1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "code/codeBlob.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/codeHeapState.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/nmethod.hpp"
  34 #include "code/pcDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "gc/shared/gcLocker.hpp"
  37 #include "logging/log.hpp"
  38 #include "logging/logStream.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/iterator.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "oops/method.inline.hpp"
  43 #include "oops/objArrayOop.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/compilationPolicy.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/icache.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/sweeper.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "trace/tracing.hpp"
  56 #include "utilities/align.hpp"
  57 #include "utilities/vmError.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef COMPILER1
  60 #include "c1/c1_Compilation.hpp"
  61 #include "c1/c1_Compiler.hpp"
  62 #endif
  63 #ifdef COMPILER2
  64 #include "opto/c2compiler.hpp"
  65 #include "opto/compile.hpp"
  66 #include "opto/node.hpp"
  67 #endif
  68 
  69 // Helper class for printing in CodeCache
  70 class CodeBlob_sizes {
  71  private:
  72   int count;
  73   int total_size;
  74   int header_size;
  75   int code_size;
  76   int stub_size;
  77   int relocation_size;
  78   int scopes_oop_size;
  79   int scopes_metadata_size;
  80   int scopes_data_size;
  81   int scopes_pcs_size;
  82 
  83  public:
  84   CodeBlob_sizes() {
  85     count            = 0;
  86     total_size       = 0;
  87     header_size      = 0;
  88     code_size        = 0;
  89     stub_size        = 0;
  90     relocation_size  = 0;
  91     scopes_oop_size  = 0;
  92     scopes_metadata_size  = 0;
  93     scopes_data_size = 0;
  94     scopes_pcs_size  = 0;
  95   }
  96 
  97   int total()                                    { return total_size; }
  98   bool is_empty()                                { return count == 0; }
  99 
 100   void print(const char* title) {
 101     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
 102                   count,
 103                   title,
 104                   (int)(total() / K),
 105                   header_size             * 100 / total_size,
 106                   relocation_size         * 100 / total_size,
 107                   code_size               * 100 / total_size,
 108                   stub_size               * 100 / total_size,
 109                   scopes_oop_size         * 100 / total_size,
 110                   scopes_metadata_size    * 100 / total_size,
 111                   scopes_data_size        * 100 / total_size,
 112                   scopes_pcs_size         * 100 / total_size);
 113   }
 114 
 115   void add(CodeBlob* cb) {
 116     count++;
 117     total_size       += cb->size();
 118     header_size      += cb->header_size();
 119     relocation_size  += cb->relocation_size();
 120     if (cb->is_nmethod()) {
 121       nmethod* nm = cb->as_nmethod_or_null();
 122       code_size        += nm->insts_size();
 123       stub_size        += nm->stub_size();
 124 
 125       scopes_oop_size  += nm->oops_size();
 126       scopes_metadata_size  += nm->metadata_size();
 127       scopes_data_size += nm->scopes_data_size();
 128       scopes_pcs_size  += nm->scopes_pcs_size();
 129     } else {
 130       code_size        += cb->code_size();
 131     }
 132   }
 133 };
 134 
 135 // Iterate over all CodeHeaps
 136 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 137 #define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
 138 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
 139 
 140 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 141 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 142 
 143 address CodeCache::_low_bound = 0;
 144 address CodeCache::_high_bound = 0;
 145 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 146 bool CodeCache::_needs_cache_clean = false;
 147 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 148 
 149 // Initialize arrays of CodeHeap subsets
 150 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 151 GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 152 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 153 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 154 
 155 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
 156   size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
 157   // Prepare error message
 158   const char* error = "Invalid code heap sizes";
 159   err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
 160                   " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
 161           non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
 162 
 163   if (total_size > cache_size) {
 164     // Some code heap sizes were explicitly set: total_size must be <= cache_size
 165     message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 166     vm_exit_during_initialization(error, message);
 167   } else if (all_set && total_size != cache_size) {
 168     // All code heap sizes were explicitly set: total_size must equal cache_size
 169     message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 170     vm_exit_during_initialization(error, message);
 171   }
 172 }
 173 
 174 void CodeCache::initialize_heaps() {
 175   bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
 176   bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
 177   bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
 178   size_t min_size           = os::vm_page_size();
 179   size_t cache_size         = ReservedCodeCacheSize;
 180   size_t non_nmethod_size   = NonNMethodCodeHeapSize;
 181   size_t profiled_size      = ProfiledCodeHeapSize;
 182   size_t non_profiled_size  = NonProfiledCodeHeapSize;
 183   // Check if total size set via command line flags exceeds the reserved size
 184   check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
 185                    (profiled_set     ? profiled_size     : min_size),
 186                    (non_profiled_set ? non_profiled_size : min_size),
 187                    cache_size,
 188                    non_nmethod_set && profiled_set && non_profiled_set);
 189 
 190   // Determine size of compiler buffers
 191   size_t code_buffers_size = 0;
 192 #ifdef COMPILER1
 193   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 194   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 195   code_buffers_size += c1_count * Compiler::code_buffer_size();
 196 #endif
 197 #ifdef COMPILER2
 198   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 199   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 200   // Initial size of constant table (this may be increased if a compiled method needs more space)
 201   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 202 #endif
 203 
 204   // Increase default non_nmethod_size to account for compiler buffers
 205   if (!non_nmethod_set) {
 206     non_nmethod_size += code_buffers_size;
 207   }
 208   // Calculate default CodeHeap sizes if not set by user
 209   if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
 210     // Check if we have enough space for the non-nmethod code heap
 211     if (cache_size > non_nmethod_size) {
 212       // Use the default value for non_nmethod_size and one half of the
 213       // remaining size for non-profiled and one half for profiled methods
 214       size_t remaining_size = cache_size - non_nmethod_size;
 215       profiled_size = remaining_size / 2;
 216       non_profiled_size = remaining_size - profiled_size;
 217     } else {
 218       // Use all space for the non-nmethod heap and set other heaps to minimal size
 219       non_nmethod_size = cache_size - 2 * min_size;
 220       profiled_size = min_size;
 221       non_profiled_size = min_size;
 222     }
 223   } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
 224     // The user explicitly set some code heap sizes. Increase or decrease the (default)
 225     // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
 226     // code heap sizes and then only change non-nmethod code heap size if still necessary.
