< prev index next >

src/hotspot/cpu/s390/macroAssembler_s390.cpp

Print this page




 919   // Simply use distance from start of const section (should be patched in the end).
 920   long disp = toc_distance();
 921 
 922   RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
 923   relocate(rspec);
 924   z_larl(Rtoc, RelAddr::pcrel_off32(disp));  // Offset is in halfwords.
 925 }
 926 
 927 // PCrelative TOC access.
 928 // Load from anywhere pcrelative (with relocation of load instr)
 929 void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
 930   address          pc             = this->pc();
 931   ptrdiff_t        total_distance = dataLocation - pc;
 932   RelocationHolder rspec          = internal_word_Relocation::spec(dataLocation);
 933 
 934   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 935   assert(total_distance != 0, "sanity");
 936 
 937   // Some extra safety net.
 938   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 939     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "too far away");
 940   }
 941 
 942   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 943   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 944 }
 945 
 946 
 947 // PCrelative TOC access.
 948 // Load from anywhere pcrelative (with relocation of load instr)
 949 // loaded addr has to be relocated when added to constant pool.
 950 void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
 951   address          pc             = this->pc();
 952   ptrdiff_t        total_distance = addrLocation - pc;
 953   RelocationHolder rspec          = internal_word_Relocation::spec(addrLocation);
 954 
 955   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 956 
 957   // Some extra safety net.
 958   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 959     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "too far away");
 960   }
 961 
 962   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 963   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 964 }
 965 
 966 // Generic operation: load a value from memory and test.
 967 // CondCode indicates the sign (<0, ==0, >0) of the loaded value.
 968 void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
 969   z_lb(dst, a);
 970   z_ltr(dst, dst);
 971 }
 972 
 973 void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
 974   int64_t disp = a.disp20();
 975   if (Displacement::is_shortDisp(disp)) {
 976     z_lh(dst, a);
 977   } else if (Displacement::is_longDisp(disp)) {
 978     z_lhy(dst, a);
 979   } else {


1008   } else {
1009     ShouldNotReachHere();
1010   }
1011 }
1012 
1013 // Test a bit in a register. Result is reflected in CC.
1014 void MacroAssembler::testbit(Register r, unsigned int bitPos) {
1015   if (bitPos < 16) {
1016     z_tmll(r, 1U<<bitPos);
1017   } else if (bitPos < 32) {
1018     z_tmlh(r, 1U<<(bitPos-16));
1019   } else if (bitPos < 48) {
1020     z_tmhl(r, 1U<<(bitPos-32));
1021   } else if (bitPos < 64) {
1022     z_tmhh(r, 1U<<(bitPos-48));
1023   } else {
1024     ShouldNotReachHere();
1025   }
1026 }
1027 







1028 // Clear a register, i.e. load const zero into reg.
1029 // Return len (in bytes) of generated instruction(s).
1030 // whole_reg: Clear 64 bits if true, 32 bits otherwise.
1031 // set_cc:    Use instruction that sets the condition code, if true.
1032 int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
1033   unsigned int start_off = offset();
1034   if (whole_reg) {
1035     set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
1036   } else {  // Only 32bit register.
1037     set_cc ? z_xr(r, r) : z_lhi(r, 0);
1038   }
1039   return offset() - start_off;
1040 }
1041 
1042 #ifdef ASSERT
1043 int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
1044   switch (pattern_len) {
1045     case 1:
1046       pattern = (pattern & 0x000000ff)  | ((pattern & 0x000000ff)<<8);
1047     case 2:


4879   if (VM_Version::has_ExecuteExtensions()) {
4880     z_exrl(Z_R1, MVC_template);
4881   } else {
4882     z_ex(tmp1_reg, 0, Z_R0, Z_R1);
4883   }
4884 
4885   bind(done);
4886 
4887   BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
4888 
4889   int block_end = offset();
4890   return block_end - block_start;
4891 }
4892 
4893 //------------------------------------------------------
4894 //   Special String Intrinsics. Implementation
4895 //------------------------------------------------------
4896 
4897 // Intrinsics for CompactStrings
4898 
4899 // Compress char[] to byte[]. odd_reg contains cnt. Kills dst. Early clobber: result







4900 // The result is the number of characters copied before the first incompatible character was found.
4901 // If tmp2 is provided and the compression fails, the compression stops exactly at this point and the result is precise.

4902 //
4903 // Note: Does not behave exactly like package private StringUTF16 compress java implementation in case of failure:
4904 // - Different number of characters may have been written to dead array (if tmp2 not provided).
4905 // - Returns a number <cnt instead of 0. (Result gets compared with cnt.)
4906 unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register odd_reg,
4907                                              Register even_reg, Register tmp, Register tmp2) {
4908   int block_start = offset();
4909   Label Lloop1, Lloop2, Lslow, Ldone;
4910   const Register addr2 = dst, ind1 = result, mask = tmp;
4911   const bool precise = (tmp2 != noreg);
4912 



4913   BLOCK_COMMENT("string_compress {");


4914 
4915   z_sll(odd_reg, 1);       // Number of bytes to read. (Must be a positive simm32.)
4916   clear_reg(ind1);         // Index to read.
4917   z_llilf(mask, 0xFF00FF00);
4918   z_ahi(odd_reg, -16);     // Last possible index for fast loop.
4919   z_brl(Lslow);
4920 
4921   // ind1: index, even_reg: index increment, odd_reg: index limit
4922   z_iihf(mask, 0xFF00FF00);
4923   z_lhi(even_reg, 16);
4924 
4925   bind(Lloop1); // 8 Characters per iteration.
4926   z_lg(Z_R0, Address(src, ind1));
4927   z_lg(Z_R1, Address(src, ind1, 8));
4928   if (precise) {

























4929     if (VM_Version::has_DistinctOpnds()) {
4930       z_ogrk(tmp2, Z_R0, Z_R1);
4931     } else {
4932       z_lgr(tmp2, Z_R0);
4933       z_ogr(tmp2, Z_R1);
4934     }
4935     z_ngr(tmp2, mask);
4936     z_brne(Lslow);         // Failed fast case, retry slowly.











































































4937   }
4938   z_stcmh(Z_R0, 5, 0, addr2);
4939   z_stcm(Z_R0, 5, 2, addr2);
4940   if (!precise) { z_ogr(Z_R0, Z_R1); }
4941   z_stcmh(Z_R1, 5, 4, addr2);
4942   z_stcm(Z_R1, 5, 6, addr2);







































4943   if (!precise) {
4944     z_ngr(Z_R0, mask);
4945     z_brne(Ldone);         // Failed (more than needed was written).












































