< prev index next >

src/hotspot/share/memory/heap.cpp

Print this page

        

@@ -21,13 +21,15 @@
  * questions.
  *
  */
 
 #include "precompiled.hpp"
+#include "compiler/compileBroker.hpp"
 #include "memory/heap.hpp"
 #include "oops/oop.inline.hpp"
 #include "runtime/os.hpp"
+#include "runtime/sweeper.hpp"
 #include "services/memTracker.hpp"
 #include "utilities/align.hpp"
 
 size_t CodeHeap::header_size() {
   return sizeof(HeapBlock);

@@ -558,5 +560,2298 @@
     }
   }
 }
 
 #endif
+
+
+//---<  BEGIN  >--- 8198691: CodeHeap State Analytics.
+//
+// With this declaration macro, it is possible to switch between
+//  - direct output into an argument-passed outputStream and
+//  - buffered output into a bufferedStream with subsequent flush
+//    of the filled buffer to the outputStream.
+#define USE_STRINGSTREAM
+#define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
+//
+// Writing to a bufferedStream buffer first has a significant advantage:
+// It uses noticeably less cpu cycles and reduces (when wirting to a
+// network file) the required bandwidth by at least a factor of ten.
+// That clearly makes up for the increased code complexity.
+#if defined(USE_STRINGSTREAM)
+#define STRINGSTREAM_DECL(_anyst, _outst)                 \
+    /* _anyst  name of the stream as used in the code */  \
+    /* _outst  stream where final output will go to   */  \
+    ResourceMark rm;                                      \
+    bufferedStream   _sstobj = bufferedStream(2*K);       \
+    bufferedStream*  _sstbuf = &_sstobj;                  \
+    outputStream*    _outbuf = _outst;                    \
+    bufferedStream*  _anyst  = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
+
+#define STRINGSTREAM_FLUSH(termString)                    \
+    _sstbuf->print("%s", termString);                     \
+    _outbuf->print("%s", _sstbuf->as_string());           \
+    _sstbuf->reset();
+#else
+#define STRINGSTREAM_DECL(_anyst, _outst)                 \
+    outputStream*  _outbuf = _outst;                      \
+    outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
+
+#define STRINGSTREAM_FLUSH(termString)                    \
+    _outbuf->print("%s", termString);
+#endif
+
+const char  blobTypeChar[] = {' ', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
+const char* blobTypeName[] = {"noType"
+                             ,     "nMethod (active)"
+                             ,          "nMethod (inactive)"
+                             ,               "nMethod (deopt)"
+                             ,                    "nMethod (zombie)"
+                             ,                         "nMethod (unloaded)"
+                             ,                              "runtime stub"
+                             ,                                   "ricochet stub"
+                             ,                                        "deopt stub"
+                             ,                                             "uncommon trap stub"
+                             ,                                                  "exception stub"
+                             ,                                                       "safepoint stub"
+                             ,                                                            "adapter blob"
+                             ,                                                                 "MH adapter blob"
+                             ,                                                                      "buffer blob"
+                             ,                                                                           "lastType"
+                             };
+const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
+
+//----------------
+//  StatElement
+//----------------
+//  Each analysis granule is represented by an instance of
+//  this StatElement struct. It collects and aggregates all
+//  information describing the allocated contents of the granule.
+//  Free (unallocated) contents is not considered (see FreeBlk for that).
+//  All StatElements of a heap segment are stored in the related StatArray.
+//  Current size: 40 bytes + 8 bytes class header.
+class StatElement : public CHeapObj<mtCode> {
+  public:
+    // A note on ages: The compilation_id easily overflows unsigned short in large systems
+    unsigned int       t1_age;      // oldest compilation_id of tier1 nMethods.
+    unsigned int       t2_age;      // oldest compilation_id of tier2 nMethods.
+    unsigned int       tx_age;      // oldest compilation_id of inactive/not entrant nMethods.
+    unsigned short     t1_space;    // in units of _segment_size to "prevent" overflow
+    unsigned short     t2_space;    // in units of _segment_size to "prevent" overflow
+    unsigned short     tx_space;    // in units of _segment_size to "prevent" overflow
+    unsigned short     dead_space;  // in units of _segment_size to "prevent" overflow
+    unsigned short     stub_space;  // in units of _segment_size to "prevent" overflow
+    unsigned short     t1_count;
+    unsigned short     t2_count;
+    unsigned short     tx_count;
+    unsigned short     dead_count;
+    unsigned short     stub_count;
+    CompLevel          level;       // optimization level (see globalDefinitions.hpp)
+    //---<  replaced the correct enum typing with u2 to save space.
+    u2                 compiler;    // compiler which generated this blob
+    u2                 type;        // used only if granularity == segment_size
+//    CodeHeap::compType compiler;    // compiler which generated this blob
+//    CodeHeap::blobType type;        // used only if granularity == segment_size
+};
+
+//-----------
+//  FreeBlk
+//-----------
+//  Each free block in the code heap is represented by an instance
+//  of this FreeBlk struct. It collects all information we need to
+//  know about each free block.
+//  All FreeBlks of a heap segment are stored in the related FreeArray.
+struct FreeBlk : public CHeapObj<mtCode> {
+  HeapBlock      *start;       // address of free block
+  unsigned int   len;          // length of free block
+
+  unsigned int   gap;          // gap to next free block
+  unsigned int   index;        // sequential number of free block
+  unsigned short n_gapBlocks;  // # used blocks in gap
+  bool           stubs_in_gap; // The occupied space between this and the next free block contains (unmovable) stubs or blobs.
+};
+
+//--------------
+//  TopSizeBlk
+//--------------
+//  The n largest blocks in the code heap are represented in an instance
+//  of this TopSizeBlk struct. It collects all information we need to
+//  know about those largest blocks.
+//  All TopSizeBlks of a heap segment are stored in the related TopSizeArray.
+struct TopSizeBlk : public CHeapObj<mtCode> {
+  HeapBlock      *start;       // address of block
+  unsigned int   len;          // length of block, in _segment_size units. Will never overflow int.
+
+  unsigned int   index;        // ordering index, 0 is largest block
+                               // contains array index of next smaller block
+                               // -1 indicates end of list
+  CompLevel      level;        // optimization level (see globalDefinitions.hpp)
+  u2             compiler;     // compiler which generated this blob
+  u2             type;         // blob type
+};
+
+//---------------------------
+//  SizeDistributionElement
+//---------------------------
+//  During CodeHeap analysis, each allocated code block is associated with a
+//  SizeDistributionElement according to its size. Later on, the array of
+//  SizeDistributionElements is used to print a size distribution bar graph.
+//  All SizeDistributionElements of a heap segment are stored in the related SizeDistributionArray.
+struct SizeDistributionElement : public CHeapObj<mtCode> {
+                               // Range is [rangeStart..rangeEnd).
+  unsigned int   rangeStart;   // start of length range, in _segment_size units.
+  unsigned int   rangeEnd;     // end   of length range, in _segment_size units.
+  unsigned int   lenSum;       // length of block, in _segment_size units. Will never overflow int.
+
+  unsigned int   count;        // number of blocks assigned to this range.
+};
+
+//----------------
+//  CodeHeapStat
+//----------------
+//  Because we have to deal with multiple CodeHeaps, we need to
+//  collect "global" information in a segment-specific way as well.
+//  Thats what the CodeHeapStat and CodeHeapStatArray are used for.
+//  Before a heap segment is processed, the contents of the CodeHeapStat
+//  element is copied to the global variables (get_HeapStatGlobals).
+//  When processing is done, the possibly modified global variables are
+//  copied back (set_HeapStatGlobals) to the CodeHeapStat element.
+struct CodeHeapStat {
+//    struct StatElement              *StatArray;
+    StatElement                     *StatArray;
+    struct FreeBlk                  *FreeArray;
+    struct TopSizeBlk               *TopSizeArray;
+    struct SizeDistributionElement  *SizeDistributionArray;
+    const char                      *heapName;
+    // StatElement data
+    size_t        alloc_granules;
+    size_t        granule_size;
+    bool          segment_granules;
+    unsigned int  nBlocks_t1;
+    unsigned int  nBlocks_t2;
+    unsigned int  nBlocks_alive;
+    unsigned int  nBlocks_dead;
+    unsigned int  nBlocks_unloaded;
+    unsigned int  nBlocks_stub;
+    // FreeBlk data
+    unsigned int  alloc_freeBlocks;
+    // UsedBlk data
+    unsigned int  alloc_topSizeBlocks;
+    unsigned int  used_topSizeBlocks;
+    // method hotness data. Temperature range is [-reset_val..+reset_val]
+    int           avgTemp;
+    int           maxTemp;
+    int           minTemp;
+};
+
+// Be prepared for ten different Code Heaps. Should be enough for a few years.
+const unsigned int nSizeDistElements = 31;  // logarithmic range growth, max size: 2**32
+const unsigned int  maxTopSizeBlocks = 50;
+const unsigned int        tsbStopper = 2*maxTopSizeBlocks;
+const unsigned int          maxHeaps = 10;
+static unsigned int         nHeaps   =  0;
+static struct CodeHeapStat  CodeHeapStatArray[maxHeaps];
+
+// static struct StatElement *StatArray      = NULL;
+static StatElement *StatArray             = NULL;
+static size_t       alloc_granules        = 0;
+static size_t       granule_size          = 0;
+static bool         segment_granules      = false;
+static unsigned int nBlocks_t1            = 0;  // counting "in_use" nmethods only.
+static unsigned int nBlocks_t2            = 0;  // counting "in_use" nmethods only.
+static unsigned int nBlocks_alive         = 0;  // counting "not_used" and "not_entrant" nmethods only.
+static unsigned int nBlocks_dead          = 0;  // counting "zombie" and "unloaded" methods only.
+static unsigned int nBlocks_unloaded      = 0;  // counting "unloaded" nmethods only. This is a transien state.
+static unsigned int nBlocks_stub          = 0;
+
+static struct FreeBlk          *FreeArray = NULL;
+static unsigned int      alloc_freeBlocks = 0;
+
+static struct TopSizeBlk    *TopSizeArray = NULL;
+static unsigned int   alloc_topSizeBlocks = 0;
+static unsigned int    used_topSizeBlocks = 0;
+
+static struct SizeDistributionElement  *SizeDistributionArray = NULL;
+
+// nMethod temperature (hotness) indicators.
