--- old/src/hotspot/share/memory/heap.cpp 2018-03-01 18:09:47.614475000 +0100 +++ new/src/hotspot/share/memory/heap.cpp 2018-03-01 18:09:47.379486000 +0100 @@ -23,9 +23,11 @@ */ #include "precompiled.hpp" +#include "compiler/compileBroker.hpp" #include "memory/heap.hpp" #include "oops/oop.inline.hpp" #include "runtime/os.hpp" +#include "runtime/sweeper.hpp" #include "services/memTracker.hpp" #include "utilities/align.hpp" @@ -560,3 +562,2296 @@ } #endif + + +//---< BEGIN >--- 8198691: CodeHeap State Analytics. +// +// With this declaration macro, it is possible to switch between +// - direct output into an argument-passed outputStream and +// - buffered output into a bufferedStream with subsequent flush +// of the filled buffer to the outputStream. +#define USE_STRINGSTREAM +#define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times +// +// Writing to a bufferedStream buffer first has a significant advantage: +// It uses noticeably less cpu cycles and reduces (when wirting to a +// network file) the required bandwidth by at least a factor of ten. +// That clearly makes up for the increased code complexity. +#if defined(USE_STRINGSTREAM) +#define STRINGSTREAM_DECL(_anyst, _outst) \ + /* _anyst name of the stream as used in the code */ \ + /* _outst stream where final output will go to */ \ + ResourceMark rm; \ + bufferedStream _sstobj = bufferedStream(2*K); \ + bufferedStream* _sstbuf = &_sstobj; \ + outputStream* _outbuf = _outst; \ + bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */ + +#define STRINGSTREAM_FLUSH(termString) \ + _sstbuf->print("%s", termString); \ + _outbuf->print("%s", _sstbuf->as_string()); \ + _sstbuf->reset(); +#else +#define STRINGSTREAM_DECL(_anyst, _outst) \ + outputStream* _outbuf = _outst; \ + outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */ + +#define STRINGSTREAM_FLUSH(termString) \ + _outbuf->print("%s", termString); +#endif + +const char blobTypeChar[] = {' ', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' }; +const char* blobTypeName[] = {"noType" + , "nMethod (active)" + , "nMethod (inactive)" + , "nMethod (deopt)" + , "nMethod (zombie)" + , "nMethod (unloaded)" + , "runtime stub" + , "ricochet stub" + , "deopt stub" + , "uncommon trap stub" + , "exception stub" + , "safepoint stub" + , "adapter blob" + , "MH adapter blob" + , "buffer blob" + , "lastType" + }; +const char* compTypeName[] = { "none", "c1", "c2", "jvmci" }; + +//---------------- +// StatElement +//---------------- +// Each analysis granule is represented by an instance of +// this StatElement struct. It collects and aggregates all +// information describing the allocated contents of the granule. +// Free (unallocated) contents is not considered (see FreeBlk for that). +// All StatElements of a heap segment are stored in the related StatArray. +// Current size: 40 bytes + 8 bytes class header. +class StatElement : public CHeapObj { + public: + // A note on ages: The compilation_id easily overflows unsigned short in large systems + unsigned int t1_age; // oldest compilation_id of tier1 nMethods. + unsigned int t2_age; // oldest compilation_id of tier2 nMethods. + unsigned int tx_age; // oldest compilation_id of inactive/not entrant nMethods. + unsigned short t1_space; // in units of _segment_size to "prevent" overflow + unsigned short t2_space; // in units of _segment_size to "prevent" overflow + unsigned short tx_space; // in units of _segment_size to "prevent" overflow + unsigned short dead_space; // in units of _segment_size to "prevent" overflow + unsigned short stub_space; // in units of _segment_size to "prevent" overflow + unsigned short t1_count; + unsigned short t2_count; + unsigned short tx_count; + unsigned short dead_count; + unsigned short stub_count; + CompLevel level; // optimization level (see globalDefinitions.hpp) + //---< replaced the correct enum typing with u2 to save space. + u2 compiler; // compiler which generated this blob + u2 type; // used only if granularity == segment_size +// CodeHeap::compType compiler; // compiler which generated this blob +// CodeHeap::blobType type; // used only if granularity == segment_size +}; + +//----------- +// FreeBlk +//----------- +// Each free block in the code heap is represented by an instance +// of this FreeBlk struct. It collects all information we need to +// know about each free block. +// All FreeBlks of a heap segment are stored in the related FreeArray. +struct FreeBlk : public CHeapObj { + HeapBlock *start; // address of free block + unsigned int len; // length of free block + + unsigned int gap; // gap to next free block + unsigned int index; // sequential number of free block + unsigned short n_gapBlocks; // # used blocks in gap + bool stubs_in_gap; // The occupied space between this and the next free block contains (unmovable) stubs or blobs. +}; + +//-------------- +// TopSizeBlk +//-------------- +// The n largest blocks in the code heap are represented in an instance +// of this TopSizeBlk struct. It collects all information we need to +// know about those largest blocks. +// All TopSizeBlks of a heap segment are stored in the related TopSizeArray. +struct TopSizeBlk : public CHeapObj { + HeapBlock *start; // address of block + unsigned int len; // length of block, in _segment_size units. Will never overflow int. + + unsigned int index; // ordering index, 0 is largest block + // contains array index of next smaller block + // -1 indicates end of list + CompLevel level; // optimization level (see globalDefinitions.hpp) + u2 compiler; // compiler which generated this blob + u2 type; // blob type +}; + +//--------------------------- +// SizeDistributionElement +//--------------------------- +// During CodeHeap analysis, each allocated code block is associated with a +// SizeDistributionElement according to its size. Later on, the array of +// SizeDistributionElements is used to print a size distribution bar graph. +// All SizeDistributionElements of a heap segment are stored in the related SizeDistributionArray. +struct SizeDistributionElement : public CHeapObj { + // Range is [rangeStart..rangeEnd). + unsigned int rangeStart; // start of length range, in _segment_size units. + unsigned int rangeEnd; // end of length range, in _segment_size units. + unsigned int lenSum; // length of block, in _segment_size units. Will never overflow int. + + unsigned int count; // number of blocks assigned to this range. +}; + +//---------------- +// CodeHeapStat +//---------------- +// Because we have to deal with multiple CodeHeaps, we need to +// collect "global" information in a segment-specific way as well. +// Thats what the CodeHeapStat and CodeHeapStatArray are used for. +// Before a heap segment is processed, the contents of the CodeHeapStat +// element is copied to the global variables (get_HeapStatGlobals). +// When processing is done, the possibly modified global variables are +// copied back (set_HeapStatGlobals) to the CodeHeapStat element. +struct CodeHeapStat { +// struct StatElement *StatArray; + StatElement *StatArray; + struct FreeBlk *FreeArray; + struct TopSizeBlk *TopSizeArray; + struct SizeDistributionElement *SizeDistributionArray; + const char *heapName; + // StatElement data + size_t alloc_granules; + size_t granule_size; + bool segment_granules; + unsigned int nBlocks_t1; + unsigned int nBlocks_t2; + unsigned int nBlocks_alive; + unsigned int nBlocks_dead; + unsigned int nBlocks_unloaded; + unsigned int nBlocks_stub; + // FreeBlk data + unsigned int alloc_freeBlocks; + // UsedBlk data + unsigned int alloc_topSizeBlocks; + unsigned int used_topSizeBlocks; + // method hotness data. Temperature range is [-reset_val..+reset_val] + int avgTemp; + int maxTemp; + int minTemp; +}; + +// Be prepared for ten different Code Heaps. Should be enough for a few years. +const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32 +const unsigned int maxTopSizeBlocks = 50; +const unsigned int tsbStopper = 2*maxTopSizeBlocks; +const unsigned int maxHeaps = 10; +static unsigned int nHeaps = 0; +static struct CodeHeapStat CodeHeapStatArray[maxHeaps]; + +// static struct StatElement *StatArray = NULL; +static StatElement *StatArray = NULL; +static size_t alloc_granules = 0; +static size_t granule_size = 0; +static bool segment_granules = false; +static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only. +static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only. +static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only. +static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only. +static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transien state. +static unsigned int nBlocks_stub = 0; + +static struct FreeBlk *FreeArray = NULL; +static unsigned int alloc_freeBlocks = 0; + +static struct TopSizeBlk *TopSizeArray = NULL; +static unsigned int alloc_topSizeBlocks = 0; +static unsigned int used_topSizeBlocks = 0; + +static struct SizeDistributionElement *SizeDistributionArray = NULL; + +// nMethod temperature (hotness) indicators. +static int avgTemp = 0; +static int maxTemp = 0; +static int minTemp = 0; + +static unsigned int latest_compilation_id = 0; +static volatile bool initialization_complete = false; + +const char* CodeHeap::get_heapName() { + if (SegmentedCodeCache) return name(); + else return "CodeHeap"; +} + +// returns the index to be used for the heap being processed. +// < nHeaps: entry found. Use this index. +// == nHeaps: entry not found. Use this index for new entry. +// == maxHeaps: entry not found. No space for a new entry. +unsigned int CodeHeap::findHeapIndex(outputStream *out, const char *heapName) { + if (SegmentedCodeCache) { + unsigned int ix = 0; + while ( (ix < nHeaps) && ((CodeHeapStatArray[ix].heapName == NULL) || strcmp(heapName, CodeHeapStatArray[ix].heapName)) ) { + ix++; + } + if (ix < nHeaps) { // existing entry found + return ix; + } + if ((ix == nHeaps) && (nHeaps < maxHeaps)) { // new entry allocated + nHeaps++; + CodeHeapStatArray[ix].heapName = heapName; + return ix; + } + out->print_cr("Too many heap segments, please adapt maxHeaps in heap.cpp"); + return maxHeaps; + } else { + nHeaps = 1; + CodeHeapStatArray[0].heapName = heapName; + return 0; // This is the default index if CodeCache is not segmented. + } +} + +void CodeHeap::get_HeapStatGlobals(outputStream *out, const char *heapName) { + unsigned int ix = (heapName == NULL) ? maxHeaps : findHeapIndex(out, heapName); + // Coverity CID 696443 - also check for index being smaller than maxHeaps. + // This coverity finding is bullshit. Looking at the implementation + // of findHeapIndex(), we learn that nHeaps will never grow beyond maxHeaps, + // making (ix < nHeaps) a safe check. + // But anyway, making coverity happy is more important than correct code. + if ((ix < nHeaps) && (ix < maxHeaps)) { + StatArray = CodeHeapStatArray[ix].StatArray; + alloc_granules = CodeHeapStatArray[ix].alloc_granules; + granule_size = CodeHeapStatArray[ix].granule_size; + segment_granules = CodeHeapStatArray[ix].segment_granules; + nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1; + nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2; + nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive; + nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead; + nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded; + nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub; + FreeArray = CodeHeapStatArray[ix].FreeArray; + alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks; + TopSizeArray = CodeHeapStatArray[ix].TopSizeArray; + alloc_topSizeBlocks = CodeHeapStatArray[ix].alloc_topSizeBlocks; + used_topSizeBlocks = CodeHeapStatArray[ix].used_topSizeBlocks; + SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray; + avgTemp = CodeHeapStatArray[ix].avgTemp; + maxTemp = CodeHeapStatArray[ix].maxTemp; + minTemp = CodeHeapStatArray[ix].minTemp; + } else { + StatArray = NULL; + alloc_granules = 0; + granule_size = 0; + segment_granules = false; + nBlocks_t1 = 0; + nBlocks_t2 = 0; + nBlocks_alive = 0; + nBlocks_dead = 0; + nBlocks_unloaded = 0; + nBlocks_stub = 0; + FreeArray = NULL; + alloc_freeBlocks = 0; + TopSizeArray = NULL; + alloc_topSizeBlocks = 0; + used_topSizeBlocks = 0; + SizeDistributionArray = NULL; + avgTemp = 0; + maxTemp = 0; + minTemp = 0; + } +} + +void CodeHeap::set_HeapStatGlobals(outputStream *out, const char *heapName) { + unsigned int ix = (heapName == NULL) ? maxHeaps : findHeapIndex(out, heapName); + if (ix < nHeaps) { + CodeHeapStatArray[ix].StatArray = StatArray; + CodeHeapStatArray[ix].alloc_granules = alloc_granules; + CodeHeapStatArray[ix].granule_size = granule_size; + CodeHeapStatArray[ix].segment_granules = segment_granules; + CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1; + CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2; + CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive; + CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead; + CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded; + CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub; + CodeHeapStatArray[ix].FreeArray = FreeArray; + CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks; + CodeHeapStatArray[ix].TopSizeArray = TopSizeArray; + CodeHeapStatArray[ix].alloc_topSizeBlocks = alloc_topSizeBlocks; + CodeHeapStatArray[ix].used_topSizeBlocks = used_topSizeBlocks; + CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray; + CodeHeapStatArray[ix].avgTemp = avgTemp; + CodeHeapStatArray[ix].maxTemp = maxTemp; + CodeHeapStatArray[ix].minTemp = minTemp; + } +} + +//---< get a new statistics array >--- +void CodeHeap::prepare_StatArray(outputStream *out, size_t nElem, size_t granularity, const char* heapName) { + if (StatArray == NULL) { + StatArray = new StatElement[nElem]; + //---< reset some counts >--- + alloc_granules = nElem; + granule_size = granularity; + } + + if (StatArray == NULL) { + //---< just do nothing if allocation failed >--- + out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName); + out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity); + alloc_granules = 0; + granule_size = 0; + } else { + //---< initialize statistics array >--- + memset(StatArray, 0, nElem*sizeof(StatElement)); + } +} + +//---< get a new free block array >--- +void CodeHeap::prepare_FreeArray(outputStream *out, unsigned int nElem, const char* heapName) { + if (FreeArray == NULL) { + FreeArray = new FreeBlk[nElem]; + //---< reset some counts >--- + alloc_freeBlocks = nElem; + } + + if (FreeArray == NULL) { + //---< just do nothing if allocation failed >--- + out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName); + alloc_freeBlocks = 0; + } else { + //---< initialize free block array >--- + memset(FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk)); + } +} + +//---< get a new TopSizeArray >--- +void CodeHeap::prepare_TopSizeArray(outputStream *out, unsigned int nElem, const char* heapName) { + if (TopSizeArray == NULL) { + TopSizeArray = new TopSizeBlk[nElem]; + //---< reset some counts >--- + alloc_topSizeBlocks = nElem; + used_topSizeBlocks = 0; + } + + if (TopSizeArray == NULL) { + //---< just do nothing if allocation failed >--- + out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName); + alloc_topSizeBlocks = 0; + } else { + //---< initialize TopSizeArray >--- + memset(TopSizeArray, 0, nElem*sizeof(TopSizeBlk)); + used_topSizeBlocks = 0; + } +} + +//---< get a new SizeDistributionArray >--- +void CodeHeap::prepare_SizeDistArray(outputStream *out, unsigned int nElem, const char* heapName) { + if (SizeDistributionArray == NULL) { + SizeDistributionArray = new SizeDistributionElement[nElem]; + } + + if (SizeDistributionArray == NULL) { + //---< just do nothing if allocation failed >--- + out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName); + } else { + //---< initialize SizeDistArray >--- + memset(SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement)); + // Logarithmic range growth. First range starts at _segment_size. + SizeDistributionArray[_log2_segment_size-1].rangeEnd = 1U; + for (unsigned int i = _log2_segment_size; i < nElem; i++) { + SizeDistributionArray[i].rangeStart = 1U << (i - _log2_segment_size); + SizeDistributionArray[i].rangeEnd = 1U << ((i+1) - _log2_segment_size); + } + } +} + +//---< get a new SizeDistributionArray >--- +void CodeHeap::update_SizeDistArray(outputStream *out, unsigned int len) { + if (SizeDistributionArray != NULL) { + for (unsigned int i = _log2_segment_size-1; i < nSizeDistElements; i++) { + if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) { + SizeDistributionArray[i].lenSum += len; + SizeDistributionArray[i].count++; + break; + } + } + } +} + +void CodeHeap::discard_StatArray(outputStream *out) { + if (StatArray != NULL) { + delete StatArray; + StatArray = NULL; + alloc_granules = 0; + granule_size = 0; + } +} + +void CodeHeap::discard_FreeArray(outputStream *out) { + if (FreeArray != NULL) { + delete[] FreeArray; + FreeArray = NULL; + alloc_freeBlocks = 0; + } +} + +void CodeHeap::discard_TopSizeArray(outputStream *out) { + if (TopSizeArray != NULL) { + delete[] TopSizeArray; + TopSizeArray = NULL; + alloc_topSizeBlocks = 0; + used_topSizeBlocks = 0; + } +} + +void CodeHeap::discard_SizeDistArray(outputStream *out) { + if (SizeDistributionArray != NULL) { + delete[] SizeDistributionArray; + SizeDistributionArray = NULL; + } +} + +void CodeHeap::discard(outputStream *out) { + if (!initialization_complete) return; + + if (SegmentedCodeCache) { + for (unsigned int ix = 0; ix < nHeaps; ix++) { + get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName); + discard_StatArray(out); + discard_FreeArray(out); + discard_TopSizeArray(out); + discard_SizeDistArray(out); + set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName); + CodeHeapStatArray[ix].heapName = NULL; + } + } else { + get_HeapStatGlobals(out, CodeHeapStatArray[0].heapName); + discard_StatArray(out); + discard_FreeArray(out); + discard_TopSizeArray(out); + discard_SizeDistArray(out); + set_HeapStatGlobals(out, CodeHeapStatArray[0].heapName); + CodeHeapStatArray[0].heapName = NULL; + } +} + +void CodeHeap::aggregate(outputStream *out, const char* granularity_request) { + unsigned int nBlocks_free = 0; + unsigned int nBlocks_used = 0; + unsigned int nBlocks_zomb = 0; + unsigned int nBlocks_disconn = 0; + unsigned int nBlocks_notentr = 0; + + //---< max & min of TopSizeArray >--- + // it is sufficient to have these sizes as 32bit unsigned ints. + // The CodeHeap is limited in size to 4GB. Furthermore, the sizes + // are stored in _segment_size units, scaling them down by a factor of 64 (at least). + unsigned int currMax = 0; + unsigned int currMin = 0; + unsigned int currMin_ix = 0; + unsigned long total_iterations = 0; + + bool done = false; + const int min_granules = 256; + const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M + // results in StatArray size of 20M (= max_granules * 40 Bytes per element) + // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit. + const char *heapName = get_heapName(); + + if (!initialization_complete) { + memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray)); + initialization_complete = true; + + printBox(out, '=', "C O D E H E A P A N A L Y S I S (general remarks)", NULL); + out->print_cr(" The code heap analysis function provides deep insights into\n" + " the inner workings and the internal state of the Java VM's\n" + " code cache - the place where all the JVM generated machine\n" + " code is stored.