4946   }
4947   z_aghi(addr2, 8);
4948   z_brxle(ind1, even_reg, Lloop1);
4949 
4950   bind(Lslow);
4951   // Compute index limit and skip if negative.
4952   z_ahi(odd_reg, 16-2);    // Last possible index for slow loop.
4953   z_lhi(even_reg, 2);
4954   z_cr(ind1, odd_reg);
4955   z_brh(Ldone);
4956 
4957   bind(Lloop2); // 1 Character per iteration.
4958   z_llh(Z_R0, Address(src, ind1));
4959   z_tmll(Z_R0, 0xFF00);
4960   z_brnaz(Ldone);          // Failed slow case: Return number of written characters.
4961   z_stc(Z_R0, Address(addr2));
4962   z_aghi(addr2, 1);
4963   z_brxle(ind1, even_reg, Lloop2);
4964 
4965   bind(Ldone);             // result = ind1 = 2*cnt
4966   z_srl(ind1, 1);


















4967 



4968   BLOCK_COMMENT("} string_compress");
4969 
4970   return offset() - block_start;
4971 }
4972 
4973 // Inflate byte[] to char[].
4974 unsigned int MacroAssembler::string_inflate_trot(Register src, Register dst, Register cnt, Register tmp) {
4975   int block_start = offset();
4976 
4977   BLOCK_COMMENT("string_inflate {");
4978 
4979   Register stop_char = Z_R0;
4980   Register table     = Z_R1;
4981   Register src_addr  = tmp;
4982 
4983   assert_different_registers(Z_R0, Z_R1, tmp, src, dst, cnt);
4984   assert(dst->encoding()%2 == 0, "must be even reg");
4985   assert(cnt->encoding()%2 == 1, "must be odd reg");
4986   assert(cnt->encoding() - dst->encoding() == 1, "must be even/odd pair");
4987 
4988   StubRoutines::zarch::generate_load_trot_table_addr(this, table);  // kills Z_R0 (if ASSERT)
4989   clear_reg(stop_char);  // Stop character. Not used here, but initialized to have a defined value.
4990   lgr_if_needed(src_addr, src);
4991   z_llgfr(cnt, cnt);     // # src characters, must be a positive simm32.
4992 
4993   translate_ot(dst, src_addr, /* mask = */ 0x0001);
4994 
4995   BLOCK_COMMENT("} string_inflate");
4996 
4997   return offset() - block_start;
4998 }
4999 
5000 // Inflate byte[] to char[]. odd_reg contains cnt. Kills src.
5001 unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register odd_reg,
5002                                             Register even_reg, Register tmp) {
5003   int block_start = offset();





5004 
5005   BLOCK_COMMENT("string_inflate {");

5006 
5007   Label Lloop1, Lloop2, Lslow, Ldone;
5008   const Register addr1 = src, ind2 = tmp;



5009 
5010   z_sll(odd_reg, 1);       // Number of bytes to write. (Must be a positive simm32.)
5011   clear_reg(ind2);         // Index to write.
5012   z_ahi(odd_reg, -16);     // Last possible index for fast loop.
5013   z_brl(Lslow);
5014 
5015   // ind2: index, even_reg: index increment, odd_reg: index limit
5016   clear_reg(Z_R0);















5017   clear_reg(Z_R1);
5018   z_lhi(even_reg, 16);












































5019 
5020   bind(Lloop1); // 8 Characters per iteration.
5021   z_icmh(Z_R0, 5, 0, addr1);
5022   z_icmh(Z_R1, 5, 4, addr1);
5023   z_icm(Z_R0, 5, 2, addr1);
5024   z_icm(Z_R1, 5, 6, addr1);
5025   z_aghi(addr1, 8);
5026   z_stg(Z_R0, Address(dst, ind2));
5027   z_stg(Z_R1, Address(dst, ind2, 8));
5028   z_brxle(ind2, even_reg, Lloop1);
5029 
5030   bind(Lslow);
5031   // Compute index limit and skip if negative.
5032   z_ahi(odd_reg, 16-2);    // Last possible index for slow loop.
5033   z_lhi(even_reg, 2);
5034   z_cr(ind2, odd_reg);
5035   z_brh(Ldone);
5036 
5037   bind(Lloop2); // 1 Character per iteration.
5038   z_llc(Z_R0, Address(addr1));
5039   z_sth(Z_R0, Address(dst, ind2));
5040   z_aghi(addr1, 1);
5041   z_brxle(ind2, even_reg, Lloop2);
5042 
5043   bind(Ldone);
































































































5044 
5045   BLOCK_COMMENT("} string_inflate");
















































































































































































































































5046 

5047   return offset() - block_start;
5048 }
5049 
5050 // Kills src.
5051 unsigned int MacroAssembler::has_negatives(Register result, Register src, Register cnt,
5052                                            Register odd_reg, Register even_reg, Register tmp) {
5053   int block_start = offset();
5054   Label Lloop1, Lloop2, Lslow, Lnotfound, Ldone;
5055   const Register addr = src, mask = tmp;
5056 
5057   BLOCK_COMMENT("has_negatives {");
5058 
5059   z_llgfr(Z_R1, cnt);      // Number of bytes to read. (Must be a positive simm32.)
5060   z_llilf(mask, 0x80808080);
5061   z_lhi(result, 1);        // Assume true.
5062   // Last possible addr for fast loop.
5063   z_lay(odd_reg, -16, Z_R1, src);
5064   z_chi(cnt, 16);
5065   z_brl(Lslow);
5066 




 919   // Simply use distance from start of const section (should be patched in the end).
 920   long disp = toc_distance();
 921 
 922   RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
 923   relocate(rspec);
 924   z_larl(Rtoc, RelAddr::pcrel_off32(disp));  // Offset is in halfwords.
 925 }
 926 
 927 // PCrelative TOC access.
 928 // Load from anywhere pcrelative (with relocation of load instr)
 929 void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
 930   address          pc             = this->pc();
 931   ptrdiff_t        total_distance = dataLocation - pc;
 932   RelocationHolder rspec          = internal_word_Relocation::spec(dataLocation);
 933 
 934   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 935   assert(total_distance != 0, "sanity");
 936 
 937   // Some extra safety net.
 938   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 939     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 940   }
 941 
 942   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 943   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 944 }
 945 
 946 
 947 // PCrelative TOC access.
 948 // Load from anywhere pcrelative (with relocation of load instr)
 949 // loaded addr has to be relocated when added to constant pool.
 950 void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
 951   address          pc             = this->pc();
 952   ptrdiff_t        total_distance = addrLocation - pc;
 953   RelocationHolder rspec          = internal_word_Relocation::spec(addrLocation);
 954 
 955   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 956 
 957   // Some extra safety net.
 958   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 959     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 960   }
 961 
 962   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 963   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 964 }
 965 
 966 // Generic operation: load a value from memory and test.
 967 // CondCode indicates the sign (<0, ==0, >0) of the loaded value.
 968 void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
 969   z_lb(dst, a);
 970   z_ltr(dst, dst);
 971 }
 972 
 973 void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
 974   int64_t disp = a.disp20();
 975   if (Displacement::is_shortDisp(disp)) {
 976     z_lh(dst, a);
 977   } else if (Displacement::is_longDisp(disp)) {
 978     z_lhy(dst, a);
 979   } else {


