1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_S390_VM_ASSEMBLER_S390_HPP
  27 #define CPU_S390_VM_ASSEMBLER_S390_HPP
  28 
  29 #undef  LUCY_DBG
  30 
  31 // Immediate is an abstraction to represent the various immediate
  32 // operands which exist on z/Architecture. Neither this class nor
  33 // instances hereof have an own state. It consists of methods only.
  34 class Immediate VALUE_OBJ_CLASS_SPEC {
  35 
  36  public:
  37     static bool is_simm(int64_t x, unsigned int nbits) {
  38       // nbits < 2   --> false
  39       // nbits >= 64 --> true
  40       assert(2 <= nbits && nbits < 64, "Don't call, use statically known result.");
  41       const int64_t min      = -(1L << (nbits-1));
  42       const int64_t maxplus1 =  (1L << (nbits-1));
  43       return min <= x && x < maxplus1;
  44     }
  45     static bool is_simm32(int64_t x) {
  46       return is_simm(x, 32);
  47     }
  48     static bool is_simm20(int64_t x) {
  49       return is_simm(x, 20);
  50     }
  51     static bool is_simm16(int64_t x) {
  52       return is_simm(x, 16);
  53     }
  54     static bool is_simm8(int64_t x) {
  55       return is_simm(x,  8);
  56     }
  57 
  58     // Test if x is within signed immediate range for nbits.
  59     static bool is_uimm(int64_t x, unsigned int nbits) {
  60       // nbits == 0  --> false
  61       // nbits >= 64 --> true
  62       assert(1 <= nbits && nbits < 64, "don't call, use statically known result");
  63       const uint64_t xu       = (unsigned long)x;
  64       const uint64_t maxplus1 = 1UL << nbits;
  65       return xu < maxplus1; // Unsigned comparison. Negative inputs appear to be very large.
  66     }
  67     static bool is_uimm32(int64_t x) {
  68       return is_uimm(x, 32);
  69     }
  70     static bool is_uimm16(int64_t x) {
  71       return is_uimm(x, 16);
  72     }
  73     static bool is_uimm12(int64_t x) {
  74       return is_uimm(x, 12);
  75     }
  76     static bool is_uimm8(int64_t x) {
  77       return is_uimm(x,  8);
  78     }
  79 };
  80 
  81 // Displacement is an abstraction to represent the various
  82 // displacements which exist with addresses on z/ArchiTecture.
  83 // Neither this class nor instances hereof have an own state. It
  84 // consists of methods only.
  85 class Displacement VALUE_OBJ_CLASS_SPEC {
  86 
  87  public: // These tests are used outside the (Macro)Assembler world, e.g. in ad-file.
  88 
  89   static bool is_longDisp(int64_t x) {  // Fits in a 20-bit displacement field.
  90     return Immediate::is_simm20(x);
  91   }
  92   static bool is_shortDisp(int64_t x) { // Fits in a 12-bit displacement field.
  93     return Immediate::is_uimm12(x);
  94   }
  95   static bool is_validDisp(int64_t x) { // Is a valid displacement, regardless of length constraints.
  96     return is_longDisp(x);
  97   }
  98 };
  99 
 100 // RelAddr is an abstraction to represent relative addresses in the
 101 // form they are used on z/Architecture for instructions which access
 102 // their operand with pc-relative addresses. Neither this class nor
 103 // instances hereof have an own state. It consists of methods only.
 104 class RelAddr VALUE_OBJ_CLASS_SPEC {
 105 
 106  private: // No public use at all. Solely for (Macro)Assembler.
 107 
 108   static bool is_in_range_of_RelAddr(address target, address pc, bool shortForm) {
 109     // Guard against illegal branch targets, e.g. -1. Occurrences in
 110     // CompiledStaticCall and ad-file. Do not assert (it's a test
 111     // function!). Just return false in case of illegal operands.
 112     if ((((uint64_t)target) & 0x0001L) != 0) return false;
 113     if ((((uint64_t)pc)     & 0x0001L) != 0) return false;
 114 
 115     if (shortForm) {
 116       return Immediate::is_simm((int64_t)(target-pc), 17); // Relative short addresses can reach +/- 2**16 bytes.
 117     } else {
 118       return Immediate::is_simm((int64_t)(target-pc), 33); // Relative long addresses can reach +/- 2**32 bytes.
 119     }
 120   }
 121 
 122   static bool is_in_range_of_RelAddr16(address target, address pc) {
 123     return is_in_range_of_RelAddr(target, pc, true);
 124   }
 125   static bool is_in_range_of_RelAddr16(ptrdiff_t distance) {
 126     return is_in_range_of_RelAddr((address)distance, 0, true);
 127   }
 128 
 129   static bool is_in_range_of_RelAddr32(address target, address pc) {
 130     return is_in_range_of_RelAddr(target, pc, false);
 131   }
 132   static bool is_in_range_of_RelAddr32(ptrdiff_t distance) {
 133     return is_in_range_of_RelAddr((address)distance, 0, false);
 134   }
 135 
 136   static int pcrel_off(address target, address pc, bool shortForm) {
 137     assert(((uint64_t)target & 0x0001L) == 0, "target of a relative address must be aligned");
 138     assert(((uint64_t)pc     & 0x0001L) == 0, "origin of a relative address must be aligned");
 139 
 140     if ((target == NULL) || (target == pc)) {
 141       return 0;  // Yet unknown branch destination.
 142     } else {
 143       guarantee(is_in_range_of_RelAddr(target, pc, shortForm), "target not within reach");
 144       return (int)((target - pc)>>1);
 145     }
 146   }
 147 
 148   static int pcrel_off16(address target, address pc) {
 149     return pcrel_off(target, pc, true);
 150   }
 151   static int pcrel_off16(ptrdiff_t distance) {
 152     return pcrel_off((address)distance, 0, true);
 153   }
 154 
 155   static int pcrel_off32(address target, address pc) {
 156     return pcrel_off(target, pc, false);
 157   }
 158   static int pcrel_off32(ptrdiff_t distance) {
 159     return pcrel_off((address)distance, 0, false);
 160   }
 161 
 162   static ptrdiff_t inv_pcrel_off16(int offset) {
 163     return ((ptrdiff_t)offset)<<1;
 164   }
 165 
 166   static ptrdiff_t inv_pcrel_off32(int offset) {
 167     return ((ptrdiff_t)offset)<<1;
 168   }
 169 
 170   friend class Assembler;
 171   friend class MacroAssembler;
 172   friend class NativeGeneralJump;
 173 };
 174 
 175 // Address is an abstraction used to represent a memory location
 176 // as passed to Z assembler instructions.
 177 //
 178 // Note: A register location is represented via a Register, not
 179 // via an address for efficiency & simplicity reasons.
 180 class Address VALUE_OBJ_CLASS_SPEC {
 181  private:
 182   Register _base;    // Base register.
 183   Register _index;   // Index register
 184   intptr_t _disp;    // Constant displacement.
 185 
 186  public:
 187   Address() :
 188     _base(noreg),
 189     _index(noreg),
 190     _disp(0) {}
 191 
 192   Address(Register base, Register index, intptr_t disp = 0) :
 193     _base(base),
 194     _index(index),
 195     _disp(disp) {}
 196 
 197   Address(Register base, intptr_t disp = 0) :
 198     _base(base),
 199     _index(noreg),
 200     _disp(disp) {}
 201 
 202   Address(Register base, RegisterOrConstant roc, intptr_t disp = 0) :
 203     _base(base),
 204     _index(noreg),
 205     _disp(disp) {
 206     if (roc.is_constant()) _disp += roc.as_constant(); else _index = roc.as_register();
 207   }
 208 
 209 #ifdef ASSERT
 210   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 211   Address(Register base, ByteSize disp) :
 212     _base(base),
 213     _index(noreg),
 214     _disp(in_bytes(disp)) {}
 215 
 216   Address(Register base, Register index, ByteSize disp) :
 217     _base(base),
 218     _index(index),
 219     _disp(in_bytes(disp)) {}
 220 #endif
 221 
 222   // Aborts if disp is a register and base and index are set already.
 223   Address plus_disp(RegisterOrConstant disp) const {
 224     Address a = (*this);
 225     a._disp += disp.constant_or_zero();
 226     if (disp.is_register()) {
 227       if (a._index == noreg) {
 228         a._index = disp.as_register();
 229       } else {
 230         guarantee(_base == noreg, "can not encode"); a._base = disp.as_register();
 231       }
 232     }
 233     return a;
 234   }
 235 
 236   // A call to this is generated by adlc for replacement variable $xxx$$Address.
 237   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 238 
 239   bool is_same_address(Address a) const {
 240     return _base == a._base && _index == a._index && _disp == a._disp;
 241   }
 242 
 243   // testers
 244   bool has_base()  const { return _base  != noreg; }
 245   bool has_index() const { return _index != noreg; }
 246   bool has_disp()  const { return true; } // There is no "invalid" value.
 247 
 248   bool is_disp12() const { return Immediate::is_uimm12(disp()); }
 249   bool is_disp20() const { return Immediate::is_simm20(disp()); }
 250   bool is_RSform()  { return has_base() && !has_index() && is_disp12(); }
 251   bool is_RSYform() { return has_base() && !has_index() && is_disp20(); }
 252   bool is_RXform()  { return has_base() &&  has_index() && is_disp12(); }
 253   bool is_RXEform() { return has_base() &&  has_index() && is_disp12(); }
 254   bool is_RXYform() { return has_base() &&  has_index() && is_disp20(); }
 255 
 256   bool uses(Register r) { return _base == r || _index == r; };
 257 
 258   // accessors
 259   Register base()      const { return _base; }
 260   Register baseOrR0()  const { assert(_base  != Z_R0, ""); return _base  == noreg ? Z_R0 : _base; }
 261   Register index()     const { return _index; }
 262   Register indexOrR0() const { assert(_index != Z_R0, ""); return _index == noreg ? Z_R0 : _index; }
 263   intptr_t disp() const { return _disp; }
 264   // Specific version for short displacement instructions.
 265   int      disp12() const {
 266     assert(is_disp12(), "displacement out of range for uimm12");
 267     return _disp;
 268   }
 269   // Specific version for long displacement instructions.
 270   int      disp20() const {
 271     assert(is_disp20(), "displacement out of range for simm20");
 272     return _disp;
 273   }
 274   intptr_t value() const { return _disp; }
 275 
 276   friend class Assembler;
 277 };
 278 
 279 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 280  private:
 281   address          _address;
 282   RelocationHolder _rspec;
 283 
 284   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
 285     switch (rtype) {
 286     case relocInfo::external_word_type:
 287       return external_word_Relocation::spec(addr);
 288     case relocInfo::internal_word_type:
 289       return internal_word_Relocation::spec(addr);
 290     case relocInfo::opt_virtual_call_type:
 291       return opt_virtual_call_Relocation::spec();
 292     case relocInfo::static_call_type:
 293       return static_call_Relocation::spec();
 294     case relocInfo::runtime_call_w_cp_type:
 295       return runtime_call_w_cp_Relocation::spec();
 296     case relocInfo::none:
 297       return RelocationHolder();
 298     default:
 299       ShouldNotReachHere();
 300       return RelocationHolder();
 301     }
 302   }
 303 
 304  protected:
 305   // creation
 306   AddressLiteral() : _address(NULL), _rspec(NULL) {}
 307 
 308  public:
 309   AddressLiteral(address addr, RelocationHolder const& rspec)
 310     : _address(addr),
 311       _rspec(rspec) {}
 312 
 313   // Some constructors to avoid casting at the call site.
 314   AddressLiteral(jobject obj, RelocationHolder const& rspec)
 315     : _address((address) obj),
 316       _rspec(rspec) {}
 317 
 318   AddressLiteral(intptr_t value, RelocationHolder const& rspec)
 319     : _address((address) value),
 320       _rspec(rspec) {}
 321 
 322   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
 323     : _address((address) addr),
 324     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 325 
 326   // Some constructors to avoid casting at the call site.
 327   AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
 328     : _address((address) addr),
 329     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 330 
 331   AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
 332     : _address((address) addr),
 333       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 334 
 335   AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
 336     : _address((address) addr),
 337       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 338 
 339   AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
 340     : _address((address) addr),
 341       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 342 
 343   AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
 344     : _address((address) addr),
 345       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 346 
 347   AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
 348     : _address((address) addr),
 349       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 350 
 351   AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
 352     : _address((address) addr),
 353       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 354 
 355   AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
 356     : _address((address) addr),
 357       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 358 
 359   AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
 360     : _address((address) addr),
 361       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 362 
 363   AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
 364     : _address((address) addr),
 365       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 366 
 367   AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
 368     : _address((address) addr),
 369       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 370 
 371   intptr_t value() const { return (intptr_t) _address; }
 372 
 373   const relocInfo::relocType rtype() const { return _rspec.type(); }
 374   const RelocationHolder&    rspec() const { return _rspec; }
 375 
 376   RelocationHolder rspec(int offset) const {
 377     return offset == 0 ? _rspec : _rspec.plus(offset);
 378   }
 379 };
 380 
 381 // Convenience classes
 382 class ExternalAddress: public AddressLiteral {
 383  private:
 384   static relocInfo::relocType reloc_for_target(address target) {
 385     // Sometimes ExternalAddress is used for values which aren't
 386     // exactly addresses, like the card table base.
 387     // External_word_type can't be used for values in the first page
 388     // so just skip the reloc in that case.
 389     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 390   }
 391 
 392  public:
 393   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(          target)) {}
 394   ExternalAddress(oop*    target) : AddressLiteral(target, reloc_for_target((address) target)) {}
 395 };
 396 
 397 // Argument is an abstraction used to represent an outgoing actual
 398 // argument or an incoming formal parameter, whether it resides in
 399 // memory or in a register, in a manner consistent with the
 400 // z/Architecture Application Binary Interface, or ABI. This is often
 401 // referred to as the native or C calling convention.
 402 class Argument VALUE_OBJ_CLASS_SPEC {
 403  private:
 404   int _number;
 405   bool _is_in;
 406 
 407  public:
 408   enum {
 409     // Only 5 registers may contain integer parameters.
 410     n_register_parameters = 5,
 411     // Can have up to 4 floating registers.
 412     n_float_register_parameters = 4
 413   };
 414 
 415   // creation
 416   Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
 417   Argument(int number) : _number(number) {}
 418 
 419   int number() const { return _number; }
 420 
 421   Argument successor() const { return Argument(number() + 1); }
 422 
 423   // Locating register-based arguments:
 424   bool is_register() const { return _number < n_register_parameters; }
 425 
 426   // Locating Floating Point register-based arguments:
 427   bool is_float_register() const { return _number < n_float_register_parameters; }
 428 
 429   FloatRegister as_float_register() const {
 430     assert(is_float_register(), "must be a register argument");
 431     return as_FloatRegister((number() *2) + 1);
 432   }
 433 
 434   FloatRegister as_double_register() const {
 435     assert(is_float_register(), "must be a register argument");
 436     return as_FloatRegister((number() *2));
 437   }
 438 
 439   Register as_register() const {
 440     assert(is_register(), "must be a register argument");
 441     return as_Register(number() + Z_ARG1->encoding());
 442   }
 443 
 444   // debugging
 445   const char* name() const;
 446 
 447   friend class Assembler;
 448 };
 449 
 450 
 451 // The z/Architecture Assembler: Pure assembler doing NO optimizations
 452 // on the instruction level; i.e., what you write is what you get. The
 453 // Assembler is generating code into a CodeBuffer.
 454 class Assembler : public AbstractAssembler {
 455  protected:
 456 
 457   friend class AbstractAssembler;
 458   friend class AddressLiteral;
 459 
 460   // Code patchers need various routines like inv_wdisp().