\n" + " \n" + " This function is designed and provided for support engineers\n" + " to help them understand and solve issues in customer systems.\n" + " It is not intended for use and interpretation by other persons.\n" + " \n"); + } + get_HeapStatGlobals(out, heapName); + + + // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock, + // all heap information is "constant" and can be safely extracted/calculated before we + // enter the while() loop. Actually, the loop will only be iterated once. + char* low_bound = low_boundary(); + size_t size = capacity(); + size_t res_size = max_capacity(); + + // Calculate granularity of analysis (and output). + // The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize. + // The CodeHeap can become fairly large, in particular in productive real-life systems. + // + // It is often neither feasible nor desirable to aggregate the data with the highest possible + // level of detail, i.e. inspecting and printing each segment on its own. + // + // The granularity parameter allows to specify the level of detail available in the analysis. + // It must be a positive multiple of the segment size and should be selected such that enough + // detail is provided while, at the same time, the printed output does not explode. + // + // By manipulating the granularity value, we enforce that at least min_granules units + // of analysis are available. We also enforce an upper limit of max_granules units to + // keep the amount of allocated storage in check. + // + // Finally, we adjust the granularity such that each granule covers at most 64k-1 segments. + // This is necessary to prevent an unsigned short overflow while accumulating space information. + // + size_t granularity = strtol(granularity_request, NULL, 0); + if (granularity > size) granularity = size; + if (size/granularity < min_granules) granularity = size/min_granules; // at least min_granules granules + granularity = granularity & (~(_segment_size - 1)); // must be multiple of _segment_size + if (granularity < _segment_size) granularity = _segment_size; // must be at least _segment_size + if (size/granularity > max_granules) granularity = size/max_granules; // at most max_granules granules + granularity = granularity & (~(_segment_size - 1)); // must be multiple of _segment_size + if (granularity>>_log2_segment_size >= (1L<--- + prepare_StatArray(out, granules, granularity, heapName); + if (StatArray == NULL) { + set_HeapStatGlobals(out, heapName); + return; + } + prepare_TopSizeArray(out, maxTopSizeBlocks, heapName); + prepare_SizeDistArray(out, nSizeDistElements, heapName); + + latest_compilation_id = CompileBroker::get_compilation_id(); + unsigned int highest_compilation_id = 0; + size_t usedSpace = 0; + size_t t1Space = 0; + size_t t2Space = 0; + size_t aliveSpace = 0; + size_t disconnSpace = 0; + size_t notentrSpace = 0; + size_t deadSpace = 0; + size_t unloadedSpace = 0; + size_t stubSpace = 0; + size_t freeSpace = 0; + size_t maxFreeSize = 0; + HeapBlock* maxFreeBlock = NULL; + bool insane = false; + + int64_t hotnessAccumulator = 0; + unsigned int n_methods = 0; + avgTemp = 0; + minTemp = (int)(res_size > M ? (res_size/M)*2 : 1); + maxTemp = -minTemp; + + for (HeapBlock *h = first_block(); h != NULL && !insane; h = next_block(h)) { + unsigned int hb_len = (unsigned int)h->length(); // despite being size_t, length can never overflow an unsigned int. + size_t hb_bytelen = ((size_t)hb_len)<<_log2_segment_size; + unsigned int ix_beg = (unsigned int)(((char*)h-low_bound)/granule_size); + unsigned int ix_end = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size); + unsigned int compile_id = 0; + CompLevel comp_lvl = CompLevel_none; + compType cType = noComp; + blobType cbType = noType; + + //---< some sanity checks >--- + // Do not assert here, just check, print error message and return. + // This is a diagnostic function. It is not supposed to tear down the VM. + if ((char*)h < low_bound ) { insane = true; out->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound); } + if (ix_end >= granules ) { insane = true; out->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules); } + if (size != capacity()) { insane = true; out->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, capacity()/(size_t)K); } + if (ix_beg > ix_end ) { insane = true; out->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg); } + if (insane) continue; + + if (h->free()) { + nBlocks_free++; + freeSpace += hb_bytelen; + if (hb_bytelen > maxFreeSize) { + maxFreeSize = hb_bytelen; + maxFreeBlock = h; + } + } else { + update_SizeDistArray(out, hb_len); + nBlocks_used++; + usedSpace += hb_bytelen; + CodeBlob *cb = (CodeBlob*) find_start(h); + if (cb != NULL) { + cbType = get_cbType(cb); + if (cb->is_nmethod()) { + compile_id = ((nmethod*)cb)->compile_id(); + comp_lvl = (CompLevel)((nmethod*)cb)->comp_level(); + if (((nmethod*)cb)->is_compiled_by_c1()) cType = c1; + if (((nmethod*)cb)->is_compiled_by_c2()) cType = c2; + if (((nmethod*)cb)->is_compiled_by_jvmci()) cType = jvmci; + switch (cbType) { + case nMethod_inuse: { // only for executable methods!!! + // space for these cbs is accounted for later. + int temperature = ((nmethod*)cb)->hotness_counter(); + hotnessAccumulator += temperature; + n_methods++; + maxTemp = (temperature > maxTemp) ? temperature : maxTemp; + minTemp = (temperature < minTemp) ? temperature : minTemp; + break; + } + case nMethod_notused: + nBlocks_alive++; + nBlocks_disconn++; + aliveSpace += hb_bytelen; + disconnSpace += hb_bytelen; + break; + case nMethod_notentrant: // equivalent to nMethod_alive + nBlocks_alive++; + nBlocks_notentr++; + aliveSpace += hb_bytelen; + notentrSpace += hb_bytelen; + break; + case nMethod_unloaded: + nBlocks_unloaded++; + unloadedSpace += hb_bytelen; + break; + case nMethod_dead: + nBlocks_dead++; + deadSpace += hb_bytelen; + break; + default: + break; + } + } + + //------------------------------------------ + //---< register block in TopSizeArray >--- + //------------------------------------------ + if (alloc_topSizeBlocks > 0) { + if (used_topSizeBlocks == 0) { + TopSizeArray[0].start = h; + TopSizeArray[0].len = hb_len; + TopSizeArray[0].index = tsbStopper; + TopSizeArray[0].compiler = cType; + TopSizeArray[0].level = comp_lvl; + TopSizeArray[0].type = cbType; + currMax = hb_len; + currMin = hb_len; + currMin_ix = 0; +// out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d", 0, 0, hb_len, TopSizeArray[0].index, TopSizeArray[0].index >= 0 ? TopSizeArray[TopSizeArray[0].index].len : -1); + used_topSizeBlocks++; + // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats): + } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) { + //---< all blocks in list are larger, but there is room left in array >--- + TopSizeArray[currMin_ix].index = used_topSizeBlocks; + TopSizeArray[used_topSizeBlocks].start = h; + TopSizeArray[used_topSizeBlocks].len = hb_len; + TopSizeArray[used_topSizeBlocks].index = tsbStopper; + TopSizeArray[used_topSizeBlocks].compiler = cType; + TopSizeArray[used_topSizeBlocks].level = comp_lvl; + TopSizeArray[used_topSizeBlocks].type = cbType; + currMin = hb_len; + currMin_ix = used_topSizeBlocks; +// out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d (app MIN)", used_topSizeBlocks, used_topSizeBlocks, hb_len, TopSizeArray[used_topSizeBlocks].index, TopSizeArray[used_topSizeBlocks].index >= 0 ? TopSizeArray[TopSizeArray[used_topSizeBlocks].index].len : -1); + used_topSizeBlocks++; + } else { + // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats): + // We don't need to search the list if we know beforehand that the current block size is + // smaller than the currently recorded minimum and there is no free entry left in the list. + if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) { + if (currMax < hb_len) { + currMax = hb_len; + } + unsigned int i; + unsigned int prev_i = tsbStopper; + unsigned int limit_i = 0; + for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) { + if (limit_i++ >= alloc_topSizeBlocks) { insane = true; break; } // emergency exit + if ( i >= used_topSizeBlocks) { insane = true; break; } // emergency exit + total_iterations++; + if (TopSizeArray[i].len < hb_len) { + //---< We want to insert here, element is smaller than the current one >--- + if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert + // old entry gets moved to the next free element of the array. + // That's necessary to keep the entry for the largest block at index 0. + // This move might cause the current minimum to be moved to another place + if (i == currMin_ix) { + assert(TopSizeArray[i].len == currMin, "sort error"); + currMin_ix = used_topSizeBlocks; + } + memcpy(&TopSizeArray[used_topSizeBlocks], &TopSizeArray[i], sizeof(TopSizeBlk)); + TopSizeArray[i].start = h; + TopSizeArray[i].len = hb_len; + TopSizeArray[i].index = used_topSizeBlocks; + TopSizeArray[i].compiler = cType; + TopSizeArray[i].level = comp_lvl; + TopSizeArray[i].type = cbType; +// out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d (new APP)", used_topSizeBlocks, i, hb_len, TopSizeArray[i].index, TopSizeArray[i].index >= 0 ? TopSizeArray[TopSizeArray[i].index].len : -1); + used_topSizeBlocks++; + } else { // no room for new entries, current block replaces entry for smallest block + //---< Find last entry (entry for smallest remembered block) >--- + unsigned int j = i; + unsigned int prev_j = tsbStopper; + unsigned int limit_j = 0; + while (TopSizeArray[j].index != tsbStopper) { + if (limit_j++ >= alloc_topSizeBlocks) { insane = true; break; } // emergency exit + if ( j >= used_topSizeBlocks) { insane = true; break; } // emergency exit + total_iterations++; + prev_j = j; + j = TopSizeArray[j].index; + } + if (!insane) { + if (prev_j == tsbStopper) { + //---< Above while loop did not iterate, we already are the min entry >--- + //---< We have to just replace the smallest entry >--- + currMin = hb_len; + currMin_ix = j; + TopSizeArray[j].start = h; + TopSizeArray[j].len = hb_len; + TopSizeArray[j].index = tsbStopper; // already set!! + TopSizeArray[j].compiler = cType; + TopSizeArray[j].level = comp_lvl; + TopSizeArray[j].type = cbType; +// out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d (new MIN)", used_topSizeBlocks, j, hb_len, TopSizeArray[j].index, TopSizeArray[j].index >= 0 ? TopSizeArray[TopSizeArray[j].index].len : -1); + } else { + //---< second-smallest entry is now smallest >--- + TopSizeArray[prev_j].index = tsbStopper; + currMin = TopSizeArray[prev_j].len; + currMin_ix = prev_j; + //---< smallest entry gets overwritten >--- + memcpy(&TopSizeArray[j], &TopSizeArray[i], sizeof(TopSizeBlk)); + TopSizeArray[i].start = h; + TopSizeArray[i].len = hb_len; + TopSizeArray[i].index = j; + TopSizeArray[i].compiler = cType; + TopSizeArray[i].level = comp_lvl; + TopSizeArray[i].type = cbType; +// out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d (new INS)", used_topSizeBlocks, hb_len, i, TopSizeArray[i].index, TopSizeArray[i].index >= 0 ? TopSizeArray[TopSizeArray[i].index].len : -1); + } + } // insane + } + break; + } + prev_i = i; + } + if (insane) { + // Note: regular analysis could probably continue by resetting "insane" flag. + out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted."); + discard_TopSizeArray(out); + } + } + } + } + //---------------------------------------------- + //---< END register block in TopSizeArray >--- + //---------------------------------------------- + } else { + nBlocks_zomb++; + } + + if (ix_beg == ix_end) { + StatArray[ix_beg].type = cbType; + switch (cbType) { + case nMethod_inuse: + if (highest_compilation_id < compile_id) highest_compilation_id = compile_id; + if (comp_lvl < CompLevel_full_optimization) { + nBlocks_t1++; + t1Space += hb_bytelen; + StatArray[ix_beg].t1_count++; + StatArray[ix_beg].t1_space += (unsigned short)hb_len; + StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age; + } else { + nBlocks_t2++; + t2Space += hb_bytelen; + StatArray[ix_beg].t2_count++; + StatArray[ix_beg].t2_space += (unsigned short)hb_len; + StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; + } + StatArray[ix_beg].level = comp_lvl; + StatArray[ix_beg].compiler = cType; + break; + case nMethod_alive: + StatArray[ix_beg].tx_count++; + StatArray[ix_beg].tx_space += (unsigned short)hb_len; + StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; + StatArray[ix_beg].level = comp_lvl; + StatArray[ix_beg].compiler = cType; + break; + case nMethod_dead: + case nMethod_unloaded: + StatArray[ix_beg].dead_count++; + StatArray[ix_beg].dead_space += (unsigned short)hb_len; + break; + default: + // must be a stub, if it's not a dead or alive nMethod + nBlocks_stub++; + stubSpace += hb_bytelen; + StatArray[ix_beg].stub_count++; + StatArray[ix_beg].stub_space += (unsigned short)hb_len; + break; + } + } else { + unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size)); + unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size); + beg_space = beg_space>>_log2_segment_size; // store in units of _segment_size + end_space = end_space>>_log2_segment_size; // store in units of _segment_size + StatArray[ix_beg].type = cbType; + StatArray[ix_end].type = cbType; + switch (cbType) { + case nMethod_inuse: + if (highest_compilation_id < compile_id) highest_compilation_id = compile_id; + if (comp_lvl < CompLevel_full_optimization) { + nBlocks_t1++; + t1Space += hb_bytelen; + StatArray[ix_beg].t1_count++; + StatArray[ix_beg].t1_space += (unsigned short)beg_space; + StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age; + + StatArray[ix_end].t1_count++; + StatArray[ix_end].t1_space += (unsigned short)end_space; + StatArray[ix_end].t1_age = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age; + } else { + nBlocks_t2++; + t2Space += hb_bytelen; + StatArray[ix_beg].t2_count++; + StatArray[ix_beg].t2_space += (unsigned short)beg_space; + StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; + + StatArray[ix_end].t2_count++; + StatArray[ix_end].t2_space += (unsigned short)end_space; + StatArray[ix_end].t2_age = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age; + } + StatArray[ix_beg].level = comp_lvl; + StatArray[ix_beg].compiler = cType; + StatArray[ix_end].level = comp_lvl; + StatArray[ix_end].compiler = cType; + break; + case nMethod_alive: + StatArray[ix_beg].tx_count++; + StatArray[ix_beg].tx_space += (unsigned short)beg_space; + StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; + + StatArray[ix_end].tx_count++; + StatArray[ix_end].tx_space += (unsigned short)end_space; + StatArray[ix_end].tx_age = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age; + + StatArray[ix_beg].level = comp_lvl; + StatArray[ix_beg].compiler = cType; + StatArray[ix_end].level = comp_lvl; + StatArray[ix_end].compiler = cType; + break; + case nMethod_dead: + case nMethod_unloaded: + StatArray[ix_beg].dead_count++; + StatArray[ix_beg].dead_space += (unsigned short)beg_space; + StatArray[ix_end].dead_count++; + StatArray[ix_end].dead_space += (unsigned short)end_space; + break; + default: + // must be a stub, if it's not a dead or alive nMethod + nBlocks_stub++; + stubSpace += hb_bytelen; + StatArray[ix_beg].stub_count++; + StatArray[ix_beg].stub_space += (unsigned short)beg_space; + StatArray[ix_end].stub_count++; + StatArray[ix_end].stub_space += (unsigned short)end_space; + break; + } + for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) { + StatArray[ix].type = cbType; + switch (cbType) { + case nMethod_inuse: + if (comp_lvl < CompLevel_full_optimization) { + StatArray[ix].t1_count++; + StatArray[ix].t1_space += (unsigned short)(granule_size>>_log2_segment_size); + StatArray[ix].t1_age = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age; + } else { + StatArray[ix].t2_count++; + StatArray[ix].t2_space += (unsigned short)(granule_size>>_log2_segment_size); + StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age; + } + StatArray[ix].level = comp_lvl; + StatArray[ix].compiler = cType; + break; + case nMethod_alive: + StatArray[ix].tx_count++; + StatArray[ix].tx_space += (unsigned short)(granule_size>>_log2_segment_size); + StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age; + StatArray[ix].level = comp_lvl; + StatArray[ix].compiler = cType; + break; + case nMethod_dead: + case nMethod_unloaded: + StatArray[ix].dead_count++; + StatArray[ix].dead_space += (unsigned short)(granule_size>>_log2_segment_size); + break; + default: + // must be a stub, if it's not a dead or alive nMethod + StatArray[ix].stub_count++; + StatArray[ix].stub_space += (unsigned short)(granule_size>>_log2_segment_size); + break; + } + } + } + } + } + if (n_methods > 0) { + avgTemp = hotnessAccumulator/n_methods; + } else { + avgTemp = 0; + } + done = true; + + if (!insane) { + ttyLocker ttyl; // keep this statistics block together + printBox(out, '-', "Global CodeHeap statistics for segment ", heapName); + out->print_cr("freeSpace = " SIZE_FORMAT_W(8) "k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K, nBlocks_free, (100.0*freeSpace)/size, (100.0*freeSpace)/res_size); + out->print_cr("usedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K, nBlocks_used, (100.0*usedSpace)/size, (100.0*usedSpace)/res_size); + out->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size); + out->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size); + out->print_cr(" Alive Space = " SIZE_FORMAT_W(8) "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size); + out->print_cr(" disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size); + out->print_cr(" not entrant = " SIZE_FORMAT_W(8) "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size); + out->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size); + out->print_cr(" deadSpace = " SIZE_FORMAT_W(8) "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size); + out->print_cr(" stubSpace = " SIZE_FORMAT_W(8) "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size); + out->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb); + out->print_cr("latest allocated compilation id = %d", latest_compilation_id); + out->print_cr("highest observed compilation id = %d", highest_compilation_id); + out->print_cr("Building TopSizeList iterations = %ld", total_iterations); + out->cr(); + + int reset_val = NMethodSweeper::hotness_counter_reset_val(); + double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size; + printBox(out, '-', "Method hotness information at time of this analysis", NULL); + out->print_cr("Highest possible method temperature: %12d", reset_val); + out->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity); + out->print_cr("min. hotness = %6d", minTemp); + out->print_cr("avg. hotness = %6d", avgTemp); + out->print_cr("max. hotness = %6d", maxTemp); + out->cr(); + + out->print("Verifying collected data..."); + for (unsigned int ix = 0; ix < granules; ix++) { + if (StatArray[ix].t1_count > granule_size>>_log2_segment_size) out->print_cr("t1_count[%d] = %d", ix, StatArray[ix].t1_count); + if (StatArray[ix].t2_count > granule_size>>_log2_segment_size) out->print_cr("t2_count[%d] = %d", ix, StatArray[ix].t2_count); + if (StatArray[ix].stub_count > granule_size>>_log2_segment_size) out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count); + if (StatArray[ix].dead_count > granule_size>>_log2_segment_size) out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count); + if (StatArray[ix].t1_space > granule_size>>_log2_segment_size) out->print_cr("t1_space[%d] = %d", ix, StatArray[ix].t1_space); + if (StatArray[ix].t2_space > granule_size>>_log2_segment_size) out->print_cr("t2_space[%d] = %d", ix, StatArray[ix].t2_space); + if (StatArray[ix].stub_space > granule_size>>_log2_segment_size) out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space); + if (StatArray[ix].dead_space > granule_size>>_log2_segment_size) out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space); + // this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch. + if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_size>>_log2_segment_size) out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].stub_count); + if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_size>>_log2_segment_size) out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].stub_space); + } + + if (used_topSizeBlocks > 0) { + unsigned int j = 0; + if (TopSizeArray[0].len != currMax) out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len); + for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) { + if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) { + out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len); + } + } + if (j >= alloc_topSizeBlocks) { + out->print_cr("Possible loop in TopSizeArray chaining!