1008   } else {
1009     ShouldNotReachHere();
1010   }
1011 }
1012 
1013 // Test a bit in a register. Result is reflected in CC.
1014 void MacroAssembler::testbit(Register r, unsigned int bitPos) {
1015   if (bitPos < 16) {
1016     z_tmll(r, 1U<<bitPos);
1017   } else if (bitPos < 32) {
1018     z_tmlh(r, 1U<<(bitPos-16));
1019   } else if (bitPos < 48) {
1020     z_tmhl(r, 1U<<(bitPos-32));
1021   } else if (bitPos < 64) {
1022     z_tmhh(r, 1U<<(bitPos-48));
1023   } else {
1024     ShouldNotReachHere();
1025   }
1026 }
1027 
1028 void MacroAssembler::prefetch_read(Address a) {
1029   z_pfd(1, a.disp20(), a.indexOrR0(), a.base());
1030 }
1031 void MacroAssembler::prefetch_update(Address a) {
1032   z_pfd(2, a.disp20(), a.indexOrR0(), a.base());
1033 }
1034 
1035 // Clear a register, i.e. load const zero into reg.
1036 // Return len (in bytes) of generated instruction(s).
1037 // whole_reg: Clear 64 bits if true, 32 bits otherwise.
1038 // set_cc:    Use instruction that sets the condition code, if true.
1039 int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
1040   unsigned int start_off = offset();
1041   if (whole_reg) {
1042     set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
1043   } else {  // Only 32bit register.
1044     set_cc ? z_xr(r, r) : z_lhi(r, 0);
1045   }
1046   return offset() - start_off;
1047 }
1048 
1049 #ifdef ASSERT
1050 int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
1051   switch (pattern_len) {
1052     case 1:
1053       pattern = (pattern & 0x000000ff)  | ((pattern & 0x000000ff)<<8);
1054     case 2:


4886   if (VM_Version::has_ExecuteExtensions()) {
4887     z_exrl(Z_R1, MVC_template);
4888   } else {
4889     z_ex(tmp1_reg, 0, Z_R0, Z_R1);
4890   }
4891 
4892   bind(done);
4893 
4894   BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
4895 
4896   int block_end = offset();
4897   return block_end - block_start;
4898 }
4899 
4900 //------------------------------------------------------
4901 //   Special String Intrinsics. Implementation
4902 //------------------------------------------------------
4903 
4904 // Intrinsics for CompactStrings
4905 
4906 // Compress char[] to byte[].
4907 //   Restores: src, dst
4908 //   Uses:     cnt
4909 //   Kills:    tmp, Z_R0, Z_R1.
4910 //   Early clobber: result.
4911 // Note:
4912 //   cnt is signed int. Do not rely on high word!
4913 //       counts # characters, not bytes.
4914 // The result is the number of characters copied before the first incompatible character was found.
4915 // If precise is true, the processing stops exactly at this point. Otherwise, the result may be off
4916 // by a few bytes. The result always indicates the number of copied characters.
4917 //
4918 // Note: Does not behave exactly like package private StringUTF16 compress java implementation in case of failure:
4919 // - Different number of characters may have been written to dead array (if precise is false).
4920 // - Returns a number <cnt instead of 0. (Result gets compared with cnt.)
4921 unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register cnt,
4922                                              Register tmp,    bool precise) {
4923   assert_different_registers(Z_R0, Z_R1, src, dst, cnt, tmp);



