/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "code/vtableStubs.hpp" #include "interp_masm_sparc.hpp" #include "memory/resourceArea.hpp" #include "oops/compiledICHolder.hpp" #include "oops/instanceKlass.hpp" #include "oops/klassVtable.hpp" #include "runtime/sharedRuntime.hpp" #include "vmreg_sparc.inline.hpp" #ifdef COMPILER2 #include "opto/runtime.hpp" #endif // machine-dependent part of VtableStubs: create vtableStub of correct size and // initialize its code #define __ masm-> #ifndef PRODUCT extern "C" void bad_compiled_vtable_index(JavaThread* thread, oopDesc* receiver, int index); #endif // Used by compiler only; may use only caller saved, non-argument registers VtableStub* VtableStubs::create_vtable_stub(int vtable_index) { // Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing. const int stub_code_length = VtableStub::code_size_limit(true); VtableStub* s = new(stub_code_length) VtableStub(true, vtable_index); // Can be NULL if there is no free space in the code cache. if (s == NULL) { return NULL; } // Count unused bytes in instruction sequences of variable size. // We add them to the computed buffer size in order to avoid // overflow in subsequently generated stubs. address start_pc; int slop_bytes = 0; int slop_delta = 0; const int slop32 = ((vtable_index < 512) ? 2 : 0)*BytesPerInstWord; // code size change with transition from 13-bit to 32-bit constant (@index == 512?). ResourceMark rm; CodeBuffer cb(s->entry_point(), stub_code_length); MacroAssembler* masm = new MacroAssembler(&cb); #if (!defined(PRODUCT) && defined(COMPILER2)) if (CountCompiledCalls) { __ inc_counter(SharedRuntime::nof_megamorphic_calls_addr(), G5, G3_scratch); } #endif // PRODUCT assert(VtableStub::receiver_location() == O0->as_VMReg(), "receiver expected in O0"); // get receiver klass address npe_addr = __ pc(); __ load_klass(O0, G3_scratch); #ifndef PRODUCT if (DebugVtables) { Label L; // check offset vs vtable length __ ld(G3_scratch, in_bytes(Klass::vtable_length_offset()), G5); __ cmp_and_br_short(G5, vtable_index*vtableEntry::size(), Assembler::greaterUnsigned, Assembler::pt, L); // set generates 8 instructions (worst case), 1 instruction (best case) start_pc = __ pc(); __ set(vtable_index, O2); slop_delta = __ worst_case_insts_for_set()*BytesPerInstWord - (__ pc() - start_pc); slop_bytes += slop_delta; assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta); // there is no variance in call_VM() emitted code. __ call_VM(noreg, CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), O0, O2); __ bind(L); } #endif // set Method* (in case of interpreted method), and destination address start_pc = __ pc(); __ lookup_virtual_method(G3_scratch, vtable_index, G5_method); // lookup_virtual_method generates 3 instructions (worst case), 1 instruction (best case) slop_delta = 3*BytesPerInstWord - (int)(__ pc() - start_pc); slop_bytes += slop_delta; assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta); #ifndef PRODUCT if (DebugVtables) { Label L; __ br_notnull_short(G5_method, Assembler::pt, L); __ stop("Vtable entry is ZERO"); __ bind(L); } #endif address ame_addr = __ pc(); // if the vtable entry is null, the method is abstract // NOTE: for vtable dispatches, the vtable entry will never be null. __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch); // jump to target (either compiled code or c2iadapter) __ JMP(G3_scratch, 0); // load Method* (in case we call c2iadapter) __ delayed()->nop(); masm->flush(); slop_bytes += slop32; // add'l slop for size variance due to large itable offsets bookkeeping(masm, tty, s, npe_addr, ame_addr, true, vtable_index, slop_bytes, slop32); return s; } VtableStub* VtableStubs::create_itable_stub(int itable_index) { // Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing. const int stub_code_length = VtableStub::code_size_limit(false); VtableStub* s = new(stub_code_length) VtableStub(false, itable_index); // Can be NULL if there is no free space in the code cache. if (s == NULL) { return NULL; } // Count unused bytes in instruction sequences of variable size. // We add them to the computed buffer size in order to avoid // overflow in subsequently generated stubs. address start_pc; int slop_bytes = 0; int slop_delta = 0; const int slop32 = ((itable_index < 512) ? 