 227     intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
 228     if (non_profiled_set) {
 229       if (!profiled_set) {
 230         // Adapt size of profiled code heap
 231         if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
 232           // Not enough space available, set to minimum size
 233           diff_size += profiled_size - min_size;
 234           profiled_size = min_size;
 235         } else {
 236           profiled_size += diff_size;
 237           diff_size = 0;
 238         }
 239       }
 240     } else if (profiled_set) {
 241       // Adapt size of non-profiled code heap
 242       if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
 243         // Not enough space available, set to minimum size
 244         diff_size += non_profiled_size - min_size;
 245         non_profiled_size = min_size;
 246       } else {
 247         non_profiled_size += diff_size;
 248         diff_size = 0;
 249       }
 250     } else if (non_nmethod_set) {
 251       // Distribute remaining size between profiled and non-profiled code heaps
 252       diff_size = cache_size - non_nmethod_size;
 253       profiled_size = diff_size / 2;
 254       non_profiled_size = diff_size - profiled_size;
 255       diff_size = 0;
 256     }
 257     if (diff_size != 0) {
 258       // Use non-nmethod code heap for remaining space requirements
 259       assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
 260       non_nmethod_size += diff_size;
 261     }
 262   }
 263 
 264   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 265   if (!heap_available(CodeBlobType::MethodProfiled)) {
 266     non_profiled_size += profiled_size;
 267     profiled_size = 0;
 268   }
 269   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 270   if (!heap_available(CodeBlobType::MethodNonProfiled)) {
 271     non_nmethod_size += non_profiled_size;
 272     non_profiled_size = 0;
 273   }
 274   // Make sure we have enough space for VM internal code
 275   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 276   if (non_nmethod_size < (min_code_cache_size + code_buffers_size)) {
 277     vm_exit_during_initialization(err_msg(
 278         "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
 279         non_nmethod_size/K, (min_code_cache_size + code_buffers_size)/K));
 280   }
 281 
 282   // Verify sizes and update flag values
 283   assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
 284   FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
 285   FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 286   FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 287 
 288   // If large page support is enabled, align code heaps according to large
 289   // page size to make sure that code cache is covered by large pages.
 290   const size_t alignment = MAX2(page_size(false), (size_t) os::vm_allocation_granularity());
 291   non_nmethod_size = align_up(non_nmethod_size, alignment);
 292   profiled_size    = align_down(profiled_size, alignment);
 293 
 294   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 295   // parts for the individual heaps. The memory layout looks like this:
 296   // ---------- high -----------
 297   //    Non-profiled nmethods
 298   //      Profiled nmethods
 299   //         Non-nmethods
 300   // ---------- low ------------
 301   ReservedCodeSpace rs = reserve_heap_memory(cache_size);
 302   ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
 303   ReservedSpace rest                = rs.last_part(non_nmethod_size);
 304   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 305   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 306 
 307   // Non-nmethods (stubs, adapters, ...)
 308   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 309   // Tier 2 and tier 3 (profiled) methods
 310   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 311   // Tier 1 and tier 4 (non-profiled) methods and native methods
 312   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 313 }
 314 
 315 size_t CodeCache::page_size(bool aligned) {
 316   if (os::can_execute_large_page_memory()) {
 317     return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, 8) :
 318                      os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8);
 319   } else {
 320     return os::vm_page_size();
 321   }
 322 }
 323 
 324 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 325   // Align and reserve space for code cache
 326   const size_t rs_ps = page_size();
 327   const size_t rs_align = MAX2(rs_ps, (size_t) os::vm_allocation_granularity());
 328   const size_t rs_size = align_up(size, rs_align);
 329   ReservedCodeSpace rs(rs_size, rs_align, rs_ps > (size_t) os::vm_page_size());
 330   if (!rs.is_reserved()) {
 331     vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)",
 332                                           rs_size/K));
 333   }
 334 
 335   // Initialize bounds
 336   _low_bound = (address)rs.base();
 337   _high_bound = _low_bound + rs.size();
 338   return rs;
 339 }
 340 
 341 // Heaps available for allocation
 342 bool CodeCache::heap_available(int code_blob_type) {
 343   if (!SegmentedCodeCache) {
 344     // No segmentation: use a single code heap
 345     return (code_blob_type == CodeBlobType::All);
 346   } else if (Arguments::is_interpreter_only()) {
 347     // Interpreter only: we don't need any method code heaps
 348     return (code_blob_type == CodeBlobType::NonNMethod);
 349   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 350     // Tiered compilation: use all code heaps
 351     return (code_blob_type < CodeBlobType::All);
 352   } else {
 353     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 354     return (code_blob_type == CodeBlobType::NonNMethod) ||
 355            (code_blob_type == CodeBlobType::MethodNonProfiled);
 356   }
 357 }
 358 
 359 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 360   switch(code_blob_type) {
 361   case CodeBlobType::NonNMethod:
 362     return "NonNMethodCodeHeapSize";
 363     break;
 364   case CodeBlobType::MethodNonProfiled:
 365     return "NonProfiledCodeHeapSize";
 366     break;
 367   case CodeBlobType::MethodProfiled:
 368     return "ProfiledCodeHeapSize";
 369     break;
 370   }
 371   ShouldNotReachHere();
 372   return NULL;
 373 }
 374 
 375 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 376   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 377     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 378   } else {
 379     return lhs->code_blob_type() - rhs->code_blob_type();
 380   }
 381 }
 382 
 383 void CodeCache::add_heap(CodeHeap* heap) {
 384   assert(!Universe::is_fully_initialized(), "late heap addition?");
 385 
 386   _heaps->insert_sorted<code_heap_compare>(heap);
 387 
 388   int type = heap->code_blob_type();
 389   if (code_blob_type_accepts_compiled(type)) {
 390     _compiled_heaps->insert_sorted<code_heap_compare>(heap);
 391   }
 392   if (code_blob_type_accepts_nmethod(type)) {
 393     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 394   }
 395   if (code_blob_type_accepts_allocable(type)) {
 396     _allocable_heaps->insert_sorted<code_heap_compare>(heap);
 397   }
 398 }
 399 
 400 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 401   // Check if heap is needed
 402   if (!heap_available(code_blob_type)) {
 403     return;
 404   }
 405 
 406   // Create CodeHeap
 407   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 408   add_heap(heap);
 409 
 410   // Reserve Space
 411   size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
 412   size_initial = align_up(size_initial, os::vm_page_size());
 413   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 414     vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)",
 415                                           heap->name(), size_initial/K));
 416   }
 417 
 418   // Register the CodeHeap
 419   MemoryService::add_code_heap_memory_pool(heap, name);
 420 }
 421 
 422 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
 423   FOR_ALL_HEAPS(heap) {
 424     if ((*heap)->contains(start)) {
 425       return *heap;
 426     }
 427   }
 428   return NULL;
 429 }
 430 
 431 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 432   assert(cb != NULL, "CodeBlob is null");
 433   FOR_ALL_HEAPS(heap) {
 434     if ((*heap)->contains_blob(cb)) {
 435       return *heap;
 436     }
 437   }
 438   ShouldNotReachHere();
 439   return NULL;
 440 }
 441 
 442 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 443   FOR_ALL_HEAPS(heap) {
 444     if ((*heap)->accepts(code_blob_type)) {
 445       return *heap;
 446     }
 447   }
 448   return NULL;
 449 }
 450 
 451 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 452   assert_locked_or_safepoint(CodeCache_lock);
 453   assert(heap != NULL, "heap is null");
 454   return (CodeBlob*)heap->first();
 455 }
 456 
 457 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 458   if (heap_available(code_blob_type)) {
 459     return first_blob(get_code_heap(code_blob_type));
 460   } else {
 461     return NULL;
 462   }
 463 }
 464 
 465 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 466   assert_locked_or_safepoint(CodeCache_lock);
 467   assert(heap != NULL, "heap is null");
 468   return (CodeBlob*)heap->next(cb);
 469 }
 470 
 471 /**
 472  * Do not seize the CodeCache lock here--if the caller has not
 473  * already done so, we are going to lose bigtime, since the code
 474  * cache will contain a garbage CodeBlob until the caller can
 475  * run the constructor for the CodeBlob subclass he is busy
 476  * instantiating.