4924 
4925   if (precise) {
4926     BLOCK_COMMENT("encode_iso_array {");
4927   } else {
4928     BLOCK_COMMENT("string_compress {");
4929   }
4930   int  block_start = offset();
4931 
4932   Register       Rsrc  = src;
4933   Register       Rdst  = dst;
4934   Register       Rix   = tmp;
4935   Register       Rcnt  = cnt;
4936   Register       Rmask = result;  // holds incompatibility check mask until result value is stored.
4937   Label          ScalarShortcut, AllDone;
4938 
4939   if (VM_Version::has_Prefetch()) {
4940     prefetch_read(Address(Rsrc));          // make sure first cache line is prepared.
4941     prefetch_update(Address(Rdst));
4942   }
4943   z_iilf(Rmask, 0xFF00FF00);
4944   z_iihf(Rmask, 0xFF00FF00);
4945 
4946   {
4947     //---<  shortcuts for short strings (very frequent)   >---
4948     //   Strings with 4 and 8 characters were fond to occur very frequently.
4949     //   Therefore, we handle them right away with minimal overhead.
4950     Label   skipShortcut, skip4Shortcut;
4951     z_chi(Rcnt, 4);
4952     z_brne(skip4Shortcut);                 // 4 characters are very frequent
4953       z_lg(Z_R0, 0, Rsrc);                 // Treat exactly 4 characters specially.
4954       if (VM_Version::has_DistinctOpnds()) {
4955         z_ngrk(Rix, Z_R0, Rmask);
4956       } else {
4957         z_lgr(Rix, Z_R0);
4958         z_ngr(Rix, Rmask);
4959       }
4960       z_brnz(skipShortcut);
4961       z_stcmh(Z_R0, 5, 0, Rdst);
4962       z_stcm(Z_R0,  5, 2, Rdst);
4963       z_lgfr(result, Rcnt);
4964       z_bru(AllDone);
4965     bind(skip4Shortcut);
4966     z_chi(Rcnt, 8);
4967     z_bru(skipShortcut);                   // There's more to do...
4968     clear_reg(Z_R0, true, false);          // #characters already processed (none). Precond for scalar loop.
4969     z_brl(ScalarShortcut);                 // Just a few characters
4970       z_lmg(Z_R0, Z_R1, 0, Rsrc);          // Treat exactly 8 characters specially.
4971       if (VM_Version::has_DistinctOpnds()) {
4972         z_ogrk(Rix, Z_R0, Z_R1);
4973       } else {
4974         z_lgr(Rix, Z_R0);
4975         z_ogr(Rix, Z_R1);
4976       }
4977       z_ngr(Rix, Rmask);
4978       z_brnz(skipShortcut);
4979       z_stcmh(Z_R0, 5, 0, Rdst);
4980       z_stcm(Z_R0,  5, 2, Rdst);
4981       z_stcmh(Z_R1, 5, 4, Rdst);
4982       z_stcm(Z_R1,  5, 6, Rdst);
4983       z_lgfr(result, Rcnt);
4984       z_bru(AllDone);
4985     bind(skipShortcut);
4986   }
4987   clear_reg(Z_R0);                         // make sure register is properly initialized.
4988 
4989   if (VM_Version::has_VectorFacility()) {
4990     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
4991                                            // Otherwise just do nothing in vector mode.
4992                                            // Must be multiple of 2*(vector register length in chars (8 HW = 128 bits)).
4993     const int  log_min_vcnt = exact_log2(min_vcnt);
4994     Label      VectorLoop, VectorDone, VectorBreak;
4995 
4996     VectorRegister Vtmp1      = Z_V16;
4997     VectorRegister Vtmp2      = Z_V17;
4998     VectorRegister Vmask      = Z_V18;
4999     VectorRegister Vzero      = Z_V19;
5000     VectorRegister Vsrc_first = Z_V20;
5001     VectorRegister Vsrc_last  = Z_V23;
5002 
5003     assert((Vsrc_last->encoding() - Vsrc_first->encoding() + 1) == min_vcnt/8, "logic error");
5004     assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
5005     z_srak(Rix, Rcnt, log_min_vcnt);       // # vector loop iterations
5006     z_brz(VectorDone);                     // not enough data for vector loop
5007 
5008     z_vzero(Vzero);                        // all zeroes
5009     z_vgmh(Vmask, 0, 7);                   // generate 0xff00 mask for all 2-byte elements
5010     z_sllg(Z_R0, Rix, log_min_vcnt);       // remember #chars that will be processed by vector loop
5011 
5012     bind(VectorLoop);
5013       z_vlm(Vsrc_first, Vsrc_last, 0, Rsrc);
5014       add2reg(Rsrc, min_vcnt*2);
5015 
5016       //---<  check for incompatible character  >---
5017       z_vo(Vtmp1, Z_V20, Z_V21);
5018       z_vo(Vtmp2, Z_V22, Z_V23);
5019       z_vo(Vtmp1, Vtmp1, Vtmp2);
5020       z_vn(Vtmp1, Vtmp1, Vmask);
5021       z_vceqhs(Vtmp1, Vtmp1, Vzero);       // high half of all chars must be zero for successful compress.
5022       z_brne(VectorBreak);                 // break vector loop, incompatible character found.
5023                                            // re-process data from current iteration in break handler.
5024 
5025       //---<  pack & store characters  >---
5026       z_vpkh(Vtmp1, Z_V20, Z_V21);         // pack (src1, src2) -> tmp1
5027       z_vpkh(Vtmp2, Z_V22, Z_V23);         // pack (src3, src4) -> tmp2
5028       z_vstm(Vtmp1, Vtmp2, 0, Rdst);       // store packed string
5029       add2reg(Rdst, min_vcnt);
5030 
5031       z_brct(Rix, VectorLoop);