 461   friend class NativeInstruction;
 462 #ifndef COMPILER2
 463   friend class NativeGeneralJump;
 464 #endif
 465   friend class Relocation;
 466 
 467  public:
 468 
 469 // Addressing
 470 
 471 // address calculation
 472 #define LA_ZOPC     (unsigned  int)(0x41  << 24)
 473 #define LAY_ZOPC    (unsigned long)(0xe3L << 40 | 0x71L)
 474 #define LARL_ZOPC   (unsigned long)(0xc0L << 40 | 0x00L << 32)
 475 
 476 
 477 // Data Transfer
 478 
 479 // register to register transfer
 480 #define LR_ZOPC     (unsigned  int)(24 << 8)
 481 #define LBR_ZOPC    (unsigned  int)(0xb926 << 16)
 482 #define LHR_ZOPC    (unsigned  int)(0xb927 << 16)
 483 #define LGBR_ZOPC   (unsigned  int)(0xb906 << 16)
 484 #define LGHR_ZOPC   (unsigned  int)(0xb907 << 16)
 485 #define LGFR_ZOPC   (unsigned  int)(0xb914 << 16)
 486 #define LGR_ZOPC    (unsigned  int)(0xb904 << 16)
 487 
 488 #define LLHR_ZOPC   (unsigned  int)(0xb995 << 16)
 489 #define LLGCR_ZOPC  (unsigned  int)(0xb984 << 16)
 490 #define LLGHR_ZOPC  (unsigned  int)(0xb985 << 16)
 491 #define LLGTR_ZOPC  (unsigned  int)(185 << 24 | 23 << 16)
 492 #define LLGFR_ZOPC  (unsigned  int)(185 << 24 | 22 << 16)
 493 
 494 #define LTR_ZOPC    (unsigned  int)(18 << 8)
 495 #define LTGFR_ZOPC  (unsigned  int)(185 << 24 | 18 << 16)
 496 #define LTGR_ZOPC   (unsigned  int)(185 << 24 | 2 << 16)
 497 
 498 #define LER_ZOPC    (unsigned  int)(56 << 8)
 499 #define LEDBR_ZOPC  (unsigned  int)(179 << 24 | 68 << 16)
 500 #define LEXBR_ZOPC  (unsigned  int)(179 << 24 | 70 << 16)
 501 #define LDEBR_ZOPC  (unsigned  int)(179 << 24 | 4 << 16)
 502 #define LDR_ZOPC    (unsigned  int)(40 << 8)
 503 #define LDXBR_ZOPC  (unsigned  int)(179 << 24 | 69 << 16)
 504 #define LXEBR_ZOPC  (unsigned  int)(179 << 24 | 6 << 16)
 505 #define LXDBR_ZOPC  (unsigned  int)(179 << 24 | 5 << 16)
 506 #define LXR_ZOPC    (unsigned  int)(179 << 24 | 101 << 16)
 507 #define LTEBR_ZOPC  (unsigned  int)(179 << 24 | 2 << 16)
 508 #define LTDBR_ZOPC  (unsigned  int)(179 << 24 | 18 << 16)
 509 #define LTXBR_ZOPC  (unsigned  int)(179 << 24 | 66 << 16)
 510 
 511 #define LRVR_ZOPC   (unsigned  int)(0xb91f << 16)
 512 #define LRVGR_ZOPC  (unsigned  int)(0xb90f << 16)
 513 
 514 #define LDGR_ZOPC   (unsigned  int)(0xb3c1 << 16)                // z10
 515 #define LGDR_ZOPC   (unsigned  int)(0xb3cd << 16)                // z10
 516 
 517 #define LOCR_ZOPC   (unsigned  int)(0xb9f2 << 16)                // z196
 518 #define LOCGR_ZOPC  (unsigned  int)(0xb9e2 << 16)                // z196
 519 
 520 // immediate to register transfer
 521 #define IIHH_ZOPC   (unsigned  int)(165 << 24)
 522 #define IIHL_ZOPC   (unsigned  int)(165 << 24 | 1 << 16)
 523 #define IILH_ZOPC   (unsigned  int)(165 << 24 | 2 << 16)
 524 #define IILL_ZOPC   (unsigned  int)(165 << 24 | 3 << 16)
 525 #define IIHF_ZOPC   (unsigned long)(0xc0L << 40 | 8L << 32)
 526 #define IILF_ZOPC   (unsigned long)(0xc0L << 40 | 9L << 32)
 527 #define LLIHH_ZOPC  (unsigned  int)(165 << 24 | 12 << 16)
 528 #define LLIHL_ZOPC  (unsigned  int)(165 << 24 | 13 << 16)
 529 #define LLILH_ZOPC  (unsigned  int)(165 << 24 | 14 << 16)
 530 #define LLILL_ZOPC  (unsigned  int)(165 << 24 | 15 << 16)
 531 #define LLIHF_ZOPC  (unsigned long)(0xc0L << 40 | 14L << 32)
 532 #define LLILF_ZOPC  (unsigned long)(0xc0L << 40 | 15L << 32)
 533 #define LHI_ZOPC    (unsigned  int)(167 << 24 | 8 << 16)
 534 #define LGHI_ZOPC   (unsigned  int)(167 << 24 | 9 << 16)
 535 #define LGFI_ZOPC   (unsigned long)(0xc0L << 40 | 1L << 32)
 536 
 537 #define LZER_ZOPC   (unsigned  int)(0xb374 << 16)
 538 #define LZDR_ZOPC   (unsigned  int)(0xb375 << 16)
 539 
 540 // LOAD: memory to register transfer
 541 #define LB_ZOPC     (unsigned long)(227L << 40 | 118L)
 542 #define LH_ZOPC     (unsigned  int)(72 << 24)
 543 #define LHY_ZOPC    (unsigned long)(227L << 40 | 120L)
 544 #define L_ZOPC      (unsigned  int)(88 << 24)
 545 #define LY_ZOPC     (unsigned long)(227L << 40 | 88L)
 546 #define LT_ZOPC     (unsigned long)(0xe3L << 40 | 0x12L)
 547 #define LGB_ZOPC    (unsigned long)(227L << 40 | 119L)
 548 #define LGH_ZOPC    (unsigned long)(227L << 40 | 21L)
 549 #define LGF_ZOPC    (unsigned long)(227L << 40 | 20L)
 550 #define LG_ZOPC     (unsigned long)(227L << 40 | 4L)
 551 #define LTG_ZOPC    (unsigned long)(0xe3L << 40 | 0x02L)
 552 #define LTGF_ZOPC   (unsigned long)(0xe3L << 40 | 0x32L)
 553 
 554 #define LLC_ZOPC    (unsigned long)(0xe3L << 40 | 0x94L)
 555 #define LLH_ZOPC    (unsigned long)(0xe3L << 40 | 0x95L)
 556 #define LLGT_ZOPC   (unsigned long)(227L << 40 | 23L)
 557 #define LLGC_ZOPC   (unsigned long)(227L << 40 | 144L)
 558 #define LLGH_ZOPC   (unsigned long)(227L << 40 | 145L)
 559 #define LLGF_ZOPC   (unsigned long)(227L << 40 | 22L)
 560 
 561 #define IC_ZOPC     (unsigned  int)(0x43  << 24)
 562 #define ICY_ZOPC    (unsigned long)(0xe3L << 40 | 0x73L)
 563 #define ICM_ZOPC    (unsigned  int)(0xbf  << 24)
 564 #define ICMY_ZOPC   (unsigned long)(0xebL << 40 | 0x81L)
 565 #define ICMH_ZOPC   (unsigned long)(0xebL << 40 | 0x80L)
 566 
 567 #define LRVH_ZOPC   (unsigned long)(0xe3L << 40 | 0x1fL)
 568 #define LRV_ZOPC    (unsigned long)(0xe3L << 40 | 0x1eL)
 569 #define LRVG_ZOPC   (unsigned long)(0xe3L << 40 | 0x0fL)
 570 
 571 
 572 // LOAD relative: memory to register transfer
 573 #define LHRL_ZOPC   (unsigned long)(0xc4L << 40 | 0x05L << 32)  // z10
 574 #define LRL_ZOPC    (unsigned long)(0xc4L << 40 | 0x0dL << 32)  // z10
 575 #define LGHRL_ZOPC  (unsigned long)(0xc4L << 40 | 0x04L << 32)  // z10
 576 #define LGFRL_ZOPC  (unsigned long)(0xc4L << 40 | 0x0cL << 32)  // z10
 577 #define LGRL_ZOPC   (unsigned long)(0xc4L << 40 | 0x08L << 32)  // z10
 578 
 579 #define LLHRL_ZOPC  (unsigned long)(0xc4L << 40 | 0x02L << 32)  // z10
 580 #define LLGHRL_ZOPC (unsigned long)(0xc4L << 40 | 0x06L << 32)  // z10
 581 #define LLGFRL_ZOPC (unsigned long)(0xc4L << 40 | 0x0eL << 32)  // z10
 582 
 583 #define LOC_ZOPC    (unsigned long)(0xebL << 40 | 0xf2L)        // z196
 584 #define LOCG_ZOPC   (unsigned long)(0xebL << 40 | 0xe2L)        // z196
 585 
 586 #define LMG_ZOPC    (unsigned long)(235L << 40 | 4L)
 587 
 588 #define LE_ZOPC     (unsigned  int)(0x78 << 24)
 589 #define LEY_ZOPC    (unsigned long)(237L << 40 | 100L)
 590 #define LDEB_ZOPC   (unsigned long)(237L << 40 | 4)
 591 #define LD_ZOPC     (unsigned  int)(0x68 << 24)
 592 #define LDY_ZOPC    (unsigned long)(237L << 40 | 101L)
 593 #define LXEB_ZOPC   (unsigned long)(237L << 40 | 6)
 594 #define LXDB_ZOPC   (unsigned long)(237L << 40 | 5)
 595 
 596 // STORE: register to memory transfer
 597 #define STC_ZOPC    (unsigned  int)(0x42 << 24)
 598 #define STCY_ZOPC   (unsigned long)(227L << 40 | 114L)
 599 #define STH_ZOPC    (unsigned  int)(64 << 24)
 600 #define STHY_ZOPC   (unsigned long)(227L << 40 | 112L)
 601 #define ST_ZOPC     (unsigned  int)(80 << 24)
 602 #define STY_ZOPC    (unsigned long)(227L << 40 | 80L)
 603 #define STG_ZOPC    (unsigned long)(227L << 40 | 36L)
 604 
 605 #define STCM_ZOPC   (unsigned long)(0xbeL << 24)
 606 #define STCMY_ZOPC  (unsigned long)(0xebL << 40 | 0x2dL)
 607 #define STCMH_ZOPC  (unsigned long)(0xebL << 40 | 0x2cL)
 608 
 609 // STORE relative: memory to register transfer
 610 #define STHRL_ZOPC  (unsigned long)(0xc4L << 40 | 0x07L << 32)  // z10
 611 #define STRL_ZOPC   (unsigned long)(0xc4L << 40 | 0x0fL << 32)  // z10
 612 #define STGRL_ZOPC  (unsigned long)(0xc4L << 40 | 0x0bL << 32)  // z10
 613 
 614 #define STOC_ZOPC   (unsigned long)(0xebL << 40 | 0xf3L)        // z196
 615 #define STOCG_ZOPC  (unsigned long)(0xebL << 40 | 0xe3L)        // z196
 616 
 617 #define STMG_ZOPC   (unsigned long)(235L << 40 | 36L)
 618 
 619 #define STE_ZOPC    (unsigned  int)(0x70 << 24)
 620 #define STEY_ZOPC   (unsigned long)(237L << 40 | 102L)
 621 #define STD_ZOPC    (unsigned  int)(0x60 << 24)
 622 #define STDY_ZOPC   (unsigned long)(237L << 40 | 103L)
 623 
 624 // MOVE: immediate to memory transfer
 625 #define MVHHI_ZOPC  (unsigned long)(0xe5L << 40 | 0x44L << 32)   // z10
 626 #define MVHI_ZOPC   (unsigned long)(0xe5L << 40 | 0x4cL << 32)   // z10
 627 #define MVGHI_ZOPC  (unsigned long)(0xe5L << 40 | 0x48L << 32)   // z10
 628 
 629 
 630 //  ALU operations
 631 
 632 // Load Positive
 633 #define LPR_ZOPC    (unsigned  int)(16 << 8)
 634 #define LPGFR_ZOPC  (unsigned  int)(185 << 24 | 16 << 16)
 635 #define LPGR_ZOPC   (unsigned  int)(185 << 24)
 636 #define LPEBR_ZOPC  (unsigned  int)(179 << 24)
 637 #define LPDBR_ZOPC  (unsigned  int)(179 << 24 | 16 << 16)
 638 #define LPXBR_ZOPC  (unsigned  int)(179 << 24 | 64 << 16)
 639 
 640 // Load Negative
 641 #define LNR_ZOPC    (unsigned  int)(17 << 8)
 642 #define LNGFR_ZOPC  (unsigned  int)(185 << 24 | 17 << 16)
 643 #define LNGR_ZOPC   (unsigned  int)(185 << 24 | 1 << 16)
 644 #define LNEBR_ZOPC  (unsigned  int)(179 << 24 | 1 << 16)
 645 #define LNDBR_ZOPC  (unsigned  int)(179 << 24 | 17 << 16)
 646 #define LNXBR_ZOPC  (unsigned  int)(179 << 24 | 65 << 16)
 647 
 648 // Load Complement
 649 #define LCR_ZOPC    (unsigned  int)(19 << 8)
 650 #define LCGFR_ZOPC  (unsigned  int)(185 << 24 | 19 << 16)
 651 #define LCGR_ZOPC   (unsigned  int)(185 << 24 | 3 << 16)
 652 #define LCEBR_ZOPC  (unsigned  int)(179 << 24 | 3 << 16)
 653 #define LCDBR_ZOPC  (unsigned  int)(179 << 24 | 19 << 16)
 654 #define LCXBR_ZOPC  (unsigned  int)(179 << 24 | 67 << 16)
 655 
 656 // Add
 657 // RR, signed
 658 #define AR_ZOPC     (unsigned  int)(26 << 8)
 659 #define AGFR_ZOPC   (unsigned  int)(0xb9 << 24 | 0x18 << 16)
 660 #define AGR_ZOPC    (unsigned  int)(0xb9 << 24 | 0x08 << 16)
 661 // RRF, signed
 662 #define ARK_ZOPC    (unsigned  int)(0xb9 << 24 | 0x00f8 << 16)
 663 #define AGRK_ZOPC   (unsigned  int)(0xb9 << 24 | 0x00e8 << 16)
 664 // RI, signed
 665 #define AHI_ZOPC    (unsigned  int)(167 << 24 | 10 << 16)
 666 #define AFI_ZOPC    (unsigned long)(0xc2L << 40 | 9L << 32)
 667 #define AGHI_ZOPC   (unsigned  int)(167 << 24 | 11 << 16)
 668 #define AGFI_ZOPC   (unsigned long)(0xc2L << 40 | 8L << 32)
 669 // RIE, signed
 670 #define AHIK_ZOPC   (unsigned long)(0xecL << 40 | 0x00d8L)
 671 #define AGHIK_ZOPC  (unsigned long)(0xecL << 40 | 0x00d9L)
 672 #define AIH_ZOPC    (unsigned long)(0xccL << 40 | 0x08L << 32)
 673 // RM, signed
 674 #define AHY_ZOPC    (unsigned long)(227L << 40 | 122L)
 675 #define A_ZOPC      (unsigned  int)(90 << 24)
 676 #define AY_ZOPC     (unsigned long)(227L << 40 | 90L)
 677 #define AGF_ZOPC    (unsigned long)(227L << 40 | 24L)
 678 #define AG_ZOPC     (unsigned long)(227L << 40 | 8L)
 679 // In-memory arithmetic (add signed, add logical with signed immediate).
 680 // MI, signed
 681 #define ASI_ZOPC    (unsigned long)(0xebL << 40 | 0x6aL)
 682 #define AGSI_ZOPC   (unsigned long)(0xebL << 40 | 0x7aL)
 683 
 684 // RR, Logical
 685 #define ALR_ZOPC    (unsigned  int)(30 << 8)
 686 #define ALGFR_ZOPC  (unsigned  int)(185 << 24 | 26 << 16)
 687 #define ALGR_ZOPC   (unsigned  int)(185 << 24 | 10 << 16)
 688 #define ALCGR_ZOPC  (unsigned  int)(185 << 24 | 136 << 16)
 689 // RRF, Logical
 690 #define ALRK_ZOPC   (unsigned  int)(0xb9 << 24 | 0x00fa << 16)
 691 #define ALGRK_ZOPC  (unsigned  int)(0xb9 << 24 | 0x00ea << 16)
 692 // RI, Logical
 693 #define ALFI_ZOPC   (unsigned long)(0xc2L << 40 | 0x0bL << 32)
 694 #define ALGFI_ZOPC  (unsigned long)(0xc2L << 40 | 0x0aL << 32)
 695 // RIE, Logical
 696 #define ALHSIK_ZOPC (unsigned long)(0xecL << 40 | 0x00daL)
 697 #define ALGHSIK_ZOPC (unsigned long)(0xecL << 40 | 0x00dbL)
 698 // RM, Logical
 699 #define AL_ZOPC     (unsigned  int)(0x5e << 24)
 700 #define ALY_ZOPC    (unsigned long)(227L << 40 | 94L)
 701 #define ALGF_ZOPC   (unsigned long)(227L << 40 | 26L)
 702 #define ALG_ZOPC    (unsigned long)(227L << 40 | 10L)
 703 // In-memory arithmetic (add signed, add logical with signed immediate).
 704 // MI, Logical
 705 #define ALSI_ZOPC   (unsigned long)(0xebL << 40 | 0x6eL)
 706 #define ALGSI_ZOPC  (unsigned long)(0xebL << 40 | 0x7eL)
 707 
 708 // RR, BFP
 709 #define AEBR_ZOPC   (unsigned  int)(179 << 24 | 10 << 16)
 710 #define ADBR_ZOPC   (unsigned  int)(179 << 24 | 26 << 16)
 711 #define AXBR_ZOPC   (unsigned  int)(179 << 24 | 74 << 16)
 712 // RM, BFP
 713 #define AEB_ZOPC    (unsigned long)(237L << 40 | 10)
 714 #define ADB_ZOPC    (unsigned long)(237L << 40 | 26)
 715 
 716 // Subtract
 717 // RR, signed
 718 #define SR_ZOPC     (unsigned  int)(27 << 8)
 719 #define SGFR_ZOPC   (unsigned  int)(185 << 24 | 25 << 16)
 720 #define SGR_ZOPC    (unsigned  int)(185 << 24 | 9 << 16)
 721 // RRF, signed
 722 #define SRK_ZOPC    (unsigned  int)(0xb9 << 24 | 0x00f9 << 16)
 723 #define SGRK_ZOPC   (unsigned  int)(0xb9 << 24 | 0x00e9 << 16)
 724 //   RM, signed
 725 #define SH_ZOPC     (unsigned  int)(0x4b << 24)
 726 #define SHY_ZOPC    (unsigned long)(227L << 40 | 123L)
 727 #define S_ZOPC      (unsigned  int)(0x5B << 24)
 728 #define SY_ZOPC     (unsigned long)(227L << 40 | 91L)
 729 #define SGF_ZOPC    (unsigned long)(227L << 40 | 25)
 730 #define SG_ZOPC     (unsigned long)(227L << 40 | 9)
 731 // RR, Logical
 732 #define SLR_ZOPC    (unsigned  int)(31 << 8)
 733 #define SLGFR_ZOPC  (unsigned  int)(185 << 24 | 27 << 16)
 734 #define SLGR_ZOPC   (unsigned  int)(185 << 24 | 11 << 16)
 735 // RIL, Logical
 736 #define SLFI_ZOPC   (unsigned long)(0xc2L << 40 | 0x05L << 32)
 737 #define SLGFI_ZOPC  (unsigned long)(0xc2L << 40 | 0x04L << 32)
 738 // RRF, Logical
 739 #define SLRK_ZOPC   (unsigned  int)(0xb9 << 24 | 0x00fb << 16)
 740 #define SLGRK_ZOPC  (unsigned  int)(0xb9 << 24 | 0x00eb << 16)
 741 // RM, Logical
 742 #define SLY_ZOPC    (unsigned long)(227L << 40 | 95L)
 743 #define SLGF_ZOPC   (unsigned long)(227L << 40 | 27L)
 744 #define SLG_ZOPC    (unsigned long)(227L << 40 | 11L)
 745 
 746 // RR, BFP
 747 #define SEBR_ZOPC   (unsigned  int)(179 << 24 | 11 << 16)
 748 #define SDBR_ZOPC   (unsigned  int)(179 << 24 | 27 << 16)
 749 #define SXBR_ZOPC   (unsigned  int)(179 << 24 | 75 << 16)
 750 // RM, BFP
 751 #define SEB_ZOPC    (unsigned long)(237L << 40 | 11)
 752 #define SDB_ZOPC    (unsigned long)(237L << 40 | 27)
 753 
 754 // Multiply
 755 // RR, signed
 756 #define MR_ZOPC     (unsigned  int)(28 << 8)
 757 #define MSR_ZOPC    (unsigned  int)(178 << 24 | 82 << 16)
 758 #define MSGFR_ZOPC  (unsigned  int)(185 << 24 | 28 << 16)
 759 #define MSGR_ZOPC   (unsigned  int)(185 << 24 | 12 << 16)
 760 // RI, signed
 761 #define MHI_ZOPC    (unsigned  int)(167 << 24 | 12 << 16)
 762 #define MGHI_ZOPC   (unsigned  int)(167 << 24 | 13 << 16)
 763 #define MSFI_ZOPC   (unsigned long)(0xc2L << 40 | 0x01L << 32)   // z10
 764 #define MSGFI_ZOPC  (unsigned long)(0xc2L << 40 | 0x00L << 32)   // z10
 765 // RM, signed
 766 #define M_ZOPC      (unsigned  int)(92 << 24)
 767 #define MS_ZOPC     (unsigned  int)(0x71 << 24)
 768 #define MHY_ZOPC    (unsigned long)(0xe3L<< 40 | 0x7cL)
 769 #define MSY_ZOPC    (unsigned long)(227L << 40 | 81L)
 770 #define MSGF_ZOPC   (unsigned long)(227L << 40 | 28L)
 771 #define MSG_ZOPC    (unsigned long)(227L << 40 | 12L)
 772 // RR, unsigned
 773 #define MLR_ZOPC    (unsigned  int)(185 << 24 | 150 << 16)
 774 #define MLGR_ZOPC   (unsigned  int)(185 << 24 | 134 << 16)
 775 // RM, unsigned
 776 #define ML_ZOPC     (unsigned long)(227L << 40 | 150L)
 777 #define MLG_ZOPC    (unsigned long)(227L << 40 | 134L)
 778 
 779 // RR, BFP
 780 #define MEEBR_ZOPC  (unsigned  int)(179 << 24 | 23 << 16)
 781 #define MDEBR_ZOPC  (unsigned  int)(179 << 24 | 12 << 16)
 782 #define MDBR_ZOPC   (unsigned  int)(179 << 24 | 28 << 16)
 783 #define MXDBR_ZOPC  (unsigned  int)(179 << 24 | 7 << 16)
 784 #define MXBR_ZOPC   (unsigned  int)(179 << 24 | 76 << 16)
 785 // RM, BFP
 786 #define MEEB_ZOPC   (unsigned long)(237L << 40 | 23)
 787 #define MDEB_ZOPC   (unsigned long)(237L << 40 | 12)
 788 #define MDB_ZOPC    (unsigned long)(237L << 40 | 28)
 789 #define MXDB_ZOPC   (unsigned long)(237L << 40 | 7)
 790 
 791 // Multiply-Add
 792 #define MAEBR_ZOPC  (unsigned  int)(179 << 24 | 14 << 16)
 793 #define MADBR_ZOPC  (unsigned  int)(179 << 24 | 30 << 16)
 794 #define MSEBR_ZOPC  (unsigned  int)(179 << 24 | 15 << 16)
 795 #define MSDBR_ZOPC  (unsigned  int)(179 << 24 | 31 << 16)