 477  */
 478 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
 479   // Possibly wakes up the sweeper thread.
 480   NMethodSweeper::notify(code_blob_type);
 481   assert_locked_or_safepoint(CodeCache_lock);
 482   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 483   if (size <= 0) {
 484     return NULL;
 485   }
 486   CodeBlob* cb = NULL;
 487 
 488   // Get CodeHeap for the given CodeBlobType
 489   CodeHeap* heap = get_code_heap(code_blob_type);
 490   assert(heap != NULL, "heap is null");
 491 
 492   while (true) {
 493     cb = (CodeBlob*)heap->allocate(size);
 494     if (cb != NULL) break;
 495     if (!heap->expand_by(CodeCacheExpansionSize)) {
 496       // Save original type for error reporting
 497       if (orig_code_blob_type == CodeBlobType::All) {
 498         orig_code_blob_type = code_blob_type;
 499       }
 500       // Expansion failed
 501       if (SegmentedCodeCache) {
 502         // Fallback solution: Try to store code in another code heap.
 503         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 504         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 505         // and force stack scanning if less than 10% of the code heap are free.
 506         int type = code_blob_type;
 507         switch (type) {
 508         case CodeBlobType::NonNMethod:
 509           type = CodeBlobType::MethodNonProfiled;
 510           break;
 511         case CodeBlobType::MethodNonProfiled:
 512           type = CodeBlobType::MethodProfiled;
 513           break;
 514         case CodeBlobType::MethodProfiled:
 515           // Avoid loop if we already tried that code heap
 516           if (type == orig_code_blob_type) {
 517             type = CodeBlobType::MethodNonProfiled;
 518           }
 519           break;
 520         }
 521         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 522           if (PrintCodeCacheExtension) {
 523             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 524                           heap->name(), get_code_heap(type)->name());
 525           }
 526           return allocate(size, type, orig_code_blob_type);
 527         }
 528       }
 529       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 530       CompileBroker::handle_full_code_cache(orig_code_blob_type);
 531       return NULL;
 532     }
 533     if (PrintCodeCacheExtension) {
 534       ResourceMark rm;
 535       if (_nmethod_heaps->length() >= 1) {
 536         tty->print("%s", heap->name());
 537       } else {
 538         tty->print("CodeCache");
 539       }
 540       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 541                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 542                     (address)heap->high() - (address)heap->low_boundary());
 543     }
 544   }
 545   print_trace("allocation", cb, size);
 546   return cb;
 547 }
 548 
 549 void CodeCache::free(CodeBlob* cb) {
 550   assert_locked_or_safepoint(CodeCache_lock);
 551   CodeHeap* heap = get_code_heap(cb);
 552   print_trace("free", cb);
 553   if (cb->is_nmethod()) {
 554     heap->set_nmethod_count(heap->nmethod_count() - 1);
 555     if (((nmethod *)cb)->has_dependencies()) {
 556       _number_of_nmethods_with_dependencies--;
 557     }
 558   }
 559   if (cb->is_adapter_blob()) {
 560     heap->set_adapter_count(heap->adapter_count() - 1);
 561   }
 562 
 563   // Get heap for given CodeBlob and deallocate
 564   get_code_heap(cb)->deallocate(cb);
 565 
 566   assert(heap->blob_count() >= 0, "sanity check");
 567 }
 568 
 569 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
 570   assert_locked_or_safepoint(CodeCache_lock);
 571   guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
 572   print_trace("free_unused_tail", cb);
 573 
 574   // We also have to account for the extra space (i.e. header) used by the CodeBlob
 575   // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
 576   used += CodeBlob::align_code_offset(cb->header_size());
 577 
 578   // Get heap for given CodeBlob and deallocate its unused tail
 579   get_code_heap(cb)->deallocate_tail(cb, used);
 580   // Adjust the sizes of the CodeBlob
 581   cb->adjust_size(used);
 582 }
 583 
 584 void CodeCache::commit(CodeBlob* cb) {
 585   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 586   assert_locked_or_safepoint(CodeCache_lock);
 587   CodeHeap* heap = get_code_heap(cb);
 588   if (cb->is_nmethod()) {
 589     heap->set_nmethod_count(heap->nmethod_count() + 1);
 590     if (((nmethod *)cb)->has_dependencies()) {
 591       _number_of_nmethods_with_dependencies++;
 592     }
 593   }
 594   if (cb->is_adapter_blob()) {
 595     heap->set_adapter_count(heap->adapter_count() + 1);
 596   }
 597 
 598   // flush the hardware I-cache
 599   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 600 }
 601 
 602 bool CodeCache::contains(void *p) {
 603   // S390 uses contains() in current_frame(), which is used before
 604   // code cache initialization if NativeMemoryTracking=detail is set.
 605   S390_ONLY(if (_heaps == NULL) return false;)
 606   // It should be ok to call contains without holding a lock.
 607   FOR_ALL_HEAPS(heap) {
 608     if ((*heap)->contains(p)) {
 609       return true;
 610     }
 611   }
 612   return false;
 613 }
 614 
 615 bool CodeCache::contains(nmethod *nm) {
 616   return contains((void *)nm);
 617 }
 618 
 619 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 620 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 621 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 622 CodeBlob* CodeCache::find_blob(void* start) {
 623   CodeBlob* result = find_blob_unsafe(start);
 624   // We could potentially look up non_entrant methods
 625   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
 626   return result;
 627 }
 628 
 629 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 630 // what you are doing)
 631 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 632   // NMT can walk the stack before code cache is created
 633   if (_heaps != NULL) {
 634     CodeHeap* heap = get_code_heap_containing(start);
 635     if (heap != NULL) {
 636       return heap->find_blob_unsafe(start);
 637     }
 638   }
 639   return NULL;
 640 }
 641 
 642 nmethod* CodeCache::find_nmethod(void* start) {
 643   CodeBlob* cb = find_blob(start);
 644   assert(cb->is_nmethod(), "did not find an nmethod");
 645   return (nmethod*)cb;
 646 }
 647 
 648 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 649   assert_locked_or_safepoint(CodeCache_lock);
 650   FOR_ALL_HEAPS(heap) {
 651     FOR_ALL_BLOBS(cb, *heap) {
 652       f(cb);
 653     }
 654   }
 655 }
 656 
 657 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 658   assert_locked_or_safepoint(CodeCache_lock);
 659   NMethodIterator iter;
 660   while(iter.next()) {
 661     f(iter.method());
 662   }
 663 }
 664 
 665 void CodeCache::metadata_do(void f(Metadata* m)) {
 666   assert_locked_or_safepoint(CodeCache_lock);
 667   NMethodIterator iter;
 668   while(iter.next_alive()) {
 669     iter.method()->metadata_do(f);
 670   }
 671   AOTLoader::metadata_do(f);
 672 }
 673 
 674 int CodeCache::alignment_unit() {
 675   return (int)_heaps->first()->alignment_unit();
 676 }
 677 
 678 int CodeCache::alignment_offset() {
 679   return (int)_heaps->first()->alignment_offset();
 680 }
 681 
 682 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 683 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 684   assert_locked_or_safepoint(CodeCache_lock);
 685   CompiledMethodIterator iter;
 686   while(iter.next_alive()) {
 687     iter.method()->do_unloading(is_alive, unloading_occurred);
 688   }
 689 }
 690 
 691 void CodeCache::blobs_do(CodeBlobClosure* f) {
 692   assert_locked_or_safepoint(CodeCache_lock);
 693   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 694     FOR_ALL_BLOBS(cb, *heap) {
 695       if (cb->is_alive()) {
 696         f->do_code_blob(cb);
 697 #ifdef ASSERT
 698         if (cb->is_nmethod()) {
 699           Universe::heap()->verify_nmethod((nmethod*)cb);
 700         }
 701 #endif //ASSERT
 702       }
 703     }
 704   }
 705 }
 706 
 707 // Walk the list of methods which might contain oops to the java heap.