5032 
5033     z_bru(VectorDone);
5034 
5035     bind(VectorBreak);
5036       z_sll(Rix, log_min_vcnt);            // # chars processed so far in VectorLoop, excl. current iteration.
5037       z_sr(Z_R0, Rix);                     // correct # chars processed in total.
5038 
5039     bind(VectorDone);
5040   }
5041 
5042   {
5043     const int  min_cnt     =  8;           // Minimum #characters required to use unrolled loop.
5044                                            // Otherwise just do nothing in unrolled loop.
5045                                            // Must be multiple of 8.
5046     const int  log_min_cnt = exact_log2(min_cnt);
5047     Label      UnrolledLoop, UnrolledDone, UnrolledBreak;
5048 
5049     if (VM_Version::has_DistinctOpnds()) {
5050       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to compress in unrolled loop
5051     } else {
5052       z_lr(Rix, Rcnt);
5053       z_sr(Rix, Z_R0);
5054     }
5055     z_sra(Rix, log_min_cnt);             // unrolled loop count
5056     z_brz(UnrolledDone);
5057 
5058     bind(UnrolledLoop);
5059       z_lmg(Z_R0, Z_R1, 0, Rsrc);
5060       if (precise) {
5061         z_ogr(Z_R1, Z_R0);                 // check all 8 chars for incompatibility
5062         z_ngr(Z_R1, Rmask);
5063         z_brnz(UnrolledBreak);
5064 
5065         z_lg(Z_R1, 8, Rsrc);               // reload destroyed register
5066         z_stcmh(Z_R0, 5, 0, Rdst);
5067         z_stcm(Z_R0,  5, 2, Rdst);
5068       } else {
5069         z_stcmh(Z_R0, 5, 0, Rdst);
5070         z_stcm(Z_R0,  5, 2, Rdst);
5071 
5072         z_ogr(Z_R0, Z_R1);
5073         z_ngr(Z_R0, Rmask);
5074         z_brnz(UnrolledBreak);
5075       }
5076       z_stcmh(Z_R1, 5, 4, Rdst);
5077       z_stcm(Z_R1,  5, 6, Rdst);
5078 
5079       add2reg(Rsrc, min_cnt*2);
5080       add2reg(Rdst, min_cnt);
5081       z_brct(Rix, UnrolledLoop);
5082 
5083     z_lgfr(Z_R0, Rcnt);                    // # chars processed in total after unrolled loop.
5084     z_nilf(Z_R0, ~(min_cnt-1));
5085     z_tmll(Rcnt, min_cnt-1);
5086     z_brnaz(ScalarShortcut);               // if all bits zero, there is nothing left to do for scalar loop.
5087                                            // Rix == 0 in all cases.
5088     z_lgfr(result, Rcnt);                  // all characters processed.
5089     z_sgfr(Rdst, Rcnt);                    // restore ptr
5090     z_sgfr(Rsrc, Rcnt);                    // restore ptr, double the element count for Rsrc restore
5091     z_sgfr(Rsrc, Rcnt);
5092     z_bru(AllDone);
5093 
5094     bind(UnrolledBreak);
5095     z_lgfr(Z_R0, Rcnt);                    // # chars processed in total after unrolled loop
5096     z_nilf(Z_R0, ~(min_cnt-1));
5097     z_sll(Rix, log_min_cnt);               // # chars processed so far in UnrolledLoop, excl. current iteration.
5098     z_sr(Z_R0, Rix);                       // correct # chars processed in total.
5099     if (!precise) {
5100       z_lgfr(result, Z_R0);
5101       z_aghi(result, min_cnt/2);           // min_cnt/2 characters have already been written
5102                                            // but ptrs were not updated yet.
5103       z_sgfr(Rdst, Z_R0);                  // restore ptr
5104       z_sgfr(Rsrc, Z_R0);                  // restore ptr, double the element count for Rsrc restore
5105       z_sgfr(Rsrc, Z_R0);
5106       z_bru(AllDone);
5107     }
5108     bind(UnrolledDone);
5109   }
5110 
5111   {
5112     Label     ScalarLoop, ScalarDone, ScalarBreak;
5113 
5114     bind(ScalarShortcut);
5115 
5116     {
5117       //---<  Special treatment for very short strings (one or two characters)  >---
5118       //   For these strings, we are sure that the above code was skipped.
5119       //   Thus, no registers were modified, register restore is not required.
5120       Label     ScalarDoit, Scalar2Char;
5121       z_chi(Rcnt, 2);
5122       z_brh(ScalarDoit);
5123       z_llh(Z_R1,  0, Z_R0, Rsrc);
5124       z_bre(Scalar2Char);
5125       z_tmll(Z_R1, 0xff00);
5126       z_lghi(result, 0);                   // cnt == 1, first char invalid, no chars successfully processed
5127       z_brnaz(AllDone);
5128       z_stc(Z_R1,  0, Z_R0, Rdst);
5129       z_lghi(result, 1);
5130       z_bru(AllDone);
5131 
5132       bind(Scalar2Char);
5133       z_llh(Z_R0,  2, Z_R0, Rsrc);
5134       z_tmll(Z_R1, 0xff00);
5135       z_lghi(result, 0);                   // cnt == 2, first char invalid, no chars successfully processed
5136       z_brnaz(AllDone);
5137       z_stc(Z_R1,  0, Z_R0, Rdst);
5138       z_tmll(Z_R0, 0xff00);
5139       z_lghi(result, 1);                   // cnt == 2, second char invalid, one char successfully processed
5140       z_brnaz(AllDone);
5141       z_stc(Z_R0,  1, Z_R0, Rdst);
5142       z_lghi(result, 2);
5143       z_bru(AllDone);
5144 
5145       bind(ScalarDoit);
5146     }