 796 #define MAEB_ZOPC   (unsigned long)(237L << 40 | 14)
 797 #define MADB_ZOPC   (unsigned long)(237L << 40 | 30)
 798 #define MSEB_ZOPC   (unsigned long)(237L << 40 | 15)
 799 #define MSDB_ZOPC   (unsigned long)(237L << 40 | 31)
 800 
 801 // Divide
 802 // RR, signed
 803 #define DSGFR_ZOPC  (unsigned  int)(0xb91d << 16)
 804 #define DSGR_ZOPC   (unsigned  int)(0xb90d << 16)
 805 // RM, signed
 806 #define D_ZOPC      (unsigned  int)(93 << 24)
 807 #define DSGF_ZOPC   (unsigned long)(227L << 40 | 29L)
 808 #define DSG_ZOPC    (unsigned long)(227L << 40 | 13L)
 809 // RR, unsigned
 810 #define DLR_ZOPC    (unsigned  int)(185 << 24 | 151 << 16)
 811 #define DLGR_ZOPC   (unsigned  int)(185 << 24 | 135 << 16)
 812 // RM, unsigned
 813 #define DL_ZOPC     (unsigned long)(227L << 40 | 151L)
 814 #define DLG_ZOPC    (unsigned long)(227L << 40 | 135L)
 815 
 816 // RR, BFP
 817 #define DEBR_ZOPC   (unsigned  int)(179 << 24 | 13 << 16)
 818 #define DDBR_ZOPC   (unsigned  int)(179 << 24 | 29 << 16)
 819 #define DXBR_ZOPC   (unsigned  int)(179 << 24 | 77 << 16)
 820 // RM, BFP
 821 #define DEB_ZOPC    (unsigned long)(237L << 40 | 13)
 822 #define DDB_ZOPC    (unsigned long)(237L << 40 | 29)
 823 
 824 // Square Root
 825 // RR, BFP
 826 #define SQEBR_ZOPC  (unsigned  int)(0xb314 << 16)
 827 #define SQDBR_ZOPC  (unsigned  int)(0xb315 << 16)
 828 #define SQXBR_ZOPC  (unsigned  int)(0xb316 << 16)
 829 // RM, BFP
 830 #define SQEB_ZOPC   (unsigned long)(237L << 40 | 20)
 831 #define SQDB_ZOPC   (unsigned long)(237L << 40 | 21)
 832 
 833 // Compare and Test
 834 // RR, signed
 835 #define CR_ZOPC     (unsigned  int)(25 << 8)
 836 #define CGFR_ZOPC   (unsigned  int)(185 << 24 | 48 << 16)
 837 #define CGR_ZOPC    (unsigned  int)(185 << 24 | 32 << 16)
 838 // RI, signed
 839 #define CHI_ZOPC    (unsigned  int)(167 << 24 | 14 << 16)
 840 #define CFI_ZOPC    (unsigned long)(0xc2L << 40 | 0xdL << 32)
 841 #define CGHI_ZOPC   (unsigned  int)(167 << 24 | 15 << 16)
 842 #define CGFI_ZOPC   (unsigned long)(0xc2L << 40 | 0xcL << 32)
 843 // RM, signed
 844 #define CH_ZOPC     (unsigned  int)(0x49 << 24)
 845 #define CHY_ZOPC    (unsigned long)(227L << 40 | 121L)
 846 #define C_ZOPC      (unsigned  int)(0x59 << 24)
 847 #define CY_ZOPC     (unsigned long)(227L << 40 | 89L)
 848 #define CGF_ZOPC    (unsigned long)(227L << 40 | 48L)
 849 #define CG_ZOPC     (unsigned long)(227L << 40 | 32L)
 850 // RR, unsigned
 851 #define CLR_ZOPC    (unsigned  int)(21 << 8)
 852 #define CLGFR_ZOPC  (unsigned  int)(185 << 24 | 49 << 16)
 853 #define CLGR_ZOPC   (unsigned  int)(185 << 24 | 33 << 16)
 854 // RIL, unsigned
 855 #define CLFI_ZOPC   (unsigned long)(0xc2L << 40 | 0xfL << 32)
 856 #define CLGFI_ZOPC  (unsigned long)(0xc2L << 40 | 0xeL << 32)
 857 // RM, unsigned
 858 #define CL_ZOPC     (unsigned  int)(0x55 << 24)
 859 #define CLY_ZOPC    (unsigned long)(227L << 40 | 85L)
 860 #define CLGF_ZOPC   (unsigned long)(227L << 40 | 49L)
 861 #define CLG_ZOPC    (unsigned long)(227L << 40 | 33L)
 862 // RI, unsigned
 863 #define TMHH_ZOPC   (unsigned  int)(167 << 24 | 2 << 16)
 864 #define TMHL_ZOPC   (unsigned  int)(167 << 24 | 3 << 16)
 865 #define TMLH_ZOPC   (unsigned  int)(167 << 24)
 866 #define TMLL_ZOPC   (unsigned  int)(167 << 24 | 1 << 16)
 867 
 868 // RR, BFP
 869 #define CEBR_ZOPC   (unsigned  int)(179 << 24 | 9 << 16)
 870 #define CDBR_ZOPC   (unsigned  int)(179 << 24 | 25 << 16)
 871 #define CXBR_ZOPC   (unsigned  int)(179 << 24 | 73 << 16)
 872 // RM, BFP
 873 #define CEB_ZOPC    (unsigned long)(237L << 40 | 9)
 874 #define CDB_ZOPC    (unsigned long)(237L << 40 | 25)
 875 
 876 // Shift
 877 // arithmetic
 878 #define SLA_ZOPC    (unsigned  int)(139 << 24)
 879 #define SLAG_ZOPC   (unsigned long)(235L << 40 | 11L)
 880 #define SRA_ZOPC    (unsigned  int)(138 << 24)
 881 #define SRAG_ZOPC   (unsigned long)(235L << 40 | 10L)
 882 // logical
 883 #define SLL_ZOPC    (unsigned  int)(137 << 24)
 884 #define SLLG_ZOPC   (unsigned long)(235L << 40 | 13L)
 885 #define SRL_ZOPC    (unsigned  int)(136 << 24)
 886 #define SRLG_ZOPC   (unsigned long)(235L << 40 | 12L)
 887 
 888 // Rotate, then AND/XOR/OR/insert
 889 // rotate
 890 #define RLL_ZOPC    (unsigned long)(0xebL << 40 | 0x1dL)         // z10
 891 #define RLLG_ZOPC   (unsigned long)(0xebL << 40 | 0x1cL)         // z10
 892 // rotate and {AND|XOR|OR|INS}
 893 #define RNSBG_ZOPC  (unsigned long)(0xecL << 40 | 0x54L)         // z196
 894 #define RXSBG_ZOPC  (unsigned long)(0xecL << 40 | 0x57L)         // z196
 895 #define ROSBG_ZOPC  (unsigned long)(0xecL << 40 | 0x56L)         // z196
 896 #define RISBG_ZOPC  (unsigned long)(0xecL << 40 | 0x55L)         // z196
 897 
 898 // AND
 899 // RR, signed
 900 #define NR_ZOPC     (unsigned  int)(20 << 8)
 901 #define NGR_ZOPC    (unsigned  int)(185 << 24 | 128 << 16)
 902 // RRF, signed
 903 #define NRK_ZOPC    (unsigned  int)(0xb9 << 24 | 0x00f4 << 16)
 904 #define NGRK_ZOPC   (unsigned  int)(0xb9 << 24 | 0x00e4 << 16)
 905 // RI, signed
 906 #define NIHH_ZOPC   (unsigned  int)(165 << 24 | 4 << 16)
 907 #define NIHL_ZOPC   (unsigned  int)(165 << 24 | 5 << 16)
 908 #define NILH_ZOPC   (unsigned  int)(165 << 24 | 6 << 16)
 909 #define NILL_ZOPC   (unsigned  int)(165 << 24 | 7 << 16)
 910 #define NIHF_ZOPC   (unsigned long)(0xc0L << 40 | 10L << 32)
 911 #define NILF_ZOPC   (unsigned long)(0xc0L << 40 | 11L << 32)
 912 // RM, signed
 913 #define N_ZOPC      (unsigned  int)(0x54 << 24)
 914 #define NY_ZOPC     (unsigned long)(227L << 40 | 84L)
 915 #define NG_ZOPC     (unsigned long)(227L << 40 | 128L)
 916 
 917 // OR
 918 // RR, signed
 919 #define OR_ZOPC     (unsigned  int)(22 << 8)
 920 #define OGR_ZOPC    (unsigned  int)(185 << 24 | 129 << 16)
 921 // RRF, signed
 922 #define ORK_ZOPC    (unsigned  int)(0xb9 << 24 | 0x00f6 << 16)
 923 #define OGRK_ZOPC   (unsigned  int)(0xb9 << 24 | 0x00e6 << 16)
 924 // RI, signed
 925 #define OIHH_ZOPC   (unsigned  int)(165 << 24 | 8 << 16)
 926 #define OIHL_ZOPC   (unsigned  int)(165 << 24 | 9 << 16)
 927 #define OILH_ZOPC   (unsigned  int)(165 << 24 | 10 << 16)
 928 #define OILL_ZOPC   (unsigned  int)(165 << 24 | 11 << 16)
 929 #define OIHF_ZOPC   (unsigned long)(0xc0L << 40 | 12L << 32)
 930 #define OILF_ZOPC   (unsigned long)(0xc0L << 40 | 13L << 32)
 931 // RM, signed
 932 #define O_ZOPC      (unsigned  int)(0x56 << 24)
 933 #define OY_ZOPC     (unsigned long)(227L << 40 | 86L)
 934 #define OG_ZOPC     (unsigned long)(227L << 40 | 129L)
 935 
 936 // XOR
 937 // RR, signed
 938 #define XR_ZOPC     (unsigned  int)(23 << 8)
 939 #define XGR_ZOPC    (unsigned  int)(185 << 24 | 130 << 16)
 940 // RRF, signed
 941 #define XRK_ZOPC    (unsigned  int)(0xb9 << 24 | 0x00f7 << 16)
 942 #define XGRK_ZOPC   (unsigned  int)(0xb9 << 24 | 0x00e7 << 16)
 943 // RI, signed
 944 #define XIHF_ZOPC   (unsigned long)(0xc0L << 40 | 6L << 32)
 945 #define XILF_ZOPC   (unsigned long)(0xc0L << 40 | 7L << 32)
 946 // RM, signed
 947 #define X_ZOPC      (unsigned  int)(0x57 << 24)
 948 #define XY_ZOPC     (unsigned long)(227L << 40 | 87L)
 949 #define XG_ZOPC     (unsigned long)(227L << 40 | 130L)
 950 
 951 
 952 // Data Conversion
 953 
 954 // INT to BFP
 955 #define CEFBR_ZOPC  (unsigned  int)(179 << 24 | 148 << 16)
 956 #define CDFBR_ZOPC  (unsigned  int)(179 << 24 | 149 << 16)
 957 #define CXFBR_ZOPC  (unsigned  int)(179 << 24 | 150 << 16)
 958 #define CEGBR_ZOPC  (unsigned  int)(179 << 24 | 164 << 16)
 959 #define CDGBR_ZOPC  (unsigned  int)(179 << 24 | 165 << 16)
 960 #define CXGBR_ZOPC  (unsigned  int)(179 << 24 | 166 << 16)
 961 // BFP to INT
 962 #define CFEBR_ZOPC  (unsigned  int)(179 << 24 | 152 << 16)
 963 #define CFDBR_ZOPC  (unsigned  int)(179 << 24 | 153 << 16)
 964 #define CFXBR_ZOPC  (unsigned  int)(179 << 24 | 154 << 16)
 965 #define CGEBR_ZOPC  (unsigned  int)(179 << 24 | 168 << 16)
 966 #define CGDBR_ZOPC  (unsigned  int)(179 << 24 | 169 << 16)
 967 #define CGXBR_ZOPC  (unsigned  int)(179 << 24 | 170 << 16)
 968 // INT to DEC
 969 #define CVD_ZOPC    (unsigned  int)(0x4e << 24)
 970 #define CVDY_ZOPC   (unsigned long)(0xe3L << 40 | 0x26L)
 971 #define CVDG_ZOPC   (unsigned long)(0xe3L << 40 | 0x2eL)
 972 
 973 
 974 // BFP Control
 975 
 976 #define SRNM_ZOPC   (unsigned  int)(178 << 24 | 153 << 16)
 977 #define EFPC_ZOPC   (unsigned  int)(179 << 24 | 140 << 16)
 978 #define SFPC_ZOPC   (unsigned  int)(179 << 24 | 132 << 16)
 979 #define STFPC_ZOPC  (unsigned  int)(178 << 24 | 156 << 16)
 980 #define LFPC_ZOPC   (unsigned  int)(178 << 24 | 157 << 16)
 981 
 982 
 983 // Branch Instructions
 984 
 985 // Register
 986 #define BCR_ZOPC    (unsigned  int)(7 << 8)
 987 #define BALR_ZOPC   (unsigned  int)(5 << 8)
 988 #define BASR_ZOPC   (unsigned  int)(13 << 8)
 989 #define BCTGR_ZOPC  (unsigned long)(0xb946 << 16)
 990 // Absolute
 991 #define BC_ZOPC     (unsigned  int)(71 << 24)
 992 #define BAL_ZOPC    (unsigned  int)(69 << 24)
 993 #define BAS_ZOPC    (unsigned  int)(77 << 24)
 994 #define BXH_ZOPC    (unsigned  int)(134 << 24)
 995 #define BXHG_ZOPC   (unsigned long)(235L << 40 | 68)
 996 // Relative
 997 #define BRC_ZOPC    (unsigned  int)(167 << 24 | 4 << 16)
 998 #define BRCL_ZOPC   (unsigned long)(192L << 40 | 4L << 32)
 999 #define BRAS_ZOPC   (unsigned  int)(167 << 24 | 5 << 16)
1000 #define BRASL_ZOPC  (unsigned long)(192L << 40 | 5L << 32)
1001 #define BRCT_ZOPC   (unsigned  int)(167 << 24 | 6 << 16)
1002 #define BRCTG_ZOPC  (unsigned  int)(167 << 24 | 7 << 16)
1003 #define BRXH_ZOPC   (unsigned  int)(132 << 24)
1004 #define BRXHG_ZOPC  (unsigned long)(236L << 40 | 68)
1005 #define BRXLE_ZOPC  (unsigned  int)(133 << 24)
1006 #define BRXLG_ZOPC  (unsigned long)(236L << 40 | 69)
1007 
1008 
1009 // Compare and Branch Instructions
1010 
1011 // signed comp reg/reg, branch Absolute
1012 #define CRB_ZOPC    (unsigned long)(0xecL << 40 | 0xf6L)         // z10
1013 #define CGRB_ZOPC   (unsigned long)(0xecL << 40 | 0xe4L)         // z10
1014 // signed comp reg/reg, branch Relative
1015 #define CRJ_ZOPC    (unsigned long)(0xecL << 40 | 0x76L)         // z10
1016 #define CGRJ_ZOPC   (unsigned long)(0xecL << 40 | 0x64L)         // z10
1017 // signed comp reg/imm, branch absolute
1018 #define CIB_ZOPC    (unsigned long)(0xecL << 40 | 0xfeL)         // z10
1019 #define CGIB_ZOPC   (unsigned long)(0xecL << 40 | 0xfcL)         // z10
1020 // signed comp reg/imm, branch relative
1021 #define CIJ_ZOPC    (unsigned long)(0xecL << 40 | 0x7eL)         // z10
1022 #define CGIJ_ZOPC   (unsigned long)(0xecL << 40 | 0x7cL)         // z10
1023 
1024 // unsigned comp reg/reg, branch Absolute
1025 #define CLRB_ZOPC   (unsigned long)(0xecL << 40 | 0xf7L)         // z10
1026 #define CLGRB_ZOPC  (unsigned long)(0xecL << 40 | 0xe5L)         // z10
1027 // unsigned comp reg/reg, branch Relative
1028 #define CLRJ_ZOPC   (unsigned long)(0xecL << 40 | 0x77L)         // z10
1029 #define CLGRJ_ZOPC  (unsigned long)(0xecL << 40 | 0x65L)         // z10
1030 // unsigned comp reg/imm, branch absolute
1031 #define CLIB_ZOPC   (unsigned long)(0xecL << 40 | 0xffL)         // z10
1032 #define CLGIB_ZOPC  (unsigned long)(0xecL << 40 | 0xfdL)         // z10
1033 // unsigned comp reg/imm, branch relative
1034 #define CLIJ_ZOPC   (unsigned long)(0xecL << 40 | 0x7fL)         // z10
1035 #define CLGIJ_ZOPC  (unsigned long)(0xecL << 40 | 0x7dL)         // z10
1036 
1037 // comp reg/reg, trap
1038 #define CRT_ZOPC    (unsigned  int)(0xb972 << 16)                // z10
1039 #define CGRT_ZOPC   (unsigned  int)(0xb960 << 16)                // z10
1040 #define CLRT_ZOPC   (unsigned  int)(0xb973 << 16)                // z10
1041 #define CLGRT_ZOPC  (unsigned  int)(0xb961 << 16)                // z10
1042 // comp reg/imm, trap
1043 #define CIT_ZOPC    (unsigned long)(0xecL << 40 | 0x72L)         // z10
1044 #define CGIT_ZOPC   (unsigned long)(0xecL << 40 | 0x70L)         // z10
1045 #define CLFIT_ZOPC  (unsigned long)(0xecL << 40 | 0x73L)         // z10
1046 #define CLGIT_ZOPC  (unsigned long)(0xecL << 40 | 0x71L)         // z10
1047 
1048 
1049 // Direct Memory Operations
1050 
1051 // Compare
1052 #define CLI_ZOPC    (unsigned  int)(0x95  << 24)
1053 #define CLIY_ZOPC   (unsigned long)(0xebL << 40 | 0x55L)
1054 #define CLC_ZOPC    (unsigned long)(0xd5L << 40)
1055 #define CLCL_ZOPC   (unsigned  int)(0x0f  <<  8)
1056 #define CLCLE_ZOPC  (unsigned  int)(0xa9  << 24)
1057 #define CLCLU_ZOPC  (unsigned long)(0xebL << 40 | 0x8fL)
1058 
1059 // Move
1060 #define MVI_ZOPC    (unsigned  int)(0x92  << 24)
1061 #define MVIY_ZOPC   (unsigned long)(0xebL << 40 | 0x52L)
1062 #define MVC_ZOPC    (unsigned long)(0xd2L << 40)
1063 #define MVCL_ZOPC   (unsigned  int)(0x0e  <<  8)
1064 #define MVCLE_ZOPC  (unsigned  int)(0xa8  << 24)
1065 
1066 // Test
1067 #define TM_ZOPC     (unsigned  int)(0x91  << 24)
1068 #define TMY_ZOPC    (unsigned long)(0xebL << 40 | 0x51L)
1069 
1070 // AND
1071 #define NI_ZOPC     (unsigned  int)(0x94  << 24)
1072 #define NIY_ZOPC    (unsigned long)(0xebL << 40 | 0x54L)
1073 #define NC_ZOPC     (unsigned long)(0xd4L << 40)
1074 
1075 // OR
1076 #define OI_ZOPC     (unsigned  int)(0x96  << 24)
1077 #define OIY_ZOPC    (unsigned long)(0xebL << 40 | 0x56L)
1078 #define OC_ZOPC     (unsigned long)(0xd6L << 40)
1079 
1080 // XOR
1081 #define XI_ZOPC     (unsigned  int)(0x97  << 24)
1082 #define XIY_ZOPC    (unsigned long)(0xebL << 40 | 0x57L)
1083 #define XC_ZOPC     (unsigned long)(0xd7L << 40)
1084 
1085 // Search String
1086 #define SRST_ZOPC   (unsigned  int)(178 << 24 | 94 << 16)
1087 #define SRSTU_ZOPC  (unsigned  int)(185 << 24 | 190 << 16)
1088 
1089 // Translate characters
1090 #define TROO_ZOPC   (unsigned  int)(0xb9 << 24 | 0x93 << 16)
1091 #define TROT_ZOPC   (unsigned  int)(0xb9 << 24 | 0x92 << 16)
1092 #define TRTO_ZOPC   (unsigned  int)(0xb9 << 24 | 0x91 << 16)
1093 #define TRTT_ZOPC   (unsigned  int)(0xb9 << 24 | 0x90 << 16)
1094 
1095 
1096 // Miscellaneous Operations
1097 
1098 // Execute
1099 #define EX_ZOPC     (unsigned  int)(68L << 24)
1100 #define EXRL_ZOPC   (unsigned long)(0xc6L << 40 | 0x00L << 32)  // z10
1101 
1102 // Compare and Swap
1103 #define CS_ZOPC     (unsigned  int)(0xba << 24)
1104 #define CSY_ZOPC    (unsigned long)(0xebL << 40 | 0x14L)
1105 #define CSG_ZOPC    (unsigned long)(0xebL << 40 | 0x30L)
1106 
1107 // Interlocked-Update
1108 #define LAA_ZOPC    (unsigned long)(0xebL << 40 | 0xf8L)         // z196
1109 #define LAAG_ZOPC   (unsigned long)(0xebL << 40 | 0xe8L)         // z196
1110 #define LAAL_ZOPC   (unsigned long)(0xebL << 40 | 0xfaL)         // z196
1111 #define LAALG_ZOPC  (unsigned long)(0xebL << 40 | 0xeaL)         // z196
1112 #define LAN_ZOPC    (unsigned long)(0xebL << 40 | 0xf4L)         // z196
1113 #define LANG_ZOPC   (unsigned long)(0xebL << 40 | 0xe4L)         // z196
1114 #define LAX_ZOPC    (unsigned long)(0xebL << 40 | 0xf7L)         // z196
1115 #define LAXG_ZOPC   (unsigned long)(0xebL << 40 | 0xe7L)         // z196
1116 #define LAO_ZOPC    (unsigned long)(0xebL << 40 | 0xf6L)         // z196
1117 #define LAOG_ZOPC   (unsigned long)(0xebL << 40 | 0xe6L)         // z196
1118 
1119 // System Functions
1120 #define STCK_ZOPC   (unsigned  int)(0xb2 << 24 | 0x05 << 16)
1121 #define STCKF_ZOPC  (unsigned  int)(0xb2 << 24 | 0x7c << 16)
1122 #define STFLE_ZOPC  (unsigned  int)(0xb2 << 24 | 0xb0 << 16)
1123 #define ECTG_ZOPC   (unsigned long)(0xc8L <<40 | 0x01L << 32)    // z10
1124 #define ECAG_ZOPC   (unsigned long)(0xebL <<40 | 0x4cL)          // z10
1125 
1126 // Execution Prediction
1127 #define PFD_ZOPC    (unsigned long)(0xe3L <<40 | 0x36L)          // z10
1128 #define PFDRL_ZOPC  (unsigned long)(0xc6L <<40 | 0x02L << 32)    // z10
1129 #define BPP_ZOPC    (unsigned long)(0xc7L <<40)                  // branch prediction preload  -- EC12
1130 #define BPRP_ZOPC   (unsigned long)(0xc5L <<40)                  // branch prediction preload  -- EC12
1131 
1132 // Transaction Control
1133 #define TBEGIN_ZOPC  (unsigned long)(0xe560L << 32)              // tx begin                   -- EC12
1134 #define TBEGINC_ZOPC (unsigned long)(0xe561L << 32)              // tx begin (constrained)     -- EC12
1135 #define TEND_ZOPC    (unsigned  int)(0xb2f8  << 16)              // tx end                     -- EC12