 708 void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
 709   assert_locked_or_safepoint(CodeCache_lock);
 710 
 711   const bool fix_relocations = f->fix_relocations();
 712   debug_only(mark_scavenge_root_nmethods());
 713 
 714   nmethod* prev = NULL;
 715   nmethod* cur = scavenge_root_nmethods();
 716   while (cur != NULL) {
 717     debug_only(cur->clear_scavenge_root_marked());
 718     assert(cur->scavenge_root_not_marked(), "");
 719     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 720 
 721     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 722     if (TraceScavenge) {
 723       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 724     }
 725     if (is_live) {
 726       // Perform cur->oops_do(f), maybe just once per nmethod.
 727       f->do_code_blob(cur);
 728     }
 729     nmethod* const next = cur->scavenge_root_link();
 730     // The scavengable nmethod list must contain all methods with scavengable
 731     // oops. It is safe to include more nmethod on the list, but we do not
 732     // expect any live non-scavengable nmethods on the list.
 733     if (fix_relocations) {
 734       if (!is_live || !cur->detect_scavenge_root_oops()) {
 735         unlink_scavenge_root_nmethod(cur, prev);
 736       } else {
 737         prev = cur;
 738       }
 739     }
 740     cur = next;
 741   }
 742 
 743   // Check for stray marks.
 744   debug_only(verify_perm_nmethods(NULL));
 745 }
 746 
 747 void CodeCache::register_scavenge_root_nmethod(nmethod* nm) {
 748   assert_locked_or_safepoint(CodeCache_lock);
 749   if (!nm->on_scavenge_root_list() && nm->detect_scavenge_root_oops()) {
 750     add_scavenge_root_nmethod(nm);
 751   }
 752 }
 753 
 754 void CodeCache::verify_scavenge_root_nmethod(nmethod* nm) {
 755   nm->verify_scavenge_root_oops();
 756 }
 757 
 758 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 759   assert_locked_or_safepoint(CodeCache_lock);
 760 
 761   nm->set_on_scavenge_root_list();
 762   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 763   set_scavenge_root_nmethods(nm);
 764   print_trace("add_scavenge_root", nm);
 765 }
 766 
 767 void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
 768   assert_locked_or_safepoint(CodeCache_lock);
 769 
 770   assert((prev == NULL && scavenge_root_nmethods() == nm) ||
 771          (prev != NULL && prev->scavenge_root_link() == nm), "precondition");
 772 
 773   print_trace("unlink_scavenge_root", nm);
 774   if (prev == NULL) {
 775     set_scavenge_root_nmethods(nm->scavenge_root_link());
 776   } else {
 777     prev->set_scavenge_root_link(nm->scavenge_root_link());
 778   }
 779   nm->set_scavenge_root_link(NULL);
 780   nm->clear_on_scavenge_root_list();
 781 }
 782 
 783 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 784   assert_locked_or_safepoint(CodeCache_lock);
 785 
 786   print_trace("drop_scavenge_root", nm);
 787   nmethod* prev = NULL;
 788   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 789     if (cur == nm) {
 790       unlink_scavenge_root_nmethod(cur, prev);
 791       return;
 792     }
 793     prev = cur;
 794   }
 795   assert(false, "should have been on list");
 796 }
 797 
 798 void CodeCache::prune_scavenge_root_nmethods() {
 799   assert_locked_or_safepoint(CodeCache_lock);
 800 
 801   debug_only(mark_scavenge_root_nmethods());
 802 
 803   nmethod* last = NULL;
 804   nmethod* cur = scavenge_root_nmethods();
 805   while (cur != NULL) {
 806     nmethod* next = cur->scavenge_root_link();
 807     debug_only(cur->clear_scavenge_root_marked());
 808     assert(cur->scavenge_root_not_marked(), "");
 809     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 810 
 811     if (!cur->is_zombie() && !cur->is_unloaded()
 812         && cur->detect_scavenge_root_oops()) {
 813       // Keep it.  Advance 'last' to prevent deletion.
 814       last = cur;
 815     } else {
 816       // Prune it from the list, so we don't have to look at it any more.
 817       print_trace("prune_scavenge_root", cur);
 818       unlink_scavenge_root_nmethod(cur, last);
 819     }
 820     cur = next;
 821   }
 822 
 823   // Check for stray marks.
 824   debug_only(verify_perm_nmethods(NULL));
 825 }
 826 
 827 #ifndef PRODUCT
 828 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 829   // While we are here, verify the integrity of the list.
 830   mark_scavenge_root_nmethods();
 831   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 832     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 833     cur->clear_scavenge_root_marked();
 834   }
 835   verify_perm_nmethods(f);
 836 }
 837 
 838 // Temporarily mark nmethods that are claimed to be on the scavenge list.
 839 void CodeCache::mark_scavenge_root_nmethods() {
 840   NMethodIterator iter;
 841   while(iter.next_alive()) {
 842     nmethod* nm = iter.method();
 843     assert(nm->scavenge_root_not_marked(), "clean state");
 844     if (nm->on_scavenge_root_list())
 845       nm->set_scavenge_root_marked();
 846   }
 847 }
 848 
 849 // If the closure is given, run it on the unlisted nmethods.