5147 
5148     if (VM_Version::has_DistinctOpnds()) {
5149       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to compress in unrolled loop
5150     } else {
5151       z_lr(Rix, Rcnt);
5152       z_sr(Rix, Z_R0);
5153     }
5154     z_lgfr(result, Rcnt);                  // # processed characters (if all runs ok).
5155     z_brz(ScalarDone);






5156 
5157     bind(ScalarLoop);
5158       z_llh(Z_R1, 0, Z_R0, Rsrc);
5159       z_tmll(Z_R1, 0xff00);
5160       z_brnaz(ScalarBreak);
5161       z_stc(Z_R1, 0, Z_R0, Rdst);
5162       add2reg(Rsrc, 2);
5163       add2reg(Rdst, 1);
5164       z_brct(Rix, ScalarLoop);
5165 
5166     z_bru(ScalarDone);
5167 
5168     bind(ScalarBreak);
5169     z_sr(result, Rix);
5170 
5171     bind(ScalarDone);
5172     z_sgfr(Rdst, result);                  // restore ptr
5173     z_sgfr(Rsrc, result);                  // restore ptr, double the element count for Rsrc restore
5174     z_sgfr(Rsrc, result);
5175   }
5176   bind(AllDone);
5177 
5178   if (precise) {
5179     BLOCK_COMMENT("} encode_iso_array");
5180   } else {
5181     BLOCK_COMMENT("} string_compress");
5182   }
5183   return offset() - block_start;
5184 }
5185 
5186 // Inflate byte[] to char[].
5187 unsigned int MacroAssembler::string_inflate_trot(Register src, Register dst, Register cnt, Register tmp) {
5188   int block_start = offset();
5189 
5190   BLOCK_COMMENT("string_inflate {");
5191 
5192   Register stop_char = Z_R0;
5193   Register table     = Z_R1;
5194   Register src_addr  = tmp;
5195 
5196   assert_different_registers(Z_R0, Z_R1, tmp, src, dst, cnt);
5197   assert(dst->encoding()%2 == 0, "must be even reg");
5198   assert(cnt->encoding()%2 == 1, "must be odd reg");
5199   assert(cnt->encoding() - dst->encoding() == 1, "must be even/odd pair");
5200 
5201   StubRoutines::zarch::generate_load_trot_table_addr(this, table);  // kills Z_R0 (if ASSERT)
5202   clear_reg(stop_char);  // Stop character. Not used here, but initialized to have a defined value.
5203   lgr_if_needed(src_addr, src);
5204   z_llgfr(cnt, cnt);     // # src characters, must be a positive simm32.
5205 
5206   translate_ot(dst, src_addr, /* mask = */ 0x0001);
5207 
5208   BLOCK_COMMENT("} string_inflate");
5209 
5210   return offset() - block_start;
5211 }
5212 
5213 // Inflate byte[] to char[].
5214 //   Restores: src, dst
5215 //   Uses:     cnt
5216 //   Kills:    tmp, Z_R0, Z_R1.
5217 // Note:
5218 //   cnt is signed int. Do not rely on high word!
5219 //       counts # characters, not bytes.
5220 unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
5221   assert_different_registers(Z_R0, Z_R1, src, dst, cnt, tmp);
5222 
5223   BLOCK_COMMENT("string_inflate {");
5224   int block_start = offset();
5225 
5226   Register   Rcnt = cnt;   // # characters (src: bytes, dst: char (2-byte)), remaining after current loop.
5227   Register   Rix  = tmp;   // loop index
5228   Register   Rsrc = src;   // addr(src array)
5229   Register   Rdst = dst;   // addr(dst array)
5230   Label      ScalarShortcut, AllDone;
5231 
5232   if (VM_Version::has_Prefetch()) {
5233     prefetch_read(Address(Rsrc));          // make sure first cache line is prepared.
5234     prefetch_update(Address(Rdst));
5235   }
5236 
5237   {
5238     //---<  shortcuts for short strings (very frequent)   >---
5239     Label   skipShortcut, skip4Shortcut;
5240     clear_reg(Z_R0);                       // make sure register is properly initialized.
5241     z_chi(Rcnt, 4);
5242     z_brne(skip4Shortcut);                 // 4 characters are very frequent
5243       z_icmh(Z_R0, 5, 0, Rsrc);            // Treat exactly 8 characters specially.
5244       z_icm(Z_R0,  5, 2, Rsrc);
5245       z_stg(Z_R0,     0, Rdst);
5246       z_bru(AllDone);
5247     bind(skip4Shortcut);
5248 
5249     z_chi(Rcnt, 8);
5250     z_brh(skipShortcut);                   // There's a lot to do...
5251     z_lgfr(Z_R0, Rcnt);                    // remaining #characters (<= 8). Precond for scalar loop.
5252                                            // This does not destroy the "register cleared" state of Z_R0.
5253     z_brl(ScalarShortcut);                 // Just a few characters
5254       clear_reg(Z_R1);
5255       z_icmh(Z_R0, 5, 0, Rsrc);            // Treat exactly 8 characters specially.
5256       z_icmh(Z_R1, 5, 4, Rsrc);
5257       z_icm(Z_R0,  5, 2, Rsrc);
5258       z_icm(Z_R1,  5, 6, Rsrc);
5259       z_stmg(Z_R0, Z_R1, 0, Rdst);
5260       z_bru(AllDone);
5261     bind(skipShortcut);
5262   }
5263   clear_reg(Z_R0);                         // make sure register is properly initialized.
5264 
5265   if (VM_Version::has_VectorFacility()) {
5266     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
5267                                            // Otherwise just do nothing in vector mode.
5268                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5269     const int  log_min_vcnt = exact_log2(min_vcnt);
5270     Label      VectorLoop, VectorDone;
5271 
5272     assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
5273     z_srak(Rix, Rcnt, log_min_vcnt);       // calculate # vector loop iterations
5274     z_brz(VectorDone);                     // skip if none
5275 
5276     z_sllg(Z_R0, Rix, log_min_vcnt);       // remember #chars that will be processed by vector loop
5277 
5278     bind(VectorLoop);
5279       z_vlm(Z_V20, Z_V21, 0, Rsrc);        // get next 32 characters (single-byte)
5280       add2reg(Rsrc, min_vcnt);
5281 
5282       z_vuplhb(Z_V22, Z_V20);              // V2 <- (expand) V0(high)
5283       z_vupllb(Z_V23, Z_V20);              // V3 <- (expand) V0(low)
5284       z_vuplhb(Z_V24, Z_V21);              // V4 <- (expand) V1(high)
5285       z_vupllb(Z_V25, Z_V21);              // V5 <- (expand) V1(low)
5286       z_vstm(Z_V22, Z_V25, 0, Rdst);       // store next 32 bytes
5287       add2reg(Rdst, min_vcnt*2);
5288 
5289       z_brct(Rix, VectorLoop);
5290 
5291     bind(VectorDone);
5292   }
5293 
5294   const int  min_cnt     =  8;             // Minimum #characters required to use unrolled scalar loop.
5295                                            // Otherwise just do nothing in unrolled scalar mode.
5296                                            // Must be multiple of 8.
5297   {
5298     const int  log_min_cnt = exact_log2(min_cnt);
5299     Label      UnrolledLoop, UnrolledDone;
5300 






















