output: retry_count_Reg decremented by 1
2564 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg,
2565                                              Label& retryLabel, Label* checkRetry) {
2566   Label doneRetry;
2567   rldicr_(R0, abort_status_Reg, tm_failure_persistent, 0);
2568   bne(CCR0, doneRetry);
2569   if (checkRetry) { bind(*checkRetry); }
2570   addic_(retry_count_Reg, retry_count_Reg, -1);
2571   blt(CCR0, doneRetry);
2572   smt_yield(); // Can't use wait(). No permission (SIGILL).
2573   b(retryLabel);
2574   bind(doneRetry);
2575 }
2576 
2577 // Spin and retry if lock is busy.
2578 // inputs: owner_addr_Reg (monitor address)
2579 //       : retry_count_Reg
2580 // output: retry_count_Reg decremented by 1
2581 // CTR is killed
2582 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) {
2583   Label SpinLoop, doneRetry;
2584   addic_(retry_count_Reg, retry_count_Reg, -1);
2585   blt(CCR0, doneRetry);
2586 
2587   if (RTMSpinLoopCount > 1) {
2588     li(R0, RTMSpinLoopCount);
2589     mtctr(R0);
2590   }
2591 
2592   bind(SpinLoop);
2593   smt_yield(); // Can't use waitrsv(). No permission (SIGILL).
2594 
2595   if (RTMSpinLoopCount > 1) {
2596     bdz(retryLabel);
2597     ld(R0, 0, owner_addr_Reg);
2598     cmpdi(CCR0, R0, 0);
2599     bne(CCR0, SpinLoop);
2600   }
2601 
2602   b(retryLabel);
2603 
2604   bind(doneRetry);
2605 }
2606 
2607 // Use RTM for normal stack locks.
2608 // Input: objReg (object to lock)
2609 void MacroAssembler::rtm_stack_locking(ConditionRegister flag,
2610                                        Register obj, Register mark_word, Register tmp,
2611                                        Register retry_on_abort_count_Reg,
2612                                        RTMLockingCounters* stack_rtm_counters,
2613                                        Metadata* method_data, bool profile_rtm,
2614                                        Label& DONE_LABEL, Label& IsInflated) {
2615   assert(UseRTMForStackLocks, "why call this otherwise?");
2616   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2617   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2618 
2619   if (RTMRetryCount > 0) {
2620     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
2621     bind(L_rtm_retry);
2622   }
2623   andi_(R0, mark_word, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
2624   bne(CCR0, IsInflated);
2625 
2626   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2627     Label L_noincrement;
2628     if (RTMTotalCountIncrRate > 1) {
2629       branch_on_random_using_tb(tmp, (int)RTMTotalCountIncrRate, L_noincrement);
2630     }
2631     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
2632     load_const_optimized(tmp, (address)stack_rtm_counters->total_count_addr(), R0);
2633     //atomic_inc_ptr(tmp, /*temp, will be reloaded*/mark_word); We don't increment atomically
2634     ldx(mark_word, tmp);
2635     addi(mark_word, mark_word, 1);
2636     stdx(mark_word, tmp);
2637     bind(L_noincrement);
2638   }
2639   tbegin_();
2640   beq(CCR0, L_on_abort);
2641   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);         // Reload in transaction, conflicts need to be tracked.
2642   andi(R0, mark_word, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2643   cmpwi(flag, R0, markOopDesc::unlocked_value);                // bits = 001 unlocked
2644   beq(flag, DONE_LABEL);                                       // all done if unlocked
2645 
2646   if (UseRTMXendForLockBusy) {
2647     tend_();
2648     b(L_decrement_retry);
2649   } else {
2650     tabort_();
2651   }
2652   bind(L_on_abort);
2653   const Register abort_status_Reg = tmp;
2654   mftexasr(abort_status_Reg);
2655   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2656     rtm_profiling(abort_status_Reg, /*temp*/mark_word, stack_rtm_counters, method_data, profile_rtm);
2657   }
2658   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // reload
2659   if (RTMRetryCount > 0) {
2660     // Retry on lock abort if abort status is not permanent.
2661     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry, &L_decrement_retry);
2662   } else {
2663     bind(L_decrement_retry);
2664   }
2665 }
2666 
2667 // Use RTM for inflating locks
2668 // inputs: obj       (object to lock)
2669 //         mark_word (current header - KILLED)
2670 //         boxReg    (on-stack box address (displaced header location) - KILLED)
2671 void MacroAssembler::rtm_inflated_locking(ConditionRegister flag,
2672                                           Register obj, Register mark_word, Register boxReg,
2673                                           Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg,
2674                                           RTMLockingCounters* rtm_counters,
2675                                           Metadata* method_data, bool profile_rtm,
2676                                           Label& DONE_LABEL) {
2677   assert(UseRTMLocking, "why call this otherwise?");
2678   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2679   // Clean monitor_value bit to get valid pointer.
2680   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2681 
2682   // Store non-null, using boxReg instead of (intptr_t)markOopDesc::unused_mark().
2683   std(boxReg, BasicLock::displaced_header_offset_in_bytes(), boxReg);
2684   const Register tmpReg = boxReg;
2685   const Register owner_addr_Reg = mark_word;
2686   addi(owner_addr_Reg, mark_word, owner_offset);
2687 
2688   if (RTMRetryCount > 0) {
2689     load_const_optimized(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy.
2690     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort.
2691     bind(L_rtm_retry);
2692   }
2693   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2694     Label L_noincrement;
2695     if (RTMTotalCountIncrRate > 1) {
2696       branch_on_random_using_tb(R0, (int)RTMTotalCountIncrRate, L_noincrement);
2697     }
2698     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2699     load_const(R0, (address)rtm_counters->total_count_addr(), tmpReg);
2700     //atomic_inc_ptr(R0, tmpReg); We don't increment atomically
2701     ldx(tmpReg, R0);
2702     addi(tmpReg, tmpReg, 1);
2703     stdx(tmpReg, R0);
2704     bind(L_noincrement);
2705   }
2706   tbegin_();
2707   beq(CCR0, L_on_abort);
2708   // We don't reload mark word. Will only be reset at safepoint.
2709   ld(R0, 0, owner_addr_Reg); // Load in transaction, conflicts need to be tracked.
2710   cmpdi(flag, R0, 0);
2711   beq(flag, DONE_LABEL);
2712 
2713   if (UseRTMXendForLockBusy) {
2714     tend_();
2715     b(L_decrement_retry);
2716   } else {
2717     tabort_();
2718   }
2719   bind(L_on_abort);
2720   const Register abort_status_Reg = tmpReg;
2721   mftexasr(abort_status_Reg);
2722   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2723     rtm_profiling(abort_status_Reg, /*temp*/ owner_addr_Reg, rtm_counters, method_data, profile_rtm);
2724     // Restore owner_addr_Reg
2725     ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);
2726 #ifdef ASSERT
2727     andi_(R0, mark_word, markOopDesc::monitor_value);
2728     asm_assert_ne("must be inflated", 0xa754); // Deflating only allowed at safepoint.
2729 #endif
2730     addi(owner_addr_Reg, mark_word, owner_offset);
2731   }
2732   if (RTMRetryCount > 0) {
2733     // Retry on lock abort if abort status is not permanent.
2734     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
2735   }
2736 
2737   // Appears unlocked - try to swing _owner from null to non-null.
2738   cmpxchgd(flag, /*current val*/ R0, (intptr_t)0, /*new val*/ R16_thread, owner_addr_Reg,
2739            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2740            MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &L_decrement_retry, true);
2741 
2742   if (RTMRetryCount > 0) {
2743     // success done else retry
2744     b(DONE_LABEL);
2745     bind(L_decrement_retry);
2746     // Spin and retry if lock is busy.
2747     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, owner_addr_Reg, L_rtm_retry);
2748   } else {
2749     bind(L_decrement_retry);
2750   }
2751 }
2752 
2753 #endif //  INCLUDE_RTM_OPT
2754 
2755 // "The box" is the space on the stack where we copy the object mark.
2756 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
2757                                                Register temp, Register displaced_header, Register current_header,
2758                                                bool try_bias,
2759                                                RTMLockingCounters* rtm_counters,
2760                                                RTMLockingCounters* stack_rtm_counters,
2761                                                Metadata* method_data,
2762                                                bool use_rtm, bool profile_rtm) {
2763   assert_different_registers(oop, box, temp, displaced_header, current_header);
2764   assert(flag != CCR0, "bad condition register");
2765   Label cont;
2766   Label object_has_monitor;
2767   Label cas_failed;
2768 
2769   // Load markOop from object into displaced_header.
2770   ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
2771 
2772 
2773   // Always do locking in runtime.
2774   if (EmitSync & 0x01) {
2775     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2776     return;
2777   }
2778 
2779   if (try_bias) {
2780     biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
2781   }
2782 
2783 #if INCLUDE_RTM_OPT
2784   if (UseRTMForStackLocks && use_rtm) {
2785     rtm_stack_locking(flag, oop, displaced_header, temp, /*temp*/ current_header,
2786                       stack_rtm_counters, method_data, profile_rtm,
2787                       cont, object_has_monitor);
2788   }
2789 #endif // INCLUDE_RTM_OPT
2790 
2791   // Handle existing monitor.
2792   if ((EmitSync & 0x02) == 0) {
2793     // The object has an existing monitor iff (mark & monitor_value) != 0.
2794     andi_(temp, displaced_header, markOopDesc::monitor_value);
2795     bne(CCR0, object_has_monitor);
2796   }
2797 
2798   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
2799   ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
2800 
2801   // Load Compare Value application register.
2802 
2803   // Initialize the box. (Must happen before we update the object mark!)
2804   std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2805 
2806   // Must fence, otherwise, preceding store(s) may float below cmpxchg.
2807   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
2808   cmpxchgd(/*flag=*/flag,
2809            /*current_value=*/current_header,
2810            /*compare_value=*/displaced_header,
2811            /*exchange_value=*/box,
2812            /*where=*/oop,
2813            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2814            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2815            noreg,
2816            &cas_failed,
2817            /*check without membar and ldarx first*/true);
2818   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2819 
2820   // If the compare-and-exchange succeeded, then we found an unlocked
2821   // object and we have now locked it.
2822   b(cont);
2823 
2824   bind(cas_failed);
2825   // We did not see an unlocked object so try the fast recursive case.
2826 
2827   // Check if the owner is self by comparing the value in the markOop of object
2828   // (current_header) with the stack pointer.
2829   sub(current_header, current_header, R1_SP);
2830   load_const_optimized(temp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
2831 
2832   and_(R0/*==0?*/, current_header, temp);
2833   // If condition is true we are cont and hence we can store 0 as the
2834   // displaced header in the box, which indicates that it is a recursive lock.
2835   mcrf(flag,CCR0);
2836   std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
2837 
2838   // Handle existing monitor.
2839   if ((EmitSync & 0x02) == 0) {
2840     b(cont);
2841 
2842     bind(object_has_monitor);
2843     // The object's monitor m is unlocked iff m->owner == NULL,
2844     // otherwise m->owner may contain a thread or a stack address.
2845 
2846 #if INCLUDE_RTM_OPT
2847     // Use the same RTM locking code in 32- and 64-bit VM.
2848     if (use_rtm) {
2849       rtm_inflated_locking(flag, oop, displaced_header, box, temp, /*temp*/ current_header,
2850                            rtm_counters, method_data, profile_rtm, cont);
2851     } else {
2852 #endif // INCLUDE_RTM_OPT
2853 
2854     // Try to CAS m->owner from NULL to current thread.
2855     addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
2856     cmpxchgd(/*flag=*/flag,
2857              /*current_value=*/current_header,
2858              /*compare_value=*/(intptr_t)0,
2859              /*exchange_value=*/R16_thread,
2860              /*where=*/temp,
2861              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2862              MacroAssembler::cmpxchgx_hint_acquire_lock());
2863 
2864     // Store a non-null value into the box.
2865     std(box, BasicLock::displaced_header_offset_in_bytes(), box);
2866 
2867 #   ifdef ASSERT
2868     bne(flag, cont);
2869     // We have acquired the monitor, check some invariants.
2870     addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
2871     // Invariant 1: _recursions should be 0.
2872     //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
2873     asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
2874                             "monitor->_recursions should be 0", -1);
2875     // Invariant 2: OwnerIsThread shouldn't be 0.
2876     //assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
2877     //asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp,
2878     //                           "monitor->OwnerIsThread shouldn't be 0", -1);
2879 #   endif
2880 
2881 #if INCLUDE_RTM_OPT
2882     } // use_rtm()
2883 #endif
2884   }
2885 
2886   bind(cont);
2887   // flag == EQ indicates success
2888   // flag == NE indicates failure
2889 }
2890 
2891 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
2892                                                  Register temp, Register displaced_header, Register current_header,
2893                                                  bool try_bias, bool use_rtm) {
2894   assert_different_registers(oop, box, temp, displaced_header, current_header);
2895   assert(flag != CCR0, "bad condition register");
2896   Label cont;
2897   Label object_has_monitor;
2898 
2899   // Always do locking in runtime.
2900   if (EmitSync & 0x01) {
2901     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2902     return;
2903   }
2904 
2905   if (try_bias) {
2906     biased_locking_exit(flag, oop, current_header, cont);
2907   }
2908 
2909 #if INCLUDE_RTM_OPT
2910   if (UseRTMForStackLocks && use_rtm) {
2911     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2912     Label L_regular_unlock;
2913     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);         // fetch markword
2914     andi(R0, current_header, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2915     cmpwi(flag, R0, markOopDesc::unlocked_value);                     // bits = 001 unlocked
2916     bne(flag, L_regular_unlock);                                      // else RegularLock
2917     tend_();                                                          // otherwise end...
2918     b(cont);                                                          // ... and we're done
2919     bind(L_regular_unlock);
2920   }
2921 #endif
2922 
2923   // Find the lock address and load the displaced header from the stack.
2924   ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2925 
2926   // If the displaced header is 0, we have a recursive unlock.
2927   cmpdi(flag, displaced_header, 0);
2928   beq(flag, cont);
2929 
2930   // Handle existing monitor.
2931   if ((EmitSync & 0x02) == 0) {
2932     // The object has an existing monitor iff (mark & monitor_value) != 0.