 850 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 851 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 852   NMethodIterator iter;
 853   while(iter.next_alive()) {
 854     nmethod* nm = iter.method();
 855     bool call_f = (f_or_null != NULL);
 856     assert(nm->scavenge_root_not_marked(), "must be already processed");
 857     if (nm->on_scavenge_root_list())
 858       call_f = false;  // don't show this one to the client
 859     Universe::heap()->verify_nmethod(nm);
 860     if (call_f)  f_or_null->do_code_blob(nm);
 861   }
 862 }
 863 #endif //PRODUCT
 864 
 865 void CodeCache::verify_clean_inline_caches() {
 866 #ifdef ASSERT
 867   NMethodIterator iter;
 868   while(iter.next_alive()) {
 869     nmethod* nm = iter.method();
 870     assert(!nm->is_unloaded(), "Tautology");
 871     nm->verify_clean_inline_caches();
 872     nm->verify();
 873   }
 874 #endif
 875 }
 876 
 877 void CodeCache::verify_icholder_relocations() {
 878 #ifdef ASSERT
 879   // make sure that we aren't leaking icholders
 880   int count = 0;
 881   FOR_ALL_HEAPS(heap) {
 882     FOR_ALL_BLOBS(cb, *heap) {
 883       CompiledMethod *nm = cb->as_compiled_method_or_null();
 884       if (nm != NULL) {
 885         count += nm->verify_icholder_relocations();
 886       }
 887     }
 888   }
 889   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 890          CompiledICHolder::live_count(), "must agree");
 891 #endif
 892 }
 893 
 894 void CodeCache::gc_prologue() {
 895 }
 896 
 897 void CodeCache::gc_epilogue() {
 898   assert_locked_or_safepoint(CodeCache_lock);
 899   NOT_DEBUG(if (needs_cache_clean())) {
 900     CompiledMethodIterator iter;
 901     while(iter.next_alive()) {
 902       CompiledMethod* cm = iter.method();
 903       assert(!cm->is_unloaded(), "Tautology");
 904       DEBUG_ONLY(if (needs_cache_clean())) {
 905         cm->cleanup_inline_caches();
 906       }
 907       DEBUG_ONLY(cm->verify());
 908       DEBUG_ONLY(cm->verify_oop_relocations());
 909     }
 910   }
 911 
 912   set_needs_cache_clean(false);
 913   prune_scavenge_root_nmethods();
 914 
 915   verify_icholder_relocations();
 916 }
 917 
 918 void CodeCache::verify_oops() {
 919   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 920   VerifyOopClosure voc;
 921   NMethodIterator iter;
 922   while(iter.next_alive()) {
 923     nmethod* nm = iter.method();
 924     nm->oops_do(&voc);
 925     nm->verify_oop_relocations();
 926   }
 927 }
 928 
 929 int CodeCache::blob_count(int code_blob_type) {
 930   CodeHeap* heap = get_code_heap(code_blob_type);
 931   return (heap != NULL) ? heap->blob_count() : 0;
 932 }
 933 
 934 int CodeCache::blob_count() {
 935   int count = 0;
 936   FOR_ALL_HEAPS(heap) {
 937     count += (*heap)->blob_count();
 938   }
 939   return count;
 940 }
 941 
 942 int CodeCache::nmethod_count(int code_blob_type) {
 943   CodeHeap* heap = get_code_heap(code_blob_type);
 944   return (heap != NULL) ? heap->nmethod_count() : 0;
 945 }
 946 
 947 int CodeCache::nmethod_count() {
 948   int count = 0;
 949   FOR_ALL_NMETHOD_HEAPS(heap) {
 950     count += (*heap)->nmethod_count();
 951   }
 952   return count;
 953 }
 954 
 955 int CodeCache::adapter_count(int code_blob_type) {
 956   CodeHeap* heap = get_code_heap(code_blob_type);
 957   return (heap != NULL) ? heap->adapter_count() : 0;
 958 }
 959 
 960 int CodeCache::adapter_count() {
 961   int count = 0;
 962   FOR_ALL_HEAPS(heap) {
 963     count += (*heap)->adapter_count();
 964   }
 965   return count;
 966 }
 967 
 968 address CodeCache::low_bound(int code_blob_type) {
 969   CodeHeap* heap = get_code_heap(code_blob_type);
 970   return (heap != NULL) ? (address)heap->low_boundary() : NULL;
 971 }
 972 
 973 address CodeCache::high_bound(int code_blob_type) {
 974   CodeHeap* heap = get_code_heap(code_blob_type);
 975   return (heap != NULL) ? (address)heap->high_boundary() : NULL;
 976 }
 977 
 978 size_t CodeCache::capacity() {
 979   size_t cap = 0;
 980   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 981     cap += (*heap)->capacity();
 982   }
 983   return cap;
 984 }
 985 
 986 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 987   CodeHeap* heap = get_code_heap(code_blob_type);
 988   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 989 }
 990 
 991 size_t CodeCache::unallocated_capacity() {
 992   size_t unallocated_cap = 0;
 993   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 994     unallocated_cap += (*heap)->unallocated_capacity();
 995   }
 996   return unallocated_cap;
 997 }
 998 
 999 size_t CodeCache::max_capacity() {
1000   size_t max_cap = 0;
1001   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1002     max_cap += (*heap)->max_capacity();
1003   }
1004   return max_cap;
1005 }
1006 
1007 /**
1008  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
1009  * is free, reverse_free_ratio() returns 4.
1010  */
1011 double CodeCache::reverse_free_ratio(int code_blob_type) {
1012   CodeHeap* heap = get_code_heap(code_blob_type);
1013   if (heap == NULL) {
1014     return 0;
1015   }
1016 
1017   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
1018   double max_capacity = (double)heap->max_capacity();
1019   double result = max_capacity / unallocated_capacity;
1020   assert (max_capacity >= unallocated_capacity, "Must be");
1021   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1022   return result;
1023 }
1024 
1025 size_t CodeCache::bytes_allocated_in_freelists() {
1026   size_t allocated_bytes = 0;
1027   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1028     allocated_bytes += (*heap)->allocated_in_freelist();
1029   }
1030   return allocated_bytes;
1031 }
1032 
1033 int CodeCache::allocated_segments() {
1034   int number_of_segments = 0;
1035   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1036     number_of_segments += (*heap)->allocated_segments();
1037   }
1038   return number_of_segments;
1039 }
1040 
1041 size_t CodeCache::freelists_length() {
1042   size_t length = 0;
1043   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1044     length += (*heap)->freelist_length();
1045   }
1046   return length;
1047 }
1048 
1049 void icache_init();
1050 
1051 void CodeCache::initialize() {
1052   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1053 #ifdef COMPILER2
1054   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1055 #endif
1056   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1057   // This was originally just a check of the alignment, causing failure, instead, round
1058   // the code cache to the page size.  In particular, Solaris is moving to a larger
1059   // default page size.
1060   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1061 
1062   if (SegmentedCodeCache) {
1063     // Use multiple code heaps
1064     initialize_heaps();
1065   } else {
1066     // Use a single code heap
1067     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
1068     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
1069     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
1070     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
1071     add_heap(rs, "CodeCache", CodeBlobType::All);
1072   }
1073 
1074   // Initialize ICache flush mechanism
1075   // This service is needed for os::register_code_area
1076   icache_init();
1077 
1078   // Give OS a chance to register generated code area.
1079   // This is used on Windows 64 bit platforms to register
1080   // Structured Exception Handlers for our generated code.
1081   os::register_code_area((char*)low_bound(), (char*)high_bound());
1082 }
1083 
1084 void codeCache_init() {
1085   CodeCache::initialize();
1086   // Load AOT libraries and add AOT code heaps.