\n allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks); + for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { + out->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len); + } + } + } + out->print_cr("...done"); + out->cr(); + out->cr(); + } else { + // insane heap state detected. Analysis data incomplete. Just throw it away. + discard_StatArray(out); + discard_TopSizeArray(out); + } + } + + + done = false; + while (!done && (nBlocks_free > 0)) { + + printBox(out, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment ", heapName); + out->print_cr("The aggregate step collects information about all free blocks in CodeHeap.\n" + "Subsequent print functions create their output based on this snapshot.\n"); + out->print_cr("Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free); + out->print_cr("Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K); + out->cr(); + + //---------------------------------------- + //-- Prepare the FreeArray of FreeBlks -- + //---------------------------------------- + + //---< discard old array if size does not match >--- + if (nBlocks_free != alloc_freeBlocks) { + discard_FreeArray(out); + } + + prepare_FreeArray(out, nBlocks_free, heapName); + if (FreeArray == NULL) { + done = true; + continue; + } + + //---------------------------------------- + //-- Collect all FreeBlks in FreeArray -- + //---------------------------------------- + + unsigned int ix = 0; + FreeBlock *cur = _freelist; + + while (cur != NULL) { + if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated + FreeArray[ix].start = cur; + FreeArray[ix].len = (unsigned int)(cur->length()<<_log2_segment_size); + FreeArray[ix].index = ix; + } + cur = cur->link(); + ix++; + } + if (ix != alloc_freeBlocks) { + out->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix); + out->print_cr("I will update the counter and retry data collection"); + out->cr(); + nBlocks_free = ix; + continue; + } + done = true; + } + + if (!done || (nBlocks_free == 0)) { + if (nBlocks_free == 0) { + printBox(out, '-', "no free blocks found in", heapName); + } else if (!done) { + out->print_cr("Free block count mismatch could not be resolved."); + out->print_cr("Try to run \"aggregate\" function to update counters"); + } + + //---< discard old array and update global values >--- + discard_FreeArray(out); + set_HeapStatGlobals(out, heapName); + return; + } + + //---< calculate and fill remaining fields >--- + for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { + size_t lenSum = 0; + // Make sure FreeArray is not NULL [coverity]. + // Program logic makes this impossible, but we need Coverity be happy. + guarantee(FreeArray != NULL, "CodeHeap::aggregate - FreeArray must not be NULL"); + FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len)); + for (HeapBlock *h = next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = next_block(h)) { + CodeBlob *cb = (CodeBlob*) find_start(h); + if ((cb != NULL) && !cb->is_nmethod()) { + FreeArray[ix].stubs_in_gap = true; + } + FreeArray[ix].n_gapBlocks++; + lenSum += h->length()<<_log2_segment_size; + if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) { + out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start); + } + } + if (lenSum != FreeArray[ix].gap) { + out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum); + } + } + set_HeapStatGlobals(out, heapName); + + printBox(out, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment ", heapName); +} + + +void CodeHeap::print_usedSpace(outputStream *out) { + if (!initialization_complete) return; + + const char *heapName = get_heapName(); + get_HeapStatGlobals(out, heapName); + + if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) return; + + const char *frameLine; + const char *textLine; + + STRINGSTREAM_DECL(ast, out) + + { + ttyLocker ttyl; // keep the header and legend block together + printBox(out, '=', "U S E D S P A C E S T A T I S T I C S for ", heapName); + ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n" + " and other identifying information with the block size data.\n" + "\n" + " Method names are dynamically retrieved from the code cache at print time.\n" + " Due to the living nature of the code cache and because the CodeCache_lock\n" + " is not continuously held, the displayed name might be wrong or no name\n" + " might be found at all. The likelihood for that to happen increases\n" + " over time passed between analysis and print step.\n", used_topSizeBlocks); + STRINGSTREAM_FLUSH("\n") + } + + //---------------------------- + //-- Print Top Used Blocks -- + //---------------------------- + { + ttyLocker ttyl; // keep this statistics block together + char* low_bound = low_boundary(); + + printBox(out, '-', "Largest Used Blocks in ", heapName); + print_blobType_legend(ast); + STRINGSTREAM_FLUSH("") + + ast->fill_to(51); + ast->print("%4s", "blob"); + ast->fill_to(56); + ast->print("%9s", "compiler"); + ast->fill_to(66); + ast->print_cr("%6s", "method"); + ast->print_cr("%18s %13s %17s %4s %9s %5s %s", "Addr(module) ", "offset", "size", "type", " type lvl", " temp", "Name"); + STRINGSTREAM_FLUSH("") + + //---< print Top Ten Used Blocks >--- + if (used_topSizeBlocks > 0) { + unsigned int printed_topSizeBlocks = 0; + for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) { + printed_topSizeBlocks++; + CodeBlob* this_blob = (CodeBlob *) find_start(TopSizeArray[i].start); + nmethod* nm = NULL; + const char* blob_name = "unnamed blob"; + if (this_blob != NULL) { + blob_name = this_blob->name(); + nm = this_blob->as_nmethod_or_null(); + //---< blob address >--- + ast->print("%p", this_blob); + ast->fill_to(19); + //---< blob offset from CodeHeap begin >--- + ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound)); + ast->fill_to(33); + } else { + //---< block address >--- + ast->print("%p", TopSizeArray[i].start); + ast->fill_to(19); + //---< block offset from CodeHeap begin >--- + ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound)); + ast->fill_to(33); + } + + + //---< print size, name, and signature (for nMethods) >--- + if ((nm != NULL) && (nm->method() != NULL)) { + ResourceMark rm; + //---< nMethod size in hex >--- + unsigned int total_size = nm->total_size(); + ast->print(PTR32_FORMAT, total_size); + ast->print("(%4ldK)", total_size/K); + ast->fill_to(51); + ast->print(" %c", blobTypeChar[TopSizeArray[i].type]); + //---< compiler information >--- + ast->fill_to(56); + ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level); + //---< method temperature >--- + ast->fill_to(67); + ast->print("%5d", nm->hotness_counter()); + //---< name and signature >--- + ast->fill_to(67+6); + if (nm->is_in_use()) {blob_name = nm->method()->name_and_sig_as_C_string(); } + if (nm->is_not_entrant()) {blob_name = nm->method()->name_and_sig_as_C_string(); } + if (nm->is_zombie()) {ast->print("%14s", " zombie method"); } + ast->print("%s", blob_name); + } else { + //---< block size in hex >--- + ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<_log2_segment_size)); + ast->print("(%4ldK)", (TopSizeArray[i].len<<_log2_segment_size)/K); + //---< no compiler information >--- + ast->fill_to(56); + //---< name and signature >--- + ast->fill_to(67+6); + ast->print("%s", blob_name); + } + STRINGSTREAM_FLUSH("\n") + } + if (used_topSizeBlocks != printed_topSizeBlocks) { + ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks); + STRINGSTREAM_FLUSH("") + for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { + ast->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len); + STRINGSTREAM_FLUSH("") + } + } + out->cr(); out->cr(); + } + } + + //----------------------------- + //-- Print Usage Histogram -- + //----------------------------- + + if (SizeDistributionArray != NULL) { + unsigned long total_count = 0; + unsigned long total_size = 0; + const unsigned long pctFactor = 200; + + for (unsigned int i = 0; i < nSizeDistElements; i++) { + total_count += SizeDistributionArray[i].count; + total_size += SizeDistributionArray[i].lenSum; + } + + if ((total_count > 0) && (total_size > 0)) { + printBox(out, '-', "Block count histogram for ", heapName); + ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n" + " of all blocks) have a size in the given range.\n" + " %ld characters are printed per percentage point.