2933     RTM_OPT_ONLY( if (!(UseRTMForStackLocks && use_rtm)) ) // skip load if already done
2934     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
2935     andi_(R0, current_header, markOopDesc::monitor_value);
2936     bne(CCR0, object_has_monitor);
2937   }
2938 
2939   // Check if it is still a light weight lock, this is is true if we see
2940   // the stack address of the basicLock in the markOop of the object.
2941   // Cmpxchg sets flag to cmpd(current_header, box).
2942   cmpxchgd(/*flag=*/flag,
2943            /*current_value=*/current_header,
2944            /*compare_value=*/box,
2945            /*exchange_value=*/displaced_header,
2946            /*where=*/oop,
2947            MacroAssembler::MemBarRel,
2948            MacroAssembler::cmpxchgx_hint_release_lock(),
2949            noreg,
2950            &cont);
2951 
2952   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2953 
2954   // Handle existing monitor.
2955   if ((EmitSync & 0x02) == 0) {
2956     b(cont);
2957 
2958     bind(object_has_monitor);
2959     addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
2960     ld(temp,             ObjectMonitor::owner_offset_in_bytes(), current_header);
2961 
2962     // It's inflated.
2963 #if INCLUDE_RTM_OPT
2964     if (use_rtm) {
2965       Label L_regular_inflated_unlock;
2966       // Clean monitor_value bit to get valid pointer
2967       cmpdi(flag, temp, 0);
2968       bne(flag, L_regular_inflated_unlock);
2969       tend_();
2970       b(cont);
2971       bind(L_regular_inflated_unlock);
2972     }
2973 #endif
2974 
2975     ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
2976     xorr(temp, R16_thread, temp);      // Will be 0 if we are the owner.
2977     orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
2978     cmpdi(flag, temp, 0);
2979     bne(flag, cont);
2980 
2981     ld(temp,             ObjectMonitor::EntryList_offset_in_bytes(), current_header);
2982     ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
2983     orr(temp, temp, displaced_header); // Will be 0 if both are 0.
2984     cmpdi(flag, temp, 0);
2985     bne(flag, cont);
2986     release();
2987     std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
2988   }
2989 
2990   bind(cont);
2991   // flag == EQ indicates success
2992   // flag == NE indicates failure
2993 }
2994 
2995 // Write serialization page so VM thread can do a pseudo remote membar.
2996 // We use the current thread pointer to calculate a thread specific
2997 // offset to write to within the page. This minimizes bus traffic
2998 // due to cache line collision.
2999 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
3000   srdi(tmp2, thread, os::get_serialize_page_shift_count());
3001 
3002   int mask = os::vm_page_size() - sizeof(int);
3003   if (Assembler::is_simm(mask, 16)) {
3004     andi(tmp2, tmp2, mask);
3005   } else {
3006     lis(tmp1, (int)((signed short) (mask >> 16)));
3007     ori(tmp1, tmp1, mask & 0x0000ffff);
3008     andr(tmp2, tmp2, tmp1);
3009   }
3010 
3011   load_const(tmp1, (long) os::get_memory_serialize_page());
3012   release();
3013   stwx(R0, tmp1, tmp2);
3014 }
3015 
3016 
3017 // GC barrier helper macros
3018 
3019 // Write the card table byte if needed.
3020 void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) {
3021   CardTableModRefBS* bs =
3022     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
3023   assert(bs->kind() == BarrierSet::CardTableForRS ||
3024          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3025 #ifdef ASSERT
3026   cmpdi(CCR0, Rnew_val, 0);
3027   asm_assert_ne("null oop not allowed", 0x321);
3028 #endif
3029   card_table_write(bs->byte_map_base, Rtmp, Rstore_addr);
3030 }
3031 
3032 // Write the card table byte.
3033 void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) {
3034   assert_different_registers(Robj, Rtmp, R0);
3035   load_const_optimized(Rtmp, (address)byte_map_base, R0);
3036   srdi(Robj, Robj, CardTableModRefBS::card_shift);
3037   li(R0, 0); // dirty
3038   if (UseConcMarkSweepGC) membar(Assembler::StoreStore);
3039   stbx(R0, Rtmp, Robj);
3040 }
3041 
3042 // Kills R31 if value is a volatile register.
3043 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame) {
3044   Label done;
3045   cmpdi(CCR0, value, 0);
3046   beq(CCR0, done);         // Use NULL as-is.
3047 
3048   clrrdi(tmp1, value, JNIHandles::weak_tag_size);
3049 #if INCLUDE_ALL_GCS
3050   if (UseG1GC) { andi_(tmp2, value, JNIHandles::weak_tag_mask); }
3051 #endif
3052   ld(value, 0, tmp1);      // Resolve (untagged) jobject.
3053 
3054 #if INCLUDE_ALL_GCS
3055   if (UseG1GC) {
3056     Label not_weak;
3057     beq(CCR0, not_weak);   // Test for jweak tag.
3058     verify_oop(value);
3059     g1_write_barrier_pre(noreg, // obj
3060                          noreg, // offset
3061                          value, // pre_val
3062                          tmp1, tmp2, needs_frame);
3063     bind(not_weak);
3064   }
3065 #endif // INCLUDE_ALL_GCS
3066   verify_oop(value);
3067   bind(done);
3068 }
3069 
3070 #if INCLUDE_ALL_GCS
3071 // General G1 pre-barrier generator.
3072 // Goal: record the previous value if it is not null.
3073 void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
3074                                           Register Rtmp1, Register Rtmp2, bool needs_frame) {
3075   Label runtime, filtered;
3076 
3077   // Is marking active?
3078   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3079     lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
3080   } else {
3081     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
3082     lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
3083   }
3084   cmpdi(CCR0, Rtmp1, 0);
3085   beq(CCR0, filtered);
3086 
3087   // Do we need to load the previous value?
3088   if (Robj != noreg) {
3089     // Load the previous value...
3090     if (UseCompressedOops) {
3091       lwz(Rpre_val, offset, Robj);
3092     } else {
3093       ld(Rpre_val, offset, Robj);
3094     }
3095     // Previous value has been loaded into Rpre_val.
3096   }
3097   assert(Rpre_val != noreg, "must have a real register");
3098 
3099   // Is the previous value null?
3100   cmpdi(CCR0, Rpre_val, 0);
3101   beq(CCR0, filtered);
3102 
3103   if (Robj != noreg && UseCompressedOops) {
3104     decode_heap_oop_not_null(Rpre_val);
3105   }
3106 
3107   // OK, it's not filtered, so we'll need to call enqueue. In the normal
3108   // case, pre_val will be a scratch G-reg, but there are some cases in
3109   // which it's an O-reg. In the first case, do a normal call. In the
3110   // latter, do a save here and call the frameless version.
3111 
3112   // Can we store original value in the thread's buffer?
3113   // Is index == 0?
3114   // (The index field is typed as size_t.)
3115   const Register Rbuffer = Rtmp1, Rindex = Rtmp2;
3116 
3117   ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
3118   cmpdi(CCR0, Rindex, 0);
3119   beq(CCR0, runtime); // If index == 0, goto runtime.
3120   ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_buf()), R16_thread);
3121 
3122   addi(Rindex, Rindex, -wordSize); // Decrement index.
3123   std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
3124 
3125   // Record the previous value.
3126   stdx(Rpre_val, Rbuffer, Rindex);
3127   b(filtered);
3128 
3129   bind(runtime);
3130 
3131   // May need to preserve LR. Also needed if current frame is not compatible with C calling convention.
3132   if (needs_frame) {
3133     save_LR_CR(Rtmp1);
3134     push_frame_reg_args(0, Rtmp2);
3135   }
3136 
3137   if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
3138   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread);
3139   if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore
3140 
3141   if (needs_frame) {
3142     pop_frame();
3143     restore_LR_CR(Rtmp1);
3144   }
3145 
3146   bind(filtered);
3147 }
3148 
3149 // General G1 post-barrier generator
3150 // Store cross-region card.
3151 void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) {
3152   Label runtime, filtered_int;
3153   Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int;
3154   assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2);
3155 
3156   G1SATBCardTableLoggingModRefBS* bs =
3157     barrier_set_cast<G1SATBCardTableLoggingModRefBS>(Universe::heap()->barrier_set());
3158 
3159   // Does store cross heap regions?
3160   if (G1RSBarrierRegionFilter) {
3161     xorr(Rtmp1, Rstore_addr, Rnew_val);
3162     srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
3163     beq(CCR0, filtered);
3164   }
3165 
3166   // Crosses regions, storing NULL?
3167 #ifdef ASSERT
3168   cmpdi(CCR0, Rnew_val, 0);
3169   asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete:
3170   //beq(CCR0, filtered);
3171 #endif
3172 
3173   // Storing region crossing non-NULL, is card already dirty?
3174   assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code");
3175   const Register Rcard_addr = Rtmp1;
3176   Register Rbase = Rtmp2;
3177   load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3);
3178 
3179   srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift);
3180 
3181   // Get the address of the card.
3182   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
3183   cmpwi(CCR0, Rtmp3, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3184   beq(CCR0, filtered);
3185 
3186   membar(Assembler::StoreLoad);
3187   lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);  // Reload after membar.
3188   cmpwi(CCR0, Rtmp3 /* card value */, CardTableModRefBS::dirty_card_val());
3189   beq(CCR0, filtered);
3190 
3191   // Storing a region crossing, non-NULL oop, card is clean.
3192   // Dirty card and log.
3193   li(Rtmp3, CardTableModRefBS::dirty_card_val());
3194   //release(); // G1: oops are allowed to get visible after dirty marking.
3195   stbx(Rtmp3, Rbase, Rcard_addr);
3196 
3197   add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
3198   Rbase = noreg; // end of lifetime
3199 
3200   const Register Rqueue_index = Rtmp2,
3201                  Rqueue_buf   = Rtmp3;
3202   ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
3203   cmpdi(CCR0, Rqueue_index, 0);
3204   beq(CCR0, runtime); // index == 0 then jump to runtime
3205   ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_buf()), R16_thread);
3206 
3207   addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
3208   std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
3209 
3210   stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
3211   b(filtered);
3212 
3213   bind(runtime);
3214 
3215   // Save the live input values.
3216   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
3217 
3218   bind(filtered_int);
3219 }
3220 #endif // INCLUDE_ALL_GCS
3221 
3222 // Values for last_Java_pc, and last_Java_sp must comply to the rules
3223 // in frame_ppc.hpp.
3224 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
3225   // Always set last_Java_pc and flags first because once last_Java_sp
3226   // is visible has_last_Java_frame is true and users will look at the
3227   // rest of the fields. (Note: flags should always be zero before we
3228   // get here so doesn't need to be set.)
3229 
3230   // Verify that last_Java_pc was zeroed on return to Java
3231   asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
3232                           "last_Java_pc not zeroed before leaving Java", 0x200);
3233 
3234   // When returning from calling out from Java mode the frame anchor's
3235   // last_Java_pc will always be set to NULL. It is set here so that
3236   // if we are doing a call to native (not VM) that we capture the
3237   // known pc and don't have to rely on the native call having a
3238   // standard frame linkage where we can find the pc.
3239   if (last_Java_pc != noreg)
3240     std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3241 
3242   // Set last_Java_sp last.
3243   std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3244 }
3245 
3246 void MacroAssembler::reset_last_Java_frame(void) {
3247   asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3248                              R16_thread, "SP was not set, still zero", 0x202);
3249 
3250   BLOCK_COMMENT("reset_last_Java_frame {");
3251   li(R0, 0);
3252 
3253   // _last_Java_sp = 0
3254   std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3255 
3256   // _last_Java_pc = 0
3257   std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3258   BLOCK_COMMENT("} reset_last_Java_frame");
3259 }
3260 
3261 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
3262   assert_different_registers(sp, tmp1);
3263 
3264   // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
3265   // TOP_IJAVA_FRAME_ABI.
3266   // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
3267   address entry = pc();
3268   load_const_optimized(tmp1, entry);
3269 
3270   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
3271 }
3272 
3273 void MacroAssembler::get_vm_result(Register oop_result) {
3274   // Read:
3275   //   R16_thread
3276   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3277   //
3278   // Updated:
3279   //   oop_result
3280   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3281 
3282   verify_thread();
3283 
3284   ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3285   li(R0, 0);
3286   std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3287 
3288   verify_oop(oop_result);
3289 }
3290 
3291 void MacroAssembler::get_vm_result_2(Register metadata_result) {
3292   // Read:
3293   //   R16_thread
3294   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3295   //
3296   // Updated:
3297   //   metadata_result
3298   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3299 
3300   ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3301   li(R0, 0);
3302   std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3303 }
3304 
3305 Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3306   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
3307   if (Universe::narrow_klass_base() != 0) {
3308     // Use dst as temp if it is free.
3309     sub_const_optimized(dst, current, Universe::narrow_klass_base(), R0);
3310     current = dst;
3311   }
3312   if (Universe::narrow_klass_shift() != 0) {
3313     srdi(dst, current, Universe::narrow_klass_shift());
3314     current = dst;
3315   }
3316   return current;
3317 }
3318 
3319 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
3320   if (UseCompressedClassPointers) {
3321     Register compressedKlass = encode_klass_not_null(ck, klass);
3322     stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
3323   } else {
3324     std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
3325   }
3326 }
3327 
3328 void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
3329   if (UseCompressedClassPointers) {
3330     if (val == noreg) {
3331       val = R0;
3332       li(val, 0);
3333     }
3334     stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
3335   }
3336 }
3337 
3338 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3339   if (!UseCompressedClassPointers) return 0;
3340   int num_instrs = 1;  // shift or move
3341   if (Universe::narrow_klass_base() != 0) num_instrs = 7;  // shift + load const + add
3342   return num_instrs * BytesPerInstWord;
3343 }
3344 
3345 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3346   assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
3347   if (src == noreg) src = dst;
3348   Register shifted_src = src;
3349   if (Universe::narrow_klass_shift() != 0 ||
3350       Universe::narrow_klass_base() == 0 && src != dst) {  // Move required.
3351     shifted_src = dst;
3352     sldi(shifted_src, src, Universe::narrow_klass_shift());
3353   }
3354   if (Universe::narrow_klass_base() != 0) {
3355     add_const_optimized(dst, shifted_src, Universe::narrow_klass_base(), R0);
3356   }
3357 }
3358 
3359 void MacroAssembler::load_klass(Register dst, Register src) {
3360   if (UseCompressedClassPointers) {
3361     lwz(dst, oopDesc::klass_offset_in_bytes(), src);
3362     // Attention: no null check here!