5301 
5302     if (VM_Version::has_DistinctOpnds()) {
5303       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to process in unrolled loop
5304     } else {
5305       z_lr(Rix, Rcnt);
5306       z_sr(Rix, Z_R0);
5307     }
5308     z_sra(Rix, log_min_cnt);               // unrolled loop count
5309     z_brz(UnrolledDone);
5310 
5311     clear_reg(Z_R0);
5312     clear_reg(Z_R1);
5313 
5314     bind(UnrolledLoop);
5315       z_icmh(Z_R0, 5, 0, Rsrc);
5316       z_icmh(Z_R1, 5, 4, Rsrc);
5317       z_icm(Z_R0,  5, 2, Rsrc);
5318       z_icm(Z_R1,  5, 6, Rsrc);
5319       add2reg(Rsrc, min_cnt);
5320 
5321       z_stmg(Z_R0, Z_R1, 0, Rdst);
5322 
5323       add2reg(Rdst, min_cnt*2);
5324       z_brct(Rix, UnrolledLoop);
5325 
5326     bind(UnrolledDone);
5327     z_lgfr(Z_R0, Rcnt);                    // # chars left over after unrolled loop.
5328     z_nilf(Z_R0, min_cnt-1);
5329     z_brnz(ScalarShortcut);                // if zero, there is nothing left to do for scalar loop.
5330                                            // Rix == 0 in all cases.
5331     z_sgfr(Z_R0, Rcnt);                    // negative # characters the ptrs have been advanced previously.
5332     z_agr(Rdst, Z_R0);                     // restore ptr, double the element count for Rdst restore.
5333     z_agr(Rdst, Z_R0);
5334     z_agr(Rsrc, Z_R0);                     // restore ptr.
5335     z_bru(AllDone);
5336   }
5337 
5338   {
5339     bind(ScalarShortcut);
5340     // Z_R0 must contain remaining # characters as 64-bit signed int here.
5341     //      register contents is preserved over scalar processing (for register fixup).
5342 
5343     {
5344       Label      ScalarDefault;
5345       z_chi(Rcnt, 2);
5346       z_brh(ScalarDefault);
5347       z_llc(Z_R0,  0, Z_R0, Rsrc);     // 6 bytes
5348       z_sth(Z_R0,  0, Z_R0, Rdst);     // 4 bytes
5349       z_brl(AllDone);
5350       z_llc(Z_R0,  1, Z_R0, Rsrc);     // 6 bytes
5351       z_sth(Z_R0,  2, Z_R0, Rdst);     // 4 bytes
5352       z_bru(AllDone);
5353       bind(ScalarDefault);
5354     }
5355 
5356     Label   CodeTable;
5357     // Some comments on Rix calculation:
5358     //  - Rcnt is small, therefore no bits shifted out of low word (sll(g) instructions).
5359     //  - high word of both Rix and Rcnt may contain garbage
5360     //  - the final lngfr takes care of that garbage, extending the sign to high word
5361     z_sllg(Rix, Z_R0, 2);                // calculate 10*Rix = (4*Rix + Rix)*2
5362     z_ar(Rix, Z_R0);
5363     z_larl(Z_R1, CodeTable);
5364     z_sll(Rix, 1);
5365     z_lngfr(Rix, Rix);      // ix range: [0..7], after inversion & mult: [-(7*12)..(0*12)].
5366     z_bc(Assembler::bcondAlways, 0, Rix, Z_R1);
5367 
5368     z_llc(Z_R1,  6, Z_R0, Rsrc);  // 6 bytes
5369     z_sth(Z_R1, 12, Z_R0, Rdst);  // 4 bytes
5370 
5371     z_llc(Z_R1,  5, Z_R0, Rsrc);
5372     z_sth(Z_R1, 10, Z_R0, Rdst);
5373 
5374     z_llc(Z_R1,  4, Z_R0, Rsrc);
5375     z_sth(Z_R1,  8, Z_R0, Rdst);
5376 
5377     z_llc(Z_R1,  3, Z_R0, Rsrc);
5378     z_sth(Z_R1,  6, Z_R0, Rdst);
5379 
5380     z_llc(Z_R1,  2, Z_R0, Rsrc);
5381     z_sth(Z_R1,  4, Z_R0, Rdst);
5382 
5383     z_llc(Z_R1,  1, Z_R0, Rsrc);
5384     z_sth(Z_R1,  2, Z_R0, Rdst);
5385 
5386     z_llc(Z_R1,  0, Z_R0, Rsrc);
5387     z_sth(Z_R1,  0, Z_R0, Rdst);
5388     bind(CodeTable);
5389 
5390     z_chi(Rcnt, 8);                        // no fixup for small strings. Rdst, Rsrc were not modified.
5391     z_brl(AllDone);
5392 
5393     z_sgfr(Z_R0, Rcnt);                    // # characters the ptrs have been advanced previously.
5394     z_agr(Rdst, Z_R0);                     // restore ptr, double the element count for Rdst restore.
5395     z_agr(Rdst, Z_R0);
5396     z_agr(Rsrc, Z_R0);                     // restore ptr.
5397   }
5398   bind(AllDone);
5399 
5400   BLOCK_COMMENT("} string_inflate");
5401   return offset() - block_start;
5402 }
5403 
5404 // Inflate byte[] to char[], length known at compile time.
5405 //   Restores: src, dst
5406 //   Kills:    tmp, Z_R0, Z_R1.
5407 // Note:
5408 //   len is signed int. Counts # characters, not bytes.
5409 unsigned int MacroAssembler::string_inflate_const(Register src, Register dst, Register tmp, int len) {
5410   assert_different_registers(Z_R0, Z_R1, src, dst, tmp);
5411 
5412   BLOCK_COMMENT("string_inflate_const {");
5413   int block_start = offset();
5414 
5415   Register   Rix  = tmp;   // loop index
5416   Register   Rsrc = src;   // addr(src array)
5417   Register   Rdst = dst;   // addr(dst array)
5418   Label      ScalarShortcut, AllDone;
5419   int        nprocessed = 0;
5420   int        src_off    = 0;  // compensate for saved (optimized away) ptr advancement.
5421   int        dst_off    = 0;  // compensate for saved (optimized away) ptr advancement.
5422   bool       restore_inputs = false;
5423   bool       workreg_clear  = false;
5424 
5425   if (VM_Version::has_Prefetch()) {
5426     prefetch_read(Address(Rsrc));          // make sure first cache line is prepared.
5427     prefetch_update(Address(Rdst));
5428   }
5429 
5430   if ((len >= 32) && VM_Version::has_VectorFacility()) {
5431     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
5432                                            // Otherwise just do nothing in vector mode.
5433                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5434     const int  log_min_vcnt = exact_log2(min_vcnt);
5435     const int  iterations   = (len - nprocessed) >> log_min_vcnt;
5436     nprocessed             += iterations << log_min_vcnt;
5437     Label      VectorLoop;
5438 
5439     if (iterations == 1) {
5440       z_vlm(Z_V20, Z_V21, 0+src_off, Rsrc);  // get next 32 characters (single-byte)
5441       z_vuplhb(Z_V22, Z_V20);                // V2 <- (expand) V0(high)
5442       z_vupllb(Z_V23, Z_V20);                // V3 <- (expand) V0(low)
5443       z_vuplhb(Z_V24, Z_V21);                // V4 <- (expand) V1(high)
5444       z_vupllb(Z_V25, Z_V21);                // V5 <- (expand) V1(low)
5445       z_vstm(Z_V22, Z_V25, 0+dst_off, Rdst); // store next 32 bytes
5446 
5447       src_off += min_vcnt;
5448       dst_off += min_vcnt*2;
5449     } else {
5450       restore_inputs = true;
5451 
5452       z_lgfi(Rix, len>>log_min_vcnt);
5453       bind(VectorLoop);
5454         z_vlm(Z_V20, Z_V21, 0, Rsrc);        // get next 32 characters (single-byte)
5455         add2reg(Rsrc, min_vcnt);
5456 
5457         z_vuplhb(Z_V22, Z_V20);              // V2 <- (expand) V0(high)
5458         z_vupllb(Z_V23, Z_V20);              // V3 <- (expand) V0(low)
5459         z_vuplhb(Z_V24, Z_V21);              // V4 <- (expand) V1(high)
5460         z_vupllb(Z_V25, Z_V21);              // V5 <- (expand) V1(low)
5461         z_vstm(Z_V22, Z_V25, 0, Rdst);       // store next 32 bytes
5462         add2reg(Rdst, min_vcnt*2);
5463 
5464         z_brct(Rix, VectorLoop);
5465     }
5466   }
5467 
5468   if (((len-nprocessed) >= 16) && VM_Version::has_VectorFacility()) {
5469     const int  min_vcnt     = 16;          // Minimum #characters required to use vector instructions.
5470                                            // Otherwise just do nothing in vector mode.
5471                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5472     const int  log_min_vcnt = exact_log2(min_vcnt);