\n", pctFactor/100); + ast->print_cr("total size of all blocks: %7ldM", (total_size<<_log2_segment_size)/M); + ast->print_cr("total number of all blocks: %7ld\n", total_count); + ast->print_cr("[Size Range)------avg.-size-+----count-+"); + STRINGSTREAM_FLUSH("") + for (unsigned int i = 0; i < nSizeDistElements; i++) { + if (SizeDistributionArray[i].rangeStart<<_log2_segment_size < K) { + ast->print("[%5d ..%5d ): " + ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size) + ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size) + ); + } else if (SizeDistributionArray[i].rangeStart<<_log2_segment_size < M) { + ast->print("[%5ldK..%5ldK): " + ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)/K + ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)/K + ); + } else { + ast->print("[%5ldM..%5ldM): " + ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)/M + ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)/M + ); + } + ast->print(" %8d | %8d |", + SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<_log2_segment_size)/SizeDistributionArray[i].count : 0, + SizeDistributionArray[i].count); + + unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count; + for (unsigned int j = 1; j <= percent; j++) { + ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); + } + STRINGSTREAM_FLUSH("\n") + } + out->print_cr("----------------------------+----------+\n\n"); + + printBox(out, '-', "Contribution per size range to total size for ", heapName); + ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n" + " occupied space) is used by the blocks in the given size range.\n" + " %ld characters are printed per percentage point.\n", pctFactor/100); + ast->print_cr("total size of all blocks: %7ldM", (total_size<<_log2_segment_size)/M); + ast->print_cr("total number of all blocks: %7ld\n", total_count); + ast->print_cr("[Size Range)------avg.-size-+----count-+"); + STRINGSTREAM_FLUSH("") + for (unsigned int i = 0; i < nSizeDistElements; i++) { + if (SizeDistributionArray[i].rangeStart<<_log2_segment_size < K) { + ast->print("[%5d ..%5d ): " + ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size) + ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size) + ); + } else if (SizeDistributionArray[i].rangeStart<<_log2_segment_size < M) { + ast->print("[%5ldK..%5ldK): " + ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)/K + ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)/K + ); + } else { + ast->print("[%5ldM..%5ldM): " + ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)/M + ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)/M + ); + } + ast->print(" %8d | %8d |", + SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<_log2_segment_size)/SizeDistributionArray[i].count : 0, + SizeDistributionArray[i].count); + + unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size; + for (unsigned int j = 1; j <= percent; j++) { + ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); + } + STRINGSTREAM_FLUSH("\n") + } + out->print_cr("----------------------------+----------+\n\n"); + } + } +} + + +void CodeHeap::print_freeSpace(outputStream *out) { + if (!initialization_complete) return; + + const char *heapName = get_heapName(); + get_HeapStatGlobals(out, heapName); + + if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) return; + + const char *frameLine; + const char *textLine; + + STRINGSTREAM_DECL(ast, out) + + { + ttyLocker ttyl; // keep the header and legend block together + printBox(out, '=', "F R E E S P A C E S T A T I S T I C S for ", heapName); + ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n" + " Those gaps are of interest if there is a chance that they become\n" + " unoccupied, e.g. by class unloading. Then, the two adjacent free\n" + " blocks, together with the now unoccupied space, form a new, large\n" + " free block."); + ast->cr(); + STRINGSTREAM_FLUSH("") + } + + { + ttyLocker ttyl; // keep this statistics block together + printBox(out, '-', "List of all Free Blocks in ", heapName); + + unsigned int ix = 0; + for (ix = 0; ix < alloc_freeBlocks-1; ix++) { + ast->print("%p: Len[%4d] = " HEX32_FORMAT ",", FreeArray[ix].start, ix, FreeArray[ix].len); + ast->fill_to(38); + ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap); + ast->fill_to(71); + ast->print("block count: %6d", FreeArray[ix].n_gapBlocks); + if (FreeArray[ix].stubs_in_gap) { + ast->print(" !! permanent gap, contains stubs and/or blobs !!"); + } + ast->cr(); + STRINGSTREAM_FLUSH("") + } + ast->print_cr("%p: Len[%4d] = " HEX32_FORMAT, FreeArray[ix].start, ix, FreeArray[ix].len); + STRINGSTREAM_FLUSH("") + out->cr(); out->cr(); + } + + + //----------------------------------------- + //-- Find and Print Top Ten Free Blocks -- + //----------------------------------------- + + //---< find Top Ten Free Blocks >--- + const unsigned int nTop = 10; + unsigned int currMax10 = 0; + struct FreeBlk *FreeTopTen[nTop]; + memset(FreeTopTen, 0, sizeof(FreeTopTen)); + + for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) { + if (FreeArray[ix].len > currMax10) { // larger than the ten largest found so far + unsigned int currSize = FreeArray[ix].len; + + unsigned int iy; + for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) { + if (FreeTopTen[iy]->len < currSize) { + for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block + FreeTopTen[iz] = FreeTopTen[iz-1]; + } + FreeTopTen[iy] = &FreeArray[ix]; // insert new free block + if (FreeTopTen[nTop-1] != NULL) {currMax10 = FreeTopTen[nTop-1]->len; /*out->print_cr("new currMax10 = 0x%8.8d", currMax10);*/ } + break; // done with this, check next free block + } + } + if (iy >= nTop) { + out->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d", + currSize, currMax10); + continue; + } + if (FreeTopTen[iy] == NULL) { + FreeTopTen[iy] = &FreeArray[ix]; + if (iy == (nTop-1)) {currMax10 = currSize; /*out->print_cr("new currMax10 = 0x%8.8d", currMax10);*/ } + } + } + } + + { + ttyLocker ttyl; // keep this statistics block together + printBox(out, '-', "Top Ten Free Blocks in ", heapName); + + //---< print Top Ten Free Blocks >--- + for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) { + ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len); + ast->fill_to(39); + if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) { + ast->print("last free block in list."); + } else { + ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap); + ast->fill_to(63); + ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks); + } + ast->cr(); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); + } + + + //-------------------------------------------------------- + //-- Find and Print Top Ten Free-Occupied-Free Triples -- + //-------------------------------------------------------- + + //---< find and print Top Ten Triples (Free-Occupied-Free) >--- + currMax10 = 0; + struct FreeBlk *FreeTopTenTriple[nTop]; + memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple)); + + for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { + // If there are stubs in the gap, this gap will never become completely free. + // The triple will thus never merge to one free block. + unsigned int lenTriple = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len); + FreeArray[ix].len = lenTriple; + if (lenTriple > currMax10) { // larger than the ten largest found so far + + unsigned int iy; + for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) { + if (FreeTopTenTriple[iy]->len < lenTriple) { + for (unsigned int iz = nTop-1; iz > iy; iz--) { + FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1]; + } + FreeTopTenTriple[iy] = &FreeArray[ix]; + if (FreeTopTenTriple[nTop-1] != NULL) {currMax10 = FreeTopTenTriple[nTop-1]->len; } + break; + } + } + if (iy == nTop) { + out->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d", + lenTriple, currMax10); + continue; + } + if (FreeTopTenTriple[iy] == NULL) { + FreeTopTenTriple[iy] = &FreeArray[ix]; + if (iy == (nTop-1)) {currMax10 = lenTriple; } + } + } + } + + { + ttyLocker ttyl; // keep this statistics block together + printBox(out, '-', "Top Ten Free-Occupied-Free Triples in ", heapName); + ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n" + " might get created by code cache sweeping.\n" + " If all the occupied blocks can be swept, the three free blocks will be\n" + " merged into one (much larger) free block. That would reduce free space\n" + " fragmentation.\n"); + STRINGSTREAM_FLUSH("") + + //---< print Top Ten Free-Occupied-Free Triples >--- + for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) { + ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len); + ast->fill_to(39); + ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap); + ast->fill_to(63); + ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks); + STRINGSTREAM_FLUSH("\n") + } + out->cr(); out->cr(); + } +} + + +void CodeHeap::print_count(outputStream *out) { + if (!initialization_complete) return; + + const char *heapName = get_heapName(); + get_HeapStatGlobals(out, heapName); + + if ((StatArray == NULL) || (alloc_granules == 0)) return; + + unsigned int granules_per_line = 32; + char* low_bound = low_boundary(); + const char *frameLine; + const char *textLine; + + STRINGSTREAM_DECL(ast, out) + + { + ttyLocker ttyl; // keep the header and legend block together + printBox(out, '=', "B L O C K C O U N T S for ", heapName); + ast->print_cr(" Each granule contains an individual number of heap blocks. Large blocks\n" + " may span multiple granules and are counted for each granule they touch.\n"); + if (segment_granules) { + ast->print_cr(" You have selected granule size to be as small as segment size.