+static int                     avgTemp    = 0;
+static int                     maxTemp    = 0;
+static int                     minTemp    = 0;
+
+static unsigned int  latest_compilation_id   = 0;
+static volatile bool initialization_complete = false;
+
+const char* CodeHeap::get_heapName() {
+  if (SegmentedCodeCache) return name();
+  else                    return "CodeHeap";
+}
+
+// returns the index to be used for the heap being processed.
+//   <  nHeaps: entry found. Use this index.
+//   == nHeaps: entry not found. Use this index for new entry.
+//   == maxHeaps: entry not found. No space for a new entry.
+unsigned int CodeHeap::findHeapIndex(outputStream *out, const char *heapName) {
+  if (SegmentedCodeCache) {
+    unsigned int ix = 0;
+    while ( (ix < nHeaps) && ((CodeHeapStatArray[ix].heapName == NULL) || strcmp(heapName, CodeHeapStatArray[ix].heapName)) ) {
+      ix++;
+    }
+    if (ix <  nHeaps) { // existing entry found
+      return ix;
+    }
+    if ((ix == nHeaps) && (nHeaps < maxHeaps)) { // new entry allocated
+      nHeaps++;
+      CodeHeapStatArray[ix].heapName = heapName;
+      return ix;
+    }
+    out->print_cr("Too many heap segments, please adapt maxHeaps in heap.cpp");
+    return maxHeaps;
+  } else {
+    nHeaps = 1;
+    CodeHeapStatArray[0].heapName = heapName;
+    return 0; // This is the default index if CodeCache is not segmented.
+  }
+}
+
+void CodeHeap::get_HeapStatGlobals(outputStream *out, const char *heapName) {
+  unsigned int ix = (heapName == NULL) ? maxHeaps : findHeapIndex(out, heapName);
+  // Coverity CID 696443 - also check for index being smaller than maxHeaps.
+  //          This coverity finding is bullshit. Looking at the implementation
+  //          of findHeapIndex(), we learn that nHeaps will never grow beyond maxHeaps,
+  //          making (ix < nHeaps) a safe check.
+  //          But anyway, making coverity happy is more important than correct code.
+  if ((ix < nHeaps) && (ix < maxHeaps)) {
+    StatArray             = CodeHeapStatArray[ix].StatArray;
+    alloc_granules        = CodeHeapStatArray[ix].alloc_granules;
+    granule_size          = CodeHeapStatArray[ix].granule_size;
+    segment_granules      = CodeHeapStatArray[ix].segment_granules;
+    nBlocks_t1            = CodeHeapStatArray[ix].nBlocks_t1;
+    nBlocks_t2            = CodeHeapStatArray[ix].nBlocks_t2;
+    nBlocks_alive         = CodeHeapStatArray[ix].nBlocks_alive;
+    nBlocks_dead          = CodeHeapStatArray[ix].nBlocks_dead;
+    nBlocks_unloaded      = CodeHeapStatArray[ix].nBlocks_unloaded;
+    nBlocks_stub          = CodeHeapStatArray[ix].nBlocks_stub;
+    FreeArray             = CodeHeapStatArray[ix].FreeArray;
+    alloc_freeBlocks      = CodeHeapStatArray[ix].alloc_freeBlocks;
+    TopSizeArray          = CodeHeapStatArray[ix].TopSizeArray;
+    alloc_topSizeBlocks   = CodeHeapStatArray[ix].alloc_topSizeBlocks;
+    used_topSizeBlocks    = CodeHeapStatArray[ix].used_topSizeBlocks;
+    SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
+    avgTemp               = CodeHeapStatArray[ix].avgTemp;
+    maxTemp               = CodeHeapStatArray[ix].maxTemp;
+    minTemp               = CodeHeapStatArray[ix].minTemp;
+  } else {
+    StatArray             = NULL;
+    alloc_granules        = 0;
+    granule_size          = 0;
+    segment_granules      = false;
+    nBlocks_t1            = 0;
+    nBlocks_t2            = 0;
+    nBlocks_alive         = 0;
+    nBlocks_dead          = 0;
+    nBlocks_unloaded      = 0;
+    nBlocks_stub          = 0;
+    FreeArray             = NULL;
+    alloc_freeBlocks      = 0;
+    TopSizeArray          = NULL;
+    alloc_topSizeBlocks   = 0;
+    used_topSizeBlocks    = 0;
+    SizeDistributionArray = NULL;
+    avgTemp               = 0;
+    maxTemp               = 0;
+    minTemp               = 0;
+  }
+}
+
+void CodeHeap::set_HeapStatGlobals(outputStream *out, const char *heapName) {
+  unsigned int ix = (heapName == NULL) ? maxHeaps : findHeapIndex(out, heapName);
+  if (ix < nHeaps) {
+    CodeHeapStatArray[ix].StatArray             = StatArray;
+    CodeHeapStatArray[ix].alloc_granules        = alloc_granules;
+    CodeHeapStatArray[ix].granule_size          = granule_size;
+    CodeHeapStatArray[ix].segment_granules      = segment_granules;
+    CodeHeapStatArray[ix].nBlocks_t1            = nBlocks_t1;
+    CodeHeapStatArray[ix].nBlocks_t2            = nBlocks_t2;
+    CodeHeapStatArray[ix].nBlocks_alive         = nBlocks_alive;
+    CodeHeapStatArray[ix].nBlocks_dead          = nBlocks_dead;
+    CodeHeapStatArray[ix].nBlocks_unloaded      = nBlocks_unloaded;
+    CodeHeapStatArray[ix].nBlocks_stub          = nBlocks_stub;
+    CodeHeapStatArray[ix].FreeArray             = FreeArray;
+    CodeHeapStatArray[ix].alloc_freeBlocks      = alloc_freeBlocks;
+    CodeHeapStatArray[ix].TopSizeArray          = TopSizeArray;
+    CodeHeapStatArray[ix].alloc_topSizeBlocks   = alloc_topSizeBlocks;
+    CodeHeapStatArray[ix].used_topSizeBlocks    = used_topSizeBlocks;
+    CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
+    CodeHeapStatArray[ix].avgTemp               = avgTemp;
+    CodeHeapStatArray[ix].maxTemp               = maxTemp;
+    CodeHeapStatArray[ix].minTemp               = minTemp;
+  }
+}
+
+//---<  get a new statistics array  >---
+void CodeHeap::prepare_StatArray(outputStream *out, size_t nElem, size_t granularity, const char* heapName) {
+  if (StatArray == NULL) {
+    StatArray      = new StatElement[nElem];
+    //---<  reset some counts  >---
+    alloc_granules = nElem;
+    granule_size   = granularity;
+  }
+
+  if (StatArray == NULL) {
+    //---<  just do nothing if allocation failed  >---
+    out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
+    out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
+    alloc_granules = 0;
+    granule_size   = 0;
+  } else {
+    //---<  initialize statistics array  >---
+    memset(StatArray, 0, nElem*sizeof(StatElement));
+  }
+}
+
+//---<  get a new free block array  >---
+void CodeHeap::prepare_FreeArray(outputStream *out, unsigned int nElem, const char* heapName) {
+  if (FreeArray == NULL) {
+    FreeArray      = new FreeBlk[nElem];
+    //---<  reset some counts  >---
+    alloc_freeBlocks = nElem;
+  }
+
+  if (FreeArray == NULL) {
+    //---<  just do nothing if allocation failed  >---
+    out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
+    alloc_freeBlocks = 0;
+  } else {
+    //---<  initialize free block array  >---
+    memset(FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
+  }
+}
+
+//---<  get a new TopSizeArray  >---
+void CodeHeap::prepare_TopSizeArray(outputStream *out, unsigned int nElem, const char* heapName) {
+  if (TopSizeArray == NULL) {
+    TopSizeArray   = new TopSizeBlk[nElem];
+    //---<  reset some counts  >---
+    alloc_topSizeBlocks = nElem;
+    used_topSizeBlocks  = 0;
+  }
+
+  if (TopSizeArray == NULL) {
+    //---<  just do nothing if allocation failed  >---
+    out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
+    alloc_topSizeBlocks = 0;
+  } else {
+    //---<  initialize TopSizeArray  >---
+    memset(TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
+    used_topSizeBlocks  = 0;
+  }
+}
+
+//---<  get a new SizeDistributionArray  >---
+void CodeHeap::prepare_SizeDistArray(outputStream *out, unsigned int nElem, const char* heapName) {
+  if (SizeDistributionArray == NULL) {
+    SizeDistributionArray = new SizeDistributionElement[nElem];
+  }
+
+  if (SizeDistributionArray == NULL) {
+    //---<  just do nothing if allocation failed  >---
+    out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
+  } else {
+    //---<  initialize SizeDistArray  >---
+    memset(SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
+    // Logarithmic range growth. First range starts at _segment_size.
+    SizeDistributionArray[_log2_segment_size-1].rangeEnd = 1U;
+    for (unsigned int i = _log2_segment_size; i < nElem; i++) {
+      SizeDistributionArray[i].rangeStart = 1U << (i     - _log2_segment_size);
+      SizeDistributionArray[i].rangeEnd   = 1U << ((i+1) - _log2_segment_size);
+    }
+  }
+}
+
+//---<  get a new SizeDistributionArray  >---
+void CodeHeap::update_SizeDistArray(outputStream *out, unsigned int len) {
+  if (SizeDistributionArray != NULL) {
+    for (unsigned int i = _log2_segment_size-1; i < nSizeDistElements; i++) {
+      if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
+        SizeDistributionArray[i].lenSum += len;
+        SizeDistributionArray[i].count++;
+        break;
+      }
+    }
+  }
+}
+
+void CodeHeap::discard_StatArray(outputStream *out) {
+  if (StatArray != NULL) {
+    delete StatArray;
+    StatArray        = NULL;
+    alloc_granules   = 0;
+    granule_size     = 0;
+  }
+}
+
+void CodeHeap::discard_FreeArray(outputStream *out) {
+  if (FreeArray != NULL) {
+    delete[] FreeArray;
+    FreeArray        = NULL;
+    alloc_freeBlocks = 0;
+  }
+}
+
+void CodeHeap::discard_TopSizeArray(outputStream *out) {
+  if (TopSizeArray != NULL) {
+    delete[] TopSizeArray;
+    TopSizeArray        = NULL;
+    alloc_topSizeBlocks = 0;
+    used_topSizeBlocks  = 0;
+  }
+}
+
+void CodeHeap::discard_SizeDistArray(outputStream *out) {
+  if (SizeDistributionArray != NULL) {
+    delete[] SizeDistributionArray;
+    SizeDistributionArray = NULL;
+  }
+}
+
+void CodeHeap::discard(outputStream *out) {
+  if (!initialization_complete) return;
+
+  if (SegmentedCodeCache) {
+    for (unsigned int ix = 0; ix < nHeaps; ix++) {
+      get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
+      discard_StatArray(out);
+      discard_FreeArray(out);
+      discard_TopSizeArray(out);
+      discard_SizeDistArray(out);
+      set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
+      CodeHeapStatArray[ix].heapName = NULL;
+    }
+  } else {
+    get_HeapStatGlobals(out, CodeHeapStatArray[0].heapName);
+    discard_StatArray(out);
+    discard_FreeArray(out);
+    discard_TopSizeArray(out);
+    discard_SizeDistArray(out);
+    set_HeapStatGlobals(out, CodeHeapStatArray[0].heapName);
+    CodeHeapStatArray[0].heapName = NULL;
+  }
+}
+
+void CodeHeap::aggregate(outputStream *out, const char* granularity_request) {
+  unsigned int nBlocks_free    = 0;
+  unsigned int nBlocks_used    = 0;
+  unsigned int nBlocks_zomb    = 0;
+  unsigned int nBlocks_disconn = 0;
+  unsigned int nBlocks_notentr = 0;
+
+  //---<  max & min of TopSizeArray  >---
+  //  it is sufficient to have these sizes as 32bit unsigned ints.