1136 #define TABORT_ZOPC  (unsigned  int)(0xb2fc  << 16)              // tx abort                   -- EC12
1137 #define ETND_ZOPC    (unsigned  int)(0xb2ec  << 16)              // tx nesting depth           -- EC12
1138 #define PPA_ZOPC     (unsigned  int)(0xb2e8  << 16)              // tx processor assist        -- EC12
1139 
1140 // Crypto and Checksum
1141 #define CKSM_ZOPC   (unsigned  int)(0xb2 << 24 | 0x41 << 16)     // checksum. This is NOT CRC32
1142 #define KM_ZOPC     (unsigned  int)(0xb9 << 24 | 0x2e << 16)     // cipher
1143 #define KMC_ZOPC    (unsigned  int)(0xb9 << 24 | 0x2f << 16)     // cipher
1144 #define KIMD_ZOPC   (unsigned  int)(0xb9 << 24 | 0x3e << 16)     // SHA (msg digest)
1145 #define KLMD_ZOPC   (unsigned  int)(0xb9 << 24 | 0x3f << 16)     // SHA (msg digest)
1146 #define KMAC_ZOPC   (unsigned  int)(0xb9 << 24 | 0x1e << 16)     // Message Authentication Code
1147 
1148 // Various
1149 #define TCEB_ZOPC   (unsigned long)(237L << 40 | 16)
1150 #define TCDB_ZOPC   (unsigned long)(237L << 40 | 17)
1151 #define TAM_ZOPC    (unsigned long)(267)
1152 
1153 #define FLOGR_ZOPC  (unsigned  int)(0xb9 << 24 | 0x83 << 16)
1154 #define POPCNT_ZOPC (unsigned  int)(0xb9e1 << 16)
1155 #define AHHHR_ZOPC  (unsigned  int)(0xb9c8 << 16)
1156 #define AHHLR_ZOPC  (unsigned  int)(0xb9d8 << 16)
1157 
1158 
1159 // OpCode field masks
1160 
1161 #define RI_MASK     (unsigned  int)(0xff  << 24 | 0x0f << 16)
1162 #define RRE_MASK    (unsigned  int)(0xff  << 24 | 0xff << 16)
1163 #define RSI_MASK    (unsigned  int)(0xff  << 24)
1164 #define RIE_MASK    (unsigned long)(0xffL << 40 | 0xffL)
1165 #define RIL_MASK    (unsigned long)(0xffL << 40 | 0x0fL << 32)
1166 
1167 #define BASR_MASK   (unsigned  int)(0xff << 8)
1168 #define BCR_MASK    (unsigned  int)(0xff << 8)
1169 #define BRC_MASK    (unsigned  int)(0xff << 24 | 0x0f << 16)
1170 #define LGHI_MASK   (unsigned  int)(0xff << 24 | 0x0f << 16)
1171 #define LLI_MASK    (unsigned  int)(0xff << 24 | 0x0f << 16)
1172 #define II_MASK     (unsigned  int)(0xff << 24 | 0x0f << 16)
1173 #define LLIF_MASK   (unsigned long)(0xffL << 40 | 0x0fL << 32)
1174 #define IIF_MASK    (unsigned long)(0xffL << 40 | 0x0fL << 32)
1175 #define BRASL_MASK  (unsigned long)(0xffL << 40 | 0x0fL << 32)
1176 #define TM_MASK     (unsigned  int)(0xff << 24)
1177 #define TMY_MASK    (unsigned long)(0xffL << 40 | 0xffL)
1178 #define LB_MASK     (unsigned long)(0xffL << 40 | 0xffL)
1179 #define LH_MASK     (unsigned int)(0xff << 24)
1180 #define L_MASK      (unsigned int)(0xff << 24)
1181 #define LY_MASK     (unsigned long)(0xffL << 40 | 0xffL)
1182 #define LG_MASK     (unsigned long)(0xffL << 40 | 0xffL)
1183 #define LLGH_MASK   (unsigned long)(0xffL << 40 | 0xffL)
1184 #define LLGF_MASK   (unsigned long)(0xffL << 40 | 0xffL)
1185 #define SLAG_MASK   (unsigned long)(0xffL << 40 | 0xffL)
1186 #define LARL_MASK   (unsigned long)(0xff0fL << 32)
1187 #define LGRL_MASK   (unsigned long)(0xff0fL << 32)
1188 #define LE_MASK     (unsigned int)(0xff << 24)
1189 #define LD_MASK     (unsigned int)(0xff << 24)
1190 #define ST_MASK     (unsigned int)(0xff << 24)
1191 #define STC_MASK    (unsigned int)(0xff << 24)
1192 #define STG_MASK    (unsigned long)(0xffL << 40 | 0xffL)
1193 #define STH_MASK    (unsigned int)(0xff << 24)
1194 #define STE_MASK    (unsigned int)(0xff << 24)
1195 #define STD_MASK    (unsigned int)(0xff << 24)
1196 #define CMPBRANCH_MASK (unsigned long)(0xffL << 40 | 0xffL)
1197 #define REL_LONG_MASK  (unsigned long)(0xff0fL << 32)
1198 
1199  public:
1200   // Condition code masks. Details:
1201   // - Mask bit#3 must be zero for all compare and branch/trap instructions to ensure
1202   //   future compatibility.
1203   // - For all arithmetic instructions which set the condition code, mask bit#3
1204   //   indicates overflow ("unordered" in float operations).
1205   // - "unordered" float comparison results have to be treated as low.
1206   // - When overflow/unordered is detected, none of the branch conditions is true,
1207   //   except for bcondOverflow/bcondNotOrdered and bcondAlways.
1208   // - For INT comparisons, the inverse condition can be calculated as (14-cond).
1209   // - For FLOAT comparisons, the inverse condition can be calculated as (15-cond).
1210   enum branch_condition {
1211     bcondNever       =  0,
1212     bcondAlways      = 15,
1213 
1214     // Specific names. Make use of lightweight sync.
1215     // Full and lightweight sync operation.
1216     bcondFullSync    = 15,
1217     bcondLightSync   = 14,
1218     bcondNop         =  0,
1219 
1220     // arithmetic compare instructions
1221     // arithmetic load and test, insert instructions
1222     // Mask bit#3 must be zero for future compatibility.
1223     bcondEqual       =  8,
1224     bcondNotEqual    =  6,
1225     bcondLow         =  4,
1226     bcondNotLow      = 10,
1227     bcondHigh        =  2,
1228     bcondNotHigh     = 12,
1229     // arithmetic calculation instructions
1230     // Mask bit#3 indicates overflow if detected by instr.
1231     // Mask bit#3 = 0 (overflow is not handled by compiler).
1232     bcondOverflow    =  1,
1233     bcondNotOverflow = 14,
1234     bcondZero        =  bcondEqual,
1235     bcondNotZero     =  bcondNotEqual,
1236     bcondNegative    =  bcondLow,
1237     bcondNotNegative =  bcondNotLow,
1238     bcondPositive    =  bcondHigh,
1239     bcondNotPositive =  bcondNotHigh,
1240     bcondNotOrdered  =  1,  // float comparisons
1241     bcondOrdered     = 14,  // float comparisons
1242     bcondLowOrNotOrdered  =  bcondLow|bcondNotOrdered,  // float comparisons
1243     bcondHighOrNotOrdered =  bcondHigh|bcondNotOrdered, // float comparisons
1244     // unsigned arithmetic calculation instructions
1245     // Mask bit#0 is not used by these instructions.
1246     // There is no indication of overflow for these instr.
1247     bcondLogZero             =  2,
1248     bcondLogNotZero          =  5,
1249     bcondLogNotZero_Borrow   =  4,
1250     bcondLogNotZero_NoBorrow =  1,
1251     // string search instructions
1252     bcondFound       =  4,
1253     bcondNotFound    =  2,
1254     bcondInterrupted =  1,
1255     // bit test instructions
1256     bcondAllZero     =  8,
1257     bcondMixed       =  6,
1258     bcondAllOne      =  1,
1259     bcondNotAllZero  =  7 // for tmll
1260   };
1261 
1262   enum Condition {
1263     // z/Architecture
1264     negative         = 0,
1265     less             = 0,
1266     positive         = 1,
1267     greater          = 1,
1268     zero             = 2,
1269     equal            = 2,
1270     summary_overflow = 3,
1271   };
1272 
1273   // Rounding mode for float-2-int conversions.
1274   enum RoundingMode {
1275     current_mode      = 0,   // Mode taken from FPC register.
1276     biased_to_nearest = 1,
1277     to_nearest        = 4,
1278     to_zero           = 5,
1279     to_plus_infinity  = 6,
1280     to_minus_infinity = 7
1281   };
1282 
1283   // Inverse condition code, i.e. determine "15 - cc" for a given condition code cc.
1284   static branch_condition inverse_condition(branch_condition cc);
1285   static branch_condition inverse_float_condition(branch_condition cc);
1286 
1287 
1288   //-----------------------------------------------
1289   // instruction property getter methods
1290   //-----------------------------------------------
1291 
1292   // Calculate length of instruction.
1293   static int instr_len(unsigned char *instr);
1294 
1295   // Longest instructions are 6 bytes on z/Architecture.
1296   static int instr_maxlen() { return 6; }
1297 
1298   // Average instruction is 4 bytes on z/Architecture (just a guess).
1299   static int instr_avglen() { return 4; }
1300 
1301   // Shortest instructions are 2 bytes on z/Architecture.
1302   static int instr_minlen() { return 2; }
1303 
1304   // Move instruction at pc right-justified into passed long int.
1305   // Return instr len in bytes as function result.
1306   static unsigned int get_instruction(unsigned char *pc, unsigned long *instr);
1307 
1308   // Move instruction in passed (long int) into storage at pc.
1309   // This code is _NOT_ MT-safe!!
1310   static void set_instruction(unsigned char *pc, unsigned long instr, unsigned int len) {
1311     memcpy(pc, ((unsigned char *)&instr)+sizeof(unsigned long)-len, len);
1312   }
1313 
1314 
1315   //------------------------------------------
1316   // instruction field test methods
1317   //------------------------------------------
1318 
1319   // Only used once in s390.ad to implement Matcher::is_short_branch_offset().
1320   static bool is_within_range_of_RelAddr16(address target, address origin) {
1321     return RelAddr::is_in_range_of_RelAddr16(target, origin);
1322   }
1323 
1324 
1325   //----------------------------------
1326   // some diagnostic output
1327   //----------------------------------
1328 
1329   static void print_dbg_msg(outputStream* out, unsigned long inst, const char* msg, int ilen) PRODUCT_RETURN;
1330   static void dump_code_range(outputStream* out, address pc, const unsigned int range, const char* msg = " ") PRODUCT_RETURN;
1331 
1332  protected:
1333 
1334   //-------------------------------------------------------
1335   // instruction field helper methods (internal)
1336   //-------------------------------------------------------
1337 
1338   // Return a mask of 1s between hi_bit and lo_bit (inclusive).
1339   static long fmask(unsigned int hi_bit, unsigned int lo_bit) {
1340     assert(hi_bit >= lo_bit && hi_bit < 48, "bad bits");
1341     return ((1L<<(hi_bit-lo_bit+1)) - 1) << lo_bit;
1342   }
1343 
1344   // extract u_field
1345   // unsigned value
1346   static long inv_u_field(long x, int hi_bit, int lo_bit) {
1347     return (x & fmask(hi_bit, lo_bit)) >> lo_bit;
1348   }
1349 
1350   // extract s_field
1351   // Signed value, may need sign extension.
1352   static long inv_s_field(long x, int hi_bit, int lo_bit) {
1353     x = inv_u_field(x, hi_bit, lo_bit);
1354     // Highest extracted bit set -> sign extension.
1355     return (x >= (1L<<(hi_bit-lo_bit)) ? x | ((-1L)<<(hi_bit-lo_bit)) : x);
1356   }
1357 
1358   // Extract primary opcode from instruction.
1359   static int z_inv_op(int  x) { return inv_u_field(x, 31, 24); }
1360   static int z_inv_op(long x) { return inv_u_field(x, 47, 40); }
1361 
1362   static int inv_reg( long x, int s, int len) { return inv_u_field(x, (len-s)-1, (len-s)-4); }  // Regs are encoded in 4 bits.
1363   static int inv_mask(long x, int s, int len) { return inv_u_field(x, (len-s)-1, (len-s)-8); }  // Mask is 8 bits long.
1364   static int inv_simm16_48(long x) { return (inv_s_field(x, 31, 16)); }                         // 6-byte instructions only
1365   static int inv_simm16(long x)    { return (inv_s_field(x, 15,  0)); }                         // 4-byte instructions only
1366   static int inv_simm20(long x)    { return (inv_u_field(x, 27, 16) |                           // 6-byte instructions only
1367                                              inv_s_field(x, 15, 8)<<12); }
1368   static int inv_simm32(long x)    { return (inv_s_field(x, 31,  0)); }                         // 6-byte instructions only
1369   static int inv_uimm12(long x)    { return (inv_u_field(x, 11,  0)); }                         // 4-byte instructions only
1370 
1371   // Encode u_field from long value.
1372   static long u_field(long x, int hi_bit, int lo_bit) {
1373     long r = x << lo_bit;
1374     assert((r & ~fmask(hi_bit, lo_bit))   == 0, "value out of range");
1375     assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
1376     return r;
1377   }
1378 
1379  public:
1380 
1381   //--------------------------------------------------
1382   // instruction field construction methods
1383   //--------------------------------------------------
1384 
1385   // Compute relative address (32 bit) for branch.
1386   // Only used once in nativeInst_s390.cpp.
1387   static intptr_t z_pcrel_off(address dest, address pc) {
1388     return RelAddr::pcrel_off32(dest, pc);
1389   }
1390 
1391   // Extract 20-bit signed displacement.
1392   // Only used in disassembler_s390.cpp for temp enhancements.
1393   static int inv_simm20_xx(address iLoc) {
1394     unsigned long instr = 0;
1395     unsigned long iLen  = get_instruction(iLoc, &instr);
1396     return inv_simm20(instr);
1397   }
1398 
1399   // unsigned immediate, in low bits, nbits long
1400   static long uimm(long x, int nbits) {
1401     assert(Immediate::is_uimm(x, nbits), "unsigned constant out of range");
1402     return x & fmask(nbits - 1, 0);
1403   }
1404 
1405   // Cast '1' to long to avoid sign extension if nbits = 32.
1406   // signed immediate, in low bits, nbits long
1407   static long simm(long x, int nbits) {
1408     assert(Immediate::is_simm(x, nbits), "value out of range");
1409     return x & fmask(nbits - 1, 0);
1410   }
1411 
1412   static long imm(int64_t x, int nbits) {
1413     // Assert that x can be represented with nbits bits ignoring the sign bits,
1414     // i.e. the more higher bits should all be 0 or 1.
1415     assert((x >> nbits) == 0 || (x >> nbits) == -1, "value out of range");
1416     return x & fmask(nbits-1, 0);
1417   }
1418 
1419   // A 20-bit displacement is only in instructions of the
1420   // RSY, RXY, or SIY format. In these instructions, the D
1421   // field consists of a DL (low) field in bit positions 20-31
1422   // and of a DH (high) field in bit positions 32-39. The
1423   // value of the displacement is formed by appending the
1424   // contents of the DH field to the left of the contents of
1425   // the DL field.
1426   static long simm20(int64_t ui20) {
1427     assert(Immediate::is_simm(ui20, 20), "value out of range");
1428     return ( ((ui20        & 0xfffL) << (48-32)) |  // DL
1429             (((ui20 >> 12) &  0xffL) << (48-40)));  // DH
1430   }
1431 
1432   static long reg(Register r, int s, int len)  { return u_field(r->encoding(), (len-s)-1, (len-s)-4); }
1433   static long reg(int r, int s, int len)       { return u_field(r,             (len-s)-1, (len-s)-4); }
1434   static long regt(Register r, int s, int len) { return reg(r, s, len); }
1435   static long regz(Register r, int s, int len) { assert(r != Z_R0, "cannot use register R0 in memory access"); return reg(r, s, len); }
1436 
1437   static long uimm4( int64_t ui4,  int s, int len) { return uimm(ui4,   4) << (len-s-4);  }
1438   static long uimm6( int64_t ui6,  int s, int len) { return uimm(ui6,   6) << (len-s-6);  }
1439   static long uimm8( int64_t ui8,  int s, int len) { return uimm(ui8,   8) << (len-s-8);  }
1440   static long uimm12(int64_t ui12, int s, int len) { return uimm(ui12, 12) << (len-s-12); }
1441   static long uimm16(int64_t ui16, int s, int len) { return uimm(ui16, 16) << (len-s-16); }
1442   static long uimm32(int64_t ui32, int s, int len) { return uimm((unsigned)ui32, 32) << (len-s-32); } // prevent sign extension
1443 
1444   static long simm8( int64_t si8,  int s, int len) { return simm(si8,   8) << (len-s-8);  }
1445   static long simm12(int64_t si12, int s, int len) { return simm(si12, 12) << (len-s-12); }
1446   static long simm16(int64_t si16, int s, int len) { return simm(si16, 16) << (len-s-16); }
1447   static long simm24(int64_t si24, int s, int len) { return simm(si24, 24) << (len-s-24); }
1448   static long simm32(int64_t si32, int s, int len) { return simm(si32, 32) << (len-s-32); }
1449 
1450   static long imm8( int64_t i8,  int s, int len)   { return imm(i8,   8) << (len-s-8);  }
1451   static long imm12(int64_t i12, int s, int len)   { return imm(i12, 12) << (len-s-12); }
1452   static long imm16(int64_t i16, int s, int len)   { return imm(i16, 16) << (len-s-16); }
1453   static long imm24(int64_t i24, int s, int len)   { return imm(i24, 24) << (len-s-24); }
1454   static long imm32(int64_t i32, int s, int len)   { return imm(i32, 32) << (len-s-32); }
1455 
1456   static long fregt(FloatRegister r, int s, int len) { return freg(r,s,len); }
1457   static long freg( FloatRegister r, int s, int len) { return u_field(r->encoding(), (len-s)-1, (len-s)-4); }
1458 
1459   // Rounding mode for float-2-int conversions.