5473     const int  iterations   = (len - nprocessed) >> log_min_vcnt;
5474     nprocessed             += iterations << log_min_vcnt;
5475     assert(iterations == 1, "must be!");
5476 
5477     z_vl(Z_V20, 0+src_off, Z_R0, Rsrc);    // get next 16 characters (single-byte)
5478     z_vuplhb(Z_V22, Z_V20);                // V2 <- (expand) V0(high)
5479     z_vupllb(Z_V23, Z_V20);                // V3 <- (expand) V0(low)
5480     z_vstm(Z_V22, Z_V23, 0+dst_off, Rdst); // store next 32 bytes
5481 
5482     src_off += min_vcnt;
5483     dst_off += min_vcnt*2;
5484   }
5485 
5486   if ((len-nprocessed) > 8) {
5487     const int  min_cnt     =  8;           // Minimum #characters required to use unrolled scalar loop.
5488                                            // Otherwise just do nothing in unrolled scalar mode.
5489                                            // Must be multiple of 8.
5490     const int  log_min_cnt = exact_log2(min_cnt);
5491     const int  iterations  = (len - nprocessed) >> log_min_cnt;
5492     nprocessed     += iterations << log_min_cnt;
5493 
5494     //---<  avoid loop overhead/ptr increment for small # iterations  >---
5495     if (iterations <= 2) {
5496       clear_reg(Z_R0);
5497       clear_reg(Z_R1);
5498       workreg_clear = true;
5499 
5500       z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5501       z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5502       z_icm(Z_R0,  5, 2+src_off, Rsrc);
5503       z_icm(Z_R1,  5, 6+src_off, Rsrc);
5504       z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5505 
5506       src_off += min_cnt;
5507       dst_off += min_cnt*2;
5508     }
5509 
5510     if (iterations == 2) {
5511       z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5512       z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5513       z_icm(Z_R0,  5, 2+src_off, Rsrc);
5514       z_icm(Z_R1,  5, 6+src_off, Rsrc);
5515       z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5516 
5517       src_off += min_cnt;
5518       dst_off += min_cnt*2;
5519     }
5520 
5521     if (iterations > 2) {
5522       Label      UnrolledLoop;
5523       restore_inputs  = true;
5524 
5525       clear_reg(Z_R0);
5526       clear_reg(Z_R1);
5527       workreg_clear = true;
5528 
5529       z_lgfi(Rix, iterations);
5530       bind(UnrolledLoop);
5531         z_icmh(Z_R0, 5, 0, Rsrc);
5532         z_icmh(Z_R1, 5, 4, Rsrc);
5533         z_icm(Z_R0,  5, 2, Rsrc);
5534         z_icm(Z_R1,  5, 6, Rsrc);
5535         add2reg(Rsrc, min_cnt);
5536 
5537         z_stmg(Z_R0, Z_R1, 0, Rdst);
5538         add2reg(Rdst, min_cnt*2);
5539 
5540         z_brct(Rix, UnrolledLoop);
5541     }
5542   }
5543 
5544   if ((len-nprocessed) > 0) {
5545     switch (len-nprocessed) {
5546       case 8:
5547         if (!workreg_clear) {
5548           clear_reg(Z_R0);
5549           clear_reg(Z_R1);
5550         }
5551         z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5552         z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5553         z_icm(Z_R0,  5, 2+src_off, Rsrc);
5554         z_icm(Z_R1,  5, 6+src_off, Rsrc);
5555         z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5556         break;
5557       case 7:
5558         if (!workreg_clear) {
5559           clear_reg(Z_R0);
5560           clear_reg(Z_R1);
5561         }
5562         clear_reg(Rix);
5563         z_icm(Z_R0,  5, 0+src_off, Rsrc);
5564         z_icm(Z_R1,  5, 2+src_off, Rsrc);
5565         z_icm(Rix,   5, 4+src_off, Rsrc);
5566         z_stm(Z_R0,  Z_R1, 0+dst_off, Rdst);
5567         z_llc(Z_R0,  6+src_off, Z_R0, Rsrc);
5568         z_st(Rix,    8+dst_off, Z_R0, Rdst);
5569         z_sth(Z_R0, 12+dst_off, Z_R0, Rdst);
5570         break;
5571       case 6:
5572         if (!workreg_clear) {
5573           clear_reg(Z_R0);
5574           clear_reg(Z_R1);
5575         }
5576         clear_reg(Rix);
5577         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5578         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5579         z_icm(Rix,  5, 4+src_off, Rsrc);
5580         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5581         z_st(Rix,   8+dst_off, Z_R0, Rdst);
5582         break;
5583       case 5:
5584         if (!workreg_clear) {
5585           clear_reg(Z_R0);
5586           clear_reg(Z_R1);
5587         }
5588         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5589         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5590         z_llc(Rix,  4+src_off, Z_R0, Rsrc);
5591         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5592         z_sth(Rix,  8+dst_off, Z_R0, Rdst);
5593         break;
5594       case 4:
5595         if (!workreg_clear) {
5596           clear_reg(Z_R0);
5597           clear_reg(Z_R1);
5598         }
5599         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5600         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5601         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5602         break;
5603       case 3:
5604         if (!workreg_clear) {
5605           clear_reg(Z_R0);
5606         }
5607         z_llc(Z_R1, 2+src_off, Z_R0, Rsrc);
5608         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5609         z_sth(Z_R1, 4+dst_off, Z_R0, Rdst);
5610         z_st(Z_R0,  0+dst_off, Rdst);
5611         break;
5612       case 2:
5613         z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
5614         z_llc(Z_R1, 1+src_off, Z_R0, Rsrc);
5615         z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
5616         z_sth(Z_R1, 2+dst_off, Z_R0, Rdst);
5617         break;
5618       case 1:
5619         z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
5620         z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
5621         break;
5622       default:
5623         guarantee(false, "Impossible");
5624         break;
5625     }
5626     src_off   +=  len-nprocessed;
5627     dst_off   += (len-nprocessed)*2;
5628     nprocessed = len;
5629   }
5630 
5631   //---< restore modified input registers  >---
5632   if ((nprocessed > 0) && restore_inputs) {
5633     z_agfi(Rsrc, -(nprocessed-src_off));
5634     if (nprocessed < 1000000000) { // avoid int overflow
5635       z_agfi(Rdst, -(nprocessed*2-dst_off));
5636     } else {
5637       z_agfi(Rdst, -(nprocessed-dst_off));
5638       z_agfi(Rdst, -nprocessed);
5639     }
5640   }
5641 
5642   BLOCK_COMMENT("} string_inflate_const");
5643   return offset() - block_start;
5644 }
5645 
5646 // Kills src.
5647 unsigned int MacroAssembler::has_negatives(Register result, Register src, Register cnt,
5648                                            Register odd_reg, Register even_reg, Register tmp) {
5649   int block_start = offset();
5650   Label Lloop1, Lloop2, Lslow, Lnotfound, Ldone;
5651   const Register addr = src, mask = tmp;
5652 
5653   BLOCK_COMMENT("has_negatives {");
5654 
5655   z_llgfr(Z_R1, cnt);      // Number of bytes to read. (Must be a positive simm32.)
5656   z_llilf(mask, 0x80808080);
5657   z_lhi(result, 1);        // Assume true.
5658   // Last possible addr for fast loop.
5659   z_lay(odd_reg, -16, Z_R1, src);
5660   z_chi(cnt, 16);
5661   z_brl(Lslow);
5662 


< prev index next >