+  //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
+  //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
+  unsigned int  currMax          = 0;
+  unsigned int  currMin          = 0;
+  unsigned int  currMin_ix       = 0;
+  unsigned long total_iterations = 0;
+
+  bool  done             = false;
+  const int min_granules = 256;
+  const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
+                                  // results in StatArray size of 20M (= max_granules * 40 Bytes per element)
+                                  // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
+  const char *heapName   = get_heapName();
+
+  if (!initialization_complete) {
+    memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
+    initialization_complete = true;
+
+    printBox(out, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
+    out->print_cr("   The code heap analysis function provides deep insights into\n"
+                  "   the inner workings and the internal state of the Java VM's\n"
+                  "   code cache - the place where all the JVM generated machine\n"
+                  "   code is stored.\n"
+                  "   \n"
+                  "   This function is designed and provided for support engineers\n"
+                  "   to help them understand and solve issues in customer systems.\n"
+                  "   It is not intended for use and interpretation by other persons.\n"
+                  "   \n");
+  }
+  get_HeapStatGlobals(out, heapName);
+
+
+  // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
+  // all heap information is "constant" and can be safely extracted/calculated before we
+  // enter the while() loop. Actually, the loop will only be iterated once.
+  char*  low_bound   = low_boundary();
+  size_t size        = capacity();
+  size_t res_size    = max_capacity();
+
+  // Calculate granularity of analysis (and output).
+  //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
+  //   The CodeHeap can become fairly large, in particular in productive real-life systems.
+  //
+  //   It is often neither feasible nor desirable to aggregate the data with the highest possible
+  //   level of detail, i.e. inspecting and printing each segment on its own.
+  //
+  //   The granularity parameter allows to specify the level of detail available in the analysis.
+  //   It must be a positive multiple of the segment size and should be selected such that enough
+  //   detail is provided while, at the same time, the printed output does not explode.
+  //
+  //   By manipulating the granularity value, we enforce that at least min_granules units
+  //   of analysis are available. We also enforce an upper limit of max_granules units to
+  //   keep the amount of allocated storage in check.
+  //
+  //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
+  //   This is necessary to prevent an unsigned short overflow while accumulating space information.
+  //
+  size_t granularity = strtol(granularity_request, NULL, 0);
+  if (granularity > size)               granularity = size;
+  if (size/granularity < min_granules)  granularity = size/min_granules; // at least min_granules granules
+  granularity = granularity & (~(_segment_size - 1));                     // must be multiple of _segment_size
+  if (granularity < _segment_size)      granularity = _segment_size;     // must be at least _segment_size
+  if (size/granularity > max_granules)  granularity = size/max_granules; // at most max_granules granules
+  granularity = granularity & (~(_segment_size - 1));                     // must be multiple of _segment_size
+  if (granularity>>_log2_segment_size >= (1L<<sizeof(unsigned short)*8)) {
+    granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<_log2_segment_size; // Limit: (64k-1) * _segment_size
+  }
+  segment_granules = granularity == _segment_size;
+  size_t granules  = (size + (granularity-1))/granularity;
+
+  printBox(out, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
+  out->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
+                "   Subsequent print functions create their output based on this snapshot.\n"
+                "   The CodeHeap is a living thing, and every effort has been made for the\n"
+                "   collected data to be consistent. Only the method names and signatures\n"
+                "   are retrieved at print time. That may lead to rare cases where the\n"
+                "   name of a method is no longer available, e.g. because it was unloaded.\n");
+  out->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
+                size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
+  out->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", _segment_size);
+  out->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT "bytes.", granules, granularity);
+  out->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
+  out->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
+  out->cr();
+
+
+  while (!done) {
+    //---<  reset counters with every aggregation  >---
+    nBlocks_t1       = 0;
+    nBlocks_t2       = 0;
+    nBlocks_alive    = 0;
+    nBlocks_dead     = 0;
+    nBlocks_unloaded = 0;
+    nBlocks_stub     = 0;
+
+    nBlocks_free     = 0;
+    nBlocks_used     = 0;
+    nBlocks_zomb     = 0;
+    nBlocks_disconn  = 0;
+    nBlocks_notentr  = 0;
+
+    //---<  discard old arrays if size does not match  >---
+    if (granules != alloc_granules) {
+      discard_StatArray(out);
+      discard_TopSizeArray(out);
+    }
+
+    //---<  allocate arrays if they don't yet exist, initialize  >---
+    prepare_StatArray(out, granules, granularity, heapName);
+    if (StatArray == NULL) {
+      set_HeapStatGlobals(out, heapName);
+      return;
+    }
+    prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
+    prepare_SizeDistArray(out, nSizeDistElements, heapName);
+
+    latest_compilation_id = CompileBroker::get_compilation_id();
+    unsigned int highest_compilation_id = 0;
+    size_t       usedSpace     = 0;
+    size_t       t1Space       = 0;
+    size_t       t2Space       = 0;
+    size_t       aliveSpace    = 0;
+    size_t       disconnSpace  = 0;
+    size_t       notentrSpace  = 0;
+    size_t       deadSpace     = 0;
+    size_t       unloadedSpace = 0;
+    size_t       stubSpace     = 0;
+    size_t       freeSpace     = 0;
+    size_t       maxFreeSize   = 0;
+    HeapBlock*   maxFreeBlock  = NULL;
+    bool         insane        = false;
+
+    int64_t hotnessAccumulator = 0;
+    unsigned int n_methods     = 0;
+    avgTemp       = 0;
+    minTemp       = (int)(res_size > M ? (res_size/M)*2 : 1);
+    maxTemp       = -minTemp;
+
+    for (HeapBlock *h = first_block(); h != NULL && !insane; h = next_block(h)) {
+      unsigned int hb_len     = (unsigned int)h->length();  // despite being size_t, length can never overflow an unsigned int.
+      size_t       hb_bytelen = ((size_t)hb_len)<<_log2_segment_size;
+      unsigned int ix_beg     = (unsigned int)(((char*)h-low_bound)/granule_size);
+      unsigned int ix_end     = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
+      unsigned int compile_id = 0;
+      CompLevel    comp_lvl   = CompLevel_none;
+      compType     cType      = noComp;
+      blobType     cbType     = noType;
+
+      //---<  some sanity checks  >---
+      // Do not assert here, just check, print error message and return.
+      // This is a diagnostic function. It is not supposed to tear down the VM.
+      if ((char*)h <  low_bound ) { insane = true; out->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound); }
+      if (ix_end   >= granules  ) { insane = true; out->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules); }
+      if (size     != capacity()) { insane = true; out->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, capacity()/(size_t)K); }
+      if (ix_beg   >  ix_end    ) { insane = true; out->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg); }
+      if (insane) continue;
+
+      if (h->free()) {
+        nBlocks_free++;
+        freeSpace    += hb_bytelen;
+        if (hb_bytelen > maxFreeSize) {
+          maxFreeSize   = hb_bytelen;
+          maxFreeBlock  = h;
+        }
+      } else {
+        update_SizeDistArray(out, hb_len);
+        nBlocks_used++;
+        usedSpace    += hb_bytelen;
+        CodeBlob *cb  = (CodeBlob*) find_start(h);
+        if (cb != NULL) {
+          cbType = get_cbType(cb);
+          if (cb->is_nmethod()) {
+            compile_id = ((nmethod*)cb)->compile_id();
+            comp_lvl   = (CompLevel)((nmethod*)cb)->comp_level();
+            if (((nmethod*)cb)->is_compiled_by_c1())    cType = c1;
+            if (((nmethod*)cb)->is_compiled_by_c2())    cType = c2;
+            if (((nmethod*)cb)->is_compiled_by_jvmci()) cType = jvmci;
+            switch (cbType) {
+              case nMethod_inuse: { // only for executable methods!!!
+                // space for these cbs is accounted for later.