1460   static long rounding_mode(RoundingMode m, int s, int len) {
1461     assert(m != 2 && m != 3, "invalid mode");
1462     return uimm(m, 4) << (len-s-4);
1463   }
1464 
1465   //--------------------------------------------
1466   // instruction field getter methods
1467   //--------------------------------------------
1468 
1469   static int get_imm32(address a, int instruction_number) {
1470     int imm;
1471     int *p =((int *)(a + 2 + 6 * instruction_number));
1472     imm = *p;
1473     return imm;
1474   }
1475 
1476   static short get_imm16(address a, int instruction_number) {
1477     short imm;
1478     short *p =((short *)a) + 2 * instruction_number + 1;
1479     imm = *p;
1480     return imm;
1481   }
1482 
1483 
1484   //--------------------------------------------
1485   // instruction field setter methods
1486   //--------------------------------------------
1487 
1488   static void set_imm32(address a, int64_t s) {
1489     assert(Immediate::is_simm32(s) || Immediate::is_uimm32(s), "to big");
1490     int* p = (int *) (a + 2);
1491     *p = s;
1492   }
1493 
1494   static void set_imm16(int* instr, int64_t s) {
1495     assert(Immediate::is_simm16(s) || Immediate::is_uimm16(s), "to big");
1496     short* p = ((short *)instr) + 1;
1497     *p = s;
1498   }
1499 
1500  public:
1501 
1502   static unsigned int align(unsigned int x, unsigned int a) { return ((x + (a - 1)) & ~(a - 1)); }
1503   static bool    is_aligned(unsigned int x, unsigned int a) { return (0 == x % a); }
1504 
1505   inline void emit_16(int x);
1506   inline void emit_32(int x);
1507   inline void emit_48(long x);
1508 
1509   // Compare and control flow instructions
1510   // =====================================
1511 
1512   // See also commodity routines compare64_and_branch(), compare32_and_branch().
1513 
1514   // compare instructions
1515   // compare register
1516   inline void z_cr(  Register r1, Register r2);                          // compare (r1, r2)        ; int32
1517   inline void z_cgr( Register r1, Register r2);                          // compare (r1, r2)        ; int64
1518   inline void z_cgfr(Register r1, Register r2);                          // compare (r1, r2)        ; int64 <--> int32
1519    // compare immediate
1520   inline void z_chi( Register r1, int64_t i2);                           // compare (r1, i2_imm16)  ; int32
1521   inline void z_cfi( Register r1, int64_t i2);                           // compare (r1, i2_imm32)  ; int32
1522   inline void z_cghi(Register r1, int64_t i2);                           // compare (r1, i2_imm16)  ; int64
1523   inline void z_cgfi(Register r1, int64_t i2);                           // compare (r1, i2_imm32)  ; int64
1524    // compare memory
1525   inline void z_ch(  Register r1, const Address &a);                     // compare (r1, *(a))               ; int32 <--> int16
1526   inline void z_ch(  Register r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_uimm12+x2+b2)) ; int32 <--> int16
1527   inline void z_c(   Register r1, const Address &a);                     // compare (r1, *(a))               ; int32
1528   inline void z_c(   Register r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_uimm12+x2+b2)) ; int32
1529   inline void z_cy(  Register r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_uimm20+x2+b2)) ; int32
1530   inline void z_cy(  Register r1, int64_t d2, Register b2);              // compare (r1, *(d2_uimm20+x2+b2)) ; int32
1531   inline void z_cy(  Register r1, const Address& a);                     // compare (r1, *(a))               ; int32
1532    //inline void z_cgf(Register r1,const Address &a);                    // compare (r1, *(a))               ; int64 <--> int32
1533    //inline void z_cgf(Register r1,int64_t d2, Register x2, Register b2);// compare (r1, *(d2_uimm12+x2+b2)) ; int64 <--> int32
1534   inline void z_cg(  Register r1, const Address &a);                     // compare (r1, *(a))               ; int64
1535   inline void z_cg(  Register r1, int64_t d2, Register x2, Register b2); // compare (r1, *(d2_imm20+x2+b2))  ; int64
1536 
1537    // compare logical instructions
1538    // compare register
1539   inline void z_clr(  Register r1, Register r2);                         // compare (r1, r2)                 ; uint32
1540   inline void z_clgr( Register r1, Register r2);                         // compare (r1, r2)                 ; uint64
1541    // compare immediate
1542   inline void z_clfi( Register r1, int64_t i2);                          // compare (r1, i2_uimm32)          ; uint32
1543   inline void z_clgfi(Register r1, int64_t i2);                          // compare (r1, i2_uimm32)          ; uint64
1544   inline void z_cl(   Register r1, const Address &a);                    // compare (r1, *(a)                ; uint32
1545   inline void z_cl(   Register r1, int64_t d2, Register x2, Register b2);// compare (r1, *(d2_uimm12+x2+b2)  ; uint32
1546   inline void z_cly(  Register r1, int64_t d2, Register x2, Register b2);// compare (r1, *(d2_uimm20+x2+b2)) ; uint32
1547   inline void z_cly(  Register r1, int64_t d2, Register b2);             // compare (r1, *(d2_uimm20+x2+b2)) ; uint32
1548   inline void z_cly(  Register r1, const Address& a);                    // compare (r1, *(a))               ; uint32
1549   inline void z_clg(  Register r1, const Address &a);                    // compare (r1, *(a)                ; uint64
1550   inline void z_clg(  Register r1, int64_t d2, Register x2, Register b2);// compare (r1, *(d2_imm20+x2+b2)   ; uint64
1551 
1552   // test under mask
1553   inline void z_tmll(Register r1, int64_t i2);           // test under mask, see docu
1554   inline void z_tmlh(Register r1, int64_t i2);           // test under mask, see docu
1555   inline void z_tmhl(Register r1, int64_t i2);           // test under mask, see docu
1556   inline void z_tmhh(Register r1, int64_t i2);           // test under mask, see docu
1557 
1558   // branch instructions
1559   inline void z_bc(  branch_condition m1, int64_t d2, Register x2, Register b2);// branch  m1 ? pc = (d2_uimm12+x2+b2)
1560   inline void z_bcr( branch_condition m1, Register r2);                         // branch (m1 && r2!=R0) ? pc = r2
1561   inline void z_brc( branch_condition i1, int64_t i2);                          // branch  i1 ? pc = pc + i2_imm16
1562   inline void z_brc( branch_condition i1, address a);                           // branch  i1 ? pc = a
1563   inline void z_brc( branch_condition i1, Label& L);                            // branch  i1 ? pc = Label
1564   //inline void z_brcl(branch_condition i1, int64_t i2);                        // branch  i1 ? pc = pc + i2_imm32
1565   inline void z_brcl(branch_condition i1, address a);                           // branch  i1 ? pc = a
1566   inline void z_brcl(branch_condition i1, Label& L);                            // branch  i1 ? pc = Label
1567   inline void z_bctgr(Register r1, Register r2);         // branch on count r1 -= 1; (r1!=0) ? pc = r2  ; r1 is int64
1568 
1569   // branch unconditional / always
1570   inline void z_br(Register r2);                         // branch to r2, nop if r2 == Z_R0
1571 
1572 
1573   // See also commodity routines compare64_and_branch(), compare32_and_branch().
1574   // signed comparison and branch
1575   inline void z_crb( Register r1, Register r2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 r2) ? goto b4+d4      ; int32  -- z10
1576   inline void z_cgrb(Register r1, Register r2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 r2) ? goto b4+d4      ; int64  -- z10
1577   inline void z_crj( Register r1, Register r2, branch_condition m3, Label& L);                // (r1 m3 r2) ? goto L          ; int32  -- z10
1578   inline void z_crj( Register r1, Register r2, branch_condition m3, address a4);              // (r1 m3 r2) ? goto (pc+a4<<1) ; int32  -- z10
1579   inline void z_cgrj(Register r1, Register r2, branch_condition m3, Label& L);                // (r1 m3 r2) ? goto L          ; int64  -- z10
1580   inline void z_cgrj(Register r1, Register r2, branch_condition m3, address a4);              // (r1 m3 r2) ? goto (pc+a4<<1) ; int64  -- z10
1581   inline void z_cib( Register r1, int64_t i2, branch_condition m3, int64_t d4, Register b4);  // (r1 m3 i2_imm8) ? goto b4+d4      ; int32  -- z10
1582   inline void z_cgib(Register r1, int64_t i2, branch_condition m3, int64_t d4, Register b4);  // (r1 m3 i2_imm8) ? goto b4+d4      ; int64  -- z10
1583   inline void z_cij( Register r1, int64_t i2, branch_condition m3, Label& L);                 // (r1 m3 i2_imm8) ? goto L          ; int32  -- z10
1584   inline void z_cij( Register r1, int64_t i2, branch_condition m3, address a4);               // (r1 m3 i2_imm8) ? goto (pc+a4<<1) ; int32  -- z10
1585   inline void z_cgij(Register r1, int64_t i2, branch_condition m3, Label& L);                 // (r1 m3 i2_imm8) ? goto L          ; int64  -- z10
1586   inline void z_cgij(Register r1, int64_t i2, branch_condition m3, address a4);               // (r1 m3 i2_imm8) ? goto (pc+a4<<1) ; int64  -- z10
1587   // unsigned comparison and branch
1588   inline void z_clrb( Register r1, Register r2, branch_condition m3, int64_t d4, Register b4);// (r1 m3 r2) ? goto b4+d4      ; uint32  -- z10
1589   inline void z_clgrb(Register r1, Register r2, branch_condition m3, int64_t d4, Register b4);// (r1 m3 r2) ? goto b4+d4      ; uint64  -- z10
1590   inline void z_clrj( Register r1, Register r2, branch_condition m3, Label& L);               // (r1 m3 r2) ? goto L          ; uint32  -- z10
1591   inline void z_clrj( Register r1, Register r2, branch_condition m3, address a4);             // (r1 m3 r2) ? goto (pc+a4<<1) ; uint32  -- z10
1592   inline void z_clgrj(Register r1, Register r2, branch_condition m3, Label& L);               // (r1 m3 r2) ? goto L          ; uint64  -- z10
1593   inline void z_clgrj(Register r1, Register r2, branch_condition m3, address a4);             // (r1 m3 r2) ? goto (pc+a4<<1) ; uint64  -- z10
1594   inline void z_clib( Register r1, int64_t i2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 i2_uimm8) ? goto b4+d4      ; uint32  -- z10
1595   inline void z_clgib(Register r1, int64_t i2, branch_condition m3, int64_t d4, Register b4); // (r1 m3 i2_uimm8) ? goto b4+d4      ; uint64  -- z10
1596   inline void z_clij( Register r1, int64_t i2, branch_condition m3, Label& L);                // (r1 m3 i2_uimm8) ? goto L          ; uint32  -- z10
1597   inline void z_clij( Register r1, int64_t i2, branch_condition m3, address a4);              // (r1 m3 i2_uimm8) ? goto (pc+a4<<1) ; uint32  -- z10
1598   inline void z_clgij(Register r1, int64_t i2, branch_condition m3, Label& L);                // (r1 m3 i2_uimm8) ? goto L          ; uint64  -- z10
1599   inline void z_clgij(Register r1, int64_t i2, branch_condition m3, address a4);              // (r1 m3 i2_uimm8) ? goto (pc+a4<<1) ; uint64  -- z10
1600 
1601   // Compare and trap instructions.
1602   // signed comparison
1603   inline void z_crt(Register r1,  Register r2, int64_t m3);  // (r1 m3 r2)        ? trap ; int32  -- z10
1604   inline void z_cgrt(Register r1, Register r2, int64_t m3);  // (r1 m3 r2)        ? trap ; int64  -- z10
1605   inline void z_cit(Register r1,  int64_t i2, int64_t m3);   // (r1 m3 i2_imm16)  ? trap ; int32  -- z10
1606   inline void z_cgit(Register r1, int64_t i2, int64_t m3);   // (r1 m3 i2_imm16)  ? trap ; int64  -- z10
1607   // unsigned comparison
1608   inline void z_clrt(Register r1,  Register r2, int64_t m3); // (r1 m3 r2)        ? trap ; uint32 -- z10
1609   inline void z_clgrt(Register r1, Register r2, int64_t m3); // (r1 m3 r2)        ? trap ; uint64 -- z10
1610   inline void z_clfit(Register r1,  int64_t i2, int64_t m3); // (r1 m3 i2_uimm16) ? trap ; uint32 -- z10
1611   inline void z_clgit(Register r1, int64_t i2, int64_t m3);  // (r1 m3 i2_uimm16) ? trap ; uint64 -- z10
1612 
1613   inline void z_illtrap();
1614   inline void z_illtrap(int id);
1615   inline void z_illtrap_eyecatcher(unsigned short xpattern, unsigned short pattern);
1616 
1617 
1618   // load address, add for addresses
1619   // ===============================
1620 
1621   // The versions without suffix z assert that the base reg is != Z_R0.
1622   // Z_R0 is interpreted as constant '0'. The variants with Address operand
1623   // check this automatically, so no two versions are needed.
1624   inline void z_layz(Register r1, int64_t d2, Register x2, Register b2); // Special version. Allows Z_R0 as base reg.
1625   inline void z_lay(Register r1, const Address &a);                      // r1 = a
1626   inline void z_lay(Register r1, int64_t d2, Register x2, Register b2);  // r1 = d2_imm20+x2+b2
1627   inline void z_laz(Register r1, int64_t d2, Register x2, Register b2);  // Special version. Allows Z_R0 as base reg.
1628   inline void z_la(Register r1, const Address &a);                       // r1 = a                ; unsigned immediate!
1629   inline void z_la(Register r1, int64_t d2, Register x2, Register b2);   // r1 = d2_uimm12+x2+b2  ; unsigned immediate!
1630   inline void z_larl(Register r1, int64_t i2);                           // r1 = pc + i2_imm32<<1;
1631   inline void z_larl(Register r1, address a2);                           // r1 = pc + i2_imm32<<1;
1632 
1633   // Load instructions for integers
1634   // ==============================
1635 
1636   // Address as base + index + offset
1637   inline void z_lb( Register r1, const Address &a);                     // load r1 = *(a)              ; int32 <- int8
1638   inline void z_lb( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int32 <- int8
1639   inline void z_lh( Register r1, const Address &a);                     // load r1 = *(a)              ; int32 <- int16
1640   inline void z_lh( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_uimm12+x2+b2); int32 <- int16
1641   inline void z_lhy(Register r1, const Address &a);                     // load r1 = *(a)              ; int32 <- int16
1642   inline void z_lhy(Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int32 <- int16
1643   inline void z_l(  Register r1, const Address& a);                     // load r1 = *(a)              ; int32
1644   inline void z_l(  Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_uimm12+x2+b2); int32
1645   inline void z_ly( Register r1, const Address& a);                     // load r1 = *(a)              ; int32
1646   inline void z_ly( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int32
1647 
1648   inline void z_lgb(Register r1, const Address &a);                     // load r1 = *(a)              ; int64 <- int8
1649   inline void z_lgb(Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int64 <- int8
1650   inline void z_lgh(Register r1, const Address &a);                     // load r1 = *(a)              ; int64 <- int16
1651   inline void z_lgh(Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm12+x2+b2) ; int64 <- int16
1652   inline void z_lgf(Register r1, const Address &a);                     // load r1 = *(a)              ; int64 <- int32
1653   inline void z_lgf(Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int64 <- int32
1654   inline void z_lg( Register r1, const Address& a);                     // load r1 = *(a)              ; int64 <- int64
1655   inline void z_lg( Register r1, int64_t d2, Register x2, Register b2); // load r1 = *(d2_imm20+x2+b2) ; int64 <- int64
1656 
1657   // load and test
1658   inline void z_lt(  Register r1, const Address &a);                    // load and test r1 = *(a)              ; int32
1659   inline void z_lt(  Register r1, int64_t d2, Register x2, Register b2);// load and test r1 = *(d2_imm20+x2+b2) ; int32
1660   inline void z_ltg( Register r1, const Address &a);                    // load and test r1 = *(a)              ; int64
1661   inline void z_ltg( Register r1, int64_t d2, Register x2, Register b2);// load and test r1 = *(d2_imm20+x2+b2) ; int64
1662   inline void z_ltgf(Register r1, const Address &a);                    // load and test r1 = *(a)              ; int64 <- int32
1663   inline void z_ltgf(Register r1, int64_t d2, Register x2, Register b2);// load and test r1 = *(d2_imm20+x2+b2) ; int64 <- int32
1664 
1665   // load unsigned integer - zero extended
1666   inline void z_llc( Register r1, const Address& a);                    // load r1 = *(a)              ; uint32 <- uint8
1667   inline void z_llc( Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint32 <- uint8
1668   inline void z_llh( Register r1, const Address& a);                    // load r1 = *(a)              ; uint32 <- uint16
1669   inline void z_llh( Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint32 <- uint16
1670   inline void z_llgc(Register r1, const Address& a);                    // load r1 = *(a)              ; uint64 <- uint8
1671   inline void z_llgc(Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint64 <- uint8
1672   inline void z_llgc( Register r1, int64_t d2, Register b2);            // load r1 = *(d2_imm20+b2)    ; uint64 <- uint8
1673   inline void z_llgh(Register r1, const Address& a);                    // load r1 = *(a)              ; uint64 <- uint16
1674   inline void z_llgh(Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint64 <- uint16
1675   inline void z_llgf(Register r1, const Address& a);                    // load r1 = *(a)              ; uint64 <- uint32
1676   inline void z_llgf(Register r1, int64_t d2, Register x2, Register b2);// load r1 = *(d2_imm20+x2+b2) ; uint64 <- uint32
1677 
1678   // pc relative addressing
1679   inline void z_lhrl( Register r1, int64_t i2);   // load r1 = *(pc + i2_imm32<<1) ; int32 <- int16    -- z10
1680   inline void z_lrl(  Register r1, int64_t i2);   // load r1 = *(pc + i2_imm32<<1) ; int32             -- z10
1681   inline void z_lghrl(Register r1, int64_t i2);   // load r1 = *(pc + i2_imm32<<1) ; int64 <- int16    -- z10
1682   inline void z_lgfrl(Register r1, int64_t i2);   // load r1 = *(pc + i2_imm32<<1) ; int64 <- int32    -- z10
1683   inline void z_lgrl( Register r1, int64_t i2);   // load r1 = *(pc + i2_imm32<<1) ; int64             -- z10
1684 
1685   inline void z_llhrl( Register r1, int64_t i2);  // load r1 = *(pc + i2_imm32<<1) ; uint32 <- uint16  -- z10
1686   inline void z_llghrl(Register r1, int64_t i2);  // load r1 = *(pc + i2_imm32<<1) ; uint64 <- uint16  -- z10
1687   inline void z_llgfrl(Register r1, int64_t i2);  // load r1 = *(pc + i2_imm32<<1) ; uint64 <- uint32  -- z10
1688 
1689   // Store instructions for integers
1690   // ===============================
1691 
1692   // Address as base + index + offset
1693   inline void z_stc( Register r1, const Address &d);                     // store *(a)               = r1  ; int8
1694   inline void z_stc( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1  ; int8
1695   inline void z_stcy(Register r1, const Address &d);                     // store *(a)               = r1  ; int8
1696   inline void z_stcy(Register r1, int64_t d2, Register x2, Register b2); // store *(d2_imm20+x2+b2)  = r1  ; int8
1697   inline void z_sth( Register r1, const Address &d);                     // store *(a)               = r1  ; int16
1698   inline void z_sth( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1  ; int16
1699   inline void z_sthy(Register r1, const Address &d);                     // store *(a)               = r1  ; int16
1700   inline void z_sthy(Register r1, int64_t d2, Register x2, Register b2); // store *(d2_imm20+x2+b2)  = r1  ; int16
1701   inline void z_st(  Register r1, const Address &d);                     // store *(a)               = r1  ; int32
1702   inline void z_st(  Register r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1  ; int32
1703   inline void z_sty( Register r1, const Address &d);                     // store *(a)               = r1  ; int32
1704   inline void z_sty( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_imm20+x2+b2)  = r1  ; int32
1705   inline void z_stg( Register r1, const Address &d);                     // store *(a)               = r1  ; int64
1706   inline void z_stg( Register r1, int64_t d2, Register x2, Register b2); // store *(d2_uimm12+x2+b2) = r1  ; int64
1707 
1708   inline void z_stcm( Register r1, int64_t m3, int64_t d2, Register b2); // store character under mask
1709   inline void z_stcmy(Register r1, int64_t m3, int64_t d2, Register b2); // store character under mask
1710   inline void z_stcmh(Register r1, int64_t m3, int64_t d2, Register b2); // store character under mask
1711 
1712   // pc relative addressing
1713   inline void z_sthrl(Register r1, int64_t i2);   // store *(pc + i2_imm32<<1) = r1 ; int16  -- z10
1714   inline void z_strl( Register r1, int64_t i2);   // store *(pc + i2_imm32<<1) = r1 ; int32  -- z10
1715   inline void z_stgrl(Register r1, int64_t i2);   // store *(pc + i2_imm32<<1) = r1 ; int64  -- z10
1716 
1717 
1718   // Load and store immediates
1719   // =========================
1720 
1721   // load immediate
1722   inline void z_lhi( Register r1, int64_t i2);                  // r1 = i2_imm16    ; int32 <- int16
1723   inline void z_lghi(Register r1, int64_t i2);                  // r1 = i2_imm16    ; int64 <- int16
1724   inline void z_lgfi(Register r1, int64_t i2);                  // r1 = i2_imm32    ; int64 <- int32
1725 
1726   inline void z_llihf(Register r1, int64_t i2);                 // r1 = i2_imm32    ; uint64 <- (uint32<<32)
1727   inline void z_llilf(Register r1, int64_t i2);                 // r1 = i2_imm32    ; uint64 <- uint32
1728   inline void z_llihh(Register r1, int64_t i2);                 // r1 = i2_imm16    ; uint64 <- (uint16<<48)
1729   inline void z_llihl(Register r1, int64_t i2);                 // r1 = i2_imm16    ; uint64 <- (uint16<<32)
1730   inline void z_llilh(Register r1, int64_t i2);                 // r1 = i2_imm16    ; uint64 <- (uint16<<16)
1731   inline void z_llill(Register r1, int64_t i2);                 // r1 = i2_imm16    ; uint64 <- uint16
1732 
1733   // insert immediate
1734   inline void z_ic(  Register r1, int64_t d2, Register x2, Register b2); // insert character
1735   inline void z_icy( Register r1, int64_t d2, Register x2, Register b2); // insert character
1736   inline void z_icm( Register r1, int64_t m3, int64_t d2, Register b2);  // insert character under mask
1737   inline void z_icmy(Register r1, int64_t m3, int64_t d2, Register b2);  // insert character under mask
1738   inline void z_icmh(Register r1, int64_t m3, int64_t d2, Register b2);  // insert character under mask
1739 
1740   inline void z_iihh(Register r1, int64_t i2);                  // insert immediate  r1[ 0-15] = i2_imm16
1741   inline void z_iihl(Register r1, int64_t i2);                  // insert immediate  r1[16-31] = i2_imm16
1742   inline void z_iilh(Register r1, int64_t i2);                  // insert immediate  r1[32-47] = i2_imm16
1743   inline void z_iill(Register r1, int64_t i2);                  // insert immediate  r1[48-63] = i2_imm16
1744   inline void z_iihf(Register r1, int64_t i2);                  // insert immediate  r1[32-63] = i2_imm32
1745   inline void z_iilf(Register r1, int64_t i2);                  // insert immediate  r1[ 0-31] = i2_imm32
1746 
1747   // store immediate
1748   inline void z_mvhhi(const Address &d, int64_t i2);            // store *(d)           = i2_imm16 ; int16
1749   inline void z_mvhhi(int64_t d1, Register b1, int64_t i2);     // store *(d1_imm12+b1) = i2_imm16 ; int16
1750   inline void z_mvhi( const Address &d, int64_t i2);            // store *(d)           = i2_imm16 ; int32
1751   inline void z_mvhi( int64_t d1, Register b1, int64_t i2);     // store *(d1_imm12+b1) = i2_imm16 ; int32
1752   inline void z_mvghi(const Address &d, int64_t i2);            // store *(d)           = i2_imm16 ; int64
1753   inline void z_mvghi(int64_t d1, Register b1, int64_t i2);     // store *(d1_imm12+b1) = i2_imm16 ; int64
1754 
1755   // Move and Convert instructions
1756   // =============================
1757 
1758   // move, sign extend
1759   inline void z_lbr(Register r1, Register r2);             // move r1 = r2 ; int32  <- int8
1760   inline void z_lhr( Register r1, Register r2);            // move r1 = r2 ; int32  <- int16
1761   inline void z_lr(Register r1, Register r2);              // move r1 = r2 ; int32, no sign extension
1762   inline void z_lgbr(Register r1, Register r2);            // move r1 = r2 ; int64  <- int8
1763   inline void z_lghr(Register r1, Register r2);            // move r1 = r2 ; int64  <- int16
1764   inline void z_lgfr(Register r1, Register r2);            // move r1 = r2 ; int64  <- int32
1765   inline void z_lgr(Register r1, Register r2);             // move r1 = r2 ; int64
1766   // move, zero extend
1767   inline void z_llhr( Register r1, Register r2);           // move r1 = r2 ; uint32 <- uint16
1768   inline void z_llgcr(Register r1, Register r2);           // move r1 = r2 ; uint64 <- uint8
1769   inline void z_llghr(Register r1, Register r2);           // move r1 = r2 ; uint64 <- uint16
1770   inline void z_llgfr(Register r1, Register r2);           // move r1 = r2 ; uint64 <- uint32
1771 
1772   // move and test register
1773   inline void z_ltr(Register r1, Register r2);             // load/move and test r1 = r2; int32
1774   inline void z_ltgr(Register r1, Register r2);            // load/move and test r1 = r2; int64
1775   inline void z_ltgfr(Register r1, Register r2);           // load/move and test r1 = r2; int64 <-- int32
1776 
1777   // move and byte-reverse
1778   inline void z_lrvr( Register r1, Register r2);           // move and reverse byte order r1 = r2; int32
1779   inline void z_lrvgr(Register r1, Register r2);           // move and reverse byte order r1 = r2; int64
1780 
1781 
1782   // Arithmetic instructions (Integer only)
1783   // ======================================
1784   // For float arithmetic instructions scroll further down
1785   // Add logical differs in the condition codes set!