3363     decode_klass_not_null(dst, dst);
3364   } else {
3365     ld(dst, oopDesc::klass_offset_in_bytes(), src);
3366   }
3367 }
3368 
3369 void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
3370   ld(mirror, in_bytes(ConstMethod::constants_offset()), const_method);
3371   ld(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
3372   ld(mirror, in_bytes(Klass::java_mirror_offset()), mirror);
3373 }
3374 
3375 // Clear Array
3376 // For very short arrays. tmp == R0 is allowed.
3377 void MacroAssembler::clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp, int offset) {
3378   if (cnt_dwords > 0) { li(tmp, 0); }
3379   for (int i = 0; i < cnt_dwords; ++i) { std(tmp, offset + i * 8, base_ptr); }
3380 }
3381 
3382 // Version for constant short array length. Kills base_ptr. tmp == R0 is allowed.
3383 void MacroAssembler::clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp) {
3384   if (cnt_dwords < 8) {
3385     clear_memory_unrolled(base_ptr, cnt_dwords, tmp);
3386     return;
3387   }
3388 
3389   Label loop;
3390   const long loopcnt   = cnt_dwords >> 1,
3391              remainder = cnt_dwords & 1;
3392 
3393   li(tmp, loopcnt);
3394   mtctr(tmp);
3395   li(tmp, 0);
3396   bind(loop);
3397     std(tmp, 0, base_ptr);
3398     std(tmp, 8, base_ptr);
3399     addi(base_ptr, base_ptr, 16);
3400     bdnz(loop);
3401   if (remainder) { std(tmp, 0, base_ptr); }
3402 }
3403 
3404 // Kills both input registers. tmp == R0 is allowed.
3405 void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp, long const_cnt) {
3406   // Procedure for large arrays (uses data cache block zero instruction).
3407     Label startloop, fast, fastloop, small_rest, restloop, done;
3408     const int cl_size         = VM_Version::L1_data_cache_line_size(),
3409               cl_dwords       = cl_size >> 3,
3410               cl_dw_addr_bits = exact_log2(cl_dwords),
3411               dcbz_min        = 1,  // Min count of dcbz executions, needs to be >0.
3412               min_cnt         = ((dcbz_min + 1) << cl_dw_addr_bits) - 1;
3413 
3414   if (const_cnt >= 0) {
3415     // Constant case.
3416     if (const_cnt < min_cnt) {
3417       clear_memory_constlen(base_ptr, const_cnt, tmp);
3418       return;
3419     }
3420     load_const_optimized(cnt_dwords, const_cnt, tmp);
3421   } else {
3422     // cnt_dwords already loaded in register. Need to check size.
3423     cmpdi(CCR1, cnt_dwords, min_cnt); // Big enough? (ensure >= dcbz_min lines included).
3424     blt(CCR1, small_rest);
3425   }
3426     rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
3427     beq(CCR0, fast);                                  // Already 128byte aligned.
3428 
3429     subfic(tmp, tmp, cl_dwords);
3430     mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
3431     subf(cnt_dwords, tmp, cnt_dwords); // rest.
3432     li(tmp, 0);
3433 
3434   bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
3435     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3436     addi(base_ptr, base_ptr, 8);
3437     bdnz(startloop);
3438 
3439   bind(fast);                                  // Clear 128byte blocks.
3440     srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
3441     andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
3442     mtctr(tmp);                                // Load counter.
3443 
3444   bind(fastloop);
3445     dcbz(base_ptr);                    // Clear 128byte aligned block.
3446     addi(base_ptr, base_ptr, cl_size);
3447     bdnz(fastloop);
3448 
3449   bind(small_rest);
3450     cmpdi(CCR0, cnt_dwords, 0);        // size 0?
3451     beq(CCR0, done);                   // rest == 0
3452     li(tmp, 0);
3453     mtctr(cnt_dwords);                 // Load counter.
3454 
3455   bind(restloop);                      // Clear rest.
3456     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3457     addi(base_ptr, base_ptr, 8);
3458     bdnz(restloop);
3459 
3460   bind(done);
3461 }
3462 
3463 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
3464 
3465 #ifdef COMPILER2
3466 // Intrinsics for CompactStrings
3467 
3468 // Compress char[] to byte[] by compressing 16 bytes at once.
3469 void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt,
3470                                         Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
3471                                         Label& Lfailure) {
3472 
3473   const Register tmp0 = R0;
3474   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3475   Label Lloop, Lslow;
3476 
3477   // Check if cnt >= 8 (= 16 bytes)
3478   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF00FF00FF
3479   srwi_(tmp2, cnt, 3);
3480   beq(CCR0, Lslow);
3481   ori(tmp1, tmp1, 0xFF);
3482   rldimi(tmp1, tmp1, 32, 0);
3483   mtctr(tmp2);
3484 
3485   // 2x unrolled loop
3486   bind(Lloop);
3487   ld(tmp2, 0, src);               // _0_1_2_3 (Big Endian)
3488   ld(tmp4, 8, src);               // _4_5_6_7
3489 
3490   orr(tmp0, tmp2, tmp4);
3491   rldicl(tmp3, tmp2, 6*8, 64-24); // _____1_2
3492   rldimi(tmp2, tmp2, 2*8, 2*8);   // _0_2_3_3
3493   rldicl(tmp5, tmp4, 6*8, 64-24); // _____5_6
3494   rldimi(tmp4, tmp4, 2*8, 2*8);   // _4_6_7_7
3495 
3496   andc_(tmp0, tmp0, tmp1);
3497   bne(CCR0, Lfailure);            // Not latin1.
3498   addi(src, src, 16);
3499 
3500   rlwimi(tmp3, tmp2, 0*8, 24, 31);// _____1_3
3501   srdi(tmp2, tmp2, 3*8);          // ____0_2_
3502   rlwimi(tmp5, tmp4, 0*8, 24, 31);// _____5_7
3503   srdi(tmp4, tmp4, 3*8);          // ____4_6_
3504 
3505   orr(tmp2, tmp2, tmp3);          // ____0123
3506   orr(tmp4, tmp4, tmp5);          // ____4567
3507 
3508   stw(tmp2, 0, dst);
3509   stw(tmp4, 4, dst);
3510   addi(dst, dst, 8);
3511   bdnz(Lloop);
3512 
3513   bind(Lslow);                    // Fallback to slow version
3514 }
3515 
3516 // Compress char[] to byte[]. cnt must be positive int.
3517 void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure) {
3518   Label Lloop;
3519   mtctr(cnt);
3520 
3521   bind(Lloop);
3522   lhz(tmp, 0, src);
3523   cmplwi(CCR0, tmp, 0xff);
3524   bgt(CCR0, Lfailure);            // Not latin1.
3525   addi(src, src, 2);
3526   stb(tmp, 0, dst);
3527   addi(dst, dst, 1);
3528   bdnz(Lloop);
3529 }
3530 
3531 // Inflate byte[] to char[] by inflating 16 bytes at once.
3532 void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt,
3533                                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
3534   const Register tmp0 = R0;
3535   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3536   Label Lloop, Lslow;
3537 
3538   // Check if cnt >= 8
3539   srwi_(tmp2, cnt, 3);
3540   beq(CCR0, Lslow);
3541   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF
3542   ori(tmp1, tmp1, 0xFF);
3543   mtctr(tmp2);
3544 
3545   // 2x unrolled loop
3546   bind(Lloop);
3547   lwz(tmp2, 0, src);              // ____0123 (Big Endian)
3548   lwz(tmp4, 4, src);              // ____4567
3549   addi(src, src, 8);
3550 
3551   rldicl(tmp3, tmp2, 7*8, 64-8);  // _______2
3552   rlwimi(tmp2, tmp2, 3*8, 16, 23);// ____0113
3553   rldicl(tmp5, tmp4, 7*8, 64-8);  // _______6
3554   rlwimi(tmp4, tmp4, 3*8, 16, 23);// ____4557
3555 
3556   andc(tmp0, tmp2, tmp1);         // ____0_1_
3557   rlwimi(tmp2, tmp3, 2*8, 0, 23); // _____2_3
3558   andc(tmp3, tmp4, tmp1);         // ____4_5_
3559   rlwimi(tmp4, tmp5, 2*8, 0, 23); // _____6_7
3560 
3561   rldimi(tmp2, tmp0, 3*8, 0*8);   // _0_1_2_3
3562   rldimi(tmp4, tmp3, 3*8, 0*8);   // _4_5_6_7
3563 
3564   std(tmp2, 0, dst);
3565   std(tmp4, 8, dst);
3566   addi(dst, dst, 16);
3567   bdnz(Lloop);
3568 
3569   bind(Lslow);                    // Fallback to slow version
3570 }
3571 
3572 // Inflate byte[] to char[]. cnt must be positive int.
3573 void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
3574   Label Lloop;
3575   mtctr(cnt);
3576 
3577   bind(Lloop);
3578   lbz(tmp, 0, src);
3579   addi(src, src, 1);
3580   sth(tmp, 0, dst);
3581   addi(dst, dst, 2);
3582   bdnz(Lloop);
3583 }
3584 
3585 void MacroAssembler::string_compare(Register str1, Register str2,
3586                                     Register cnt1, Register cnt2,
3587                                     Register tmp1, Register result, int ae) {
3588   const Register tmp0 = R0,
3589                  diff = tmp1;
3590 
3591   assert_different_registers(str1, str2, cnt1, cnt2, tmp0, tmp1, result);
3592   Label Ldone, Lslow, Lloop, Lreturn_diff;
3593 
3594   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
3595   // we interchange str1 and str2 in the UL case and negate the result.
3596   // Like this, str1 is always latin1 encoded, except for the UU case.
3597   // In addition, we need 0 (or sign which is 0) extend.
3598 
3599   if (ae == StrIntrinsicNode::UU) {
3600     srwi(cnt1, cnt1, 1);
3601   } else {
3602     clrldi(cnt1, cnt1, 32);
3603   }
3604 
3605   if (ae != StrIntrinsicNode::LL) {
3606     srwi(cnt2, cnt2, 1);
3607   } else {
3608     clrldi(cnt2, cnt2, 32);
3609   }
3610 
3611   // See if the lengths are different, and calculate min in cnt1.
3612   // Save diff in case we need it for a tie-breaker.
3613   subf_(diff, cnt2, cnt1); // diff = cnt1 - cnt2
3614   // if (diff > 0) { cnt1 = cnt2; }
3615   if (VM_Version::has_isel()) {
3616     isel(cnt1, CCR0, Assembler::greater, /*invert*/ false, cnt2);
3617   } else {
3618     Label Lskip;
3619     blt(CCR0, Lskip);
3620     mr(cnt1, cnt2);
3621     bind(Lskip);
3622   }
3623 
3624   // Rename registers
3625   Register chr1 = result;
3626   Register chr2 = tmp0;
3627 
3628   // Compare multiple characters in fast loop (only implemented for same encoding).
3629   int stride1 = 8, stride2 = 8;
3630   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
3631     int log2_chars_per_iter = (ae == StrIntrinsicNode::LL) ? 3 : 2;
3632     Label Lfastloop, Lskipfast;
3633 
3634     srwi_(tmp0, cnt1, log2_chars_per_iter);
3635     beq(CCR0, Lskipfast);
3636     rldicl(cnt2, cnt1, 0, 64 - log2_chars_per_iter); // Remaining characters.
3637     li(cnt1, 1 << log2_chars_per_iter); // Initialize for failure case: Rescan characters from current iteration.
3638     mtctr(tmp0);
3639 
3640     bind(Lfastloop);
3641     ld(chr1, 0, str1);
3642     ld(chr2, 0, str2);
3643     cmpd(CCR0, chr1, chr2);
3644     bne(CCR0, Lslow);
3645     addi(str1, str1, stride1);
3646     addi(str2, str2, stride2);
3647     bdnz(Lfastloop);
3648     mr(cnt1, cnt2); // Remaining characters.
3649     bind(Lskipfast);
3650   }
3651 
3652   // Loop which searches the first difference character by character.
3653   cmpwi(CCR0, cnt1, 0);
3654   beq(CCR0, Lreturn_diff);
3655   bind(Lslow);
3656   mtctr(cnt1);
3657 
3658   switch (ae) {
3659     case StrIntrinsicNode::LL: stride1 = 1; stride2 = 1; break;
3660     case StrIntrinsicNode::UL: // fallthru (see comment above)
3661     case StrIntrinsicNode::LU: stride1 = 1; stride2 = 2; break;
3662     case StrIntrinsicNode::UU: stride1 = 2; stride2 = 2; break;
3663     default: ShouldNotReachHere(); break;
3664   }
3665 
3666   bind(Lloop);
3667   if (stride1 == 1) { lbz(chr1, 0, str1); } else { lhz(chr1, 0, str1); }
3668   if (stride2 == 1) { lbz(chr2, 0, str2); } else { lhz(chr2, 0, str2); }
3669   subf_(result, chr2, chr1); // result = chr1 - chr2
3670   bne(CCR0, Ldone);
3671   addi(str1, str1, stride1);
3672   addi(str2, str2, stride2);
3673   bdnz(Lloop);
3674 
3675   // If strings are equal up to min length, return the length difference.
3676   bind(Lreturn_diff);
3677   mr(result, diff);
3678 
3679   // Otherwise, return the difference between the first mismatched chars.
3680   bind(Ldone);
3681   if (ae == StrIntrinsicNode::UL) {
3682     neg(result, result); // Negate result (see note above).
3683   }
3684 }
3685 
3686 void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
3687                                   Register limit, Register tmp1, Register result, bool is_byte) {
3688   const Register tmp0 = R0;
3689   assert_different_registers(ary1, ary2, limit, tmp0, tmp1, result);
3690   Label Ldone, Lskiploop, Lloop, Lfastloop, Lskipfast;
3691   bool limit_needs_shift = false;
3692 
3693   if (is_array_equ) {
3694     const int length_offset = arrayOopDesc::length_offset_in_bytes();
3695     const int base_offset   = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
3696 
3697     // Return true if the same array.
3698     cmpd(CCR0, ary1, ary2);
3699     beq(CCR0, Lskiploop);
3700 
3701     // Return false if one of them is NULL.
3702     cmpdi(CCR0, ary1, 0);
3703     cmpdi(CCR1, ary2, 0);
3704     li(result, 0);
3705     cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
3706     beq(CCR0, Ldone);
3707 
3708     // Load the lengths of arrays.
3709     lwz(limit, length_offset, ary1);
3710     lwz(tmp0, length_offset, ary2);
3711 
3712     // Return false if the two arrays are not equal length.