+                int temperature = ((nmethod*)cb)->hotness_counter();
+                hotnessAccumulator += temperature;
+                n_methods++;
+                maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
+                minTemp = (temperature < minTemp) ? temperature : minTemp;
+                break;
+              }
+              case nMethod_notused:
+                nBlocks_alive++;
+                nBlocks_disconn++;
+                aliveSpace     += hb_bytelen;
+                disconnSpace   += hb_bytelen;
+                break;
+              case nMethod_notentrant:  // equivalent to nMethod_alive
+                nBlocks_alive++;
+                nBlocks_notentr++;
+                aliveSpace     += hb_bytelen;
+                notentrSpace   += hb_bytelen;
+                break;
+              case nMethod_unloaded:
+                nBlocks_unloaded++;
+                unloadedSpace  += hb_bytelen;
+                break;
+              case nMethod_dead:
+                nBlocks_dead++;
+                deadSpace      += hb_bytelen;
+                break;
+              default:
+                break;
+            }
+          }
+
+          //------------------------------------------
+          //---<  register block in TopSizeArray  >---
+          //------------------------------------------
+          if (alloc_topSizeBlocks > 0) {
+            if (used_topSizeBlocks == 0) {
+              TopSizeArray[0].start    = h;
+              TopSizeArray[0].len      = hb_len;
+              TopSizeArray[0].index    = tsbStopper;
+              TopSizeArray[0].compiler = cType;
+              TopSizeArray[0].level    = comp_lvl;
+              TopSizeArray[0].type     = cbType;
+              currMax    = hb_len;
+              currMin    = hb_len;
+              currMin_ix = 0;
+//            out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d", 0, 0, hb_len, TopSizeArray[0].index, TopSizeArray[0].index >= 0 ? TopSizeArray[TopSizeArray[0].index].len : -1);
+              used_topSizeBlocks++;
+            // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
+            } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
+              //---<  all blocks in list are larger, but there is room left in array  >---
+              TopSizeArray[currMin_ix].index = used_topSizeBlocks;
+              TopSizeArray[used_topSizeBlocks].start    = h;
+              TopSizeArray[used_topSizeBlocks].len      = hb_len;
+              TopSizeArray[used_topSizeBlocks].index    = tsbStopper;
+              TopSizeArray[used_topSizeBlocks].compiler = cType;
+              TopSizeArray[used_topSizeBlocks].level    = comp_lvl;
+              TopSizeArray[used_topSizeBlocks].type     = cbType;
+              currMin    = hb_len;
+              currMin_ix = used_topSizeBlocks;
+//            out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d (app MIN)", used_topSizeBlocks, used_topSizeBlocks, hb_len, TopSizeArray[used_topSizeBlocks].index, TopSizeArray[used_topSizeBlocks].index >= 0 ? TopSizeArray[TopSizeArray[used_topSizeBlocks].index].len : -1);
+              used_topSizeBlocks++;
+            } else {
+              // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
+              //   We don't need to search the list if we know beforehand that the current block size is
+              //   smaller than the currently recorded minimum and there is no free entry left in the list.
+              if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
+                if (currMax < hb_len) {
+                  currMax = hb_len;
+                }
+                unsigned int i;
+                unsigned int prev_i  = tsbStopper;
+                unsigned int limit_i =  0;
+                for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
+                  if (limit_i++ >= alloc_topSizeBlocks) { insane = true; break; } // emergency exit
+                  if (        i >= used_topSizeBlocks)  { insane = true; break; } // emergency exit
+                  total_iterations++;
+                  if (TopSizeArray[i].len < hb_len) {
+                    //---<  We want to insert here, element <i> is smaller than the current one  >---
+                    if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
+                      // old entry gets moved to the next free element of the array.
+                      // That's necessary to keep the entry for the largest block at index 0.
+                      // This move might cause the current minimum to be moved to another place
+                      if (i == currMin_ix) {
+                        assert(TopSizeArray[i].len == currMin, "sort error");
+                        currMin_ix = used_topSizeBlocks;
+                      }
+                      memcpy(&TopSizeArray[used_topSizeBlocks], &TopSizeArray[i], sizeof(TopSizeBlk));
+                      TopSizeArray[i].start    = h;
+                      TopSizeArray[i].len      = hb_len;
+                      TopSizeArray[i].index    = used_topSizeBlocks;
+                      TopSizeArray[i].compiler = cType;
+                      TopSizeArray[i].level    = comp_lvl;
+                      TopSizeArray[i].type     = cbType;
+//                    out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d (new APP)", used_topSizeBlocks, i, hb_len, TopSizeArray[i].index, TopSizeArray[i].index >= 0 ? TopSizeArray[TopSizeArray[i].index].len : -1);
+                      used_topSizeBlocks++;
+                    } else { // no room for new entries, current block replaces entry for smallest block
+                      //---<  Find last entry (entry for smallest remembered block)  >---
+                      unsigned int      j  = i;
+                      unsigned int prev_j  = tsbStopper;
+                      unsigned int limit_j = 0;
+                      while (TopSizeArray[j].index != tsbStopper) {
+                        if (limit_j++ >= alloc_topSizeBlocks) { insane = true; break; } // emergency exit
+                        if (        j >= used_topSizeBlocks)  { insane = true; break; } // emergency exit
+                        total_iterations++;
+                        prev_j = j;
+                        j      = TopSizeArray[j].index;
+                      }
+                      if (!insane) {
+                        if (prev_j == tsbStopper) {
+                          //---<  Above while loop did not iterate, we already are the min entry  >---
+                          //---<  We have to just replace the smallest entry                      >---
+                          currMin    = hb_len;
+                          currMin_ix = j;
+                          TopSizeArray[j].start    = h;
+                          TopSizeArray[j].len      = hb_len;
+                          TopSizeArray[j].index    = tsbStopper; // already set!!
+                          TopSizeArray[j].compiler = cType;
+                          TopSizeArray[j].level    = comp_lvl;
+                          TopSizeArray[j].type     = cbType;
+//                        out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d (new MIN)", used_topSizeBlocks, j, hb_len, TopSizeArray[j].index, TopSizeArray[j].index >= 0 ? TopSizeArray[TopSizeArray[j].index].len : -1);
+                        } else {
+                          //---<  second-smallest entry is now smallest  >---
+                          TopSizeArray[prev_j].index = tsbStopper;
+                          currMin    = TopSizeArray[prev_j].len;
+                          currMin_ix = prev_j;
+                          //---<  smallest entry gets overwritten  >---
+                          memcpy(&TopSizeArray[j], &TopSizeArray[i], sizeof(TopSizeBlk));
+                          TopSizeArray[i].start    = h;
+                          TopSizeArray[i].len      = hb_len;
+                          TopSizeArray[i].index    = j;
+                          TopSizeArray[i].compiler = cType;
+                          TopSizeArray[i].level    = comp_lvl;
+                          TopSizeArray[i].type     = cbType;
+//                        out->print_cr("usedTSB = %d, ix = %d, len = %d, next_ix = %d, next_len = %d (new INS)", used_topSizeBlocks, hb_len, i, TopSizeArray[i].index, TopSizeArray[i].index >= 0 ? TopSizeArray[TopSizeArray[i].index].len : -1);
+                        }
+                      } // insane
+                    }
+                    break;
+                  }
+                  prev_i = i;
+                }
+                if (insane) {
+                  // Note: regular analysis could probably continue by resetting "insane" flag.
+                  out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
+                  discard_TopSizeArray(out);
+                }
+              }
+            }
+          }
+          //----------------------------------------------
+          //---<  END register block in TopSizeArray  >---
+          //----------------------------------------------
+        } else {
+          nBlocks_zomb++;
+        }
+
+        if (ix_beg == ix_end) {
+          StatArray[ix_beg].type = cbType;
+          switch (cbType) {
+            case nMethod_inuse:
+              if (highest_compilation_id < compile_id) highest_compilation_id = compile_id;
+              if (comp_lvl < CompLevel_full_optimization) {
+                nBlocks_t1++;
+                t1Space   += hb_bytelen;
+                StatArray[ix_beg].t1_count++;
+                StatArray[ix_beg].t1_space += (unsigned short)hb_len;
+                StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
+              } else {
+                nBlocks_t2++;
+                t2Space   += hb_bytelen;
+                StatArray[ix_beg].t2_count++;
+                StatArray[ix_beg].t2_space += (unsigned short)hb_len;
+                StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
+              }
+              StatArray[ix_beg].level     = comp_lvl;
+              StatArray[ix_beg].compiler  = cType;
+              break;
+            case nMethod_alive:
+              StatArray[ix_beg].tx_count++;
+              StatArray[ix_beg].tx_space += (unsigned short)hb_len;
+              StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
+              StatArray[ix_beg].level     = comp_lvl;
+              StatArray[ix_beg].compiler  = cType;
+              break;
+            case nMethod_dead:
+            case nMethod_unloaded:
+              StatArray[ix_beg].dead_count++;
+              StatArray[ix_beg].dead_space += (unsigned short)hb_len;
+              break;
+            default:
+              // must be a stub, if it's not a dead or alive nMethod
+              nBlocks_stub++;
+              stubSpace   += hb_bytelen;
+              StatArray[ix_beg].stub_count++;
+              StatArray[ix_beg].stub_space += (unsigned short)hb_len;
+              break;
+          }
+        } else {
+          unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
+          unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
+          beg_space = beg_space>>_log2_segment_size;  // store in units of _segment_size
+          end_space = end_space>>_log2_segment_size;  // store in units of _segment_size
+          StatArray[ix_beg].type = cbType;
+          StatArray[ix_end].type = cbType;
+          switch (cbType) {
+            case nMethod_inuse:
+              if (highest_compilation_id < compile_id) highest_compilation_id = compile_id;
+              if (comp_lvl < CompLevel_full_optimization) {
+                nBlocks_t1++;
+                t1Space   += hb_bytelen;
+                StatArray[ix_beg].t1_count++;
+                StatArray[ix_beg].t1_space += (unsigned short)beg_space;
+                StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
+
+                StatArray[ix_end].t1_count++;
+                StatArray[ix_end].t1_space += (unsigned short)end_space;
+                StatArray[ix_end].t1_age    = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
+              } else {
+                nBlocks_t2++;
+                t2Space   += hb_bytelen;