1786 
1787   // add registers
1788   inline void z_ar(   Register r1, Register r2);                      // add         r1 = r1 + r2  ; int32
1789   inline void z_agr(  Register r1, Register r2);                      // add         r1 = r1 + r2  ; int64
1790   inline void z_agfr( Register r1, Register r2);                      // add         r1 = r1 + r2  ; int64 <- int32
1791   inline void z_ark(  Register r1, Register r2, Register r3);         // add         r1 = r2 + r3  ; int32
1792   inline void z_agrk( Register r1, Register r2, Register r3);         // add         r1 = r2 + r3  ; int64
1793 
1794   inline void z_alr(  Register r1, Register r2);                      // add logical r1 = r1 + r2  ; int32
1795   inline void z_algr( Register r1, Register r2);                      // add logical r1 = r1 + r2  ; int64
1796   inline void z_algfr(Register r1, Register r2);                      // add logical r1 = r1 + r2  ; int64 <- int32
1797   inline void z_alrk( Register r1, Register r2, Register r3);         // add logical r1 = r2 + r3  ; int32
1798   inline void z_algrk(Register r1, Register r2, Register r3);         // add logical r1 = r2 + r3  ; int64
1799   inline void z_alcgr(Register r1, Register r2);                      // add logical with carry r1 = r1 + r2 + c  ; int64
1800 
1801   // add immediate
1802   inline void z_ahi(  Register r1, int64_t i2);                       // add         r1 = r1 + i2_imm16 ; int32
1803   inline void z_afi(  Register r1, int64_t i2);                       // add         r1 = r1 + i2_imm32 ; int32
1804   inline void z_alfi( Register r1, int64_t i2);                       // add         r1 = r1 + i2_imm32 ; int32
1805   inline void z_aghi( Register r1, int64_t i2);                       // add logical r1 = r1 + i2_imm16 ; int64
1806   inline void z_agfi( Register r1, int64_t i2);                       // add         r1 = r1 + i2_imm32 ; int64
1807   inline void z_algfi(Register r1, int64_t i2);                       // add logical r1 = r1 + i2_imm32 ; int64
1808   inline void z_ahik( Register r1, Register r3, int64_t i2);          // add         r1 = r3 + i2_imm16 ; int32
1809   inline void z_aghik(Register r1, Register r3, int64_t i2);          // add         r1 = r3 + i2_imm16 ; int64
1810   inline void z_aih(  Register r1, int64_t i2);                       // add         r1 = r1 + i2_imm32 ; int32 (HiWord)
1811 
1812   // add memory
1813   inline void z_a( Register r1, int64_t d2, Register x2, Register b2);  // add r1 = r1 + *(d2_uimm12+s2+b2) ; int32
1814   inline void z_ay(  Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+s2+b2)  ; int32
1815   inline void z_ag(  Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+s2+b2)  ; int64
1816   inline void z_agf( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+x2+b2)  ; int64 <- int32
1817   inline void z_al(  Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_uimm12+x2+b2) ; int32
1818   inline void z_aly( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+x2+b2)  ; int32
1819   inline void z_alg( Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+x2+b2)  ; int64
1820   inline void z_algf(Register r1, int64_t d2, Register x2, Register b2);// add r1 = r1 + *(d2_imm20+x2+b2)  ; int64 <- int32
1821   inline void z_a(   Register r1, const Address& a);                  // add r1 = r1 + *(a)               ; int32
1822   inline void z_ay(  Register r1, const Address& a);                  // add r1 = r1 + *(a)               ; int32
1823   inline void z_al(  Register r1, const Address& a);                  // add r1 = r1 + *(a)               ; int32
1824   inline void z_aly( Register r1, const Address& a);                  // add r1 = r1 + *(a)               ; int32
1825   inline void z_ag(  Register r1, const Address& a);                  // add r1 = r1 + *(a)               ; int64
1826   inline void z_agf( Register r1, const Address& a);                  // add r1 = r1 + *(a)               ; int64 <- int32
1827   inline void z_alg( Register r1, const Address& a);                  // add r1 = r1 + *(a)               ; int64
1828   inline void z_algf(Register r1, const Address& a);                  // add r1 = r1 + *(a)               ; int64 <- int32
1829 
1830 
1831   inline void z_alhsik( Register r1, Register r3, int64_t i2);    // add logical r1 = r3 + i2_imm16   ; int32
1832   inline void z_alghsik(Register r1, Register r3, int64_t i2);    // add logical r1 = r3 + i2_imm16   ; int64
1833 
1834   inline void z_asi(  int64_t d1, Register b1, int64_t i2);       // add           *(d1_imm20+b1) += i2_imm8 ; int32   -- z10
1835   inline void z_agsi( int64_t d1, Register b1, int64_t i2);       // add           *(d1_imm20+b1) += i2_imm8 ; int64   -- z10
1836   inline void z_alsi( int64_t d1, Register b1, int64_t i2);       // add logical   *(d1_imm20+b1) += i2_imm8 ; uint32  -- z10
1837   inline void z_algsi(int64_t d1, Register b1, int64_t i2);       // add logical   *(d1_imm20+b1) += i2_imm8 ; uint64  -- z10
1838   inline void z_asi(  const Address& d, int64_t i2);              // add           *(d) += i2_imm8           ; int32   -- z10
1839   inline void z_agsi( const Address& d, int64_t i2);              // add           *(d) += i2_imm8           ; int64   -- z10
1840   inline void z_alsi( const Address& d, int64_t i2);              // add logical   *(d) += i2_imm8           ; uint32  -- z10
1841   inline void z_algsi(const Address& d, int64_t i2);              // add logical   *(d) += i2_imm8           ; uint64  -- z10
1842 
1843   // negate
1844   inline void z_lcr(  Register r1, Register r2 = noreg);              // neg r1 = -r2   ; int32
1845   inline void z_lcgr( Register r1, Register r2 = noreg);              // neg r1 = -r2   ; int64
1846   inline void z_lcgfr(Register r1, Register r2);                      // neg r1 = -r2   ; int64 <- int32
1847   inline void z_lnr(  Register r1, Register r2 = noreg);              // neg r1 = -|r2| ; int32
1848   inline void z_lngr( Register r1, Register r2 = noreg);              // neg r1 = -|r2| ; int64
1849   inline void z_lngfr(Register r1, Register r2);                      // neg r1 = -|r2| ; int64 <- int32
1850 
1851   // subtract intstructions
1852   // sub registers
1853   inline void z_sr(   Register r1, Register r2);                      // sub         r1 = r1 - r2                ; int32
1854   inline void z_sgr(  Register r1, Register r2);                      // sub         r1 = r1 - r2                ; int64
1855   inline void z_sgfr( Register r1, Register r2);                      // sub         r1 = r1 - r2                ; int64 <- int32
1856   inline void z_srk(  Register r1, Register r2, Register r3);         // sub         r1 = r2 - r3                ; int32
1857   inline void z_sgrk( Register r1, Register r2, Register r3);         // sub         r1 = r2 - r3                ; int64
1858 
1859   inline void z_slr(  Register r1, Register r2);                      // sub logical r1 = r1 - r2                ; int32
1860   inline void z_slgr( Register r1, Register r2);                      // sub logical r1 = r1 - r2                ; int64
1861   inline void z_slgfr(Register r1, Register r2);                      // sub logical r1 = r1 - r2                ; int64 <- int32
1862   inline void z_slrk( Register r1, Register r2, Register r3);         // sub logical r1 = r2 - r3                ; int32
1863   inline void z_slgrk(Register r1, Register r2, Register r3);         // sub logical r1 = r2 - r3                ; int64
1864   inline void z_slfi( Register r1, int64_t i2);                       // sub logical r1 = r1 - i2_uimm32         ; int32
1865   inline void z_slgfi(Register r1, int64_t i2);                       // add logical r1 = r1 - i2_uimm32         ; int64
1866 
1867   // sub memory
1868   inline void z_s(   Register r1, int64_t d2, Register x2, Register b2);  // sub         r1 = r1 - *(d2_imm12+x2+b2) ; int32
1869   inline void z_sy(  Register r1, int64_t d2, Register x2, Register b2);  // sub         r1 = r1 + *(d2_imm20+s2+b2) ; int32
1870   inline void z_sg(  Register r1, int64_t d2, Register x2, Register b2);  // sub         r1 = r1 - *(d2_imm12+x2+b2) ; int64
1871   inline void z_sgf( Register r1, int64_t d2, Register x2, Register b2);  // sub         r1 = r1 - *(d2_imm12+x2+b2) ; int64 - int32
1872   inline void z_slg( Register r1, int64_t d2, Register x2, Register b2);  // sub logical r1 = r1 - *(d2_imm20+x2+b2) ; uint64
1873   inline void z_slgf(Register r1, int64_t d2, Register x2, Register b2);  // sub logical r1 = r1 - *(d2_imm20+x2+b2) ; uint64 - uint32
1874   inline void z_s(   Register r1, const Address& a);                      // sub         r1 = r1 - *(a)              ; int32
1875   inline void z_sy(  Register r1, const Address& a);                      // sub         r1 = r1 - *(a)              ; int32
1876   inline void z_sg(  Register r1, const Address& a);                      // sub         r1 = r1 - *(a)              ; int64
1877   inline void z_sgf( Register r1, const Address& a);                      // sub         r1 = r1 - *(a)              ; int64 - int32
1878   inline void z_slg( Register r1, const Address& a);                      // sub         r1 = r1 - *(a)              ; uint64
1879   inline void z_slgf(Register r1, const Address& a);                      // sub         r1 = r1 - *(a)              ; uint64 - uint32
1880 
1881   inline void z_sh(  Register r1, int64_t d2, Register x2, Register b2);  // sub         r1 = r1 - *(d2_imm12+x2+b2) ; int32 - int16
1882   inline void z_shy( Register r1, int64_t d2, Register x2, Register b2);  // sub         r1 = r1 - *(d2_imm20+x2+b2) ; int32 - int16
1883   inline void z_sh(  Register r1, const Address &a);                      // sub         r1 = r1 - *(d2_imm12+x2+b2) ; int32 - int16
1884   inline void z_shy( Register r1, const Address &a);                      // sub         r1 = r1 - *(d2_imm20+x2+b2) ; int32 - int16
1885 
1886   // Multiplication instructions
1887   // mul registers
1888   inline void z_msr(  Register r1, Register r2);                          // mul r1 = r1 * r2          ; int32
1889   inline void z_msgr( Register r1, Register r2);                          // mul r1 = r1 * r2          ; int64
1890   inline void z_msgfr(Register r1, Register r2);                          // mul r1 = r1 * r2          ; int64 <- int32
1891   inline void z_mlr(  Register r1, Register r2);                          // mul r1 = r1 * r2          ; int32 unsigned
1892   inline void z_mlgr( Register r1, Register r2);                          // mul r1 = r1 * r2          ; int64 unsigned
1893   // mul register - memory
1894   inline void z_mhy( Register r1, int64_t d2, Register x2, Register b2);  // mul r1 = r1 * *(d2+x2+b2)
1895   inline void z_msy( Register r1, int64_t d2, Register x2, Register b2);  // mul r1 = r1 * *(d2+x2+b2)
1896   inline void z_msg( Register r1, int64_t d2, Register x2, Register b2);  // mul r1 = r1 * *(d2+x2+b2)
1897   inline void z_msgf(Register r1, int64_t d2, Register x2, Register b2);  // mul r1 = r1 * *(d2+x2+b2)
1898   inline void z_ml(  Register r1, int64_t d2, Register x2, Register b2);  // mul r1 = r1 * *(d2+x2+b2)
1899   inline void z_mlg( Register r1, int64_t d2, Register x2, Register b2);  // mul r1 = r1 * *(d2+x2+b2)
1900   inline void z_mhy( Register r1, const Address& a);                      // mul r1 = r1 * *(a)
1901   inline void z_msy( Register r1, const Address& a);                      // mul r1 = r1 * *(a)
1902   inline void z_msg( Register r1, const Address& a);                      // mul r1 = r1 * *(a)
1903   inline void z_msgf(Register r1, const Address& a);                      // mul r1 = r1 * *(a)
1904   inline void z_ml(  Register r1, const Address& a);                      // mul r1 = r1 * *(a)
1905   inline void z_mlg( Register r1, const Address& a);                      // mul r1 = r1 * *(a)
1906 
1907   inline void z_msfi( Register r1, int64_t i2);   // mult r1 = r1 * i2_imm32;   int32  -- z10
1908   inline void z_msgfi(Register r1, int64_t i2);   // mult r1 = r1 * i2_imm32;   int64  -- z10
1909   inline void z_mhi(  Register r1, int64_t i2);   // mult r1 = r1 * i2_imm16;   int32
1910   inline void z_mghi( Register r1, int64_t i2);   // mult r1 = r1 * i2_imm16;   int64
1911 
1912   // Division instructions
1913   inline void z_dsgr( Register r1, Register r2);      // div  r1 = r1 / r2               ; int64/int32 needs reg pair!
1914   inline void z_dsgfr(Register r1, Register r2);      // div  r1 = r1 / r2               ; int64/int32 needs reg pair!
1915 
1916 
1917   // Logic instructions
1918   // ===================
1919 
1920   // and
1921   inline void z_n(   Register r1, int64_t d2, Register x2, Register b2);
1922   inline void z_ny(  Register r1, int64_t d2, Register x2, Register b2);
1923   inline void z_ng(  Register r1, int64_t d2, Register x2, Register b2);
1924   inline void z_n(   Register r1, const Address& a);
1925   inline void z_ny(  Register r1, const Address& a);
1926   inline void z_ng(  Register r1, const Address& a);
1927 
1928   inline void z_nr(  Register r1, Register r2);               // and r1 = r1 & r2         ; int32
1929   inline void z_ngr( Register r1, Register r2);               // and r1 = r1 & r2         ; int64
1930   inline void z_nrk( Register r1, Register r2, Register r3);  // and r1 = r2 & r3         ; int32
1931   inline void z_ngrk(Register r1, Register r2, Register r3);  // and r1 = r2 & r3         ; int64
1932 
1933   inline void z_nihh(Register r1, int64_t i2);                // and r1 = r1 & i2_imm16   ; and only for bits  0-15
1934   inline void z_nihl(Register r1, int64_t i2);                // and r1 = r1 & i2_imm16   ; and only for bits 16-31
1935   inline void z_nilh(Register r1, int64_t i2);                // and r1 = r1 & i2_imm16   ; and only for bits 32-47
1936   inline void z_nill(Register r1, int64_t i2);                // and r1 = r1 & i2_imm16   ; and only for bits 48-63
1937   inline void z_nihf(Register r1, int64_t i2);                // and r1 = r1 & i2_imm32   ; and only for bits  0-31
1938   inline void z_nilf(Register r1, int64_t i2);                // and r1 = r1 & i2_imm32   ; and only for bits 32-63  see also MacroAssembler::nilf.