2 : 0)*BytesPerInstWord; // code size change with transition from 13-bit to 32-bit constant (@index == 512?). ResourceMark rm; CodeBuffer cb(s->entry_point(), stub_code_length); MacroAssembler* masm = new MacroAssembler(&cb); #if (!defined(PRODUCT) && defined(COMPILER2)) if (CountCompiledCalls) { // Use G3_scratch, G4_scratch as work regs for inc_counter. // These are defined before use further down. __ inc_counter(SharedRuntime::nof_megamorphic_calls_addr(), G3_scratch, G4_scratch); } #endif // PRODUCT Register G3_Klass = G3_scratch; Register G5_icholder = G5; // Passed in as an argument Register G4_interface = G4_scratch; Label search; // Entry arguments: // G5_interface: Interface // O0: Receiver assert(VtableStub::receiver_location() == O0->as_VMReg(), "receiver expected in O0"); // get receiver klass (also an implicit null-check) address npe_addr = __ pc(); __ load_klass(O0, G3_Klass); // Push a new window to get some temp registers. This chops the head of all // my 64-bit %o registers in the LION build, but this is OK because no longs // are passed in the %o registers. Instead, longs are passed in G1 and G4 // and so those registers are not available here. __ save(SP,-frame::register_save_words*wordSize,SP); Label L_no_such_interface; Register L5_method = L5; start_pc = __ pc(); // Receiver subtype check against REFC. __ ld_ptr(G5_icholder, CompiledICHolder::holder_klass_offset(), G4_interface); __ lookup_interface_method(// inputs: rec. class, interface, itable index G3_Klass, G4_interface, itable_index, // outputs: scan temp. reg1, scan temp. reg2 L5_method, L2, L3, L_no_such_interface, /*return_method=*/ false); const ptrdiff_t typecheckSize = __ pc() - start_pc; start_pc = __ pc(); // Get Method* and entrypoint for compiler __ ld_ptr(G5_icholder, CompiledICHolder::holder_metadata_offset(), G4_interface); __ lookup_interface_method(// inputs: rec. class, interface, itable index G3_Klass, G4_interface, itable_index, // outputs: method, scan temp. reg L5_method, L2, L3, L_no_such_interface); const ptrdiff_t lookupSize = __ pc() - start_pc; // Reduce "estimate" such that "padding" does not drop below 8. // Do not target a left-over number of zero, because a very // large vtable or itable offset (> 4K) will require an extra // sethi/or pair of instructions. // Found typecheck(60) + lookup(72) to exceed previous extimate (32*4). const ptrdiff_t estimate = 36*BytesPerInstWord; const ptrdiff_t codesize = typecheckSize + lookupSize + slop32; slop_delta = (int)(estimate - codesize); slop_bytes += slop_delta; assert(slop_delta >= 0, "itable #%d: Code size estimate (%d) for lookup_interface_method too small, required: %d", itable_index, (int)estimate, (int)codesize); #ifndef PRODUCT if (DebugVtables) { Label L01; __ br_notnull_short(L5_method, Assembler::pt, L01); __ stop("Method* is null"); __ bind(L01); } #endif // If the following load is through a NULL pointer, we'll take an OS // exception that should translate into an AbstractMethodError. We need the // window count to be correct at that time. __ restore(L5_method, 0, G5_method); // Restore registers *before* the AME point. address ame_addr = __ pc(); // if the vtable entry is null, the method is abstract __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch); // G5_method: Method* // O0: Receiver // G3_scratch: entry point __ JMP(G3_scratch, 0); __ delayed()->nop(); __ bind(L_no_such_interface); // Handle IncompatibleClassChangeError in itable stubs. // More detailed error message. // We force resolving of the call site by jumping to the "handle // wrong method" stub, and so let the interpreter runtime do all the // dirty work. AddressLiteral icce(SharedRuntime::get_handle_wrong_method_stub()); __ jump_to(icce, G3_scratch); __ delayed()->restore(); masm->flush(); slop_bytes += slop32; // add'l slop for size variance due to large itable offsets bookkeeping(masm, tty, s, npe_addr, ame_addr, false, itable_index, slop_bytes, slop32); return s; } int VtableStub::pd_code_alignment() { // UltraSPARC cache line size is 8 instructions: const unsigned int icache_line_size = 32; return icache_line_size; }