3713     cmpw(CCR0, limit, tmp0);
3714     bne(CCR0, Ldone);
3715 
3716     // Load array addresses.
3717     addi(ary1, ary1, base_offset);
3718     addi(ary2, ary2, base_offset);
3719   } else {
3720     limit_needs_shift = !is_byte;
3721     li(result, 0); // Assume not equal.
3722   }
3723 
3724   // Rename registers
3725   Register chr1 = tmp0;
3726   Register chr2 = tmp1;
3727 
3728   // Compare 8 bytes per iteration in fast loop.
3729   const int log2_chars_per_iter = is_byte ? 3 : 2;
3730 
3731   srwi_(tmp0, limit, log2_chars_per_iter + (limit_needs_shift ? 1 : 0));
3732   beq(CCR0, Lskipfast);
3733   mtctr(tmp0);
3734 
3735   bind(Lfastloop);
3736   ld(chr1, 0, ary1);
3737   ld(chr2, 0, ary2);
3738   addi(ary1, ary1, 8);
3739   addi(ary2, ary2, 8);
3740   cmpd(CCR0, chr1, chr2);
3741   bne(CCR0, Ldone);
3742   bdnz(Lfastloop);
3743 
3744   bind(Lskipfast);
3745   rldicl_(limit, limit, limit_needs_shift ? 64 - 1 : 0, 64 - log2_chars_per_iter); // Remaining characters.
3746   beq(CCR0, Lskiploop);
3747   mtctr(limit);
3748 
3749   // Character by character.
3750   bind(Lloop);
3751   if (is_byte) {
3752     lbz(chr1, 0, ary1);
3753     lbz(chr2, 0, ary2);
3754     addi(ary1, ary1, 1);
3755     addi(ary2, ary2, 1);
3756   } else {
3757     lhz(chr1, 0, ary1);
3758     lhz(chr2, 0, ary2);
3759     addi(ary1, ary1, 2);
3760     addi(ary2, ary2, 2);
3761   }
3762   cmpw(CCR0, chr1, chr2);
3763   bne(CCR0, Ldone);
3764   bdnz(Lloop);
3765 
3766   bind(Lskiploop);
3767   li(result, 1); // All characters are equal.
3768   bind(Ldone);
3769 }
3770 
3771 void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
3772                                     Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
3773                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae) {
3774 
3775   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
3776   Label L_TooShort, L_Found, L_NotFound, L_End;
3777   Register last_addr = haycnt, // Kill haycnt at the beginning.
3778   addr      = tmp1,
3779   n_start   = tmp2,
3780   ch1       = tmp3,
3781   ch2       = R0;
3782 
3783   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
3784   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
3785   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
3786 
3787   // **************************************************************************************************
3788   // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
3789   // **************************************************************************************************
3790 
3791   // Compute last haystack addr to use if no match gets found.
3792   clrldi(haycnt, haycnt, 32);         // Ensure positive int is valid as 64 bit value.
3793   addi(addr, haystack, -h_csize);     // Accesses use pre-increment.
3794   if (needlecntval == 0) { // variable needlecnt
3795    cmpwi(CCR6, needlecnt, 2);
3796    clrldi(needlecnt, needlecnt, 32);  // Ensure positive int is valid as 64 bit value.
3797    blt(CCR6, L_TooShort);             // Variable needlecnt: handle short needle separately.
3798   }
3799 
3800   if (n_csize == 2) { lwz(n_start, 0, needle); } else { lhz(n_start, 0, needle); } // Load first 2 characters of needle.
3801 
3802   if (needlecntval == 0) { // variable needlecnt
3803    subf(ch1, needlecnt, haycnt);      // Last character index to compare is haycnt-needlecnt.
3804    addi(needlecnt, needlecnt, -2);    // Rest of needle.
3805   } else { // constant needlecnt
3806   guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
3807   assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
3808    addi(ch1, haycnt, -needlecntval);  // Last character index to compare is haycnt-needlecnt.
3809    if (needlecntval > 3) { li(needlecnt, needlecntval - 2); } // Rest of needle.
3810   }
3811 
3812   if (h_csize == 2) { slwi(ch1, ch1, 1); } // Scale to number of bytes.
3813 
3814   if (ae ==StrIntrinsicNode::UL) {
3815    srwi(tmp4, n_start, 1*8);          // ___0
3816    rlwimi(n_start, tmp4, 2*8, 0, 23); // _0_1
3817   }
3818 
3819   add(last_addr, haystack, ch1);      // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
3820 
3821   // Main Loop (now we have at least 2 characters).
3822   Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2;
3823   bind(L_OuterLoop); // Search for 1st 2 characters.
3824   Register addr_diff = tmp4;
3825    subf(addr_diff, addr, last_addr);  // Difference between already checked address and last address to check.
3826    addi(addr, addr, h_csize);         // This is the new address we want to use for comparing.
3827    srdi_(ch2, addr_diff, h_csize);
3828    beq(CCR0, L_FinalCheck);           // 2 characters left?
3829    mtctr(ch2);                        // num of characters / 2
3830   bind(L_InnerLoop);                  // Main work horse (2x unrolled search loop)
3831    if (h_csize == 2) {                // Load 2 characters of haystack (ignore alignment).
3832     lwz(ch1, 0, addr);
3833     lwz(ch2, 2, addr);
3834    } else {
3835     lhz(ch1, 0, addr);
3836     lhz(ch2, 1, addr);
3837    }
3838    cmpw(CCR0, ch1, n_start);          // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
3839    cmpw(CCR1, ch2, n_start);
3840    beq(CCR0, L_Comp1);                // Did we find the needle start?
3841    beq(CCR1, L_Comp2);
3842    addi(addr, addr, 2 * h_csize);
3843    bdnz(L_InnerLoop);
3844   bind(L_FinalCheck);
3845    andi_(addr_diff, addr_diff, h_csize); // Remaining characters not covered by InnerLoop: (num of characters) & 1.
3846    beq(CCR0, L_NotFound);
3847    if (h_csize == 2) { lwz(ch1, 0, addr); } else { lhz(ch1, 0, addr); } // One position left at which we have to compare.
3848    cmpw(CCR1, ch1, n_start);
3849    beq(CCR1, L_Comp1);
3850   bind(L_NotFound);
3851    li(result, -1);                    // not found
3852    b(L_End);
3853 
3854    // **************************************************************************************************
3855    // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
3856    // **************************************************************************************************
3857   if (needlecntval == 0) {           // We have to handle these cases separately.
3858   Label L_OneCharLoop;
3859   bind(L_TooShort);
3860    mtctr(haycnt);
3861    if (n_csize == 2) { lhz(n_start, 0, needle); } else { lbz(n_start, 0, needle); } // First character of needle
3862   bind(L_OneCharLoop);
3863    if (h_csize == 2) { lhzu(ch1, 2, addr); } else { lbzu(ch1, 1, addr); }
3864    cmpw(CCR1, ch1, n_start);
3865    beq(CCR1, L_Found);               // Did we find the one character needle?
3866    bdnz(L_OneCharLoop);
3867    li(result, -1);                   // Not found.
3868    b(L_End);
3869   }
3870 
3871   // **************************************************************************************************
3872   // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
3873   // **************************************************************************************************
3874 
3875   // Compare the rest
3876   bind(L_Comp2);
3877    addi(addr, addr, h_csize);        // First comparison has failed, 2nd one hit.
3878   bind(L_Comp1);                     // Addr points to possible needle start.
3879   if (needlecntval != 2) {           // Const needlecnt==2?
3880    if (needlecntval != 3) {
3881     if (needlecntval == 0) { beq(CCR6, L_Found); } // Variable needlecnt==2?
3882     Register n_ind = tmp4,
3883              h_ind = n_ind;
3884     li(n_ind, 2 * n_csize);          // First 2 characters are already compared, use index 2.
3885     mtctr(needlecnt);                // Decremented by 2, still > 0.
3886    Label L_CompLoop;
3887    bind(L_CompLoop);
3888     if (ae ==StrIntrinsicNode::UL) {
3889       h_ind = ch1;
3890       sldi(h_ind, n_ind, 1);
3891     }
3892     if (n_csize == 2) { lhzx(ch2, needle, n_ind); } else { lbzx(ch2, needle, n_ind); }
3893     if (h_csize == 2) { lhzx(ch1, addr, h_ind); } else { lbzx(ch1, addr, h_ind); }
3894     cmpw(CCR1, ch1, ch2);
3895     bne(CCR1, L_OuterLoop);
3896     addi(n_ind, n_ind, n_csize);
3897     bdnz(L_CompLoop);
3898    } else { // No loop required if there's only one needle character left.
3899     if (n_csize == 2) { lhz(ch2, 2 * 2, needle); } else { lbz(ch2, 2 * 1, needle); }
3900     if (h_csize == 2) { lhz(ch1, 2 * 2, addr); } else { lbz(ch1, 2 * 1, addr); }
3901     cmpw(CCR1, ch1, ch2);
3902     bne(CCR1, L_OuterLoop);
3903    }
3904   }
3905   // Return index ...
3906   bind(L_Found);
3907    subf(result, haystack, addr);     // relative to haystack, ...
3908    if (h_csize == 2) { srdi(result, result, 1); } // in characters.
3909   bind(L_End);
3910 } // string_indexof
3911 
3912 void MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
3913                                          Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte) {
3914   assert_different_registers(haystack, haycnt, needle, tmp1, tmp2);
3915 
3916   Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_NotFound, L_End;
3917   Register addr = tmp1,
3918            ch1 = tmp2,
3919            ch2 = R0;
3920 
3921   const int h_csize = is_byte ? 1 : 2;
3922 
3923 //4:
3924    srwi_(tmp2, haycnt, 1);   // Shift right by exact_log2(UNROLL_FACTOR).
3925    mr(addr, haystack);
3926    beq(CCR0, L_FinalCheck);
3927    mtctr(tmp2);              // Move to count register.
3928 //8:
3929   bind(L_InnerLoop);         // Main work horse (2x unrolled search loop).
3930    if (!is_byte) {
3931     lhz(ch1, 0, addr);
3932     lhz(ch2, 2, addr);
3933    } else {
3934     lbz(ch1, 0, addr);
3935     lbz(ch2, 1, addr);
3936    }
3937    (needle != R0) ? cmpw(CCR0, ch1, needle) : cmplwi(CCR0, ch1, (unsigned int)needleChar);
3938    (needle != R0) ? cmpw(CCR1, ch2, needle) : cmplwi(CCR1, ch2, (unsigned int)needleChar);
3939    beq(CCR0, L_Found1);      // Did we find the needle?
3940    beq(CCR1, L_Found2);
3941    addi(addr, addr, 2 * h_csize);
3942    bdnz(L_InnerLoop);
3943 //16:
3944   bind(L_FinalCheck);
3945    andi_(R0, haycnt, 1);
3946    beq(CCR0, L_NotFound);
3947    if (!is_byte) { lhz(ch1, 0, addr); } else { lbz(ch1, 0, addr); } // One position left at which we have to compare.
3948    (needle != R0) ? cmpw(CCR1, ch1, needle) : cmplwi(CCR1, ch1, (unsigned int)needleChar);
3949    beq(CCR1, L_Found1);
3950 //21:
3951   bind(L_NotFound);
3952    li(result, -1);           // Not found.
3953    b(L_End);
3954 
3955   bind(L_Found2);
3956    addi(addr, addr, h_csize);
3957 //24:
3958   bind(L_Found1);            // Return index ...
3959    subf(result, haystack, addr); // relative to haystack, ...
3960    if (!is_byte) { srdi(result, result, 1); } // in characters.
3961   bind(L_End);
3962 } // string_indexof_char
3963 
3964 
3965 void MacroAssembler::has_negatives(Register src, Register cnt, Register result,
3966                                    Register tmp1, Register tmp2) {
3967   const Register tmp0 = R0;
3968   assert_different_registers(src, result, cnt, tmp0, tmp1, tmp2);
3969   Label Lfastloop, Lslow, Lloop, Lnoneg, Ldone;
3970 
3971   // Check if cnt >= 8 (= 16 bytes)
3972   lis(tmp1, (int)(short)0x8080);  // tmp1 = 0x8080808080808080
3973   srwi_(tmp2, cnt, 4);
3974   li(result, 1);                  // Assume there's a negative byte.
3975   beq(CCR0, Lslow);
3976   ori(tmp1, tmp1, 0x8080);
3977   rldimi(tmp1, tmp1, 32, 0);
3978   mtctr(tmp2);
3979 
3980   // 2x unrolled loop
3981   bind(Lfastloop);
3982   ld(tmp2, 0, src);
3983   ld(tmp0, 8, src);
3984 
3985   orr(tmp0, tmp2, tmp0);
3986 
3987   and_(tmp0, tmp0, tmp1);
3988   bne(CCR0, Ldone);               // Found negative byte.
3989   addi(src, src, 16);
3990 
3991   bdnz(Lfastloop);
3992 
3993   bind(Lslow);                    // Fallback to slow version
3994   rldicl_(tmp0, cnt, 0, 64-4);
3995   beq(CCR0, Lnoneg);
3996   mtctr(tmp0);
3997   bind(Lloop);
3998   lbz(tmp0, 0, src);
3999   addi(src, src, 1);
4000   andi_(tmp0, tmp0, 0x80);
4001   bne(CCR0, Ldone);               // Found negative byte.
4002   bdnz(Lloop);
4003   bind(Lnoneg);
4004   li(result, 0);
4005 
4006   bind(Ldone);
4007 }
4008 
4009 #endif // Compiler2
4010 
4011 // Helpers for Intrinsic Emitters
4012 //
4013 // Revert the byte order of a 32bit value in a register
4014 //   src: 0x44556677
4015 //   dst: 0x77665544
4016 // Three steps to obtain the result:
4017 //  1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
4018 //     into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
4019 //     This value initializes dst.
4020 //  2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
4021 //     byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
4022 //     This value is mask inserted into dst with a [0..23] mask of 1s.
4023 //  3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
4024 //     This value is mask inserted into dst with a [8..15] mask of 1s.
4025 void MacroAssembler::load_reverse_32(Register dst, Register src) {
4026   assert_different_registers(dst, src);
4027 
4028   rldicl(dst, src, (4+1)*8, 56);       // Rotate byte 4 into position 7 (rightmost), clear all to the left.