1087   AOTLoader::initialize();
1088 }
1089 
1090 //------------------------------------------------------------------------------------------------
1091 
1092 int CodeCache::number_of_nmethods_with_dependencies() {
1093   return _number_of_nmethods_with_dependencies;
1094 }
1095 
1096 void CodeCache::clear_inline_caches() {
1097   assert_locked_or_safepoint(CodeCache_lock);
1098   CompiledMethodIterator iter;
1099   while(iter.next_alive()) {
1100     iter.method()->clear_inline_caches();
1101   }
1102 }
1103 
1104 void CodeCache::cleanup_inline_caches() {
1105   assert_locked_or_safepoint(CodeCache_lock);
1106   NMethodIterator iter;
1107   while(iter.next_alive()) {
1108     iter.method()->cleanup_inline_caches(/*clean_all=*/true);
1109   }
1110 }
1111 
1112 // Keeps track of time spent for checking dependencies
1113 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1114 
1115 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
1116   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1117   int number_of_marked_CodeBlobs = 0;
1118 
1119   // search the hierarchy looking for nmethods which are affected by the loading of this class
1120 
1121   // then search the interfaces this class implements looking for nmethods
1122   // which might be dependent of the fact that an interface only had one
1123   // implementor.
1124   // nmethod::check_all_dependencies works only correctly, if no safepoint
1125   // can happen
1126   NoSafepointVerifier nsv;
1127   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1128     Klass* d = str.klass();
1129     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1130   }
1131 
1132 #ifndef PRODUCT
1133   if (VerifyDependencies) {
1134     // Object pointers are used as unique identifiers for dependency arguments. This
1135     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1136     dependentCheckTime.start();
1137     nmethod::check_all_dependencies(changes);
1138     dependentCheckTime.stop();
1139   }
1140 #endif
1141 
1142   return number_of_marked_CodeBlobs;
1143 }
1144 
1145 CompiledMethod* CodeCache::find_compiled(void* start) {
1146   CodeBlob *cb = find_blob(start);
1147   assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1148   return (CompiledMethod*)cb;
1149 }
1150 
1151 bool CodeCache::is_far_target(address target) {
1152 #if INCLUDE_AOT
1153   return NativeCall::is_far_call(_low_bound,  target) ||
1154          NativeCall::is_far_call(_high_bound, target);
1155 #else
1156   return false;
1157 #endif
1158 }
1159 
1160 #ifdef HOTSWAP
1161 int CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1162   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1163   int number_of_marked_CodeBlobs = 0;
1164 
1165   // Deoptimize all methods of the evolving class itself
1166   Array<Method*>* old_methods = dependee->methods();
1167   for (int i = 0; i < old_methods->length(); i++) {
1168     ResourceMark rm;
1169     Method* old_method = old_methods->at(i);
1170     CompiledMethod* nm = old_method->code();
1171     if (nm != NULL) {
1172       nm->mark_for_deoptimization();
1173       number_of_marked_CodeBlobs++;
1174     }
1175   }
1176 
1177   CompiledMethodIterator iter;
1178   while(iter.next_alive()) {
1179     CompiledMethod* nm = iter.method();
1180     if (nm->is_marked_for_deoptimization()) {
1181       // ...Already marked in the previous pass; don't count it again.
1182     } else if (nm->is_evol_dependent_on(dependee)) {
1183       ResourceMark rm;
1184       nm->mark_for_deoptimization();
1185       number_of_marked_CodeBlobs++;
1186     } else  {
1187       // flush caches in case they refer to a redefined Method*
1188       nm->clear_inline_caches();
1189     }
1190   }
1191 
1192   return number_of_marked_CodeBlobs;
1193 }
1194 #endif // HOTSWAP
1195 
1196 
1197 // Deoptimize all methods
1198 void CodeCache::mark_all_nmethods_for_deoptimization() {
1199   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1200   CompiledMethodIterator iter;
1201   while(iter.next_alive()) {
1202     CompiledMethod* nm = iter.method();
1203     if (!nm->method()->is_method_handle_intrinsic()) {
1204       nm->mark_for_deoptimization();
1205     }
1206   }
1207 }
1208 
1209 int CodeCache::mark_for_deoptimization(Method* dependee) {
1210   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1211   int number_of_marked_CodeBlobs = 0;
1212 
1213   CompiledMethodIterator iter;
1214   while(iter.next_alive()) {
1215     CompiledMethod* nm = iter.method();
1216     if (nm->is_dependent_on_method(dependee)) {
1217       ResourceMark rm;
1218       nm->mark_for_deoptimization();
1219       number_of_marked_CodeBlobs++;
1220     }
1221   }
1222 
1223   return number_of_marked_CodeBlobs;
1224 }
1225 
1226 void CodeCache::make_marked_nmethods_not_entrant() {
1227   assert_locked_or_safepoint(CodeCache_lock);
1228   CompiledMethodIterator iter;
1229   while(iter.next_alive()) {
1230     CompiledMethod* nm = iter.method();
1231     if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1232       nm->make_not_entrant();
1233     }
1234   }
1235 }
1236 
1237 // Flushes compiled methods dependent on dependee.
1238 void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1239   assert_lock_strong(Compile_lock);
1240 
1241   if (number_of_nmethods_with_dependencies() == 0) return;
1242 
1243   // CodeCache can only be updated by a thread_in_VM and they will all be
1244   // stopped during the safepoint so CodeCache will be safe to update without
1245   // holding the CodeCache_lock.
1246 
1247   KlassDepChange changes(dependee);
1248 
1249   // Compute the dependent nmethods
1250   if (mark_for_deoptimization(changes) > 0) {
1251     // At least one nmethod has been marked for deoptimization
1252     VM_Deoptimize op;
1253     VMThread::execute(&op);
1254   }
1255 }
1256 
1257 #ifdef HOTSWAP
1258 // Flushes compiled methods dependent on dependee in the evolutionary sense
1259 void CodeCache::flush_evol_dependents_on(InstanceKlass* ev_k) {
1260   // --- Compile_lock is not held. However we are at a safepoint.
1261   assert_locked_or_safepoint(Compile_lock);
1262   if (number_of_nmethods_with_dependencies() == 0 && !UseAOT) return;
1263 
1264   // CodeCache can only be updated by a thread_in_VM and they will all be
1265   // stopped during the safepoint so CodeCache will be safe to update without
1266   // holding the CodeCache_lock.
1267 
1268   // Compute the dependent nmethods
1269   if (mark_for_evol_deoptimization(ev_k) > 0) {
1270     // At least one nmethod has been marked for deoptimization
1271 
1272     // All this already happens inside a VM_Operation, so we'll do all the work here.
1273     // Stuff copied from VM_Deoptimize and modified slightly.