\n" + " As a result, each granule contains exactly one block (or a part of one block)\n" + " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" + " Occupied granules show their BlobType character, see legend.\n"); + print_blobType_legend(ast); + } + STRINGSTREAM_FLUSH("") + } + + { + ttyLocker ttyl; // keep this statistics block together + if (segment_granules) { + printBox(out, '-', "Total (all types) count for granule size == segment size", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + print_blobType_single(ast, StatArray[ix].type); + } + } else { + printBox(out, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count + + StatArray[ix].stub_count + StatArray[ix].dead_count; + print_count_single(ast, count); + } + } + STRINGSTREAM_FLUSH("|") + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_t1 > 0) { + printBox(out, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].t1_count > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_count_single(ast, StatArray[ix].t1_count); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Tier1 nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_t2 > 0) { + printBox(out, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].t2_count > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_count_single(ast, StatArray[ix].t2_count); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Tier2 nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_alive > 0) { + printBox(out, '-', "not_used/not_entrant nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].tx_count > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_count_single(ast, StatArray[ix].tx_count); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No not_used/not_entrant nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_stub > 0) { + printBox(out, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].stub_count > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_count_single(ast, StatArray[ix].stub_count); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Stubs and Blobs found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_dead > 0) { + printBox(out, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].dead_count > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_count_single(ast, StatArray[ix].dead_count); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No dead nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (!segment_granules) { // Prevent totally redundant printouts + printBox(out, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL); + + granules_per_line = 24; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + + print_count_single(ast, StatArray[ix].t1_count); + ast->print(":"); + print_count_single(ast, StatArray[ix].t2_count); + ast->print(":"); + if (segment_granules && StatArray[ix].stub_count > 0) print_blobType_single(ast, StatArray[ix].type); + else print_count_single(ast, StatArray[ix].stub_count); + ast->print(" "); + } + STRINGSTREAM_FLUSH("|") + out->cr(); out->cr(); out->cr(); + } + } +} + + +void CodeHeap::print_space(outputStream *out) { + if (!initialization_complete) return; + + const char *heapName = get_heapName(); + get_HeapStatGlobals(out, heapName); + + if ((StatArray == NULL) || (alloc_granules == 0)) return; + + unsigned int granules_per_line = 32; + const char *frameLine; + const char *textLine; + + STRINGSTREAM_DECL(ast, out) + + { + ttyLocker ttyl; // keep the header and legend block together + printBox(out, '=', "S P A C E U S A G E & F R A G M E N T A T I O N for ", heapName); + ast->print_cr(" The heap space covered by one granule is occupied to a various extend.\n" + " The granule occupancy is displayed by one decimal digit per granule.\n"); + if (segment_granules) { + ast->print_cr(" You have selected granule size to be as small as segment size.\n" + " As a result, each granule contains exactly one block (or a part of one block)\n" + " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" + " Occupied granules show their BlobType character, see legend.\n"); + print_blobType_legend(ast); + } else { + ast->print_cr(" These digits represent a fill percentage range (see legend).\n"); + print_space_legend(ast); + } + STRINGSTREAM_FLUSH("") + } + + { + ttyLocker ttyl; // keep this statistics block together + if (segment_granules) { + printBox(out, '-', "Total (all types) space consumption for granule size == segment size", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + print_blobType_single(ast, StatArray[ix].type); + } + } else { + printBox(out, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space + + StatArray[ix].stub_space + StatArray[ix].dead_space; + print_space_single(ast, space); + } + } + STRINGSTREAM_FLUSH("|") + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_t1 > 0) { + printBox(out, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].t1_space > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_space_single(ast, StatArray[ix].t1_space); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Tier1 nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_t2 > 0) { + printBox(out, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].t2_space > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_space_single(ast, StatArray[ix].t2_space); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Tier2 nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_alive > 0) { + printBox(out, '-', "not_used/not_entrant space consumption. ' ' indicates empty, '*' indicates full", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].tx_space > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_space_single(ast, StatArray[ix].tx_space); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Tier2 nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_stub > 0) { + printBox(out, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + if (segment_granules && StatArray[ix].stub_space > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_space_single(ast, StatArray[ix].stub_space); + } + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Stubs and Blobs found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_dead > 0) { + printBox(out, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + print_space_single(ast, StatArray[ix].dead_space); + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No dead nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (!segment_granules) { // Prevent totally redundant printouts + printBox(out, '-', "Space consumption by tier (combined): ::. ' ' indicates empty, '*' indicates full", NULL); + + granules_per_line = 24; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + + if (segment_granules && StatArray[ix].t1_space > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_space_single(ast, StatArray[ix].t1_space); + } + ast->print(":"); + if (segment_granules && StatArray[ix].t2_space > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_space_single(ast, StatArray[ix].t2_space); + } + ast->print(":"); + if (segment_granules && StatArray[ix].stub_space > 0) { + print_blobType_single(ast, StatArray[ix].type); + } else { + print_space_single(ast, StatArray[ix].stub_space); + } + ast->print(" "); + } + STRINGSTREAM_FLUSH("|") + out->cr(); out->cr(); out->cr(); + } + } +} + +void CodeHeap::print_age(outputStream *out) { + if (!initialization_complete) return; + + const char *heapName = get_heapName(); + get_HeapStatGlobals(out, heapName); + + if ((StatArray == NULL) || (alloc_granules == 0)) return; + + unsigned int granules_per_line = 32; + const char *frameLine; + const char *textLine; + + STRINGSTREAM_DECL(ast, out) + + { + ttyLocker ttyl; // keep the header and legend block together + printBox(out, '=', "M E T H O D A G E by CompileID for ", heapName); + ast->print_cr(" The age of a compiled method in the CodeHeap is not available as a\n" + " time stamp. Instead, a relative age is deducted from the method's compilation ID.\n" + " Age information is available for tier1 and tier2 methods only. There is no\n" + " age information for stubs and blobs, because they have no compilation ID assigned.\n" + " Information for the youngest method (highest ID) in the granule is printed.\n" + " Refer to the legend to learn how method age is mapped to the displayed digit."); + print_age_legend(ast); + STRINGSTREAM_FLUSH("") + } + + { + ttyLocker ttyl; // keep this statistics block together + printBox(out, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + unsigned int age1 = StatArray[ix].t1_age; + unsigned int age2 = StatArray[ix].t2_age; + unsigned int agex = StatArray[ix].tx_age; + unsigned int age = age1 > age2 ? age1 : age2; + age = age > agex ? age : agex; + print_age_single(ast, age); + } + STRINGSTREAM_FLUSH("|") + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_t1 > 0) { + printBox(out, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + print_age_single(ast, StatArray[ix].t1_age); + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Tier1 nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_t2 > 0) { + printBox(out, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + print_age_single(ast, StatArray[ix].t2_age); + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Tier2 nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (nBlocks_alive > 0) { + printBox(out, '-', "not_used/not_entrant age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); + + granules_per_line = 128; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + print_age_single(ast, StatArray[ix].tx_age); + } + STRINGSTREAM_FLUSH("|") + } else { + ast->print("No Tier2 nMethods found in CodeHeap."); + STRINGSTREAM_FLUSH("") + } + out->cr(); out->cr(); out->cr(); + } + + { + ttyLocker ttyl; // keep this statistics block together + if (!segment_granules) { // Prevent totally redundant printouts + printBox(out, '-', "age distribution by tier :. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); + + granules_per_line = 32; + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + print_line_delim(out, ast, ix, granules_per_line); + print_age_single(ast, StatArray[ix].t1_age); + ast->print(":"); + print_age_single(ast, StatArray[ix].t2_age); + ast->print(" "); + } + STRINGSTREAM_FLUSH("|") + out->cr(); out->cr(); out->cr(); + } + } +} + + +void CodeHeap::print_names(outputStream *out) { + if (!initialization_complete) return; + + const char *heapName = get_heapName(); + get_HeapStatGlobals(out, heapName); + + if ((StatArray == NULL) || (alloc_granules == 0)) return; + + unsigned int granules_per_line = 128; + char* low_bound = low_boundary(); + CodeBlob* last_blob = NULL; + bool name_in_addr_range = true; + + STRINGSTREAM_DECL(ast, out) + + //---< print at least 128K per block >--- + if (granules_per_line*granule_size < 128*K) { + granules_per_line = (unsigned int)((128*K)/granule_size); + } + + ttyLocker ttyl; // keep this statistics block together + + printBox(out, '=', "M E T H O D N A M E S for ", heapName); + ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n" + " Due to the living nature of the code heap and because the CodeCache_lock\n" + " is not continuously held, the displayed name might be wrong or no name\n" + " might be found at all. The likelihood for that to happen increases\n" + " over time passed between analysis and print step.\n"); + STRINGSTREAM_FLUSH("") + + for (unsigned int ix = 0; ix < alloc_granules; ix++) { + //---< print a new blob on a new line >--- + if (ix%granules_per_line == 0) { + if (!name_in_addr_range) ast->print_cr("No methods, blobs, or stubs found in this address range"); + name_in_addr_range = false; + + ast->cr(); + ast->print_cr("--------------------------------------------------------------------"); + ast->print_cr("Address range [%p,%p), " SIZE_FORMAT "k", low_bound+ix*granule_size, low_bound+(ix+granules_per_line)*granule_size, granules_per_line*granule_size/(size_t)K); + ast->print_cr("--------------------------------------------------------------------"); + STRINGSTREAM_FLUSH("") + } + for (unsigned int is = 0; is < granule_size; is+=(unsigned int)_segment_size) { + CodeBlob* this_blob = (CodeBlob *) find_start(low_bound+ix*granule_size+is); + if ((this_blob != NULL) && (this_blob != last_blob)) { + if (!name_in_addr_range) { + name_in_addr_range = true; + ast->fill_to(51); + ast->print("%9s", "compiler"); + ast->fill_to(61); + ast->print_cr("%6s", "method"); + ast->print_cr("%18s %13s %17s %9s %5s %18s %s", "Addr(module) ", "offset", "size", " type lvl", " temp", "blobType ", "Name"); + } + + //---< Print blobTypeName as recorded during analysis >--- + ast->print("%p", this_blob); + ast->fill_to(19); + ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound)); + ast->fill_to(33); + + //---< print size, name, and signature (for nMethods) >--- + const char *blob_name = this_blob->name(); + nmethod* nm = this_blob->as_nmethod_or_null(); + blobType cbType = noType; + if (segment_granules) { + cbType = (blobType)StatArray[ix].type; + } else { + cbType = get_cbType(this_blob); + } + if ((nm != NULL) && (nm->method() != NULL)) { + ResourceMark rm; + //---< nMethod size in hex >--- + unsigned int total_size = nm->total_size(); + ast->print(PTR32_FORMAT, total_size); + ast->print("(%4ldK)", total_size/K); + //---< compiler information >--- + ast->fill_to(51); + ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level); + //---< method temperature >--- + ast->fill_to(62); + ast->print("%5d", nm->hotness_counter()); + //---< name and signature >--- + ast->fill_to(62+6); + ast->print("%s", blobTypeName[cbType]); + ast->fill_to(82+6); + if (nm->is_in_use()) {blob_name = nm->method()->name_and_sig_as_C_string(); } + if (nm->is_not_entrant()) {blob_name = nm->method()->name_and_sig_as_C_string(); } + if (nm->is_zombie()) {ast->print("%14s", " zombie method"); } + ast->print("%s", blob_name); + } else { + ast->fill_to(62+6); + ast->print("%s", blobTypeName[cbType]); + ast->fill_to(82+6); + ast->print("%s", blob_name); + } + STRINGSTREAM_FLUSH("\n") + last_blob = this_blob; + } + } + } + out->cr(); out->cr(); +} + + +void CodeHeap::printBox(outputStream* out, const char border, const char* text1, const char* text2) { + int lineLen = 1 + 2 + 2 +1; + char edge, frame; + + STRINGSTREAM_DECL(ast, out) + + if (text1 != NULL) lineLen += strlen(text1); + if (text2 != NULL) lineLen += strlen(text2); + if (border == '-') { + edge = '+'; + frame = '|'; + } else { + edge = border; + frame = border; + } + + ast->print("%c", edge); + for (int i = 0; i < lineLen-2; i++) { ast->print("%c", border); } + ast->print_cr("%c", edge); + + ast->print("%c ", frame); + if (text1 != NULL) ast->print("%s", text1); + if (text2 != NULL) ast->print("%s", text2); + ast->print_cr(" %c", frame); + + ast->print("%c", edge); + for (int i = 0; i < lineLen-2; i++) { ast->print("%c", border); } + ast->print_cr("%c", edge); + + STRINGSTREAM_FLUSH("") +} + +void CodeHeap::print_blobType_legend(outputStream *out) { + out->cr(); + out->print_cr(" +---------------------------------------------------+"); + out->print_cr(" | Block types used in the following CodeHeap dump |"); + out->print_cr(" +---------------------------------------------------+"); + for (int type = noType; type < lastType; type += 1) { + out->print_cr(" %c - %s", blobTypeChar[type], blobTypeName[type]); + } + out->print_cr(" -----------------------------------------------------"); + out->cr(); +} + +void CodeHeap::print_space_legend(outputStream *out) { + unsigned int indicator = 0; + unsigned int age_range = 256; + unsigned int range_beg = latest_compilation_id; + out->cr(); + out->print_cr(" +--------------------------------------------+"); + out->print_cr(" | Space ranges, based on granule occupancy |"); + out->print_cr(" +--------------------------------------------+"); + out->print_cr(" - 0%% == occupancy"); + for (int i=0; i<=9; i++) { + out->print_cr(" %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1)); + } + out->print_cr(" * - 100%% == occupancy"); + out->print_cr(" ----------------------------------------------"); + out->cr(); +} + +void CodeHeap::print_age_legend(outputStream *out) { + unsigned int indicator = 0; + unsigned int age_range = 256; + unsigned int range_beg = latest_compilation_id; + out->cr(); + out->print_cr(" +---------------------------------------+"); + out->print_cr(" | Age ranges, based on compilation id |"); + out->print_cr(" +---------------------------------------+"); + while (age_range > 0) { + out->print_cr(" %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range); + range_beg = latest_compilation_id - latest_compilation_id/age_range; + age_range /= 2; + indicator += 1; + } + out->print_cr(" -----------------------------------------"); + out->cr(); +} + +void CodeHeap::print_blobType_single(outputStream *out, u2 /* blobType */ type) { + out->print("%c", blobTypeChar[type]); +} + +void CodeHeap::print_count_single(outputStream *out, unsigned short count) { + if (count >= 16) out->print("*"); + else if (count > 0) out->print("%1.1x", count); + else out->print(" "); +} + +void CodeHeap::print_space_single(outputStream *out, unsigned short space) { + size_t space_in_bytes = ((unsigned int)space)<<_log2_segment_size; + char fraction = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size); + out->print("%c", fraction); +} + +void CodeHeap::print_age_single(outputStream *out, unsigned int age) { + unsigned int indicator = 0; + unsigned int age_range = 256; + if (age > 0) { + while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) { + age_range /= 2; + indicator += 1; + } + out->print("%c", char('0'+indicator)); + } else { + out->print(" "); + } +} + +void CodeHeap::print_line_delim(outputStream *out, outputStream* ast, unsigned int ix, unsigned int gpl) { + if (ix % gpl == 0) { + char* low_bound = low_boundary(); + if (ix > 0) { + ast->print("|"); + } + ast->cr(); + assert(out == ast, "must use the same stream!"); + + ast->print("%p", low_bound + ix*granule_size); + ast->fill_to(19); + ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size)); + } +} + +void CodeHeap::print_line_delim(outputStream *out, bufferedStream* ast, unsigned int ix, unsigned int gpl) { + if (ix % gpl == 0) { + char* low_bound = low_boundary(); + if (ix > 0) { + ast->print("|"); + } + ast->cr(); + assert(out != ast, "must not use the same stream!"); + + out->print("%s", ast->as_string()); + ast->reset(); + ast->print("%p", low_bound + ix*granule_size); + ast->fill_to(19); + ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size)); + } +} + +CodeHeap::blobType CodeHeap::get_cbType(CodeBlob* cb) { + if (cb != NULL ) { + if (cb->is_runtime_stub()) return runtimeStub; + if (cb->is_deoptimization_stub()) return deoptimizationStub; + if (cb->is_uncommon_trap_stub()) return uncommonTrapStub; + if (cb->is_exception_stub()) return exceptionStub; + if (cb->is_safepoint_stub()) return safepointStub; + if (cb->is_adapter_blob()) return adapterBlob; + if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob; + if (cb->is_buffer_blob()) return bufferBlob; + + if (cb->is_nmethod() ) { + if (((nmethod*)cb)->is_in_use()) return nMethod_inuse; + if (((nmethod*)cb)->is_alive() && !(((nmethod*)cb)->is_not_entrant())) return nMethod_notused; + if (((nmethod*)cb)->is_alive()) return nMethod_alive; + if (((nmethod*)cb)->is_unloaded()) return nMethod_unloaded; + if (((nmethod*)cb)->is_zombie()) return nMethod_dead; + tty->print_cr("unhandled nmethod state"); + return nMethod_dead; + } + } + return noType; +} +//---< END >--- 8198691: CodeHeap State Analytics.