4029   rlwimi(dst, src,     3*8,  0, 23);   // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
4030   rlwimi(dst, src,     1*8,  8, 15);   // Insert byte 6 into position 5, leave the rest alone.
4031 }
4032 
4033 // Calculate the column addresses of the crc32 lookup table into distinct registers.
4034 // This loop-invariant calculation is moved out of the loop body, reducing the loop
4035 // body size from 20 to 16 instructions.
4036 // Returns the offset that was used to calculate the address of column tc3.
4037 // Due to register shortage, setting tc3 may overwrite table. With the return offset
4038 // at hand, the original table address can be easily reconstructed.
4039 int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
4040 
4041 #ifdef VM_LITTLE_ENDIAN
4042   // This is what we implement (the DOLIT4 part):
4043   // ========================================================================= */
4044   // #define DOLIT4 c ^= *buf4++; \
4045   //         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
4046   //             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
4047   // #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
4048   // ========================================================================= */
4049   const int ix0 = 3*(4*CRC32_COLUMN_SIZE);
4050   const int ix1 = 2*(4*CRC32_COLUMN_SIZE);
4051   const int ix2 = 1*(4*CRC32_COLUMN_SIZE);
4052   const int ix3 = 0*(4*CRC32_COLUMN_SIZE);
4053 #else
4054   // This is what we implement (the DOBIG4 part):
4055   // =========================================================================
4056   // #define DOBIG4 c ^= *++buf4; \
4057   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
4058   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
4059   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
4060   // =========================================================================
4061   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
4062   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
4063   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
4064   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
4065 #endif
4066   assert_different_registers(table, tc0, tc1, tc2);
4067   assert(table == tc3, "must be!");
4068 
4069   addi(tc0, table, ix0);
4070   addi(tc1, table, ix1);
4071   addi(tc2, table, ix2);
4072   if (ix3 != 0) addi(tc3, table, ix3);
4073 
4074   return ix3;
4075 }
4076 
4077 /**
4078  * uint32_t crc;
4079  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4080  */
4081 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
4082   assert_different_registers(crc, table, tmp);
4083   assert_different_registers(val, table);
4084 
4085   if (crc == val) {                   // Must rotate first to use the unmodified value.
4086     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4087                                       // As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
4088     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
4089   } else {
4090     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
4091     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
4092   }
4093   lwzx(tmp, table, tmp);
4094   xorr(crc, crc, tmp);
4095 }
4096 
4097 /**
4098  * uint32_t crc;
4099  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
4100  */
4101 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
4102   fold_byte_crc32(crc, crc, table, tmp);
4103 }
4104 
4105 /**
4106  * Emits code to update CRC-32 with a byte value according to constants in table.
4107  *
4108  * @param [in,out]crc   Register containing the crc.
4109  * @param [in]val       Register containing the byte to fold into the CRC.
4110  * @param [in]table     Register containing the table of crc constants.
4111  *
4112  * uint32_t crc;
4113  * val = crc_table[(val ^ crc) & 0xFF];
4114  * crc = val ^ (crc >> 8);
4115  */
4116 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4117   BLOCK_COMMENT("update_byte_crc32:");
4118   xorr(val, val, crc);
4119   fold_byte_crc32(crc, val, table, val);
4120 }
4121 
4122 /**
4123  * @param crc   register containing existing CRC (32-bit)
4124  * @param buf   register pointing to input byte buffer (byte*)
4125  * @param len   register containing number of bytes
4126  * @param table register pointing to CRC table
4127  */
4128 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
4129                                            Register data, bool loopAlignment) {
4130   assert_different_registers(crc, buf, len, table, data);
4131 
4132   Label L_mainLoop, L_done;
4133   const int mainLoop_stepping  = 1;
4134   const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;
4135 
4136   // Process all bytes in a single-byte loop.
4137   clrldi_(len, len, 32);                         // Enforce 32 bit. Anything to do?
4138   beq(CCR0, L_done);
4139 
4140   mtctr(len);
4141   align(mainLoop_alignment);
4142   BIND(L_mainLoop);
4143     lbz(data, 0, buf);                           // Byte from buffer, zero-extended.
4144     addi(buf, buf, mainLoop_stepping);           // Advance buffer position.
4145     update_byte_crc32(crc, data, table);
4146     bdnz(L_mainLoop);                            // Iterate.
4147 
4148   bind(L_done);
4149 }
4150 
4151 /**
4152  * Emits code to update CRC-32 with a 4-byte value according to constants in table
4153  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
4154  */
4155 // A not on the lookup table address(es):
4156 // The lookup table consists of two sets of four columns each.
4157 // The columns {0..3} are used for little-endian machines.
4158 // The columns {4..7} are used for big-endian machines.
4159 // To save the effort of adding the column offset to the table address each time
4160 // a table element is looked up, it is possible to pass the pre-calculated
4161 // column addresses.
4162 // Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
4163 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
4164                                         Register t0,  Register t1,  Register t2,  Register t3,
4165                                         Register tc0, Register tc1, Register tc2, Register tc3) {
4166   assert_different_registers(crc, t3);
4167 
4168   // XOR crc with next four bytes of buffer.
4169   lwz(t3, bufDisp, buf);
4170   if (bufInc != 0) {
4171     addi(buf, buf, bufInc);
4172   }
4173   xorr(t3, t3, crc);
4174 
4175   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
4176   rlwinm(t0, t3,  2,         24-2, 31-2);  // ((t1 >>  0) & 0xff) << 2
4177   rlwinm(t1, t3,  32+(2- 8), 24-2, 31-2);  // ((t1 >>  8) & 0xff) << 2
4178   rlwinm(t2, t3,  32+(2-16), 24-2, 31-2);  // ((t1 >> 16) & 0xff) << 2
4179   rlwinm(t3, t3,  32+(2-24), 24-2, 31-2);  // ((t1 >> 24) & 0xff) << 2
4180 
4181   // Use the pre-calculated column addresses.
4182   // Load pre-calculated table values.
4183   lwzx(t0, tc0, t0);
4184   lwzx(t1, tc1, t1);
4185   lwzx(t2, tc2, t2);
4186   lwzx(t3, tc3, t3);
4187 
4188   // Calculate new crc from table values.
4189   xorr(t0,  t0, t1);
4190   xorr(t2,  t2, t3);
4191   xorr(crc, t0, t2);  // Now crc contains the final checksum value.
4192 }
4193 
4194 /**
4195  * @param crc   register containing existing CRC (32-bit)
4196  * @param buf   register pointing to input byte buffer (byte*)
4197  * @param len   register containing number of bytes
4198  * @param table register pointing to CRC table
4199  *
4200  * Uses R9..R12 as work register. Must be saved/restored by caller!
4201  */
4202 void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
4203                                         Register t0,  Register t1,  Register t2,  Register t3,
4204                                         Register tc0, Register tc1, Register tc2, Register tc3,
4205                                         bool invertCRC) {
4206   assert_different_registers(crc, buf, len, table);
4207 
4208   Label L_mainLoop, L_tail;
4209   Register  tmp  = t0;
4210   Register  data = t0;
4211   Register  tmp2 = t1;
4212   const int mainLoop_stepping  = 8;
4213   const int tailLoop_stepping  = 1;
4214   const int log_stepping       = exact_log2(mainLoop_stepping);
4215   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4216   const int complexThreshold   = 2*mainLoop_stepping;
4217 
4218   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4219   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
4220   // for all well-behaved cases. The situation itself is detected and handled correctly
4221   // within update_byteLoop_crc32.
4222   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4223 
4224   BLOCK_COMMENT("kernel_crc32_2word {");
4225 
4226   if (invertCRC) {
4227     nand(crc, crc, crc);                      // 1s complement of crc
4228   }
4229 
4230   // Check for short (<mainLoop_stepping) buffer.
4231   cmpdi(CCR0, len, complexThreshold);
4232   blt(CCR0, L_tail);
4233 
4234   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4235   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4236   {
4237     // Align buf addr to mainLoop_stepping boundary.
4238     neg(tmp2, buf);                           // Calculate # preLoop iterations for alignment.
4239     rldicl(tmp2, tmp2, 0, 64-log_stepping);   // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4240 
4241     if (complexThreshold > mainLoop_stepping) {
4242       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4243     } else {
4244       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4245       cmpdi(CCR0, tmp, mainLoop_stepping);
4246       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4247       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4248     }
4249     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
4250   }
4251 
4252   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4253   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4254   mtctr(tmp2);
4255 
4256 #ifdef VM_LITTLE_ENDIAN
4257   Register crc_rv = crc;
4258 #else
4259   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4260                                                  // Occupies tmp, but frees up crc.
4261   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4262   tmp = crc;
4263 #endif
4264 
4265   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4266 
4267   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4268   BIND(L_mainLoop);
4269     update_1word_crc32(crc_rv, buf, table, 0, 0, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4270     update_1word_crc32(crc_rv, buf, table, 4, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4271     bdnz(L_mainLoop);
4272 
4273 #ifndef VM_LITTLE_ENDIAN
4274   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4275   tmp = crc_rv;                                  // Tmp uses it's original register again.
4276 #endif
4277 
4278   // Restore original table address for tailLoop.
4279   if (reconstructTableOffset != 0) {
4280     addi(table, table, -reconstructTableOffset);
4281   }
4282 
4283   // Process last few (<complexThreshold) bytes of buffer.
4284   BIND(L_tail);
4285   update_byteLoop_crc32(crc, buf, len, table, data, false);
4286 
4287   if (invertCRC) {
4288     nand(crc, crc, crc);                      // 1s complement of crc
4289   }
4290   BLOCK_COMMENT("} kernel_crc32_2word");
4291 }
4292 
4293 /**
4294  * @param crc   register containing existing CRC (32-bit)
4295  * @param buf   register pointing to input byte buffer (byte*)
4296  * @param len   register containing number of bytes
4297  * @param table register pointing to CRC table
4298  *
4299  * uses R9..R12 as work register. Must be saved/restored by caller!
4300  */
4301 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
4302                                         Register t0,  Register t1,  Register t2,  Register t3,
4303                                         Register tc0, Register tc1, Register tc2, Register tc3,
4304                                         bool invertCRC) {
4305   assert_different_registers(crc, buf, len, table);
4306 
4307   Label L_mainLoop, L_tail;
4308   Register  tmp          = t0;
4309   Register  data         = t0;
4310   Register  tmp2         = t1;
4311   const int mainLoop_stepping  = 4;
4312   const int tailLoop_stepping  = 1;
4313   const int log_stepping       = exact_log2(mainLoop_stepping);
4314   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4315   const int complexThreshold   = 2*mainLoop_stepping;
4316 
4317   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4318   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
4319   // for all well-behaved cases. The situation itself is detected and handled correctly
4320   // within update_byteLoop_crc32.
4321   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4322 
4323   BLOCK_COMMENT("kernel_crc32_1word {");
4324 
4325   if (invertCRC) {
4326     nand(crc, crc, crc);                      // 1s complement of crc
4327   }
4328 
4329   // Check for short (<mainLoop_stepping) buffer.
4330   cmpdi(CCR0, len, complexThreshold);
4331   blt(CCR0, L_tail);
4332 
4333   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4334   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4335   {
4336     // Align buf addr to mainLoop_stepping boundary.
4337     neg(tmp2, buf);                              // Calculate # preLoop iterations for alignment.
4338     rldicl(tmp2, tmp2, 0, 64-log_stepping);      // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4339 
4340     if (complexThreshold > mainLoop_stepping) {
4341       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4342     } else {
4343       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4344       cmpdi(CCR0, tmp, mainLoop_stepping);
4345       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4346       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4347     }
4348     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
4349   }
4350 
4351   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4352   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4353   mtctr(tmp2);
4354 
4355 #ifdef VM_LITTLE_ENDIAN
4356   Register crc_rv = crc;
4357 #else
4358   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4359                                                  // Occupies tmp, but frees up crc.
4360   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4361   tmp = crc;
4362 #endif
4363 
4364   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4365 
4366   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4367   BIND(L_mainLoop);
4368     update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4369     bdnz(L_mainLoop);
4370 
4371 #ifndef VM_LITTLE_ENDIAN
4372   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4373   tmp = crc_rv;                                  // Tmp uses it's original register again.
4374 #endif
4375 
4376   // Restore original table address for tailLoop.
4377   if (reconstructTableOffset != 0) {
4378     addi(table, table, -reconstructTableOffset);
4379   }
4380 
4381   // Process last few (<complexThreshold) bytes of buffer.
4382   BIND(L_tail);
4383   update_byteLoop_crc32(crc, buf, len, table, data, false);
4384 
4385   if (invertCRC) {
4386     nand(crc, crc, crc);                      // 1s complement of crc
4387   }
4388   BLOCK_COMMENT("} kernel_crc32_1word");
4389 }
4390 
4391 /**
4392  * @param crc   register containing existing CRC (32-bit)
4393  * @param buf   register pointing to input byte buffer (byte*)
4394  * @param len   register containing number of bytes
4395  * @param table register pointing to CRC table
4396  *
4397  * Uses R7_ARG5, R8_ARG6 as work registers.
4398  */
4399 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
4400                                         Register t0,  Register t1,  Register t2,  Register t3,
4401                                         bool invertCRC) {
4402   assert_different_registers(crc, buf, len, table);
4403 
4404   Register  data = t0;                   // Holds the current byte to be folded into crc.
4405 
4406   BLOCK_COMMENT("kernel_crc32_1byte {");
4407 
4408   if (invertCRC) {
4409     nand(crc, crc, crc);                      // 1s complement of crc
4410   }
4411 
4412   // Process all bytes in a single-byte loop.