1939 
1940   // or
1941   inline void z_o(   Register r1, int64_t d2, Register x2, Register b2);
1942   inline void z_oy(  Register r1, int64_t d2, Register x2, Register b2);
1943   inline void z_og(  Register r1, int64_t d2, Register x2, Register b2);
1944   inline void z_o(   Register r1, const Address& a);
1945   inline void z_oy(  Register r1, const Address& a);
1946   inline void z_og(  Register r1, const Address& a);
1947 
1948   inline void z_or(  Register r1, Register r2);               // or r1 = r1 | r2; int32
1949   inline void z_ogr( Register r1, Register r2);               // or r1 = r1 | r2; int64
1950   inline void z_ork( Register r1, Register r2, Register r3);  // or r1 = r2 | r3         ; int32
1951   inline void z_ogrk(Register r1, Register r2, Register r3);  // or r1 = r2 | r3         ; int64
1952 
1953   inline void z_oihh(Register r1, int64_t i2);                // or r1 = r1 | i2_imm16   ; or only for bits  0-15
1954   inline void z_oihl(Register r1, int64_t i2);                // or r1 = r1 | i2_imm16   ; or only for bits 16-31
1955   inline void z_oilh(Register r1, int64_t i2);                // or r1 = r1 | i2_imm16   ; or only for bits 32-47
1956   inline void z_oill(Register r1, int64_t i2);                // or r1 = r1 | i2_imm16   ; or only for bits 48-63
1957   inline void z_oihf(Register r1, int64_t i2);                // or r1 = r1 | i2_imm32   ; or only for bits  0-31
1958   inline void z_oilf(Register r1, int64_t i2);                // or r1 = r1 | i2_imm32   ; or only for bits 32-63
1959 
1960   // xor
1961   inline void z_x(   Register r1, int64_t d2, Register x2, Register b2);
1962   inline void z_xy(  Register r1, int64_t d2, Register x2, Register b2);
1963   inline void z_xg(  Register r1, int64_t d2, Register x2, Register b2);
1964   inline void z_x(   Register r1, const Address& a);
1965   inline void z_xy(  Register r1, const Address& a);
1966   inline void z_xg(  Register r1, const Address& a);
1967 
1968   inline void z_xr(  Register r1, Register r2);               // xor r1 = r1 ^ r2         ; int32
1969   inline void z_xgr( Register r1, Register r2);               // xor r1 = r1 ^ r2         ; int64
1970   inline void z_xrk( Register r1, Register r2, Register r3);  // xor r1 = r2 ^ r3         ; int32
1971   inline void z_xgrk(Register r1, Register r2, Register r3);  // xor r1 = r2 ^ r3         ; int64
1972 
1973   inline void z_xihf(Register r1, int64_t i2);                // xor r1 = r1 ^ i2_imm32   ; or only for bits  0-31
1974   inline void z_xilf(Register r1, int64_t i2);                // xor r1 = r1 ^ i2_imm32   ; or only for bits 32-63
1975 
1976   // shift
1977   inline void z_sla( Register r1,              int64_t d2, Register b2=Z_R0); // shift left  r1 = r1 << ((d2+b2)&0x3f) ; int32, only 31 bits shifted, sign preserved!
1978   inline void z_slag(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift left  r1 = r3 << ((d2+b2)&0x3f) ; int64, only 63 bits shifted, sign preserved!
1979   inline void z_sra( Register r1,              int64_t d2, Register b2=Z_R0); // shift right r1 = r1 >> ((d2+b2)&0x3f) ; int32, sign extended
1980   inline void z_srag(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift right r1 = r3 >> ((d2+b2)&0x3f) ; int64, sign extended
1981   inline void z_sll( Register r1,              int64_t d2, Register b2=Z_R0); // shift left  r1 = r1 << ((d2+b2)&0x3f) ; int32, zeros added
1982   inline void z_sllg(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift left  r1 = r3 << ((d2+b2)&0x3f) ; int64, zeros added
1983   inline void z_srl( Register r1,              int64_t d2, Register b2=Z_R0); // shift right r1 = r1 >> ((d2+b2)&0x3f) ; int32, zero extended
1984   inline void z_srlg(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // shift right r1 = r3 >> ((d2+b2)&0x3f) ; int64, zero extended
1985 
1986   // rotate
1987   inline void z_rll( Register r1, Register r3, int64_t d2, Register b2=Z_R0); // rot r1 = r3 << (d2+b2 & 0x3f) ; int32  -- z10
1988   inline void z_rllg(Register r1, Register r3, int64_t d2, Register b2=Z_R0); // rot r1 = r3 << (d2+b2 & 0x3f) ; int64  -- z10
1989 
1990   // rotate the AND/XOR/OR/insert
1991   inline void z_rnsbg( Register r1, Register r2, int64_t spos3, int64_t epos4, int64_t nrot5, bool test_only = false); // rotate then AND selected bits  -- z196
1992   inline void z_rxsbg( Register r1, Register r2, int64_t spos3, int64_t epos4, int64_t nrot5, bool test_only = false); // rotate then XOR selected bits  -- z196
1993   inline void z_rosbg( Register r1, Register r2, int64_t spos3, int64_t epos4, int64_t nrot5, bool test_only = false); // rotate then OR  selected bits  -- z196
1994   inline void z_risbg( Register r1, Register r2, int64_t spos3, int64_t epos4, int64_t nrot5, bool zero_rest = false); // rotate then INS selected bits  -- z196
1995 
1996 
1997   // memory-immediate instructions (8-bit immediate)
1998   // ===============================================
1999 
2000   inline void z_cli( int64_t d1, Register b1, int64_t i2); // compare *(d1_imm12+b1) ^= i2_imm8           ; int8
2001   inline void z_mvi( int64_t d1, Register b1, int64_t i2); // store   *(d1_imm12+b1)  = i2_imm8           ; int8
2002   inline void z_tm(  int64_t d1, Register b1, int64_t i2); // test    *(d1_imm12+b1) against mask i2_imm8 ; int8
2003   inline void z_ni(  int64_t d1, Register b1, int64_t i2); // store   *(d1_imm12+b1) &= i2_imm8           ; int8
2004   inline void z_oi(  int64_t d1, Register b1, int64_t i2); // store   *(d1_imm12+b1) |= i2_imm8           ; int8
2005   inline void z_xi(  int64_t d1, Register b1, int64_t i2); // store   *(d1_imm12+b1) ^= i2_imm8           ; int8
2006   inline void z_cliy(int64_t d1, Register b1, int64_t i2); // compare *(d1_imm12+b1) ^= i2_imm8           ; int8
2007   inline void z_mviy(int64_t d1, Register b1, int64_t i2); // store   *(d1_imm12+b1)  = i2_imm8           ; int8
2008   inline void z_tmy( int64_t d1, Register b1, int64_t i2); // test    *(d1_imm12+b1) against mask i2_imm8 ; int8
2009   inline void z_niy( int64_t d1, Register b1, int64_t i2); // store   *(d1_imm12+b1) &= i2_imm8           ; int8
2010   inline void z_oiy( int64_t d1, Register b1, int64_t i2); // store   *(d1_imm12+b1) |= i2_imm8           ; int8
2011   inline void z_xiy( int64_t d1, Register b1, int64_t i2); // store   *(d1_imm12+b1) ^= i2_imm8           ; int8
2012   inline void z_cli( const Address& a, int64_t imm8);      // compare *(a)           ^= imm8              ; int8
2013   inline void z_mvi( const Address& a, int64_t imm8);      // store   *(a)            = imm8              ; int8
2014   inline void z_tm(  const Address& a, int64_t imm8);      // test    *(a)           against mask imm8    ; int8
2015   inline void z_ni(  const Address& a, int64_t imm8);      // store   *(a)           &= imm8              ; int8
2016   inline void z_oi(  const Address& a, int64_t imm8);      // store   *(a)           |= imm8              ; int8
2017   inline void z_xi(  const Address& a, int64_t imm8);      // store   *(a)           ^= imm8              ; int8
2018   inline void z_cliy(const Address& a, int64_t imm8);      // compare *(a)           ^= imm8              ; int8
2019   inline void z_mviy(const Address& a, int64_t imm8);      // store   *(a)            = imm8              ; int8
2020   inline void z_tmy( const Address& a, int64_t imm8);      // test    *(a)           against mask imm8    ; int8
2021   inline void z_niy( const Address& a, int64_t imm8);      // store   *(a)           &= imm8              ; int8
2022   inline void z_oiy( const Address& a, int64_t imm8);      // store   *(a)           |= imm8              ; int8
2023   inline void z_xiy( const Address& a, int64_t imm8);      // store   *(a)           ^= imm8              ; int8
2024 
2025 
2026   //------------------------------
2027   // Interlocked-Update
2028   //------------------------------
2029   inline void z_laa(  Register r1, Register r3, int64_t d2, Register b2);   // load and add    int32, signed   -- z196
2030   inline void z_laag( Register r1, Register r3, int64_t d2, Register b2);   // load and add    int64, signed   -- z196
2031   inline void z_laal( Register r1, Register r3, int64_t d2, Register b2);   // load and add    int32, unsigned -- z196
2032   inline void z_laalg(Register r1, Register r3, int64_t d2, Register b2);   // load and add    int64, unsigned -- z196
2033   inline void z_lan(  Register r1, Register r3, int64_t d2, Register b2);   // load and and    int32           -- z196
2034   inline void z_lang( Register r1, Register r3, int64_t d2, Register b2);   // load and and    int64           -- z196
2035   inline void z_lax(  Register r1, Register r3, int64_t d2, Register b2);   // load and xor    int32           -- z196
2036   inline void z_laxg( Register r1, Register r3, int64_t d2, Register b2);   // load and xor    int64           -- z196
2037   inline void z_lao(  Register r1, Register r3, int64_t d2, Register b2);   // load and or     int32           -- z196
2038   inline void z_laog( Register r1, Register r3, int64_t d2, Register b2);   // load and or     int64           -- z196
2039 
2040   inline void z_laa(  Register r1, Register r3, const Address& a);          // load and add    int32, signed   -- z196
2041   inline void z_laag( Register r1, Register r3, const Address& a);          // load and add    int64, signed   -- z196
2042   inline void z_laal( Register r1, Register r3, const Address& a);          // load and add    int32, unsigned -- z196
2043   inline void z_laalg(Register r1, Register r3, const Address& a);          // load and add    int64, unsigned -- z196
2044   inline void z_lan(  Register r1, Register r3, const Address& a);          // load and and    int32           -- z196
2045   inline void z_lang( Register r1, Register r3, const Address& a);          // load and and    int64           -- z196
2046   inline void z_lax(  Register r1, Register r3, const Address& a);          // load and xor    int32           -- z196
2047   inline void z_laxg( Register r1, Register r3, const Address& a);          // load and xor    int64           -- z196
2048   inline void z_lao(  Register r1, Register r3, const Address& a);          // load and or     int32           -- z196
2049   inline void z_laog( Register r1, Register r3, const Address& a);          // load and or     int64           -- z196
2050 
2051   //--------------------------------
2052   // Execution Prediction
2053   //--------------------------------
2054   inline void z_pfd(  int64_t m1, int64_t d2, Register x2, Register b2);  // prefetch
2055   inline void z_pfd(  int64_t m1, Address a);
2056   inline void z_pfdrl(int64_t m1, int64_t i2);                            // prefetch
2057   inline void z_bpp(  int64_t m1, int64_t i2, int64_t d3, Register b3);   // branch prediction    -- EC12
2058   inline void z_bprp( int64_t m1, int64_t i2, int64_t i3);                // branch prediction    -- EC12
2059 
2060   //-------------------------------
2061   // Transaction Control
2062   //-------------------------------
2063   inline void z_tbegin(int64_t d1, Register b1, int64_t i2);          // begin transaction               -- EC12
2064   inline void z_tbeginc(int64_t d1, Register b1, int64_t i2);         // begin transaction (constrained) -- EC12
2065   inline void z_tend();                                               // end transaction                 -- EC12
2066   inline void z_tabort(int64_t d2, Register b2);                      // abort transaction               -- EC12
2067   inline void z_etnd(Register r1);                                    // extract tx nesting depth        -- EC12
2068   inline void z_ppa(Register r1, Register r2, int64_t m3);            // perform processor assist        -- EC12
2069 
2070   //---------------------------------
2071   // Conditional Execution
2072   //---------------------------------
2073   inline void z_locr( Register r1, Register r2, branch_condition cc);             // if (cc) load r1 = r2               ; int32 -- z196
2074   inline void z_locgr(Register r1, Register r2, branch_condition cc);             // if (cc) load r1 = r2               ; int64 -- z196
2075   inline void z_loc(  Register r1, int64_t d2, Register b2, branch_condition cc); // if (cc) load r1 = *(d2_simm20+b2)  ; int32 -- z196
2076   inline void z_locg( Register r1, int64_t d2, Register b2, branch_condition cc); // if (cc) load r1 = *(d2_simm20+b2)  ; int64 -- z196
2077   inline void z_loc(  Register r1, const Address& a, branch_condition cc);        // if (cc) load r1 = *(a)             ; int32 -- z196
2078   inline void z_locg( Register r1, const Address& a, branch_condition cc);        // if (cc) load r1 = *(a)             ; int64 -- z196
2079   inline void z_stoc( Register r1, int64_t d2, Register b2, branch_condition cc); // if (cc) store *(d2_simm20+b2) = r1 ; int32 -- z196
2080   inline void z_stocg(Register r1, int64_t d2, Register b2, branch_condition cc); // if (cc) store *(d2_simm20+b2) = r1 ; int64 -- z196
2081 
2082 
2083   // Complex CISC instructions
2084   // ==========================
2085 
2086   inline void z_cksm(Register r1, Register r2);                       // checksum. This is NOT CRC32
2087   inline void z_km(  Register r1, Register r2);                       // cipher message
2088   inline void z_kmc( Register r1, Register r2);                       // cipher message with chaining
2089   inline void z_kimd(Register r1, Register r2);                       // msg digest (SHA)
2090   inline void z_klmd(Register r1, Register r2);                       // msg digest (SHA)
2091   inline void z_kmac(Register r1, Register r2);                       // msg authentication code
2092 
2093   inline void z_ex(Register r1, int64_t d2, Register x2, Register b2);// execute
2094   inline void z_exrl(Register r1, int64_t i2);                        // execute relative long         -- z10
2095   inline void z_exrl(Register r1, address a2);                        // execute relative long         -- z10
2096 
2097   inline void z_ectg(int64_t d1, Register b1, int64_t d2, Register b2, Register r3);  // extract cpu time
2098   inline void z_ecag(Register r1, Register r3, int64_t d2, Register b2);              // extract CPU attribute
2099 
2100   inline void z_srst(Register r1, Register r2);                       // search string
2101   inline void z_srstu(Register r1, Register r2);                      // search string unicode
2102 
2103   inline void z_mvc(const Address& d, const Address& s, int64_t l);               // move l bytes
2104   inline void z_mvc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2); // move l+1 bytes
2105   inline void z_mvcle(Register r1, Register r3, int64_t d2, Register b2=Z_R0);    // move region of memory
2106 
2107   inline void z_stfle(int64_t d2, Register b2);                            // store facility list extended
2108 
2109   inline void z_nc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2);// and *(d1+b1) = *(d1+l+b1) & *(d2+b2) ; d1, d2: uimm12, ands l+1 bytes
2110   inline void z_oc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2);//  or *(d1+b1) = *(d1+l+b1) | *(d2+b2) ; d1, d2: uimm12,  ors l+1 bytes
2111   inline void z_xc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2);// xor *(d1+b1) = *(d1+l+b1) ^ *(d2+b2) ; d1, d2: uimm12, xors l+1 bytes
2112   inline void z_nc(Address dst, int64_t len, Address src2);                     // and *dst = *dst & *src2, ands len bytes in memory
2113   inline void z_oc(Address dst, int64_t len, Address src2);                     //  or *dst = *dst | *src2,  ors len bytes in memory
2114   inline void z_xc(Address dst, int64_t len, Address src2);                     // xor *dst = *dst ^ *src2, xors len bytes in memory
2115 
2116   // compare instructions
2117   inline void z_clc(int64_t d1, int64_t l, Register b1, int64_t d2, Register b2);  // compare (*(d1_uimm12+b1), *(d1_uimm12+b1)) ; compare l bytes
2118   inline void z_clcle(Register r1, Register r3, int64_t d2, Register b2);  // compare logical long extended, see docu
2119   inline void z_clclu(Register r1, Register r3, int64_t d2, Register b2);  // compare logical long unicode, see docu
2120 
2121   // Translate characters
2122   inline void z_troo(Register r1, Register r2, int64_t m3);
2123   inline void z_trot(Register r1, Register r2, int64_t m3);
2124   inline void z_trto(Register r1, Register r2, int64_t m3);
2125   inline void z_trtt(Register r1, Register r2, int64_t m3);
2126 
2127 
2128   // Floatingpoint instructions
2129   // ==========================
2130 
2131   // compare instructions
2132   inline void z_cebr(FloatRegister r1, FloatRegister r2);                     // compare (r1, r2)                ; float
2133   inline void z_ceb(FloatRegister r1, int64_t d2, Register x2, Register b2);  // compare (r1, *(d2_imm12+x2+b2)) ; float
2134   inline void z_ceb(FloatRegister r1, const Address &a);                      // compare (r1, *(d2_imm12+x2+b2)) ; float
2135   inline void z_cdbr(FloatRegister r1, FloatRegister r2);                     // compare (r1, r2)                ; double
2136   inline void z_cdb(FloatRegister r1, int64_t d2, Register x2, Register b2);  // compare (r1, *(d2_imm12+x2+b2)) ; double
2137   inline void z_cdb(FloatRegister r1, const Address &a);                      // compare (r1, *(d2_imm12+x2+b2)) ; double
2138 
2139   // load instructions
2140   inline void z_le( FloatRegister r1, int64_t d2, Register x2, Register b2);   // load r1 = *(d2_uimm12+x2+b2) ; float
2141   inline void z_ley(FloatRegister r1, int64_t d2, Register x2, Register b2);   // load r1 = *(d2_imm20+x2+b2)  ; float
2142   inline void z_ld( FloatRegister r1, int64_t d2, Register x2, Register b2);   // load r1 = *(d2_uimm12+x2+b2) ; double
2143   inline void z_ldy(FloatRegister r1, int64_t d2, Register x2, Register b2);   // load r1 = *(d2_imm20+x2+b2)  ; double
2144   inline void z_le( FloatRegister r1, const Address &a);                       // load r1 = *(a)               ; float
2145   inline void z_ley(FloatRegister r1, const Address &a);                       // load r1 = *(a)               ; float
2146   inline void z_ld( FloatRegister r1, const Address &a);                       // load r1 = *(a)               ; double
2147   inline void z_ldy(FloatRegister r1, const Address &a);                       // load r1 = *(a)               ; double
2148 
2149   // store instructions
2150   inline void z_ste( FloatRegister r1, int64_t d2, Register x2, Register b2);  // store *(d2_uimm12+x2+b2) = r1  ; float
2151   inline void z_stey(FloatRegister r1, int64_t d2, Register x2, Register b2);  // store *(d2_imm20+x2+b2)  = r1  ; float
2152   inline void z_std( FloatRegister r1, int64_t d2, Register x2, Register b2);  // store *(d2_uimm12+x2+b2) = r1  ; double
2153   inline void z_stdy(FloatRegister r1, int64_t d2, Register x2, Register b2);  // store *(d2_imm20+x2+b2)  = r1  ; double
2154   inline void z_ste( FloatRegister r1, const Address &a);                      // store *(a)               = r1  ; float
2155   inline void z_stey(FloatRegister r1, const Address &a);                      // store *(a)               = r1  ; float
2156   inline void z_std( FloatRegister r1, const Address &a);                      // store *(a)               = r1  ; double
2157   inline void z_stdy(FloatRegister r1, const Address &a);                      // store *(a)               = r1  ; double
2158 
2159   // load and store immediates
2160   inline void z_lzer(FloatRegister r1);                                 // r1 = 0     ; single
2161   inline void z_lzdr(FloatRegister r1);                                 // r1 = 0     ; double
2162 
2163   // Move and Convert instructions
2164   inline void z_ler(FloatRegister r1, FloatRegister r2);                // move         r1 = r2 ; float
2165   inline void z_ldr(FloatRegister r1, FloatRegister r2);                // move         r1 = r2 ; double
2166   inline void z_ledbr(FloatRegister r1, FloatRegister r2);              // conv / round r1 = r2 ; float <- double
2167   inline void z_ldebr(FloatRegister r1, FloatRegister r2);              // conv         r1 = r2 ; double <- float
2168 
2169   // move between integer and float registers
2170   inline void z_cefbr( FloatRegister r1, Register r2);                  // r1 = r2; float  <-- int32
2171   inline void z_cdfbr( FloatRegister r1, Register r2);                  // r1 = r2; double <-- int32
2172   inline void z_cegbr( FloatRegister r1, Register r2);                  // r1 = r2; float  <-- int64
2173   inline void z_cdgbr( FloatRegister r1, Register r2);                  // r1 = r2; double <-- int64
2174 
2175   // rounding mode for float-2-int conversions
2176   inline void z_cfebr(Register r1, FloatRegister r2, RoundingMode m);   // conv r1 = r2  ; int32 <-- float
2177   inline void z_cfdbr(Register r1, FloatRegister r2, RoundingMode m);   // conv r1 = r2  ; int32 <-- double
2178   inline void z_cgebr(Register r1, FloatRegister r2, RoundingMode m);   // conv r1 = r2  ; int64 <-- float
2179   inline void z_cgdbr(Register r1, FloatRegister r2, RoundingMode m);   // conv r1 = r2  ; int64 <-- double
2180 
2181   inline void z_ldgr(FloatRegister r1, Register r2);   // fr1 = r2  ; what kind of conversion?  -- z10
2182   inline void z_lgdr(Register r1, FloatRegister r2);   // r1  = fr2 ; what kind of conversion?  -- z10
2183 
2184 
2185   // ADD
2186   inline void z_aebr(FloatRegister f1, FloatRegister f2);                      // f1 = f1 + f2               ; float
2187   inline void z_adbr(FloatRegister f1, FloatRegister f2);                      // f1 = f1 + f2               ; double
2188   inline void z_aeb( FloatRegister f1, int64_t d2, Register x2, Register b2);  // f1 = f1 + *(d2+x2+b2)      ; float
2189   inline void z_adb( FloatRegister f1, int64_t d2, Register x2, Register b2);  // f1 = f1 + *(d2+x2+b2)      ; double
2190   inline void z_aeb( FloatRegister f1, const Address& a);                      // f1 = f1 + *(a)             ; float
2191   inline void z_adb( FloatRegister f1, const Address& a);                      // f1 = f1 + *(a)             ; double
2192 
2193   // SUB
2194   inline void z_sebr(FloatRegister f1, FloatRegister f2);                      // f1 = f1 - f2               ; float
2195   inline void z_sdbr(FloatRegister f1, FloatRegister f2);                      // f1 = f1 - f2               ; double
2196   inline void z_seb( FloatRegister f1, int64_t d2, Register x2, Register b2);  // f1 = f1 - *(d2+x2+b2)      ; float
2197   inline void z_sdb( FloatRegister f1, int64_t d2, Register x2, Register b2);  // f1 = f1 - *(d2+x2+b2)      ; double
2198   inline void z_seb( FloatRegister f1, const Address& a);                      // f1 = f1 - *(a)             ; float
2199   inline void z_sdb( FloatRegister f1, const Address& a);                      // f1 = f1 - *(a)             ; double
2200   // negate
2201   inline void z_lcebr(FloatRegister r1, FloatRegister r2);                     // neg r1 = -r2   ; float
2202   inline void z_lcdbr(FloatRegister r1, FloatRegister r2);                     // neg r1 = -r2   ; double
2203 
2204   // Absolute value, monadic if fr2 == noreg.