+                StatArray[ix_beg].t2_count++;
+                StatArray[ix_beg].t2_space += (unsigned short)beg_space;
+                StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
+
+                StatArray[ix_end].t2_count++;
+                StatArray[ix_end].t2_space += (unsigned short)end_space;
+                StatArray[ix_end].t2_age    = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
+              }
+              StatArray[ix_beg].level     = comp_lvl;
+              StatArray[ix_beg].compiler  = cType;
+              StatArray[ix_end].level     = comp_lvl;
+              StatArray[ix_end].compiler  = cType;
+              break;
+            case nMethod_alive:
+              StatArray[ix_beg].tx_count++;
+              StatArray[ix_beg].tx_space += (unsigned short)beg_space;
+              StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
+
+              StatArray[ix_end].tx_count++;
+              StatArray[ix_end].tx_space += (unsigned short)end_space;
+              StatArray[ix_end].tx_age    = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
+
+              StatArray[ix_beg].level     = comp_lvl;
+              StatArray[ix_beg].compiler  = cType;
+              StatArray[ix_end].level     = comp_lvl;
+              StatArray[ix_end].compiler  = cType;
+              break;
+            case nMethod_dead:
+            case nMethod_unloaded:
+              StatArray[ix_beg].dead_count++;
+              StatArray[ix_beg].dead_space += (unsigned short)beg_space;
+              StatArray[ix_end].dead_count++;
+              StatArray[ix_end].dead_space += (unsigned short)end_space;
+              break;
+            default:
+              // must be a stub, if it's not a dead or alive nMethod
+              nBlocks_stub++;
+              stubSpace   += hb_bytelen;
+              StatArray[ix_beg].stub_count++;
+              StatArray[ix_beg].stub_space += (unsigned short)beg_space;
+              StatArray[ix_end].stub_count++;
+              StatArray[ix_end].stub_space += (unsigned short)end_space;
+              break;
+          }
+          for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
+            StatArray[ix].type = cbType;
+            switch (cbType) {
+              case nMethod_inuse:
+                if (comp_lvl < CompLevel_full_optimization) {
+                  StatArray[ix].t1_count++;
+                  StatArray[ix].t1_space += (unsigned short)(granule_size>>_log2_segment_size);
+                  StatArray[ix].t1_age    = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
+                } else {
+                  StatArray[ix].t2_count++;
+                  StatArray[ix].t2_space += (unsigned short)(granule_size>>_log2_segment_size);
+                  StatArray[ix].t2_age    = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
+                }
+                StatArray[ix].level     = comp_lvl;
+                StatArray[ix].compiler  = cType;
+                break;
+              case nMethod_alive:
+                StatArray[ix].tx_count++;
+                StatArray[ix].tx_space += (unsigned short)(granule_size>>_log2_segment_size);
+                StatArray[ix].tx_age    = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
+                StatArray[ix].level     = comp_lvl;
+                StatArray[ix].compiler  = cType;
+                break;
+              case nMethod_dead:
+              case nMethod_unloaded:
+                StatArray[ix].dead_count++;
+                StatArray[ix].dead_space += (unsigned short)(granule_size>>_log2_segment_size);
+                break;
+              default:
+                // must be a stub, if it's not a dead or alive nMethod
+                StatArray[ix].stub_count++;
+                StatArray[ix].stub_space += (unsigned short)(granule_size>>_log2_segment_size);
+                break;
+            }
+          }
+        }
+      }
+    }
+    if (n_methods > 0) {
+      avgTemp = hotnessAccumulator/n_methods;
+    } else {
+      avgTemp = 0;
+    }
+    done = true;
+
+    if (!insane) {
+      ttyLocker ttyl; //  keep this statistics block together
+      printBox(out, '-', "Global CodeHeap statistics for segment ", heapName);
+      out->print_cr("freeSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_free     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K,     nBlocks_free,     (100.0*freeSpace)/size,     (100.0*freeSpace)/res_size);
+      out->print_cr("usedSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_used     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K,     nBlocks_used,     (100.0*usedSpace)/size,     (100.0*usedSpace)/res_size);
+      out->print_cr("  Tier1 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t1       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K,       nBlocks_t1,       (100.0*t1Space)/size,       (100.0*t1Space)/res_size);
+      out->print_cr("  Tier2 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t2       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K,       nBlocks_t2,       (100.0*t2Space)/size,       (100.0*t2Space)/res_size);
+      out->print_cr("  Alive Space    = " SIZE_FORMAT_W(8) "k, nBlocks_alive    = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K,    nBlocks_alive,    (100.0*aliveSpace)/size,    (100.0*aliveSpace)/res_size);
+      out->print_cr("    disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K,  nBlocks_disconn,  (100.0*disconnSpace)/size,  (100.0*disconnSpace)/res_size);
+      out->print_cr("    not entrant  = " SIZE_FORMAT_W(8) "k, nBlocks_notentr  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K,  nBlocks_notentr,  (100.0*notentrSpace)/size,  (100.0*notentrSpace)/res_size);
+      out->print_cr("  unloadedSpace  = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
+      out->print_cr("  deadSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_dead     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K,     nBlocks_dead,     (100.0*deadSpace)/size,     (100.0*deadSpace)/res_size);
+      out->print_cr("  stubSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_stub     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K,     nBlocks_stub,     (100.0*stubSpace)/size,     (100.0*stubSpace)/res_size);
+      out->print_cr("ZombieBlocks     = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
+      out->print_cr("latest allocated compilation id = %d", latest_compilation_id);
+      out->print_cr("highest observed compilation id = %d", highest_compilation_id);
+      out->print_cr("Building TopSizeList iterations = %ld", total_iterations);
+      out->cr();
+
+      int             reset_val = NMethodSweeper::hotness_counter_reset_val();
+      double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
+      printBox(out, '-', "Method hotness information at time of this analysis", NULL);
+      out->print_cr("Highest possible method temperature:          %12d", reset_val);
+      out->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
+      out->print_cr("min. hotness = %6d", minTemp);
+      out->print_cr("avg. hotness = %6d", avgTemp);
+      out->print_cr("max. hotness = %6d", maxTemp);
+      out->cr();
+
+      out->print("Verifying collected data...");
+      for (unsigned int ix = 0; ix < granules; ix++) {
+        if (StatArray[ix].t1_count   > granule_size>>_log2_segment_size) out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
+        if (StatArray[ix].t2_count   > granule_size>>_log2_segment_size) out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
+        if (StatArray[ix].stub_count > granule_size>>_log2_segment_size) out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
+        if (StatArray[ix].dead_count > granule_size>>_log2_segment_size) out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
+        if (StatArray[ix].t1_space   > granule_size>>_log2_segment_size) out->print_cr("t1_space[%d]   = %d", ix, StatArray[ix].t1_space);
+        if (StatArray[ix].t2_space   > granule_size>>_log2_segment_size) out->print_cr("t2_space[%d]   = %d", ix, StatArray[ix].t2_space);
+        if (StatArray[ix].stub_space > granule_size>>_log2_segment_size) out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
+        if (StatArray[ix].dead_space > granule_size>>_log2_segment_size) out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
+        //   this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
+        if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_size>>_log2_segment_size) out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].stub_count);
+        if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_size>>_log2_segment_size) out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].stub_space);
+      }
+
+      if (used_topSizeBlocks > 0) {
+        unsigned int j = 0;
+        if (TopSizeArray[0].len != currMax) out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
+        for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
+          if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
+            out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
+          }
+        }
+        if (j >= alloc_topSizeBlocks) {
+          out->print_cr("Possible loop in TopSizeArray chaining!\n  allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
+          for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
+            out->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
+          }
+        }
+      }
+      out->print_cr("...done");
+      out->cr();
+      out->cr();
+    } else {
+      // insane heap state detected. Analysis data incomplete. Just throw it away.
+      discard_StatArray(out);
+      discard_TopSizeArray(out);
+    }
+  }
+
+
+  done        = false;
+  while (!done && (nBlocks_free > 0)) {
+
+    printBox(out, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
+    out->print_cr("The aggregate step collects information about all free blocks in CodeHeap.\n"
+                  "Subsequent print functions create their output based on this snapshot.\n");
+    out->print_cr("Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
+    out->print_cr("Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
+    out->cr();
+
+    //----------------------------------------
+    //--  Prepare the FreeArray of FreeBlks --
+    //----------------------------------------
+
+    //---< discard old array if size does not match  >---
+    if (nBlocks_free != alloc_freeBlocks) {
+      discard_FreeArray(out);
+    }
+
+    prepare_FreeArray(out, nBlocks_free, heapName);
+    if (FreeArray == NULL) {
+      done = true;
+      continue;
+    }
+
+    //----------------------------------------
+    //--  Collect all FreeBlks in FreeArray --
+    //----------------------------------------
+
+    unsigned int ix = 0;
+    FreeBlock *cur  = _freelist;
+
+    while (cur != NULL) {
+      if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
+        FreeArray[ix].start = cur;
+        FreeArray[ix].len   = (unsigned int)(cur->length()<<_log2_segment_size);
+        FreeArray[ix].index = ix;
+      }
+      cur  = cur->link();
+      ix++;
+    }
+    if (ix != alloc_freeBlocks) {
+      out->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
+      out->print_cr("I will update the counter and retry data collection");
+      out->cr();
+      nBlocks_free = ix;
+      continue;
+    }
+    done = true;
+  }
+
+  if (!done || (nBlocks_free == 0)) {
+    if (nBlocks_free == 0) {
+      printBox(out, '-', "no free blocks found in", heapName);
+    } else if (!done) {
+      out->print_cr("Free block count mismatch could not be resolved.");
+      out->print_cr("Try to run \"aggregate\" function to update counters");
+    }
+
+    //---< discard old array and update global values  >---
+    discard_FreeArray(out);
+    set_HeapStatGlobals(out, heapName);
+    return;
+  }
+
+  //---<  calculate and fill remaining fields  >---
+  for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
+    size_t lenSum = 0;
+    // Make sure FreeArray is not NULL [coverity].
+    // Program logic makes this impossible, but we need Coverity be happy.