4413   update_byteLoop_crc32(crc, buf, len, table, data, true);
4414 
4415   if (invertCRC) {
4416     nand(crc, crc, crc);                      // 1s complement of crc
4417   }
4418   BLOCK_COMMENT("} kernel_crc32_1byte");
4419 }
4420 
4421 /**
4422  * @param crc             register containing existing CRC (32-bit)
4423  * @param buf             register pointing to input byte buffer (byte*)
4424  * @param len             register containing number of bytes
4425  * @param table           register pointing to CRC table
4426  * @param constants       register pointing to CRC table for 128-bit aligned memory
4427  * @param barretConstants register pointing to table for barrett reduction
4428  * @param t0              volatile register
4429  * @param t1              volatile register
4430  * @param t2              volatile register
4431  * @param t3              volatile register
4432  */
4433 void MacroAssembler::kernel_crc32_1word_vpmsumd(Register crc, Register buf, Register len, Register table,
4434                                                 Register constants,  Register barretConstants,
4435                                                 Register t0,  Register t1, Register t2, Register t3, Register t4,
4436                                                 bool invertCRC) {
4437   assert_different_registers(crc, buf, len, table);
4438 
4439   Label L_alignedHead, L_tail, L_alignTail, L_start, L_end;
4440 
4441   Register  prealign     = t0;
4442   Register  postalign    = t0;
4443 
4444   BLOCK_COMMENT("kernel_crc32_1word_vpmsumb {");
4445 
4446   // 1. use kernel_crc32_1word for shorter than 384bit
4447   clrldi(len, len, 32);
4448   cmpdi(CCR0, len, 384);
4449   bge(CCR0, L_start);
4450 
4451     Register tc0 = t4;
4452     Register tc1 = constants;
4453     Register tc2 = barretConstants;
4454     kernel_crc32_1word(crc, buf, len, table,t0, t1, t2, t3, tc0, tc1, tc2, table, invertCRC);
4455     b(L_end);
4456 
4457   BIND(L_start);
4458 
4459     // 2. ~c
4460     if (invertCRC) {
4461       nand(crc, crc, crc);                      // 1s complement of crc
4462     }
4463 
4464     // 3. calculate from 0 to first 128bit-aligned address
4465     clrldi_(prealign, buf, 57);
4466     beq(CCR0, L_alignedHead);
4467 
4468     subfic(prealign, prealign, 128);
4469 
4470     subf(len, prealign, len);
4471     update_byteLoop_crc32(crc, buf, prealign, table, t2, false);
4472 
4473     // 4. calculate from first 128bit-aligned address to last 128bit-aligned address
4474     BIND(L_alignedHead);
4475 
4476     clrldi(postalign, len, 57);
4477     subf(len, postalign, len);
4478 
4479     // len must be more than 256bit
4480     kernel_crc32_1word_aligned(crc, buf, len, constants, barretConstants, t1, t2, t3);
4481 
4482     // 5. calculate remaining
4483     cmpdi(CCR0, postalign, 0);
4484     beq(CCR0, L_tail);
4485 
4486     update_byteLoop_crc32(crc, buf, postalign, table, t2, false);
4487 
4488     BIND(L_tail);
4489 
4490     // 6. ~c
4491     if (invertCRC) {
4492       nand(crc, crc, crc);                      // 1s complement of crc
4493     }
4494 
4495   BIND(L_end);
4496 
4497   BLOCK_COMMENT("} kernel_crc32_1word_vpmsumb");
4498 }
4499 
4500 /**
4501  * @param crc             register containing existing CRC (32-bit)
4502  * @param buf             register pointing to input byte buffer (byte*)
4503  * @param len             register containing number of bytes
4504  * @param constants       register pointing to CRC table for 128-bit aligned memory
4505  * @param barretConstants register pointing to table for barrett reduction
4506  * @param t0              volatile register
4507  * @param t1              volatile register
4508  * @param t2              volatile register
4509  */
4510 void MacroAssembler::kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
4511     Register constants, Register barretConstants, Register t0, Register t1, Register t2) {
4512   Label L_mainLoop, L_tail, L_alignTail, L_barrett_reduction, L_end, L_first_warm_up_done, L_first_cool_down, L_second_cool_down, L_XOR, L_test;
4513   Label L_lv0, L_lv1, L_lv2, L_lv3, L_lv4, L_lv5, L_lv6, L_lv7, L_lv8, L_lv9, L_lv10, L_lv11, L_lv12, L_lv13, L_lv14, L_lv15;
4514   Label L_1, L_2, L_3, L_4;
4515 
4516   Register  rLoaded      = t0;
4517   Register  rTmp1        = t1;
4518   Register  rTmp2        = t2;
4519   Register  off16        = R22;
4520   Register  off32        = R23;
4521   Register  off48        = R24;
4522   Register  off64        = R25;
4523   Register  off80        = R26;
4524   Register  off96        = R27;
4525   Register  off112       = R28;
4526   Register  rIdx         = R29;
4527   Register  rMax         = R30;
4528   Register  constantsPos = R31;
4529 
4530   VectorRegister mask_32bit = VR24;
4531   VectorRegister mask_64bit = VR25;
4532   VectorRegister zeroes     = VR26;
4533   VectorRegister const1     = VR27;
4534   VectorRegister const2     = VR28;
4535 
4536   // Save non-volatile vector registers (frameless).
4537   Register offset = t1;   int offsetInt = 0;
4538   offsetInt -= 16; li(offset, -16);           stvx(VR20, offset, R1_SP);
4539   offsetInt -= 16; addi(offset, offset, -16); stvx(VR21, offset, R1_SP);
4540   offsetInt -= 16; addi(offset, offset, -16); stvx(VR22, offset, R1_SP);
4541   offsetInt -= 16; addi(offset, offset, -16); stvx(VR23, offset, R1_SP);
4542   offsetInt -= 16; addi(offset, offset, -16); stvx(VR24, offset, R1_SP);
4543   offsetInt -= 16; addi(offset, offset, -16); stvx(VR25, offset, R1_SP);
4544   offsetInt -= 16; addi(offset, offset, -16); stvx(VR26, offset, R1_SP);
4545   offsetInt -= 16; addi(offset, offset, -16); stvx(VR27, offset, R1_SP);
4546   offsetInt -= 16; addi(offset, offset, -16); stvx(VR28, offset, R1_SP);
4547   offsetInt -= 8; std(R22, offsetInt, R1_SP);
4548   offsetInt -= 8; std(R23, offsetInt, R1_SP);
4549   offsetInt -= 8; std(R24, offsetInt, R1_SP);
4550   offsetInt -= 8; std(R25, offsetInt, R1_SP);
4551   offsetInt -= 8; std(R26, offsetInt, R1_SP);
4552   offsetInt -= 8; std(R27, offsetInt, R1_SP);
4553   offsetInt -= 8; std(R28, offsetInt, R1_SP);
4554   offsetInt -= 8; std(R29, offsetInt, R1_SP);
4555   offsetInt -= 8; std(R30, offsetInt, R1_SP);
4556   offsetInt -= 8; std(R31, offsetInt, R1_SP);
4557 
4558   // Set constants
4559   li(off16, 16);
4560   li(off32, 32);
4561   li(off48, 48);
4562   li(off64, 64);
4563   li(off80, 80);
4564   li(off96, 96);
4565   li(off112, 112);
4566 
4567   clrldi(crc, crc, 32);
4568 
4569   vxor(zeroes, zeroes, zeroes);
4570   vspltisw(VR0, -1);
4571 
4572   vsldoi(mask_32bit, zeroes, VR0, 4);
4573   vsldoi(mask_64bit, zeroes, VR0, -8);
4574 
4575   // Get the initial value into v8
4576   vxor(VR8, VR8, VR8);
4577   mtvrd(VR8, crc);
4578   vsldoi(VR8, zeroes, VR8, -8); // shift into bottom 32 bits
4579 
4580   li (rLoaded, 0);
4581 
4582   rldicr(rIdx, len, 0, 56);
4583 
4584   {
4585     BIND(L_1);
4586     // Checksum in blocks of MAX_SIZE (32768)
4587     lis(rMax, 0);
4588     ori(rMax, rMax, 32768);
4589     mr(rTmp2, rMax);
4590     cmpd(CCR0, rIdx, rMax);
4591     bgt(CCR0, L_2);
4592     mr(rMax, rIdx);
4593 
4594     BIND(L_2);
4595     subf(rIdx, rMax, rIdx);
4596 
4597     // our main loop does 128 bytes at a time
4598     srdi(rMax, rMax, 7);
4599 
4600     /*
4601      * Work out the offset into the constants table to start at. Each
4602      * constant is 16 bytes, and it is used against 128 bytes of input
4603      * data - 128 / 16 = 8
4604      */
4605     sldi(rTmp1, rMax, 4);
4606     srdi(rTmp2, rTmp2, 3);
4607     subf(rTmp1, rTmp1, rTmp2);
4608 
4609     // We reduce our final 128 bytes in a separate step
4610     addi(rMax, rMax, -1);
4611     mtctr(rMax);
4612 
4613     // Find the start of our constants
4614     add(constantsPos, constants, rTmp1);
4615 
4616     // zero VR0-v7 which will contain our checksums
4617     vxor(VR0, VR0, VR0);
4618     vxor(VR1, VR1, VR1);
4619     vxor(VR2, VR2, VR2);
4620     vxor(VR3, VR3, VR3);
4621     vxor(VR4, VR4, VR4);
4622     vxor(VR5, VR5, VR5);
4623     vxor(VR6, VR6, VR6);
4624     vxor(VR7, VR7, VR7);
4625 
4626     lvx(const1, constantsPos);
4627 
4628     /*
4629      * If we are looping back to consume more data we use the values
4630      * already in VR16-v23.
4631      */
4632     cmpdi(CCR0, rLoaded, 1);
4633     beq(CCR0, L_3);
4634     {
4635 
4636       // First warm up pass
4637       lvx(VR16, buf);
4638       lvx(VR17, off16, buf);
4639       lvx(VR18, off32, buf);
4640       lvx(VR19, off48, buf);
4641       lvx(VR20, off64, buf);
4642       lvx(VR21, off80, buf);
4643       lvx(VR22, off96, buf);
4644       lvx(VR23, off112, buf);
4645       addi(buf, buf, 8*16);
4646 
4647       // xor in initial value
4648       vxor(VR16, VR16, VR8);
4649     }
4650 
4651     BIND(L_3);
4652     bdz(L_first_warm_up_done);
4653 
4654     addi(constantsPos, constantsPos, 16);
4655     lvx(const2, constantsPos);
4656 
4657     // Second warm up pass
4658     vpmsumd(VR8, VR16, const1);
4659     lvx(VR16, buf);
4660 
4661     vpmsumd(VR9, VR17, const1);
4662     lvx(VR17, off16, buf);
4663 
4664     vpmsumd(VR10, VR18, const1);
4665     lvx(VR18, off32, buf);
4666 
4667     vpmsumd(VR11, VR19, const1);
4668     lvx(VR19, off48, buf);
4669 
4670     vpmsumd(VR12, VR20, const1);
4671     lvx(VR20, off64, buf);
4672 
4673     vpmsumd(VR13, VR21, const1);
4674     lvx(VR21, off80, buf);
4675 
4676     vpmsumd(VR14, VR22, const1);
4677     lvx(VR22, off96, buf);
4678 
4679     vpmsumd(VR15, VR23, const1);
4680     lvx(VR23, off112, buf);
4681 
4682     addi(buf, buf, 8 * 16);
4683 
4684     bdz(L_first_cool_down);
4685 
4686     /*
4687      * main loop. We modulo schedule it such that it takes three iterations
4688      * to complete - first iteration load, second iteration vpmsum, third
4689      * iteration xor.
4690      */
4691     {
4692       BIND(L_4);
4693       lvx(const1, constantsPos); addi(constantsPos, constantsPos, 16);
4694 
4695       vxor(VR0, VR0, VR8);
4696       vpmsumd(VR8, VR16, const2);
4697       lvx(VR16, buf);
4698 
4699       vxor(VR1, VR1, VR9);
4700       vpmsumd(VR9, VR17, const2);
4701       lvx(VR17, off16, buf);
4702 
4703       vxor(VR2, VR2, VR10);
4704       vpmsumd(VR10, VR18, const2);
4705       lvx(VR18, off32, buf);
4706 
4707       vxor(VR3, VR3, VR11);
4708       vpmsumd(VR11, VR19, const2);
4709       lvx(VR19, off48, buf);
4710       lvx(const2, constantsPos);
4711 
4712       vxor(VR4, VR4, VR12);
4713       vpmsumd(VR12, VR20, const1);
4714       lvx(VR20, off64, buf);
4715 
4716       vxor(VR5, VR5, VR13);
4717       vpmsumd(VR13, VR21, const1);
4718       lvx(VR21, off80, buf);
4719 
4720       vxor(VR6, VR6, VR14);
4721       vpmsumd(VR14, VR22, const1);
4722       lvx(VR22, off96, buf);
4723 
4724       vxor(VR7, VR7, VR15);
4725       vpmsumd(VR15, VR23, const1);
4726       lvx(VR23, off112, buf);
4727 
4728       addi(buf, buf, 8 * 16);
4729 
4730       bdnz(L_4);
4731     }
4732 
4733     BIND(L_first_cool_down);
4734 
4735     // First cool down pass
4736     lvx(const1, constantsPos);
4737     addi(constantsPos, constantsPos, 16);
4738 
4739     vxor(VR0, VR0, VR8);
4740     vpmsumd(VR8, VR16, const1);
4741 
4742     vxor(VR1, VR1, VR9);
4743     vpmsumd(VR9, VR17, const1);
4744 
4745     vxor(VR2, VR2, VR10);
4746     vpmsumd(VR10, VR18, const1);
4747 
4748     vxor(VR3, VR3, VR11);
4749     vpmsumd(VR11, VR19, const1);
4750 
4751     vxor(VR4, VR4, VR12);
4752     vpmsumd(VR12, VR20, const1);
4753 
4754     vxor(VR5, VR5, VR13);
4755     vpmsumd(VR13, VR21, const1);
4756 
4757     vxor(VR6, VR6, VR14);
4758     vpmsumd(VR14, VR22, const1);
4759 
4760     vxor(VR7, VR7, VR15);
4761     vpmsumd(VR15, VR23, const1);
4762 
4763     BIND(L_second_cool_down);
4764     // Second cool down pass
4765     vxor(VR0, VR0, VR8);
4766     vxor(VR1, VR1, VR9);
4767     vxor(VR2, VR2, VR10);
4768     vxor(VR3, VR3, VR11);
4769     vxor(VR4, VR4, VR12);
4770     vxor(VR5, VR5, VR13);
4771     vxor(VR6, VR6, VR14);
4772     vxor(VR7, VR7, VR15);
4773 
4774     /*
4775      * vpmsumd produces a 96 bit result in the least significant bits
4776      * of the register. Since we are bit reflected we have to shift it
4777      * left 32 bits so it occupies the least significant bits in the
4778      * bit reflected domain.