1274 
1275     // We do not want any GCs to happen while we are in the middle of this VM operation
1276     ResourceMark rm;
1277     DeoptimizationMarker dm;
1278 
1279     // Deoptimize all activations depending on marked nmethods
1280     Deoptimization::deoptimize_dependents();
1281 
1282     // Make the dependent methods not entrant
1283     make_marked_nmethods_not_entrant();
1284   }
1285 }
1286 #endif // HOTSWAP
1287 
1288 
1289 // Flushes compiled methods dependent on dependee
1290 void CodeCache::flush_dependents_on_method(const methodHandle& m_h) {
1291   // --- Compile_lock is not held. However we are at a safepoint.
1292   assert_locked_or_safepoint(Compile_lock);
1293 
1294   // CodeCache can only be updated by a thread_in_VM and they will all be
1295   // stopped dring the safepoint so CodeCache will be safe to update without
1296   // holding the CodeCache_lock.
1297 
1298   // Compute the dependent nmethods
1299   if (mark_for_deoptimization(m_h()) > 0) {
1300     // At least one nmethod has been marked for deoptimization
1301 
1302     // All this already happens inside a VM_Operation, so we'll do all the work here.
1303     // Stuff copied from VM_Deoptimize and modified slightly.
1304 
1305     // We do not want any GCs to happen while we are in the middle of this VM operation
1306     ResourceMark rm;
1307     DeoptimizationMarker dm;
1308 
1309     // Deoptimize all activations depending on marked nmethods
1310     Deoptimization::deoptimize_dependents();
1311 
1312     // Make the dependent methods not entrant
1313     make_marked_nmethods_not_entrant();
1314   }
1315 }
1316 
1317 void CodeCache::verify() {
1318   assert_locked_or_safepoint(CodeCache_lock);
1319   FOR_ALL_HEAPS(heap) {
1320     (*heap)->verify();
1321     FOR_ALL_BLOBS(cb, *heap) {
1322       if (cb->is_alive()) {
1323         cb->verify();
1324       }
1325     }
1326   }
1327 }
1328 
1329 // A CodeHeap is full. Print out warning and report event.
1330 PRAGMA_DIAG_PUSH
1331 PRAGMA_FORMAT_NONLITERAL_IGNORED
1332 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1333   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1334   CodeHeap* heap = get_code_heap(code_blob_type);
1335   assert(heap != NULL, "heap is null");
1336 
1337   if ((heap->full_count() == 0) || print) {
1338     // Not yet reported for this heap, report
1339     if (SegmentedCodeCache) {
1340       ResourceMark rm;
1341       stringStream msg1_stream, msg2_stream;
1342       msg1_stream.print("%s is full. Compiler has been disabled.",
1343                         get_code_heap_name(code_blob_type));
1344       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1345                  get_code_heap_flag_name(code_blob_type));
1346       const char *msg1 = msg1_stream.as_string();
1347       const char *msg2 = msg2_stream.as_string();
1348 
1349       log_warning(codecache)(msg1);
1350       log_warning(codecache)(msg2);
1351       warning(msg1);
1352       warning(msg2);
1353     } else {
1354       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1355       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1356 
1357       log_warning(codecache)(msg1);
1358       log_warning(codecache)(msg2);
1359       warning(msg1);
1360       warning(msg2);
1361     }
1362     ResourceMark rm;
1363     stringStream s;
1364     // Dump code cache  into a buffer before locking the tty,
1365     {
1366       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1367       print_summary(&s);
1368     }
1369     {
1370       ttyLocker ttyl;
1371       tty->print("%s", s.as_string());
1372     }
1373 
1374     if (heap->full_count() == 0) {
1375       LogTarget(Debug, codecache) lt;
1376       if (lt.is_enabled()) {
1377         CompileBroker::print_heapinfo(tty, "all", "4096"); // details, may be a lot!
1378       }
1379     }
1380   }
1381 
1382   heap->report_full();
1383 
1384   EventCodeCacheFull event;
1385   if (event.should_commit()) {
1386     event.set_codeBlobType((u1)code_blob_type);
1387     event.set_startAddress((u8)heap->low_boundary());
1388     event.set_commitedTopAddress((u8)heap->high());
1389     event.set_reservedTopAddress((u8)heap->high_boundary());
1390     event.set_entryCount(heap->blob_count());
1391     event.set_methodCount(heap->nmethod_count());
1392     event.set_adaptorCount(heap->adapter_count());
1393     event.set_unallocatedCapacity(heap->unallocated_capacity());
1394     event.set_fullCount(heap->full_count());
1395     event.commit();
1396   }
1397 }
1398 PRAGMA_DIAG_POP
1399 
1400 void CodeCache::print_memory_overhead() {
1401   size_t wasted_bytes = 0;
1402   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1403       CodeHeap* curr_heap = *heap;
1404       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1405         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1406         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1407       }
1408   }
1409   // Print bytes that are allocated in the freelist
1410   ttyLocker ttl;
1411   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1412   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1413   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1414   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1415 }
1416 
1417 //------------------------------------------------------------------------------------------------
1418 // Non-product version
1419 
1420 #ifndef PRODUCT
1421 
1422 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1423   if (PrintCodeCache2) {  // Need to add a new flag
1424     ResourceMark rm;
1425     if (size == 0)  size = cb->size();
1426     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1427   }
1428 }
1429 
1430 void CodeCache::print_internals() {
1431   int nmethodCount = 0;
1432   int runtimeStubCount = 0;
1433   int adapterCount = 0;
1434   int deoptimizationStubCount = 0;
1435   int uncommonTrapStubCount = 0;
1436   int bufferBlobCount = 0;
1437   int total = 0;
1438   int nmethodAlive = 0;
1439   int nmethodNotEntrant = 0;
1440   int nmethodZombie = 0;
1441   int nmethodUnloaded = 0;
1442   int nmethodJava = 0;
1443   int nmethodNative = 0;
1444   int max_nm_size = 0;
1445   ResourceMark rm;
1446 
1447   int i = 0;
1448   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1449     if ((_nmethod_heaps->length() >= 1) && Verbose) {
1450       tty->print_cr("-- %s --", (*heap)->name());
1451     }
1452     FOR_ALL_BLOBS(cb, *heap) {
1453       total++;
1454       if (cb->is_nmethod()) {
1455         nmethod* nm = (nmethod*)cb;
1456 
1457         if (Verbose && nm->method() != NULL) {
1458           ResourceMark rm;
1459           char *method_name = nm->method()->name_and_sig_as_C_string();
1460           tty->print("%s", method_name);
1461           if(nm->is_alive()) { tty->print_cr(" alive"); }
1462           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1463           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1464         }
1465 
1466         nmethodCount++;
1467 
1468         if(nm->is_alive()) { nmethodAlive++; }
1469         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1470         if(nm->is_zombie()) { nmethodZombie++; }
1471         if(nm->is_unloaded()) { nmethodUnloaded++; }
1472         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1473 
1474         if(nm->method() != NULL && nm->is_java_method()) {
1475           nmethodJava++;
1476           max_nm_size = MAX2(max_nm_size, nm->size());
1477         }
1478       } else if (cb->is_runtime_stub()) {
1479         runtimeStubCount++;
1480       } else if (cb->is_deoptimization_stub()) {
1481         deoptimizationStubCount++;
1482       } else if (cb->is_uncommon_trap_stub()) {