+    guarantee(FreeArray != NULL, "CodeHeap::aggregate - FreeArray must not be NULL");
+    FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
+    for (HeapBlock *h = next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = next_block(h)) {
+      CodeBlob *cb  = (CodeBlob*) find_start(h);
+      if ((cb != NULL) && !cb->is_nmethod()) {
+        FreeArray[ix].stubs_in_gap = true;
+      }
+      FreeArray[ix].n_gapBlocks++;
+      lenSum += h->length()<<_log2_segment_size;
+      if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
+        out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
+      }
+    }
+    if (lenSum != FreeArray[ix].gap) {
+      out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
+    }
+  }
+  set_HeapStatGlobals(out, heapName);
+
+  printBox(out, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
+}
+
+
+void CodeHeap::print_usedSpace(outputStream *out) {
+  if (!initialization_complete) return;
+
+  const char *heapName   = get_heapName();
+  get_HeapStatGlobals(out, heapName);
+
+  if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) return;
+
+  const char *frameLine;
+  const char *textLine;
+
+  STRINGSTREAM_DECL(ast, out)
+
+  {
+    ttyLocker ttyl; //  keep the header and legend block together
+    printBox(out, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
+    ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
+                  "      and other identifying information with the block size data.\n"
+                  "\n"
+                  "      Method names are dynamically retrieved from the code cache at print time.\n"
+                  "      Due to the living nature of the code cache and because the CodeCache_lock\n"
+                  "      is not continuously held, the displayed name might be wrong or no name\n"
+                  "      might be found at all. The likelihood for that to happen increases\n"
+                  "      over time passed between analysis and print step.\n", used_topSizeBlocks);
+    STRINGSTREAM_FLUSH("\n")
+  }
+
+  //----------------------------
+  //--  Print Top Used Blocks --
+  //----------------------------
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    char*     low_bound = low_boundary();
+
+    printBox(out, '-', "Largest Used Blocks in ", heapName);
+    print_blobType_legend(ast);
+    STRINGSTREAM_FLUSH("")
+
+    ast->fill_to(51);
+    ast->print("%4s", "blob");
+    ast->fill_to(56);
+    ast->print("%9s", "compiler");
+    ast->fill_to(66);
+    ast->print_cr("%6s", "method");
+    ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
+    STRINGSTREAM_FLUSH("")
+
+    //---<  print Top Ten Used Blocks  >---
+    if (used_topSizeBlocks > 0) {
+      unsigned int printed_topSizeBlocks = 0;
+      for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
+        printed_topSizeBlocks++;
+        CodeBlob*   this_blob = (CodeBlob *) find_start(TopSizeArray[i].start);
+        nmethod*           nm = NULL;
+        const char* blob_name = "unnamed blob";
+        if (this_blob != NULL) {
+          blob_name = this_blob->name();
+          nm        = this_blob->as_nmethod_or_null();
+          //---<  blob address  >---
+          ast->print("%p", this_blob);
+          ast->fill_to(19);
+          //---<  blob offset from CodeHeap begin  >---
+          ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
+          ast->fill_to(33);
+        } else {
+          //---<  block address  >---
+          ast->print("%p", TopSizeArray[i].start);
+          ast->fill_to(19);
+          //---<  block offset from CodeHeap begin  >---
+          ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
+          ast->fill_to(33);
+        }
+
+
+        //---<  print size, name, and signature (for nMethods)  >---
+        if ((nm != NULL) && (nm->method() != NULL)) {
+          ResourceMark rm;
+          //---<  nMethod size in hex  >---
+          unsigned int total_size = nm->total_size();
+          ast->print(PTR32_FORMAT, total_size);
+          ast->print("(%4ldK)", total_size/K);
+          ast->fill_to(51);
+          ast->print("  %c", blobTypeChar[TopSizeArray[i].type]);
+          //---<  compiler information  >---
+          ast->fill_to(56);
+          ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
+          //---<  method temperature  >---
+          ast->fill_to(67);
+          ast->print("%5d", nm->hotness_counter());
+          //---<  name and signature  >---
+          ast->fill_to(67+6);
+          if (nm->is_in_use())      {blob_name = nm->method()->name_and_sig_as_C_string(); }
+          if (nm->is_not_entrant()) {blob_name = nm->method()->name_and_sig_as_C_string(); }
+          if (nm->is_zombie())      {ast->print("%14s", " zombie method"); }
+          ast->print("%s", blob_name);
+        } else {
+          //---<  block size in hex  >---
+          ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<_log2_segment_size));
+          ast->print("(%4ldK)", (TopSizeArray[i].len<<_log2_segment_size)/K);
+          //---<  no compiler information  >---
+          ast->fill_to(56);
+          //---<  name and signature  >---
+          ast->fill_to(67+6);
+          ast->print("%s", blob_name);
+        }
+        STRINGSTREAM_FLUSH("\n")
+      }
+      if (used_topSizeBlocks != printed_topSizeBlocks) {
+        ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
+        STRINGSTREAM_FLUSH("")
+        for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
+          ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
+          STRINGSTREAM_FLUSH("")
+        }
+      }
+      out->cr(); out->cr();
+    }
+  }
+
+  //-----------------------------
+  //--  Print Usage Histogram  --
+  //-----------------------------
+
+  if (SizeDistributionArray != NULL) {
+    unsigned long total_count = 0;
+    unsigned long total_size  = 0;
+    const unsigned long pctFactor = 200;
+
+    for (unsigned int i = 0; i < nSizeDistElements; i++) {
+      total_count += SizeDistributionArray[i].count;
+      total_size  += SizeDistributionArray[i].lenSum;
+    }
+
+    if ((total_count > 0) && (total_size > 0)) {
+      printBox(out, '-', "Block count histogram for ", heapName);
+      ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
+                    "      of all blocks) have a size in the given range.\n"
+                    "      %ld characters are printed per percentage point.\n", pctFactor/100);
+      ast->print_cr("total size   of all blocks: %7ldM", (total_size<<_log2_segment_size)/M);
+      ast->print_cr("total number of all blocks: %7ld\n", total_count);
+      ast->print_cr("[Size Range)------avg.-size-+----count-+");
+      STRINGSTREAM_FLUSH("")
+      for (unsigned int i = 0; i < nSizeDistElements; i++) {
+        if (SizeDistributionArray[i].rangeStart<<_log2_segment_size < K) {
+          ast->print("[%5d ..%5d ): "
+                    ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)
+                    ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)
+                    );
+        } else if (SizeDistributionArray[i].rangeStart<<_log2_segment_size < M) {
+          ast->print("[%5ldK..%5ldK): "
+                    ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)/K
+                    ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)/K
+                    );
+        } else {
+          ast->print("[%5ldM..%5ldM): "
+                    ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)/M
+                    ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)/M
+                    );
+        }
+        ast->print(" %8d | %8d |",
+                   SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<_log2_segment_size)/SizeDistributionArray[i].count : 0,
+                   SizeDistributionArray[i].count);
+
+        unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
+        for (unsigned int j = 1; j <= percent; j++) {
+          ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
+        }
+        STRINGSTREAM_FLUSH("\n")
+      }
+      out->print_cr("----------------------------+----------+\n\n");
+
+      printBox(out, '-', "Contribution per size range to total size for ", heapName);
+      ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
+                    "      occupied space) is used by the blocks in the given size range.\n"
+                    "      %ld characters are printed per percentage point.\n", pctFactor/100);
+      ast->print_cr("total size   of all blocks: %7ldM", (total_size<<_log2_segment_size)/M);
+      ast->print_cr("total number of all blocks: %7ld\n", total_count);
+      ast->print_cr("[Size Range)------avg.-size-+----count-+");
+      STRINGSTREAM_FLUSH("")
+      for (unsigned int i = 0; i < nSizeDistElements; i++) {
+        if (SizeDistributionArray[i].rangeStart<<_log2_segment_size < K) {
+          ast->print("[%5d ..%5d ): "
+                    ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)
+                    ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)
+                    );
+        } else if (SizeDistributionArray[i].rangeStart<<_log2_segment_size < M) {
+          ast->print("[%5ldK..%5ldK): "
+                    ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)/K
+                    ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)/K
+                    );
+        } else {
+          ast->print("[%5ldM..%5ldM): "
+                    ,(SizeDistributionArray[i].rangeStart<<_log2_segment_size)/M
+                    ,(SizeDistributionArray[i].rangeEnd<<_log2_segment_size)/M
+                    );
+        }
+        ast->print(" %8d | %8d |",
+                   SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<_log2_segment_size)/SizeDistributionArray[i].count : 0,
+                   SizeDistributionArray[i].count);
+
+        unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
+        for (unsigned int j = 1; j <= percent; j++) {
+          ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
+        }
+        STRINGSTREAM_FLUSH("\n")
+      }
+      out->print_cr("----------------------------+----------+\n\n");
+    }
+  }
+}
+
+
+void CodeHeap::print_freeSpace(outputStream *out) {
+  if (!initialization_complete) return;
+
+  const char *heapName   = get_heapName();
+  get_HeapStatGlobals(out, heapName);
+
+  if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) return;
+
+  const char *frameLine;
+  const char *textLine;
+
+  STRINGSTREAM_DECL(ast, out)
+
+  {
+    ttyLocker ttyl; //  keep the header and legend block together
+    printBox(out, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
+    ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
+                  "      Those gaps are of interest if there is a chance that they become\n"
+                  "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
+                  "      blocks, together with the now unoccupied space, form a new, large\n"
+                  "      free block.");
+    ast->cr();
+    STRINGSTREAM_FLUSH("")
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    printBox(out, '-', "List of all Free Blocks in ", heapName);
+
+    unsigned int ix = 0;
+    for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
+      ast->print("%p: Len[%4d] = " HEX32_FORMAT ",", FreeArray[ix].start, ix, FreeArray[ix].len);
+      ast->fill_to(38);
+      ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
+      ast->fill_to(71);
+      ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
+      if (FreeArray[ix].stubs_in_gap) {
+        ast->print(" !! permanent gap, contains stubs and/or blobs !!");
+      }
+      ast->cr();
+      STRINGSTREAM_FLUSH("")
+    }
+    ast->print_cr("%p: Len[%4d] = " HEX32_FORMAT, FreeArray[ix].start, ix, FreeArray[ix].len);
+    STRINGSTREAM_FLUSH("")
+    out->cr(); out->cr();
+  }
+
+
+  //-----------------------------------------
+  //--  Find and Print Top Ten Free Blocks --
+  //-----------------------------------------
+
+  //---<  find Top Ten Free Blocks  >---
+  const unsigned int nTop = 10;
+  unsigned int  currMax10 = 0;
+  struct FreeBlk     *FreeTopTen[nTop];
+  memset(FreeTopTen, 0, sizeof(FreeTopTen));
+
+  for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
+    if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
+      unsigned int currSize = FreeArray[ix].len;
+
+      unsigned int iy;
+      for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
+        if (FreeTopTen[iy]->len < currSize) {
+          for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
+            FreeTopTen[iz] = FreeTopTen[iz-1];
+          }
+          FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
+          if (FreeTopTen[nTop-1] != NULL) {currMax10 = FreeTopTen[nTop-1]->len; /*out->print_cr("new currMax10 = 0x%8.8d", currMax10);*/ }
+          break; // done with this, check next free block
+        }
+      }
+      if (iy >= nTop) {
+        out->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
+                      currSize, currMax10);
+        continue;
+      }
+      if (FreeTopTen[iy] == NULL) {
+        FreeTopTen[iy] = &FreeArray[ix];
+        if (iy == (nTop-1)) {currMax10 = currSize; /*out->print_cr("new currMax10 = 0x%8.8d", currMax10);*/ }
+      }
+    }
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    printBox(out, '-', "Top Ten Free Blocks in ", heapName);
+
+    //---<  print Top Ten Free Blocks  >---
+    for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
+      ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
+      ast->fill_to(39);
+      if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
+        ast->print("last free block in list.");
+      } else {
+        ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
+        ast->fill_to(63);
+        ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
+      }
+      ast->cr();
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr();
+  }
+
+
+  //--------------------------------------------------------
+  //--  Find and Print Top Ten Free-Occupied-Free Triples --
+  //--------------------------------------------------------
+
+  //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
+  currMax10 = 0;
+  struct FreeBlk  *FreeTopTenTriple[nTop];
+  memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
+
+  for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
+    // If there are stubs in the gap, this gap will never become completely free.