4779      */
4780     vsldoi(VR0, VR0, zeroes, 4);
4781     vsldoi(VR1, VR1, zeroes, 4);
4782     vsldoi(VR2, VR2, zeroes, 4);
4783     vsldoi(VR3, VR3, zeroes, 4);
4784     vsldoi(VR4, VR4, zeroes, 4);
4785     vsldoi(VR5, VR5, zeroes, 4);
4786     vsldoi(VR6, VR6, zeroes, 4);
4787     vsldoi(VR7, VR7, zeroes, 4);
4788 
4789     // xor with last 1024 bits
4790     lvx(VR8, buf);
4791     lvx(VR9, off16, buf);
4792     lvx(VR10, off32, buf);
4793     lvx(VR11, off48, buf);
4794     lvx(VR12, off64, buf);
4795     lvx(VR13, off80, buf);
4796     lvx(VR14, off96, buf);
4797     lvx(VR15, off112, buf);
4798     addi(buf, buf, 8 * 16);
4799 
4800     vxor(VR16, VR0, VR8);
4801     vxor(VR17, VR1, VR9);
4802     vxor(VR18, VR2, VR10);
4803     vxor(VR19, VR3, VR11);
4804     vxor(VR20, VR4, VR12);
4805     vxor(VR21, VR5, VR13);
4806     vxor(VR22, VR6, VR14);
4807     vxor(VR23, VR7, VR15);
4808 
4809     li(rLoaded, 1);
4810     cmpdi(CCR0, rIdx, 0);
4811     addi(rIdx, rIdx, 128);
4812     bne(CCR0, L_1);
4813   }
4814 
4815   // Work out how many bytes we have left
4816   andi_(len, len, 127);
4817 
4818   // Calculate where in the constant table we need to start
4819   subfic(rTmp1, len, 128);
4820   add(constantsPos, constantsPos, rTmp1);
4821 
4822   // How many 16 byte chunks are in the tail
4823   srdi(rIdx, len, 4);
4824   mtctr(rIdx);
4825 
4826   /*
4827    * Reduce the previously calculated 1024 bits to 64 bits, shifting
4828    * 32 bits to include the trailing 32 bits of zeros
4829    */
4830   lvx(VR0, constantsPos);
4831   lvx(VR1, off16, constantsPos);
4832   lvx(VR2, off32, constantsPos);
4833   lvx(VR3, off48, constantsPos);
4834   lvx(VR4, off64, constantsPos);
4835   lvx(VR5, off80, constantsPos);
4836   lvx(VR6, off96, constantsPos);
4837   lvx(VR7, off112, constantsPos);
4838   addi(constantsPos, constantsPos, 8 * 16);
4839 
4840   vpmsumw(VR0, VR16, VR0);
4841   vpmsumw(VR1, VR17, VR1);
4842   vpmsumw(VR2, VR18, VR2);
4843   vpmsumw(VR3, VR19, VR3);
4844   vpmsumw(VR4, VR20, VR4);
4845   vpmsumw(VR5, VR21, VR5);
4846   vpmsumw(VR6, VR22, VR6);
4847   vpmsumw(VR7, VR23, VR7);
4848 
4849   // Now reduce the tail (0 - 112 bytes)
4850   cmpdi(CCR0, rIdx, 0);
4851   beq(CCR0, L_XOR);
4852 
4853   lvx(VR16, buf); addi(buf, buf, 16);
4854   lvx(VR17, constantsPos);
4855   vpmsumw(VR16, VR16, VR17);
4856   vxor(VR0, VR0, VR16);
4857   beq(CCR0, L_XOR);
4858 
4859   lvx(VR16, buf); addi(buf, buf, 16);
4860   lvx(VR17, off16, constantsPos);
4861   vpmsumw(VR16, VR16, VR17);
4862   vxor(VR0, VR0, VR16);
4863   beq(CCR0, L_XOR);
4864 
4865   lvx(VR16, buf); addi(buf, buf, 16);
4866   lvx(VR17, off32, constantsPos);
4867   vpmsumw(VR16, VR16, VR17);
4868   vxor(VR0, VR0, VR16);
4869   beq(CCR0, L_XOR);
4870 
4871   lvx(VR16, buf); addi(buf, buf, 16);
4872   lvx(VR17, off48,constantsPos);
4873   vpmsumw(VR16, VR16, VR17);
4874   vxor(VR0, VR0, VR16);
4875   beq(CCR0, L_XOR);
4876 
4877   lvx(VR16, buf); addi(buf, buf, 16);
4878   lvx(VR17, off64, constantsPos);
4879   vpmsumw(VR16, VR16, VR17);
4880   vxor(VR0, VR0, VR16);
4881   beq(CCR0, L_XOR);
4882 
4883   lvx(VR16, buf); addi(buf, buf, 16);
4884   lvx(VR17, off80, constantsPos);
4885   vpmsumw(VR16, VR16, VR17);
4886   vxor(VR0, VR0, VR16);
4887   beq(CCR0, L_XOR);
4888 
4889   lvx(VR16, buf); addi(buf, buf, 16);
4890   lvx(VR17, off96, constantsPos);
4891   vpmsumw(VR16, VR16, VR17);
4892   vxor(VR0, VR0, VR16);
4893 
4894   // Now xor all the parallel chunks together
4895   BIND(L_XOR);
4896   vxor(VR0, VR0, VR1);
4897   vxor(VR2, VR2, VR3);
4898   vxor(VR4, VR4, VR5);
4899   vxor(VR6, VR6, VR7);
4900 
4901   vxor(VR0, VR0, VR2);
4902   vxor(VR4, VR4, VR6);
4903 
4904   vxor(VR0, VR0, VR4);
4905 
4906   b(L_barrett_reduction);
4907 
4908   BIND(L_first_warm_up_done);
4909   lvx(const1, constantsPos);
4910   addi(constantsPos, constantsPos, 16);
4911   vpmsumd(VR8,  VR16, const1);
4912   vpmsumd(VR9,  VR17, const1);
4913   vpmsumd(VR10, VR18, const1);
4914   vpmsumd(VR11, VR19, const1);
4915   vpmsumd(VR12, VR20, const1);
4916   vpmsumd(VR13, VR21, const1);
4917   vpmsumd(VR14, VR22, const1);
4918   vpmsumd(VR15, VR23, const1);
4919   b(L_second_cool_down);
4920 
4921   BIND(L_barrett_reduction);
4922 
4923   lvx(const1, barretConstants);
4924   addi(barretConstants, barretConstants, 16);
4925   lvx(const2, barretConstants);
4926 
4927   vsldoi(VR1, VR0, VR0, -8);
4928   vxor(VR0, VR0, VR1);    // xor two 64 bit results together
4929 
4930   // shift left one bit
4931   vspltisb(VR1, 1);
4932   vsl(VR0, VR0, VR1);
4933 
4934   vand(VR0, VR0, mask_64bit);
4935 
4936   /*
4937    * The reflected version of Barrett reduction. Instead of bit
4938    * reflecting our data (which is expensive to do), we bit reflect our
4939    * constants and our algorithm, which means the intermediate data in
4940    * our vector registers goes from 0-63 instead of 63-0. We can reflect
4941    * the algorithm because we don't carry in mod 2 arithmetic.
4942    */
4943   vand(VR1, VR0, mask_32bit);  // bottom 32 bits of a
4944   vpmsumd(VR1, VR1, const1);   // ma
4945   vand(VR1, VR1, mask_32bit);  // bottom 32bits of ma
4946   vpmsumd(VR1, VR1, const2);   // qn */
4947   vxor(VR0, VR0, VR1);         // a - qn, subtraction is xor in GF(2)
4948 
4949   /*
4950    * Since we are bit reflected, the result (ie the low 32 bits) is in
4951    * the high 32 bits. We just need to shift it left 4 bytes
4952    * V0 [ 0 1 X 3 ]
4953    * V0 [ 0 X 2 3 ]
4954    */
4955   vsldoi(VR0, VR0, zeroes, 4);    // shift result into top 64 bits of
4956 
4957   // Get it into r3
4958   mfvrd(crc, VR0);
4959 
4960   BIND(L_end);
4961 
4962   offsetInt = 0;
4963   // Restore non-volatile Vector registers (frameless).
4964   offsetInt -= 16; li(offset, -16);           lvx(VR20, offset, R1_SP);
4965   offsetInt -= 16; addi(offset, offset, -16); lvx(VR21, offset, R1_SP);
4966   offsetInt -= 16; addi(offset, offset, -16); lvx(VR22, offset, R1_SP);
4967   offsetInt -= 16; addi(offset, offset, -16); lvx(VR23, offset, R1_SP);
4968   offsetInt -= 16; addi(offset, offset, -16); lvx(VR24, offset, R1_SP);
4969   offsetInt -= 16; addi(offset, offset, -16); lvx(VR25, offset, R1_SP);
4970   offsetInt -= 16; addi(offset, offset, -16); lvx(VR26, offset, R1_SP);
4971   offsetInt -= 16; addi(offset, offset, -16); lvx(VR27, offset, R1_SP);
4972   offsetInt -= 16; addi(offset, offset, -16); lvx(VR28, offset, R1_SP);
4973   offsetInt -= 8;  ld(R22, offsetInt, R1_SP);
4974   offsetInt -= 8;  ld(R23, offsetInt, R1_SP);
4975   offsetInt -= 8;  ld(R24, offsetInt, R1_SP);
4976   offsetInt -= 8;  ld(R25, offsetInt, R1_SP);
4977   offsetInt -= 8;  ld(R26, offsetInt, R1_SP);
4978   offsetInt -= 8;  ld(R27, offsetInt, R1_SP);
4979   offsetInt -= 8;  ld(R28, offsetInt, R1_SP);
4980   offsetInt -= 8;  ld(R29, offsetInt, R1_SP);
4981   offsetInt -= 8;  ld(R30, offsetInt, R1_SP);
4982   offsetInt -= 8;  ld(R31, offsetInt, R1_SP);
4983 }
4984 
4985 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp, bool invertCRC) {
4986   assert_different_registers(crc, buf, /* len,  not used!! */ table, tmp);
4987 
4988   BLOCK_COMMENT("kernel_crc32_singleByte:");
4989   if (invertCRC) {
4990     nand(crc, crc, crc);                // 1s complement of crc
4991   }
4992 
4993   lbz(tmp, 0, buf);                     // Byte from buffer, zero-extended.
4994   update_byte_crc32(crc, tmp, table);
4995 
4996   if (invertCRC) {
4997     nand(crc, crc, crc);                // 1s complement of crc
4998   }
4999 }
5000 
5001 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table, bool invertCRC) {
5002   assert_different_registers(crc, val, table);
5003 
5004   BLOCK_COMMENT("kernel_crc32_singleByteReg:");
5005   if (invertCRC) {
5006     nand(crc, crc, crc);                // 1s complement of crc
5007   }
5008 
5009   update_byte_crc32(crc, val, table);
5010 
5011   if (invertCRC) {
5012     nand(crc, crc, crc);                // 1s complement of crc
5013   }
5014 }
5015 
5016 // dest_lo += src1 + src2
5017 // dest_hi += carry1 + carry2
5018 void MacroAssembler::add2_with_carry(Register dest_hi,
5019                                      Register dest_lo,
5020                                      Register src1, Register src2) {
5021   li(R0, 0);
5022   addc(dest_lo, dest_lo, src1);
5023   adde(dest_hi, dest_hi, R0);
5024   addc(dest_lo, dest_lo, src2);
5025   adde(dest_hi, dest_hi, R0);
5026 }
5027 
5028 // Multiply 64 bit by 64 bit first loop.
5029 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
5030                                            Register x_xstart,
5031                                            Register y, Register y_idx,
5032                                            Register z,
5033                                            Register carry,
5034                                            Register product_high, Register product,
5035                                            Register idx, Register kdx,
5036                                            Register tmp) {
5037   //  jlong carry, x[], y[], z[];
5038   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
5039   //    huge_128 product = y[idx] * x[xstart] + carry;
5040   //    z[kdx] = (jlong)product;
5041   //    carry  = (jlong)(product >>> 64);
5042   //  }
5043   //  z[xstart] = carry;
5044 
5045   Label L_first_loop, L_first_loop_exit;
5046   Label L_one_x, L_one_y, L_multiply;
5047 
5048   addic_(xstart, xstart, -1);
5049   blt(CCR0, L_one_x);   // Special case: length of x is 1.
5050 
5051   // Load next two integers of x.
5052   sldi(tmp, xstart, LogBytesPerInt);
5053   ldx(x_xstart, x, tmp);
5054 #ifdef VM_LITTLE_ENDIAN
5055   rldicl(x_xstart, x_xstart, 32, 0);
5056 #endif
5057 
5058   align(32, 16);
5059   bind(L_first_loop);
5060 
5061   cmpdi(CCR0, idx, 1);
5062   blt(CCR0, L_first_loop_exit);
5063   addi(idx, idx, -2);
5064   beq(CCR0, L_one_y);
5065 
5066   // Load next two integers of y.
5067   sldi(tmp, idx, LogBytesPerInt);
5068   ldx(y_idx, y, tmp);
5069 #ifdef VM_LITTLE_ENDIAN
5070   rldicl(y_idx, y_idx, 32, 0);
5071 #endif
5072 
5073 
5074   bind(L_multiply);
5075   multiply64(product_high, product, x_xstart, y_idx);
5076 
5077   li(tmp, 0);
5078   addc(product, product, carry);         // Add carry to result.
5079   adde(product_high, product_high, tmp); // Add carry of the last addition.
5080   addi(kdx, kdx, -2);
5081 
5082   // Store result.
5083 #ifdef VM_LITTLE_ENDIAN
5084   rldicl(product, product, 32, 0);
5085 #endif
5086   sldi(tmp, kdx, LogBytesPerInt);
5087   stdx(product, z, tmp);
5088   mr_if_needed(carry, product_high);
5089   b(L_first_loop);
5090 
5091 
5092   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
5093 
5094   lwz(y_idx, 0, y);
5095   b(L_multiply);
5096 
5097 
5098   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
5099 
5100   lwz(x_xstart, 0, x);
5101   b(L_first_loop);
5102 
5103   bind(L_first_loop_exit);
5104 }
5105 
5106 // Multiply 64 bit by 64 bit and add 128 bit.