2205   inline void z_lpdbr( FloatRegister fr1, FloatRegister fr2 = fnoreg);         // fr1 = |fr2|
2206 
2207 
2208   // MUL
2209   inline void z_meebr(FloatRegister f1, FloatRegister f2);                      // f1 = f1 * f2               ; float
2210   inline void z_mdbr( FloatRegister f1, FloatRegister f2);                      // f1 = f1 * f2               ; double
2211   inline void z_meeb( FloatRegister f1, int64_t d2, Register x2, Register b2);  // f1 = f1 * *(d2+x2+b2)      ; float
2212   inline void z_mdb(  FloatRegister f1, int64_t d2, Register x2, Register b2);  // f1 = f1 * *(d2+x2+b2)      ; double
2213   inline void z_meeb( FloatRegister f1, const Address& a);
2214   inline void z_mdb(  FloatRegister f1, const Address& a);
2215 
2216   // MUL-ADD
2217   inline void z_maebr(FloatRegister f1, FloatRegister f3, FloatRegister f2);    // f1 = f3 * f2 + f1          ; float
2218   inline void z_madbr(FloatRegister f1, FloatRegister f3, FloatRegister f2);    // f1 = f3 * f2 + f1          ; double
2219   inline void z_msebr(FloatRegister f1, FloatRegister f3, FloatRegister f2);    // f1 = f3 * f2 - f1          ; float
2220   inline void z_msdbr(FloatRegister f1, FloatRegister f3, FloatRegister f2);    // f1 = f3 * f2 - f1          ; double
2221   inline void z_maeb(FloatRegister f1, FloatRegister f3, int64_t d2, Register x2, Register b2); // f1 = f3 * *(d2+x2+b2) + f1 ; float
2222   inline void z_madb(FloatRegister f1, FloatRegister f3, int64_t d2, Register x2, Register b2); // f1 = f3 * *(d2+x2+b2) + f1 ; double
2223   inline void z_mseb(FloatRegister f1, FloatRegister f3, int64_t d2, Register x2, Register b2); // f1 = f3 * *(d2+x2+b2) - f1 ; float
2224   inline void z_msdb(FloatRegister f1, FloatRegister f3, int64_t d2, Register x2, Register b2); // f1 = f3 * *(d2+x2+b2) - f1 ; double
2225   inline void z_maeb(FloatRegister f1, FloatRegister f3, const Address& a);
2226   inline void z_madb(FloatRegister f1, FloatRegister f3, const Address& a);
2227   inline void z_mseb(FloatRegister f1, FloatRegister f3, const Address& a);
2228   inline void z_msdb(FloatRegister f1, FloatRegister f3, const Address& a);
2229 
2230   // DIV
2231   inline void z_debr( FloatRegister f1, FloatRegister f2);                      // f1 = f1 / f2               ; float
2232   inline void z_ddbr( FloatRegister f1, FloatRegister f2);                      // f1 = f1 / f2               ; double
2233   inline void z_deb(  FloatRegister f1, int64_t d2, Register x2, Register b2);  // f1 = f1 / *(d2+x2+b2)      ; float
2234   inline void z_ddb(  FloatRegister f1, int64_t d2, Register x2, Register b2);  // f1 = f1 / *(d2+x2+b2)      ; double
2235   inline void z_deb(  FloatRegister f1, const Address& a);                      // f1 = f1 / *(a)             ; float
2236   inline void z_ddb(  FloatRegister f1, const Address& a);                      // f1 = f1 / *(a)             ; double
2237 
2238   // square root
2239   inline void z_sqdbr(FloatRegister fr1, FloatRegister fr2);                    // fr1 = sqrt(fr2)            ; double
2240   inline void z_sqdb( FloatRegister fr1, int64_t d2, Register x2, Register b2); // fr1 = srqt( *(d2+x2+b2)
2241   inline void z_sqdb( FloatRegister fr1, int64_t d2, Register b2);              // fr1 = srqt( *(d2+b2)
2242 
2243   // Nop instruction
2244   // ===============
2245 
2246   // branch never (nop)
2247   inline void z_nop();
2248 
2249   // ===============================================================================================
2250 
2251   // Simplified emitters:
2252   // ====================
2253 
2254 
2255   // Some memory instructions without index register (just convenience).
2256   inline void z_layz(Register r1, int64_t d2, Register b2 = Z_R0);
2257   inline void z_lay(Register r1, int64_t d2, Register b2);
2258   inline void z_laz(Register r1, int64_t d2, Register b2);
2259   inline void z_la(Register r1, int64_t d2, Register b2);
2260   inline void z_l(Register r1, int64_t d2, Register b2);
2261   inline void z_ly(Register r1, int64_t d2, Register b2);
2262   inline void z_lg(Register r1, int64_t d2, Register b2);
2263   inline void z_st(Register r1, int64_t d2, Register b2);
2264   inline void z_sty(Register r1, int64_t d2, Register b2);
2265   inline void z_stg(Register r1, int64_t d2, Register b2);
2266   inline void z_lgf(Register r1, int64_t d2, Register b2);
2267   inline void z_lgh(Register r1, int64_t d2, Register b2);
2268   inline void z_llgh(Register r1, int64_t d2, Register b2);
2269   inline void z_llgf(Register r1, int64_t d2, Register b2);
2270   inline void z_lgb(Register r1, int64_t d2, Register b2);
2271   inline void z_cl( Register r1, int64_t d2, Register b2);
2272   inline void z_c(Register r1, int64_t d2, Register b2);
2273   inline void z_cg(Register r1, int64_t d2, Register b2);
2274   inline void z_sh(Register r1, int64_t d2, Register b2);
2275   inline void z_shy(Register r1, int64_t d2, Register b2);
2276   inline void z_ste(FloatRegister r1, int64_t d2, Register b2);
2277   inline void z_std(FloatRegister r1, int64_t d2, Register b2);
2278   inline void z_stdy(FloatRegister r1, int64_t d2, Register b2);
2279   inline void z_stey(FloatRegister r1, int64_t d2, Register b2);
2280   inline void z_ld(FloatRegister r1, int64_t d2, Register b2);
2281   inline void z_ldy(FloatRegister r1, int64_t d2, Register b2);
2282   inline void z_le(FloatRegister r1, int64_t d2, Register b2);
2283   inline void z_ley(FloatRegister r1, int64_t d2, Register b2);
2284 
2285   inline void z_agf(Register r1, int64_t d2, Register b2);
2286 
2287   inline void z_exrl(Register r1, Label& L);
2288   inline void z_larl(Register r1, Label& L);
2289   inline void z_bru( Label& L);
2290   inline void z_brul(Label& L);
2291   inline void z_brul(address a);
2292   inline void z_brh( Label& L);
2293   inline void z_brl( Label& L);
2294   inline void z_bre( Label& L);
2295   inline void z_brnh(Label& L);
2296   inline void z_brnl(Label& L);
2297   inline void z_brne(Label& L);
2298   inline void z_brz( Label& L);
2299   inline void z_brnz(Label& L);
2300   inline void z_brnaz(Label& L);
2301   inline void z_braz(Label& L);
2302   inline void z_brnp(Label& L);
2303 
2304   inline void z_btrue( Label& L);
2305   inline void z_bfalse(Label& L);
2306 
2307   inline void z_brno( Label& L);
2308 
2309 
2310   inline void z_basr(Register r1, Register r2);
2311   inline void z_brasl(Register r1, address a);
2312   inline void z_brct(Register r1, address a);
2313   inline void z_brct(Register r1, Label& L);
2314 
2315   inline void z_brxh(Register r1, Register r3, address a);
2316   inline void z_brxh(Register r1, Register r3, Label& L);
2317 
2318   inline void z_brxle(Register r1, Register r3, address a);
2319   inline void z_brxle(Register r1, Register r3, Label& L);
2320 
2321   inline void z_brxhg(Register r1, Register r3, address a);
2322   inline void z_brxhg(Register r1, Register r3, Label& L);
2323 
2324   inline void z_brxlg(Register r1, Register r3, address a);
2325   inline void z_brxlg(Register r1, Register r3, Label& L);
2326 
2327   // Ppopulation count intrinsics.
2328   inline void z_flogr(Register r1, Register r2);    // find leftmost one
2329   inline void z_popcnt(Register r1, Register r2);   // population count
2330   inline void z_ahhhr(Register r1, Register r2, Register r3);   // ADD halfword high high
2331   inline void z_ahhlr(Register r1, Register r2, Register r3);   // ADD halfword high low
2332 
2333   inline void z_tam();
2334   inline void z_stck(int64_t d2, Register b2);
2335   inline void z_stckf(int64_t d2, Register b2);
2336   inline void z_stmg(Register r1, Register r3, int64_t d2, Register b2);
2337   inline void z_lmg(Register r1, Register r3, int64_t d2, Register b2);
2338 
2339   inline void z_cs( Register r1, Register r3, int64_t d2, Register b2);
2340   inline void z_csy(Register r1, Register r3, int64_t d2, Register b2);
2341   inline void z_csg(Register r1, Register r3, int64_t d2, Register b2);
2342   inline void z_cs( Register r1, Register r3, const Address& a);
2343   inline void z_csy(Register r1, Register r3, const Address& a);
2344   inline void z_csg(Register r1, Register r3, const Address& a);
2345 
2346   inline void z_cvd(Register r1, int64_t d2, Register x2, Register b2);
2347   inline void z_cvdg(Register r1, int64_t d2, Register x2, Register b2);
2348   inline void z_cvd(Register r1, int64_t d2, Register b2);
2349   inline void z_cvdg(Register r1, int64_t d2, Register b2);
2350 
2351   // Instruction queries:
2352   // instruction properties and recognize emitted instructions
2353   // ===========================================================
2354 
2355   static int nop_size() { return 2; }
2356 
2357   static int z_brul_size() { return 6; }
2358 
2359   static bool is_z_basr(short x) {
2360     return (BASR_ZOPC == (x & BASR_MASK));
2361   }
2362   static bool is_z_algr(long x) {
2363     return (ALGR_ZOPC == (x & RRE_MASK));
2364   }
2365   static bool is_z_lb(long x) {
2366     return (LB_ZOPC == (x & LB_MASK));
2367   }
2368   static bool is_z_lh(int x) {
2369     return (LH_ZOPC == (x & LH_MASK));
2370   }
2371   static bool is_z_l(int x) {
2372     return (L_ZOPC == (x & L_MASK));
2373   }
2374   static bool is_z_lgr(long x) {
2375     return (LGR_ZOPC == (x & RRE_MASK));
2376   }
2377   static bool is_z_ly(long x) {
2378     return (LY_ZOPC == (x & LY_MASK));
2379   }
2380   static bool is_z_lg(long x) {
2381     return (LG_ZOPC == (x & LG_MASK));
2382   }
2383   static bool is_z_llgh(long x) {
2384     return (LLGH_ZOPC == (x & LLGH_MASK));
2385   }
2386   static bool is_z_llgf(long x) {
2387     return (LLGF_ZOPC == (x & LLGF_MASK));
2388   }
2389   static bool is_z_le(int x) {
2390     return (LE_ZOPC == (x & LE_MASK));
2391   }
2392   static bool is_z_ld(int x) {
2393     return (LD_ZOPC == (x & LD_MASK));
2394   }
2395   static bool is_z_st(int x) {
2396     return (ST_ZOPC == (x & ST_MASK));
2397   }
2398   static bool is_z_stc(int x) {
2399     return (STC_ZOPC == (x & STC_MASK));
2400   }
2401   static bool is_z_stg(long x) {
2402     return (STG_ZOPC == (x & STG_MASK));
2403   }
2404   static bool is_z_sth(int x) {
2405     return (STH_ZOPC == (x & STH_MASK));
2406   }
2407   static bool is_z_ste(int x) {
2408     return (STE_ZOPC == (x & STE_MASK));
2409   }
2410   static bool is_z_std(int x) {
2411     return (STD_ZOPC == (x & STD_MASK));
2412   }
2413   static bool is_z_slag(long x) {
2414     return (SLAG_ZOPC == (x & SLAG_MASK));
2415   }
2416   static bool is_z_tmy(long x) {
2417     return (TMY_ZOPC == (x & TMY_MASK));
2418   }
2419   static bool is_z_tm(long x) {
2420     return ((unsigned int)TM_ZOPC == (x & (unsigned int)TM_MASK));
2421   }
2422   static bool is_z_bcr(long x) {
2423     return (BCR_ZOPC == (x & BCR_MASK));
2424   }
2425   static bool is_z_nop(long x) {
2426     return is_z_bcr(x) && ((x & 0x00ff) == 0);
2427   }
2428   static bool is_z_nop(address x) {
2429     return is_z_nop(* (short *) x);
2430   }
2431   static bool is_z_br(long x) {
2432     return is_z_bcr(x) && ((x & 0x00f0) == 0x00f0);
2433   }
2434   static bool is_z_brc(long x, int cond) {
2435     return ((unsigned int)BRC_ZOPC == (x & BRC_MASK)) && ((cond<<20) == (x & 0x00f00000U));
2436   }
2437   // Make use of lightweight sync.
2438   static bool is_z_sync_full(long x) {
2439     return is_z_bcr(x) && (((x & 0x00f0)>>4)==bcondFullSync) && ((x & 0x000f)==0x0000);
2440   }
2441   static bool is_z_sync_light(long x) {
2442     return is_z_bcr(x) && (((x & 0x00f0)>>4)==bcondLightSync) && ((x & 0x000f)==0x0000);
2443   }
2444   static bool is_z_sync(long x) {
2445     return is_z_sync_full(x) || is_z_sync_light(x);
2446   }
2447 
2448   static bool is_z_brasl(long x) {
2449     return (BRASL_ZOPC == (x & BRASL_MASK));
2450   }
2451   static bool is_z_brasl(address a) {
2452   long x = (*((long *)a))>>16;
2453    return is_z_brasl(x);
2454   }
2455   static bool is_z_larl(long x) {
2456     return (LARL_ZOPC == (x & LARL_MASK));
2457   }
2458   static bool is_z_lgrl(long x) {
2459     return (LGRL_ZOPC == (x & LGRL_MASK));
2460   }
2461   static bool is_z_lgrl(address a) {
2462   long x = (*((long *)a))>>16;
2463    return is_z_lgrl(x);
2464   }
2465 
2466   static bool is_z_lghi(unsigned long x) {
2467     return (unsigned int)LGHI_ZOPC == (x & (unsigned int)LGHI_MASK);
2468   }
2469 
2470   static bool is_z_llill(unsigned long x) {
2471     return (unsigned int)LLILL_ZOPC == (x & (unsigned int)LLI_MASK);
2472   }
2473   static bool is_z_llilh(unsigned long x) {
2474     return (unsigned int)LLILH_ZOPC == (x & (unsigned int)LLI_MASK);
2475   }
2476   static bool is_z_llihl(unsigned long x) {
2477     return (unsigned int)LLIHL_ZOPC == (x & (unsigned int)LLI_MASK);
2478   }
2479   static bool is_z_llihh(unsigned long x) {
2480     return (unsigned int)LLIHH_ZOPC == (x & (unsigned int)LLI_MASK);
2481   }
2482   static bool is_z_llilf(unsigned long x) {
2483     return LLILF_ZOPC == (x & LLIF_MASK);
2484   }
2485   static bool is_z_llihf(unsigned long x) {
2486     return LLIHF_ZOPC == (x & LLIF_MASK);
2487   }
2488 
2489   static bool is_z_iill(unsigned long x) {
2490     return (unsigned int)IILL_ZOPC == (x & (unsigned int)II_MASK);
2491   }
2492   static bool is_z_iilh(unsigned long x) {
2493     return (unsigned int)IILH_ZOPC == (x & (unsigned int)II_MASK);
2494   }
2495   static bool is_z_iihl(unsigned long x) {
2496     return (unsigned int)IIHL_ZOPC == (x & (unsigned int)II_MASK);
2497   }
2498   static bool is_z_iihh(unsigned long x) {
2499     return (unsigned int)IIHH_ZOPC == (x & (unsigned int)II_MASK);
2500   }
2501   static bool is_z_iilf(unsigned long x) {
2502     return IILF_ZOPC == (x & IIF_MASK);
2503   }
2504   static bool is_z_iihf(unsigned long x) {
2505     return IIHF_ZOPC == (x & IIF_MASK);
2506   }
2507 
2508   static inline bool is_equal(unsigned long inst, unsigned long idef);
2509   static inline bool is_equal(unsigned long inst, unsigned long idef, unsigned long imask);
2510   static inline bool is_equal(address iloc, unsigned long idef);
2511   static inline bool is_equal(address iloc, unsigned long idef, unsigned long imask);
2512 
2513   static inline bool is_sigtrap_range_check(address pc);
2514   static inline bool is_sigtrap_zero_check(address pc);
2515 
2516   //-----------------
2517   // memory barriers
2518   //-----------------
2519   // machine barrier instructions:
2520   //
2521   // - z_sync            Two-way memory barrier, aka fence.
2522   //                     Only load-after-store-order is not guaranteed in the
2523   //                     z/Architecture memory model, i.e. only 'fence' is needed.
2524   //
2525   // semantic barrier instructions:
2526   // (as defined in orderAccess.hpp)
2527   //
2528   // - z_release         orders Store|Store,   empty implementation
2529   //                            Load|Store
2530   // - z_acquire         orders Load|Store,    empty implementation
2531   //                            Load|Load
2532   // - z_fence           orders Store|Store,   implemented as z_sync.
2533   //                            Load|Store,
2534   //                            Load|Load,
2535   //                            Store|Load
2536   //
2537   // For this implementation to be correct, we need H/W fixes on (very) old H/W:
2538   //          For z990, it is Driver-55:  MCL232 in the J13484 (i390/ML) Stream.
2539   //          For z9,   it is Driver-67:  MCL065 in the G40963 (i390/ML) Stream.
2540   // These drivers are a prereq. Otherwise, memory synchronization will not work.
2541 
2542   inline void z_sync();
2543   inline void z_release();
2544   inline void z_acquire();
2545   inline void z_fence();
2546 
2547   // Creation
2548   Assembler(CodeBuffer* code) : AbstractAssembler(code) { }
2549 
2550 };
2551 
2552 #endif // CPU_S390_VM_ASSEMBLER_S390_HPP