+    // The triple will thus never merge to one free block.
+    unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
+    FreeArray[ix].len = lenTriple;
+    if (lenTriple > currMax10) {  // larger than the ten largest found so far
+
+      unsigned int iy;
+      for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
+        if (FreeTopTenTriple[iy]->len < lenTriple) {
+          for (unsigned int iz = nTop-1; iz > iy; iz--) {
+            FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
+          }
+          FreeTopTenTriple[iy] = &FreeArray[ix];
+          if (FreeTopTenTriple[nTop-1] != NULL) {currMax10 = FreeTopTenTriple[nTop-1]->len; }
+          break;
+        }
+      }
+      if (iy == nTop) {
+        out->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
+                      lenTriple, currMax10);
+        continue;
+      }
+      if (FreeTopTenTriple[iy] == NULL) {
+        FreeTopTenTriple[iy] = &FreeArray[ix];
+        if (iy == (nTop-1)) {currMax10 = lenTriple; }
+      }
+    }
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    printBox(out, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
+    ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
+                  "  might get created by code cache sweeping.\n"
+                  "  If all the occupied blocks can be swept, the three free blocks will be\n"
+                  "  merged into one (much larger) free block. That would reduce free space\n"
+                  "  fragmentation.\n");
+    STRINGSTREAM_FLUSH("")
+
+    //---<  print Top Ten Free-Occupied-Free Triples  >---
+    for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
+      ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
+      ast->fill_to(39);
+      ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
+      ast->fill_to(63);
+      ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
+      STRINGSTREAM_FLUSH("\n")
+    }
+    out->cr(); out->cr();
+  }
+}
+
+
+void CodeHeap::print_count(outputStream *out) {
+  if (!initialization_complete) return;
+
+  const char *heapName   = get_heapName();
+  get_HeapStatGlobals(out, heapName);
+
+  if ((StatArray == NULL) || (alloc_granules == 0)) return;
+
+  unsigned int granules_per_line = 32;
+  char*        low_bound         = low_boundary();
+  const char  *frameLine;
+  const char  *textLine;
+
+  STRINGSTREAM_DECL(ast, out)
+
+  {
+    ttyLocker ttyl; //  keep the header and legend block together
+    printBox(out, '=', "B L O C K   C O U N T S   for ", heapName);
+    ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
+                  "  may span multiple granules and are counted for each granule they touch.\n");
+    if (segment_granules) {
+      ast->print_cr("  You have selected granule size to be as small as segment size.\n"
+                    "  As a result, each granule contains exactly one block (or a part of one block)\n"
+                    "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
+                    "  Occupied granules show their BlobType character, see legend.\n");
+      print_blobType_legend(ast);
+    }
+    STRINGSTREAM_FLUSH("")
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (segment_granules) {
+      printBox(out, '-', "Total (all types) count for granule size == segment size", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        print_blobType_single(ast, StatArray[ix].type);
+      }
+    } else {
+      printBox(out, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
+                           + StatArray[ix].stub_count + StatArray[ix].dead_count;
+        print_count_single(ast, count);
+      }
+    }
+    STRINGSTREAM_FLUSH("|")
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_t1 > 0) {
+      printBox(out, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].t1_count > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_count_single(ast, StatArray[ix].t1_count);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Tier1 nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_t2 > 0) {
+      printBox(out, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].t2_count > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_count_single(ast, StatArray[ix].t2_count);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Tier2 nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_alive > 0) {
+      printBox(out, '-', "not_used/not_entrant nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].tx_count > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_count_single(ast, StatArray[ix].tx_count);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_stub > 0) {
+      printBox(out, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].stub_count > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_count_single(ast, StatArray[ix].stub_count);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Stubs and Blobs found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_dead > 0) {
+      printBox(out, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].dead_count > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_count_single(ast, StatArray[ix].dead_count);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No dead nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (!segment_granules) { // Prevent totally redundant printouts
+      printBox(out, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
+
+      granules_per_line = 24;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+
+        print_count_single(ast, StatArray[ix].t1_count);
+        ast->print(":");
+        print_count_single(ast, StatArray[ix].t2_count);
+        ast->print(":");
+        if (segment_granules && StatArray[ix].stub_count > 0) print_blobType_single(ast, StatArray[ix].type);
+        else                                                  print_count_single(ast, StatArray[ix].stub_count);
+        ast->print(" ");
+      }
+      STRINGSTREAM_FLUSH("|")
+      out->cr(); out->cr(); out->cr();
+    }
+  }
+}
+
+
+void CodeHeap::print_space(outputStream *out) {
+  if (!initialization_complete) return;
+
+  const char *heapName   = get_heapName();
+  get_HeapStatGlobals(out, heapName);
+
+  if ((StatArray == NULL) || (alloc_granules == 0)) return;
+
+  unsigned int granules_per_line = 32;
+  const char  *frameLine;
+  const char  *textLine;
+
+  STRINGSTREAM_DECL(ast, out)
+
+  {
+    ttyLocker ttyl; //  keep the header and legend block together
+    printBox(out, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
+    ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
+                  "  The granule occupancy is displayed by one decimal digit per granule.\n");
+    if (segment_granules) {
+      ast->print_cr("  You have selected granule size to be as small as segment size.\n"
+                    "  As a result, each granule contains exactly one block (or a part of one block)\n"
+                    "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
+                    "  Occupied granules show their BlobType character, see legend.\n");
+      print_blobType_legend(ast);
+    } else {
+      ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
+      print_space_legend(ast);
+    }
+    STRINGSTREAM_FLUSH("")
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (segment_granules) {
+      printBox(out, '-', "Total (all types) space consumption for granule size == segment size", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        print_blobType_single(ast, StatArray[ix].type);
+      }
+    } else {
+      printBox(out, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
+                              + StatArray[ix].stub_space + StatArray[ix].dead_space;
+        print_space_single(ast, space);
+      }
+    }
+    STRINGSTREAM_FLUSH("|")
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_t1 > 0) {
+      printBox(out, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].t1_space > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_space_single(ast, StatArray[ix].t1_space);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Tier1 nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_t2 > 0) {
+      printBox(out, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].t2_space > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_space_single(ast, StatArray[ix].t2_space);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Tier2 nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_alive > 0) {
+      printBox(out, '-', "not_used/not_entrant space consumption. ' ' indicates empty, '*' indicates full", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].tx_space > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_space_single(ast, StatArray[ix].tx_space);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Tier2 nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_stub > 0) {
+      printBox(out, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        if (segment_granules && StatArray[ix].stub_space > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_space_single(ast, StatArray[ix].stub_space);
+        }
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Stubs and Blobs found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_dead > 0) {
+      printBox(out, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        print_space_single(ast, StatArray[ix].dead_space);
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No dead nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (!segment_granules) { // Prevent totally redundant printouts
+      printBox(out, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
+
+      granules_per_line = 24;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+
+        if (segment_granules && StatArray[ix].t1_space > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_space_single(ast, StatArray[ix].t1_space);
+        }
+        ast->print(":");
+        if (segment_granules && StatArray[ix].t2_space > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_space_single(ast, StatArray[ix].t2_space);
+        }
+        ast->print(":");
+        if (segment_granules && StatArray[ix].stub_space > 0) {
+          print_blobType_single(ast, StatArray[ix].type);
+        } else {
+          print_space_single(ast, StatArray[ix].stub_space);
+        }
+        ast->print(" ");
+      }
+      STRINGSTREAM_FLUSH("|")
+      out->cr(); out->cr(); out->cr();
+    }
+  }
+}
+
+void CodeHeap::print_age(outputStream *out) {
+  if (!initialization_complete) return;
+
+  const char *heapName   = get_heapName();
+  get_HeapStatGlobals(out, heapName);
+
+  if ((StatArray == NULL) || (alloc_granules == 0)) return;
+
+  unsigned int granules_per_line = 32;
+  const char  *frameLine;
+  const char  *textLine;
+
+  STRINGSTREAM_DECL(ast, out)
+
+  {
+    ttyLocker ttyl; //  keep the header and legend block together
+    printBox(out, '=', "M E T H O D   A G E   by CompileID for ", heapName);
+    ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
+                  "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
+                  "  Age information is available for tier1 and tier2 methods only. There is no\n"
+                  "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
+                  "  Information for the youngest method (highest ID) in the granule is printed.\n"
+                  "  Refer to the legend to learn how method age is mapped to the displayed digit.");
+    print_age_legend(ast);
+    STRINGSTREAM_FLUSH("")
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    printBox(out, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+
+    granules_per_line = 128;
+    for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+      print_line_delim(out, ast, ix, granules_per_line);
+      unsigned int age1      = StatArray[ix].t1_age;
+      unsigned int age2      = StatArray[ix].t2_age;
+      unsigned int agex      = StatArray[ix].tx_age;
+      unsigned int age       = age1 > age2 ? age1 : age2;