5107 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
5108                                             Register z, Register yz_idx,
5109                                             Register idx, Register carry,
5110                                             Register product_high, Register product,
5111                                             Register tmp, int offset) {
5112 
5113   //  huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
5114   //  z[kdx] = (jlong)product;
5115 
5116   sldi(tmp, idx, LogBytesPerInt);
5117   if (offset) {
5118     addi(tmp, tmp, offset);
5119   }
5120   ldx(yz_idx, y, tmp);
5121 #ifdef VM_LITTLE_ENDIAN
5122   rldicl(yz_idx, yz_idx, 32, 0);
5123 #endif
5124 
5125   multiply64(product_high, product, x_xstart, yz_idx);
5126   ldx(yz_idx, z, tmp);
5127 #ifdef VM_LITTLE_ENDIAN
5128   rldicl(yz_idx, yz_idx, 32, 0);
5129 #endif
5130 
5131   add2_with_carry(product_high, product, carry, yz_idx);
5132 
5133   sldi(tmp, idx, LogBytesPerInt);
5134   if (offset) {
5135     addi(tmp, tmp, offset);
5136   }
5137 #ifdef VM_LITTLE_ENDIAN
5138   rldicl(product, product, 32, 0);
5139 #endif
5140   stdx(product, z, tmp);
5141 }
5142 
5143 // Multiply 128 bit by 128 bit. Unrolled inner loop.
5144 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
5145                                              Register y, Register z,
5146                                              Register yz_idx, Register idx, Register carry,
5147                                              Register product_high, Register product,
5148                                              Register carry2, Register tmp) {
5149 
5150   //  jlong carry, x[], y[], z[];
5151   //  int kdx = ystart+1;
5152   //  for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
5153   //    huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
5154   //    z[kdx+idx+1] = (jlong)product;
5155   //    jlong carry2 = (jlong)(product >>> 64);
5156   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
5157   //    z[kdx+idx] = (jlong)product;
5158   //    carry = (jlong)(product >>> 64);
5159   //  }
5160   //  idx += 2;
5161   //  if (idx > 0) {
5162   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
5163   //    z[kdx+idx] = (jlong)product;
5164   //    carry = (jlong)(product >>> 64);
5165   //  }
5166 
5167   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
5168   const Register jdx = R0;
5169 
5170   // Scale the index.
5171   srdi_(jdx, idx, 2);
5172   beq(CCR0, L_third_loop_exit);
5173   mtctr(jdx);
5174 
5175   align(32, 16);
5176   bind(L_third_loop);
5177 
5178   addi(idx, idx, -4);
5179 
5180   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8);
5181   mr_if_needed(carry2, product_high);
5182 
5183   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0);
5184   mr_if_needed(carry, product_high);
5185   bdnz(L_third_loop);
5186 
5187   bind(L_third_loop_exit);  // Handle any left-over operand parts.
5188 
5189   andi_(idx, idx, 0x3);
5190   beq(CCR0, L_post_third_loop_done);
5191 
5192   Label L_check_1;
5193 
5194   addic_(idx, idx, -2);
5195   blt(CCR0, L_check_1);
5196 
5197   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0);
5198   mr_if_needed(carry, product_high);
5199 
5200   bind(L_check_1);
5201 
5202   addi(idx, idx, 0x2);
5203   andi_(idx, idx, 0x1);
5204   addic_(idx, idx, -1);
5205   blt(CCR0, L_post_third_loop_done);
5206 
5207   sldi(tmp, idx, LogBytesPerInt);
5208   lwzx(yz_idx, y, tmp);
5209   multiply64(product_high, product, x_xstart, yz_idx);
5210   lwzx(yz_idx, z, tmp);
5211 
5212   add2_with_carry(product_high, product, yz_idx, carry);
5213 
5214   sldi(tmp, idx, LogBytesPerInt);
5215   stwx(product, z, tmp);
5216   srdi(product, product, 32);
5217 
5218   sldi(product_high, product_high, 32);
5219   orr(product, product, product_high);
5220   mr_if_needed(carry, product);
5221 
5222   bind(L_post_third_loop_done);
5223 }   // multiply_128_x_128_loop
5224 
5225 void MacroAssembler::multiply_to_len(Register x, Register xlen,
5226                                      Register y, Register ylen,
5227                                      Register z, Register zlen,
5228                                      Register tmp1, Register tmp2,
5229                                      Register tmp3, Register tmp4,
5230                                      Register tmp5, Register tmp6,
5231                                      Register tmp7, Register tmp8,
5232                                      Register tmp9, Register tmp10,
5233                                      Register tmp11, Register tmp12,
5234                                      Register tmp13) {
5235 
5236   ShortBranchVerifier sbv(this);
5237 
5238   assert_different_registers(x, xlen, y, ylen, z, zlen,
5239                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
5240   assert_different_registers(x, xlen, y, ylen, z, zlen,
5241                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp7);
5242   assert_different_registers(x, xlen, y, ylen, z, zlen,
5243                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp8);
5244 
5245   const Register idx = tmp1;
5246   const Register kdx = tmp2;
5247   const Register xstart = tmp3;
5248 
5249   const Register y_idx = tmp4;
5250   const Register carry = tmp5;
5251   const Register product = tmp6;
5252   const Register product_high = tmp7;
5253   const Register x_xstart = tmp8;
5254   const Register tmp = tmp9;
5255 
5256   // First Loop.
5257   //
5258   //  final static long LONG_MASK = 0xffffffffL;
5259   //  int xstart = xlen - 1;
5260   //  int ystart = ylen - 1;
5261   //  long carry = 0;
5262   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
5263   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
5264   //    z[kdx] = (int)product;
5265   //    carry = product >>> 32;
5266   //  }
5267   //  z[xstart] = (int)carry;
5268 
5269   mr_if_needed(idx, ylen);        // idx = ylen
5270   mr_if_needed(kdx, zlen);        // kdx = xlen + ylen
5271   li(carry, 0);                   // carry = 0
5272 
5273   Label L_done;
5274 
5275   addic_(xstart, xlen, -1);
5276   blt(CCR0, L_done);
5277 
5278   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z,
5279                         carry, product_high, product, idx, kdx, tmp);
5280 
5281   Label L_second_loop;
5282 
5283   cmpdi(CCR0, kdx, 0);
5284   beq(CCR0, L_second_loop);
5285 
5286   Label L_carry;
5287 
5288   addic_(kdx, kdx, -1);
5289   beq(CCR0, L_carry);
5290 
5291   // Store lower 32 bits of carry.
5292   sldi(tmp, kdx, LogBytesPerInt);
5293   stwx(carry, z, tmp);
5294   srdi(carry, carry, 32);
5295   addi(kdx, kdx, -1);
5296 
5297 
5298   bind(L_carry);
5299 
5300   // Store upper 32 bits of carry.
5301   sldi(tmp, kdx, LogBytesPerInt);
5302   stwx(carry, z, tmp);
5303 
5304   // Second and third (nested) loops.
5305   //
5306   //  for (int i = xstart-1; i >= 0; i--) { // Second loop
5307   //    carry = 0;
5308   //    for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
5309   //      long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
5310   //                     (z[k] & LONG_MASK) + carry;
5311   //      z[k] = (int)product;
5312   //      carry = product >>> 32;
5313   //    }
5314   //    z[i] = (int)carry;
5315   //  }
5316   //
5317   //  i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
5318 
5319   bind(L_second_loop);
5320 
5321   li(carry, 0);                   // carry = 0;
5322 
5323   addic_(xstart, xstart, -1);     // i = xstart-1;
5324   blt(CCR0, L_done);
5325 
5326   Register zsave = tmp10;
5327 
5328   mr(zsave, z);
5329 
5330 
5331   Label L_last_x;
5332 
5333   sldi(tmp, xstart, LogBytesPerInt);
5334   add(z, z, tmp);                 // z = z + k - j
5335   addi(z, z, 4);
5336   addic_(xstart, xstart, -1);     // i = xstart-1;
5337   blt(CCR0, L_last_x);
5338 
5339   sldi(tmp, xstart, LogBytesPerInt);
5340   ldx(x_xstart, x, tmp);
5341 #ifdef VM_LITTLE_ENDIAN
5342   rldicl(x_xstart, x_xstart, 32, 0);
5343 #endif
5344 
5345 
5346   Label L_third_loop_prologue;
5347 
5348   bind(L_third_loop_prologue);
5349 
5350   Register xsave = tmp11;
5351   Register xlensave = tmp12;
5352   Register ylensave = tmp13;
5353 
5354   mr(xsave, x);
5355   mr(xlensave, xstart);
5356   mr(ylensave, ylen);
5357 
5358 
5359   multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen,
5360                           carry, product_high, product, x, tmp);
5361 
5362   mr(z, zsave);
5363   mr(x, xsave);
5364   mr(xlen, xlensave);   // This is the decrement of the loop counter!
5365   mr(ylen, ylensave);
5366 
5367   addi(tmp3, xlen, 1);
5368   sldi(tmp, tmp3, LogBytesPerInt);
5369   stwx(carry, z, tmp);
5370   addic_(tmp3, tmp3, -1);
5371   blt(CCR0, L_done);
5372 
5373   srdi(carry, carry, 32);
5374   sldi(tmp, tmp3, LogBytesPerInt);
5375   stwx(carry, z, tmp);
5376   b(L_second_loop);
5377 
5378   // Next infrequent code is moved outside loops.
5379   bind(L_last_x);
5380 
5381   lwz(x_xstart, 0, x);
5382   b(L_third_loop_prologue);
5383 
5384   bind(L_done);
5385 }   // multiply_to_len
5386 
5387 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
5388 #ifdef ASSERT
5389   Label ok;
5390   if (check_equal) {
5391     beq(CCR0, ok);
5392   } else {
5393     bne(CCR0, ok);
5394   }
5395   stop(msg, id);
5396   bind(ok);
5397 #endif
5398 }
5399 
5400 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
5401                                           Register mem_base, const char* msg, int id) {
5402 #ifdef ASSERT
5403   switch (size) {
5404     case 4:
5405       lwz(R0, mem_offset, mem_base);
5406       cmpwi(CCR0, R0, 0);
5407       break;
5408     case 8:
5409       ld(R0, mem_offset, mem_base);
5410       cmpdi(CCR0, R0, 0);
5411       break;
5412     default:
5413       ShouldNotReachHere();
5414   }
5415   asm_assert(check_equal, msg, id);
5416 #endif // ASSERT
5417 }
5418 
5419 void MacroAssembler::verify_thread() {
5420   if (VerifyThread) {
5421     unimplemented("'VerifyThread' currently not implemented on PPC");
5422   }
5423 }
5424 
5425 // READ: oop. KILL: R0. Volatile floats perhaps.
5426 void MacroAssembler::verify_oop(Register oop, const char* msg) {
5427   if (!VerifyOops) {
5428     return;
5429   }
5430 
5431   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5432   const Register tmp = R11; // Will be preserved.
5433   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5434   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5435 
5436   mr_if_needed(R4_ARG2, oop);
5437   save_LR_CR(tmp); // save in old frame
5438   push_frame_reg_args(nbytes_save, tmp);
5439   // load FunctionDescriptor** / entry_address *
5440   load_const_optimized(tmp, fd, R0);
5441   // load FunctionDescriptor* / entry_address
5442   ld(tmp, 0, tmp);
5443   load_const_optimized(R3_ARG1, (address)msg, R0);
5444   // Call destination for its side effect.
5445   call_c(tmp);
5446 
5447   pop_frame();
5448   restore_LR_CR(tmp);
5449   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5450 }
5451 
5452 void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) {
5453   if (!VerifyOops) {
5454     return;
5455   }
5456 
5457   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5458   const Register tmp = R11; // Will be preserved.
5459   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5460   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5461 
5462   ld(R4_ARG2, offs, base);
5463   save_LR_CR(tmp); // save in old frame
5464   push_frame_reg_args(nbytes_save, tmp);
5465   // load FunctionDescriptor** / entry_address *
5466   load_const_optimized(tmp, fd, R0);
5467   // load FunctionDescriptor* / entry_address
5468   ld(tmp, 0, tmp);
5469   load_const_optimized(R3_ARG1, (address)msg, R0);
5470   // Call destination for its side effect.
5471   call_c(tmp);
5472 
5473   pop_frame();
5474   restore_LR_CR(tmp);
5475   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5476 }
5477 
5478 const char* stop_types[] = {
5479   "stop",
5480   "untested",
5481   "unimplemented",
5482   "shouldnotreachhere"
5483 };
5484 
5485 static void stop_on_request(int tp, const char* msg) {
5486   tty->print("PPC assembly code requires stop: (%s) %s\n", stop_types[tp%/*stop_end*/4], msg);
5487   guarantee(false, "PPC assembly code requires stop: %s", msg);
5488 }
5489 
5490 // Call a C-function that prints output.
5491 void MacroAssembler::stop(int type, const char* msg, int id) {
5492 #ifndef PRODUCT
5493   block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
5494 #else
5495   block_comment("stop {");
5496 #endif
5497 
5498   // setup arguments
5499   load_const_optimized(R3_ARG1, type);
5500   load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
5501   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
5502   illtrap();
5503   emit_int32(id);
5504   block_comment("} stop;");
5505 }
5506 
5507 #ifndef PRODUCT
5508 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
5509 // Val, addr are temp registers.
5510 // If low == addr, addr is killed.
5511 // High is preserved.
5512 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
5513   if (!ZapMemory) return;
5514 
5515   assert_different_registers(low, val);
5516 
5517   BLOCK_COMMENT("zap memory region {");
5518   load_const_optimized(val, 0x0101010101010101);
5519   int size = before + after;
5520   if (low == high && size < 5 && size > 0) {
5521     int offset = -before*BytesPerWord;
5522     for (int i = 0; i < size; ++i) {
5523       std(val, offset, low);
5524       offset += (1*BytesPerWord);
5525     }
5526   } else {
5527     addi(addr, low, -before*BytesPerWord);
5528     assert_different_registers(high, val);
5529     if (after) addi(high, high, after * BytesPerWord);
5530     Label loop;
5531     bind(loop);
5532     std(val, 0, addr);
5533     addi(addr, addr, 8);
5534     cmpd(CCR6, addr, high);
5535     ble(CCR6, loop);
5536     if (after) addi(high, high, -after * BytesPerWord);  // Correct back to old value.
5537   }
5538   BLOCK_COMMENT("} zap memory region");
5539 }
5540 
5541 #endif // !PRODUCT
5542 
5543 SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
5544   int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
5545   assert(sizeof(bool) == 1, "PowerPC ABI");
5546   masm->lbz(temp, simm16_offset, temp);
5547   masm->cmpwi(CCR0, temp, 0);
5548   masm->beq(CCR0, _label);
5549 }
5550 
5551 SkipIfEqualZero::~SkipIfEqualZero() {
5552   _masm->bind(_label);
5553 }