1483         uncommonTrapStubCount++;
1484       } else if (cb->is_adapter_blob()) {
1485         adapterCount++;
1486       } else if (cb->is_buffer_blob()) {
1487         bufferBlobCount++;
1488       }
1489     }
1490   }
1491 
1492   int bucketSize = 512;
1493   int bucketLimit = max_nm_size / bucketSize + 1;
1494   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1495   memset(buckets, 0, sizeof(int) * bucketLimit);
1496 
1497   NMethodIterator iter;
1498   while(iter.next()) {
1499     nmethod* nm = iter.method();
1500     if(nm->method() != NULL && nm->is_java_method()) {
1501       buckets[nm->size() / bucketSize]++;
1502     }
1503   }
1504 
1505   tty->print_cr("Code Cache Entries (total of %d)",total);
1506   tty->print_cr("-------------------------------------------------");
1507   tty->print_cr("nmethods: %d",nmethodCount);
1508   tty->print_cr("\talive: %d",nmethodAlive);
1509   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1510   tty->print_cr("\tzombie: %d",nmethodZombie);
1511   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1512   tty->print_cr("\tjava: %d",nmethodJava);
1513   tty->print_cr("\tnative: %d",nmethodNative);
1514   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1515   tty->print_cr("adapters: %d",adapterCount);
1516   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1517   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1518   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1519   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1520   tty->print_cr("-------------------------------------------------");
1521 
1522   for(int i=0; i<bucketLimit; i++) {
1523     if(buckets[i] != 0) {
1524       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1525       tty->fill_to(40);
1526       tty->print_cr("%d",buckets[i]);
1527     }
1528   }
1529 
1530   FREE_C_HEAP_ARRAY(int, buckets);
1531   print_memory_overhead();
1532 }
1533 
1534 #endif // !PRODUCT
1535 
1536 void CodeCache::print() {
1537   print_summary(tty);
1538 
1539 #ifndef PRODUCT
1540   if (!Verbose) return;
1541 
1542   CodeBlob_sizes live;
1543   CodeBlob_sizes dead;
1544 
1545   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1546     FOR_ALL_BLOBS(cb, *heap) {
1547       if (!cb->is_alive()) {
1548         dead.add(cb);
1549       } else {
1550         live.add(cb);
1551       }
1552     }
1553   }
1554 
1555   tty->print_cr("CodeCache:");
1556   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1557 
1558   if (!live.is_empty()) {
1559     live.print("live");
1560   }
1561   if (!dead.is_empty()) {
1562     dead.print("dead");
1563   }
1564 
1565   if (WizardMode) {
1566      // print the oop_map usage
1567     int code_size = 0;
1568     int number_of_blobs = 0;
1569     int number_of_oop_maps = 0;
1570     int map_size = 0;
1571     FOR_ALL_ALLOCABLE_HEAPS(heap) {
1572       FOR_ALL_BLOBS(cb, *heap) {
1573         if (cb->is_alive()) {
1574           number_of_blobs++;
1575           code_size += cb->code_size();
1576           ImmutableOopMapSet* set = cb->oop_maps();
1577           if (set != NULL) {
1578             number_of_oop_maps += set->count();
1579             map_size           += set->nr_of_bytes();
1580           }
1581         }
1582       }
1583     }
1584     tty->print_cr("OopMaps");
1585     tty->print_cr("  #blobs    = %d", number_of_blobs);
1586     tty->print_cr("  code size = %d", code_size);
1587     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1588     tty->print_cr("  map size  = %d", map_size);
1589   }
1590 
1591 #endif // !PRODUCT
1592 }
1593 
1594 void CodeCache::print_summary(outputStream* st, bool detailed) {
1595   FOR_ALL_HEAPS(heap_iterator) {
1596     CodeHeap* heap = (*heap_iterator);
1597     size_t total = (heap->high_boundary() - heap->low_boundary());
1598     if (_heaps->length() >= 1) {
1599       st->print("%s:", heap->name());
1600     } else {
1601       st->print("CodeCache:");
1602     }
1603     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1604                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1605                  total/K, (total - heap->unallocated_capacity())/K,
1606                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1607 
1608     if (detailed) {
1609       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1610                    p2i(heap->low_boundary()),
1611                    p2i(heap->high()),
1612                    p2i(heap->high_boundary()));
1613     }
1614   }
1615 
1616   if (detailed) {
1617     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1618                        " adapters=" UINT32_FORMAT,
1619                        blob_count(), nmethod_count(), adapter_count());
1620     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1621                  "enabled" : Arguments::mode() == Arguments::_int ?
1622                  "disabled (interpreter mode)" :
1623                  "disabled (not enough contiguous free space left)");
1624   }
1625 }
1626 
1627 void CodeCache::print_codelist(outputStream* st) {
1628   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1629 
1630   CompiledMethodIterator iter;
1631   while (iter.next_alive()) {
1632     CompiledMethod* cm = iter.method();
1633     ResourceMark rm;
1634     char* method_name = cm->method()->name_and_sig_as_C_string();
1635     st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1636                  cm->compile_id(), cm->comp_level(), cm->get_state(),
1637                  method_name,
1638                  (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1639   }
1640 }
1641 
1642 void CodeCache::print_layout(outputStream* st) {
1643   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1644   ResourceMark rm;
1645   print_summary(st, true);
1646 }
1647 
1648 void CodeCache::log_state(outputStream* st) {
1649   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1650             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1651             blob_count(), nmethod_count(), adapter_count(),
1652             unallocated_capacity());
1653 }
1654 
1655 //---<  BEGIN  >--- CodeHeap State Analytics.
1656 
1657 void CodeCache::aggregate(outputStream *out, const char* granularity) {
1658   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1659     CodeHeapState::aggregate(out, (*heap), granularity);
1660   }
1661 }
1662 
1663 void CodeCache::discard(outputStream *out) {
1664   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1665     CodeHeapState::discard(out, (*heap));
1666   }
1667 }
1668 
1669 void CodeCache::print_usedSpace(outputStream *out) {
1670   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1671     CodeHeapState::print_usedSpace(out, (*heap));
1672   }
1673 }
1674 
1675 void CodeCache::print_freeSpace(outputStream *out) {
1676   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1677     CodeHeapState::print_freeSpace(out, (*heap));
1678   }
1679 }
1680 
1681 void CodeCache::print_count(outputStream *out) {
1682   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1683     CodeHeapState::print_count(out, (*heap));
1684   }
1685 }
1686 
1687 void CodeCache::print_space(outputStream *out) {
1688   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1689     CodeHeapState::print_space(out, (*heap));
1690   }
1691 }
1692 
1693 void CodeCache::print_age(outputStream *out) {
1694   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1695     CodeHeapState::print_age(out, (*heap));
1696   }
1697 }
1698 
1699 void CodeCache::print_names(outputStream *out) {
1700   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1701     CodeHeapState::print_names(out, (*heap));
1702   }
1703 }
1704 //---<  END  >--- CodeHeap State Analytics.