+      age       = age > agex ? age : agex;
+      print_age_single(ast, age);
+    }
+    STRINGSTREAM_FLUSH("|")
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_t1 > 0) {
+      printBox(out, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        print_age_single(ast, StatArray[ix].t1_age);
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Tier1 nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_t2 > 0) {
+      printBox(out, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        print_age_single(ast, StatArray[ix].t2_age);
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Tier2 nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (nBlocks_alive > 0) {
+      printBox(out, '-', "not_used/not_entrant age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+
+      granules_per_line = 128;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        print_age_single(ast, StatArray[ix].tx_age);
+      }
+      STRINGSTREAM_FLUSH("|")
+    } else {
+      ast->print("No Tier2 nMethods found in CodeHeap.");
+      STRINGSTREAM_FLUSH("")
+    }
+    out->cr(); out->cr(); out->cr();
+  }
+
+  {
+    ttyLocker ttyl; //  keep this statistics block together
+    if (!segment_granules) { // Prevent totally redundant printouts
+      printBox(out, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+
+      granules_per_line = 32;
+      for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+        print_line_delim(out, ast, ix, granules_per_line);
+        print_age_single(ast, StatArray[ix].t1_age);
+        ast->print(":");
+        print_age_single(ast, StatArray[ix].t2_age);
+        ast->print(" ");
+      }
+      STRINGSTREAM_FLUSH("|")
+      out->cr(); out->cr(); out->cr();
+    }
+  }
+}
+
+
+void CodeHeap::print_names(outputStream *out) {
+  if (!initialization_complete) return;
+
+  const char *heapName   = get_heapName();
+  get_HeapStatGlobals(out, heapName);
+
+  if ((StatArray == NULL) || (alloc_granules == 0)) return;
+
+  unsigned int granules_per_line  = 128;
+  char*        low_bound          = low_boundary();
+  CodeBlob*    last_blob          = NULL;
+  bool         name_in_addr_range = true;
+
+  STRINGSTREAM_DECL(ast, out)
+
+  //---<  print at least 128K per block  >---
+  if (granules_per_line*granule_size < 128*K) {
+    granules_per_line = (unsigned int)((128*K)/granule_size);
+  }
+
+  ttyLocker ttyl; //  keep this statistics block together
+
+  printBox(out, '=', "M E T H O D   N A M E S   for ", heapName);
+  ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
+                "  Due to the living nature of the code heap and because the CodeCache_lock\n"
+                "  is not continuously held, the displayed name might be wrong or no name\n"
+                "  might be found at all. The likelihood for that to happen increases\n"
+                "  over time passed between analysis and print step.\n");
+  STRINGSTREAM_FLUSH("")
+
+  for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+    //---<  print a new blob on a new line  >---
+    if (ix%granules_per_line == 0) {
+      if (!name_in_addr_range) ast->print_cr("No methods, blobs, or stubs found in this address range");
+      name_in_addr_range = false;
+
+      ast->cr();
+      ast->print_cr("--------------------------------------------------------------------");
+      ast->print_cr("Address range [%p,%p), " SIZE_FORMAT "k", low_bound+ix*granule_size, low_bound+(ix+granules_per_line)*granule_size, granules_per_line*granule_size/(size_t)K);
+      ast->print_cr("--------------------------------------------------------------------");
+      STRINGSTREAM_FLUSH("")
+    }
+    for (unsigned int is = 0; is < granule_size; is+=(unsigned int)_segment_size) {
+      CodeBlob* this_blob = (CodeBlob *) find_start(low_bound+ix*granule_size+is);
+      if ((this_blob != NULL) && (this_blob != last_blob)) {
+        if (!name_in_addr_range) {
+          name_in_addr_range = true;
+          ast->fill_to(51);
+          ast->print("%9s", "compiler");
+          ast->fill_to(61);
+          ast->print_cr("%6s", "method");
+          ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
+        }
+
+        //---<  Print blobTypeName as recorded during analysis  >---
+        ast->print("%p", this_blob);
+        ast->fill_to(19);
+        ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
+        ast->fill_to(33);
+
+        //---<  print size, name, and signature (for nMethods)  >---
+        const char *blob_name = this_blob->name();
+        nmethod*           nm = this_blob->as_nmethod_or_null();
+        blobType       cbType = noType;
+        if (segment_granules) {
+          cbType = (blobType)StatArray[ix].type;
+        } else {
+          cbType = get_cbType(this_blob);
+        }
+        if ((nm != NULL) && (nm->method() != NULL)) {
+          ResourceMark rm;
+          //---<  nMethod size in hex  >---
+          unsigned int total_size = nm->total_size();
+          ast->print(PTR32_FORMAT, total_size);
+          ast->print("(%4ldK)", total_size/K);
+          //---<  compiler information  >---
+          ast->fill_to(51);
+          ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
+          //---<  method temperature  >---
+          ast->fill_to(62);
+          ast->print("%5d", nm->hotness_counter());
+          //---<  name and signature  >---
+          ast->fill_to(62+6);
+          ast->print("%s", blobTypeName[cbType]);
+          ast->fill_to(82+6);
+          if (nm->is_in_use())      {blob_name = nm->method()->name_and_sig_as_C_string(); }
+          if (nm->is_not_entrant()) {blob_name = nm->method()->name_and_sig_as_C_string(); }
+          if (nm->is_zombie())      {ast->print("%14s", " zombie method"); }
+          ast->print("%s", blob_name);
+        } else {
+          ast->fill_to(62+6);
+          ast->print("%s", blobTypeName[cbType]);
+          ast->fill_to(82+6);
+          ast->print("%s", blob_name);
+        }
+        STRINGSTREAM_FLUSH("\n")
+        last_blob          = this_blob;
+      }
+    }
+  }
+  out->cr(); out->cr();
+}
+
+
+void CodeHeap::printBox(outputStream* out, const char border, const char* text1, const char* text2) {
+  int lineLen = 1 + 2 + 2 +1;
+  char edge, frame;
+
+  STRINGSTREAM_DECL(ast, out)
+
+  if (text1 != NULL) lineLen += strlen(text1);
+  if (text2 != NULL) lineLen += strlen(text2);
+  if (border == '-') {
+    edge  = '+';
+    frame = '|';
+  } else {
+    edge  = border;
+    frame = border;
+  }
+
+  ast->print("%c", edge);
+  for (int i = 0; i < lineLen-2; i++) { ast->print("%c", border); }
+  ast->print_cr("%c", edge);
+
+  ast->print("%c  ", frame);
+  if (text1 != NULL) ast->print("%s", text1);
+  if (text2 != NULL) ast->print("%s", text2);
+  ast->print_cr("  %c", frame);
+
+  ast->print("%c", edge);
+  for (int i = 0; i < lineLen-2; i++) { ast->print("%c", border); }
+  ast->print_cr("%c", edge);
+
+  STRINGSTREAM_FLUSH("")
+}
+
+void CodeHeap::print_blobType_legend(outputStream *out) {
+  out->cr();
+  out->print_cr("  +---------------------------------------------------+");
+  out->print_cr("  |  Block types used in the following CodeHeap dump  |");
+  out->print_cr("  +---------------------------------------------------+");
+  for (int type = noType; type < lastType; type += 1) {
+    out->print_cr("  %c - %s", blobTypeChar[type], blobTypeName[type]);
+  }
+  out->print_cr("  -----------------------------------------------------");
+  out->cr();
+}
+
+void CodeHeap::print_space_legend(outputStream *out) {
+  unsigned int indicator = 0;
+  unsigned int age_range = 256;
+  unsigned int range_beg = latest_compilation_id;
+  out->cr();
+  out->print_cr("  +--------------------------------------------+");
+  out->print_cr("  |  Space ranges, based on granule occupancy  |");
+  out->print_cr("  +--------------------------------------------+");
+  out->print_cr("    -   0%% == occupancy");
+  for (int i=0; i<=9; i++) {
+    out->print_cr("  %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
+  }
+  out->print_cr("  * - 100%% == occupancy");
+  out->print_cr("  ----------------------------------------------");
+  out->cr();
+}
+
+void CodeHeap::print_age_legend(outputStream *out) {
+  unsigned int indicator = 0;
+  unsigned int age_range = 256;
+  unsigned int range_beg = latest_compilation_id;
+  out->cr();
+  out->print_cr("  +---------------------------------------+");
+  out->print_cr("  |  Age ranges, based on compilation id  |");
+  out->print_cr("  +---------------------------------------+");
+  while (age_range > 0) {
+    out->print_cr("  %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
+    range_beg = latest_compilation_id - latest_compilation_id/age_range;
+    age_range /= 2;
+    indicator += 1;
+  }
+  out->print_cr("  -----------------------------------------");
+  out->cr();
+}
+
+void CodeHeap::print_blobType_single(outputStream *out, u2 /* blobType */ type) {
+  out->print("%c", blobTypeChar[type]);
+}
+
+void CodeHeap::print_count_single(outputStream *out, unsigned short count) {
+  if (count >= 16)    out->print("*");
+  else if (count > 0) out->print("%1.1x", count);
+  else                out->print(" ");
+}
+
+void CodeHeap::print_space_single(outputStream *out, unsigned short space) {
+  size_t  space_in_bytes = ((unsigned int)space)<<_log2_segment_size;
+  char    fraction       = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
+  out->print("%c", fraction);
+}
+
+void CodeHeap::print_age_single(outputStream *out, unsigned int age) {
+  unsigned int indicator = 0;
+  unsigned int age_range = 256;
+  if (age > 0) {
+    while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
+      age_range /= 2;
+      indicator += 1;
+    }
+    out->print("%c", char('0'+indicator));
+  } else {
+    out->print(" ");
+  }
+}
+
+void CodeHeap::print_line_delim(outputStream *out, outputStream* ast, unsigned int ix, unsigned int gpl) {
+  if (ix % gpl == 0) {
+    char* low_bound = low_boundary();
+    if (ix > 0) {
+      ast->print("|");
+    }
+    ast->cr();
+    assert(out == ast, "must use the same stream!");
+
+    ast->print("%p", low_bound + ix*granule_size);
+    ast->fill_to(19);
+    ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
+  }
+}
+
+void CodeHeap::print_line_delim(outputStream *out, bufferedStream* ast, unsigned int ix, unsigned int gpl) {
+  if (ix % gpl == 0) {
+    char* low_bound = low_boundary();
+    if (ix > 0) {
+      ast->print("|");
+    }
+    ast->cr();
+    assert(out != ast, "must not use the same stream!");
+
+    out->print("%s", ast->as_string());
+    ast->reset();
+    ast->print("%p", low_bound + ix*granule_size);
+    ast->fill_to(19);
+    ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
+  }
+}
+
+CodeHeap::blobType CodeHeap::get_cbType(CodeBlob* cb) {
+  if (cb != NULL ) {
+    if (cb->is_runtime_stub())                return runtimeStub;
+    if (cb->is_deoptimization_stub())         return deoptimizationStub;
+    if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
+    if (cb->is_exception_stub())              return exceptionStub;
+    if (cb->is_safepoint_stub())              return safepointStub;
+    if (cb->is_adapter_blob())                return adapterBlob;
+    if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
+    if (cb->is_buffer_blob())                 return bufferBlob;
+
+    if (cb->is_nmethod() ) {
+      if (((nmethod*)cb)->is_in_use())        return nMethod_inuse;
+      if (((nmethod*)cb)->is_alive() && !(((nmethod*)cb)->is_not_entrant()))   return nMethod_notused;
+      if (((nmethod*)cb)->is_alive())         return nMethod_alive;
+      if (((nmethod*)cb)->is_unloaded())      return nMethod_unloaded;
+      if (((nmethod*)cb)->is_zombie())        return nMethod_dead;
+      tty->print_cr("unhandled nmethod state");
+      return nMethod_dead;
+    }
+  }
+  return noType;
+}
+//---<  END  >--- 8198691: CodeHeap State Analytics.
< prev index next >