/* * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2019 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // AbstractDisassembler is the base class for // platform-specific Disassembler classes. #include "precompiled.hpp" #include "asm/assembler.inline.hpp" #include "compiler/abstractDisassembler.hpp" #include "oops/oop.inline.hpp" #include "utilities/debug.hpp" #include "utilities/ostream.hpp" // Default values for what is being printed as line prefix when disassembling a single instruction. // Can be overridden by command line parameter PrintAssemblyOptions. bool AbstractDisassembler::_show_data_hex = true; bool AbstractDisassembler::_show_data_int = false; bool AbstractDisassembler::_show_data_float = false; bool AbstractDisassembler::_align_instr = false; bool AbstractDisassembler::_show_pc = true; bool AbstractDisassembler::_show_offset = false; bool AbstractDisassembler::_show_structs = false; bool AbstractDisassembler::_show_comment = false; bool AbstractDisassembler::_show_block_comment = false; #if defined(ARM) || defined(AARCH64) bool AbstractDisassembler::_show_bytes = false; // set "true" to see what's in memory bit by bit // might prove cumbersome because instr_len is hard to find on arm #endif #if defined(PPC) bool AbstractDisassembler::_show_bytes = false; // set "true" to see what's in memory bit by bit #endif #if defined(S390) bool AbstractDisassembler::_show_bytes = false; // set "true" to see what's in memory bit by bit #endif #if defined(SPARC) bool AbstractDisassembler::_show_bytes = false; // set "true" to see what's in memory bit by bit #endif #if defined(X86) bool AbstractDisassembler::_show_bytes = false; // set "true" to see what's in memory bit by bit // might prove cumbersome because instr_len is hard to find on x86 #endif // Return #bytes printed. Callers may use that for output alignment. // Print instruction address, and offset from blob begin. // Offset width (2, 4, 6, 8 bytes) is adapted to size of blob. // Working assumption: we are at st->bol() upon entry. If not, it's the // caller's responsibility to guarantee proper alignment. int AbstractDisassembler::print_location(address here, address begin, address end, outputStream* st, bool align, bool print_header) { const int pos_0 = st->position(); if (show_pc() || show_offset()) { st->print(" "); } if (show_pc()) { if (print_header) { st->print(" %*s", 18, "Address"); } else { st->print(" " PTR_FORMAT, p2i(here)); } } if (show_offset()) { #ifdef ASSERT if ((uintptr_t)begin > (uintptr_t)here) st->print(">>begin(" PTR_FORMAT ") > here(" PTR_FORMAT ")<<", p2i(begin), p2i(here)); if ((uintptr_t)end < (uintptr_t)here) st->print(">> end(" PTR_FORMAT ") < here(" PTR_FORMAT ")<<", p2i(end), p2i(here)); assert((uintptr_t)begin <= (uintptr_t)end, "inverted address range"); #endif const int blob_len = end - begin; const int offset = here - begin; const int width = (blob_len < (1<< 8)) ? 2 : (blob_len < (1<<16)) ? 4 : (blob_len < (1<<24)) ? 6 : 8; if (print_header) { st->print(" %*s", width+5, "offset"); } else { st->print(" (+0x%*.*x)", width, width, offset); } } if ((show_pc() || show_offset()) && !print_header) { st->print(": "); } if (align) { const uint tabspacing = 8; const uint pos = st->position(); const uint aligned_pos = ((pos+tabspacing-1)/tabspacing)*tabspacing /* - 1 */; st->fill_to(aligned_pos); } return st->position() - pos_0; } // Return #bytes printed. Callers may use that for output alignment. // Print instruction in hexadecimal representation, using 2-byte blocks. // Used with real disassemblies. Not so useful with abstract disassemblies. int AbstractDisassembler::print_instruction(address here, int len, int max_len, outputStream* st, bool align, bool print_header) { if (show_bytes()) { const int block_bytes = 2; const int pos_0 = st->position(); address pos = here; //---< print instruction bytes in blocks >--- // must print byte by byte: address might be unaligned. for (; pos <= here + len - block_bytes; pos += block_bytes) { for (address byte = pos; byte < pos + block_bytes; byte++) { st->print("%2.2x", *byte); } st->print(" "); } //---< Print the remaining bytes of the instruction >--- if ((len & (block_bytes - 1)) != 0) { for (; pos < here + len; pos++) { st->print("%2.2x", *pos); } } //---< filler for shorter than max_len instructions >--- for (int i = len+1; i < max_len; i++) { st->print(" "); } st->print(" "); // separator space. print_delimiter(st); return st->position() - pos_0; } if (align) { const uint tabspacing = 8; const uint pos = st->position(); const uint aligned_pos = ((pos+tabspacing-1)/tabspacing)*tabspacing /* - 1 */; st->fill_to(aligned_pos); } return 0; } // Return #bytes printed. Callers may use that for output alignment. // Print data (e.g. constant pool entries) in hex format. // Depending on the alignment, short, int, and long entities are printed. // If selected, data is formatted as int/long and float/double values in addition. int AbstractDisassembler::print_hexdata(address here, int len, outputStream* st, bool print_header) { const int tsize = 8; const int pos_0 = st->position(); int pos = pos_0; int align = ((pos+tsize-1)/tsize)*tsize; st->fill_to(align); //---< printing hex data >--- if (show_data_hex()) { switch (len) { case 1: if (print_header) { st->print("hex1"); } else { st->print("0x%02x", *here); } st->fill_to(align += tsize); case 2: if (print_header) { st->print(" hex2"); } else { if (((uintptr_t)(here)&0x01) == 0) { st->print("0x%04x", *((jushort*)here)); } } st->fill_to(align += tsize); case 4: if (print_header) { st->print(" hex4"); } else { if (((uintptr_t)(here)&0x03) == 0) { st->print("0x%08x", *((juint*)here)); } } st->fill_to(align += 2*tsize); case 8: if (print_header) { st->print(" hex8"); } else { if (((uintptr_t)(here)&0x07) == 0) { // st->print("0x%016lx", *((julong*)here)); st->print("0x%016lx", *((uintptr_t*)here)); // st->print("0x%08x%08x", *((juint*)here), *((juint*)(here+4))); } } st->fill_to(align += 3*tsize); break; default: ; } pos = st->position(); align = ((pos+tsize-1)/tsize)*tsize; st->fill_to(align); } //---< printing int/long data >--- if (show_data_int()) { switch (len) { case 4: if (print_header) { st->print(" int"); } else { if (((uintptr_t)(here)&0x03) == 0) { st->print("%12.1d", *((jint*)here)); } } st->fill_to(align += 2*tsize); case 8: if (print_header) { st->print(" long"); } else { if (((uintptr_t)(here)&0x07) == 0) { st->print("%23.1ld", *((jlong*)here)); } } st->fill_to(align += 3*tsize); break; default: ; } pos = st->position(); align = ((pos+tsize-1)/tsize)*tsize; st->fill_to(align); } //---< printing float/double data >--- if (show_data_float()) { switch (len) { case 4: if (print_header) { st->print(" float"); } else { if (((uintptr_t)(here)&0x03) == 0) { st->print("%15.7e", (double)*((float*)here)); } } st->fill_to(align += 2*tsize); case 8: if (print_header) { st->print(" double"); } else { if (((uintptr_t)(here)&0x07) == 0) { st->print("%23.15e", *((double*)here)); } } st->fill_to(align += 3*tsize); break; default: ; } } return st->position() - pos_0; } // Return #bytes printed. Callers may use that for output alignment. // Print an instruction delimiter. int AbstractDisassembler::print_delimiter(outputStream* st) { if (align_instr()) { st->print("| "); return 2; } else return 0; } // Decodes the one instruction at address start in a platform-independent format. // Returns the start of the next instruction (which is 'start' plus 'instruction_size_in_bytes'). // The parameter max_instr_size_in_bytes is used for output alignment purposes only. address AbstractDisassembler::decode_instruction_abstract(address start, outputStream* st, const int instruction_size_in_bytes, const int max_instr_size_in_bytes) { assert(instruction_size_in_bytes > 0, "no zero-size instructions!"); assert(max_instr_size_in_bytes >= instruction_size_in_bytes, "inconsistent call parameters"); //---< current instruction is at the start address >--- unsigned char* current = (unsigned char*) start; int filler_limit = align_instr() ? max_instr_size_in_bytes : ((instruction_size_in_bytes+abstract_instruction_bytes_per_block-1)/abstract_instruction_bytes_per_block) *abstract_instruction_bytes_per_block; //---< print the instruction's bytes >--- for (int i = 1; i <= instruction_size_in_bytes; i++) { st->print("%02x", *current); ++current; if (abstract_instruction_bytes_per_block <= max_instr_size_in_bytes) { if (i%abstract_instruction_bytes_per_block == 0) st->print(" "); } else { if (i == instruction_size_in_bytes) st->print(" "); } } //---< print some filler spaces to column-align instructions >--- for (int i = instruction_size_in_bytes+1; i <= filler_limit; i++) { st->print(" "); if (abstract_instruction_bytes_per_block <= max_instr_size_in_bytes) { if (i%abstract_instruction_bytes_per_block == 0) st->print(" "); } else { if (i == instruction_size_in_bytes) st->print(" "); } } //---< the address of the next instruction >--- return (address) current; } // Decodes all instructions in the given range [start..end) // calling decode_instruction_abstract for each instruction. // The format is platform dependent only to the extend that // it respects the actual instruction length where possible. // Does not print any markers or decorators. void AbstractDisassembler::decode_range_abstract(address range_start, address range_end, address start, address end, outputStream* st, const int max_instr_size_in_bytes) { assert(st != NULL, "need an output stream (no default)!"); int idx = 0; address pos = range_start; while ((pos != NULL) && (pos < range_end)) { int instr_size_in_bytes = Assembler::instr_len(pos); if (idx == 0) print_location(pos, start, end, st, false, false); else print_delimiter(st); //---< print the instruction's bytes >--- // don't access storage beyond end of range if (pos + instr_size_in_bytes <= range_end) { pos = decode_instruction_abstract(pos, st, instr_size_in_bytes, max_instr_size_in_bytes); } else { // If the range to be decoded contains garbage at the end (e.g. 0xcc initializer bytes), // instruction size calculation may run out of sync. Just terminate in that case. pos = range_end; } idx += instr_size_in_bytes; if (start_newline(idx)) { st->cr(); idx = 0; } } } // Decodes all instructions in the given range [start..end). // The output is enclosed in [MachCode] and [/MachCode] tags for later recognition. // The format is platform dependent only to the extend that // it respects the actual instruction length where possible. void AbstractDisassembler::decode_abstract(address start, address end, outputStream* ost, const int max_instr_size_in_bytes) { int idx = 0; address pos = start; outputStream* st = (ost == NULL) ? tty : ost; //---< Open the output (Marker for post-mortem disassembler) >--- st->bol(); st->print_cr("[MachCode]"); decode_range_abstract(start, end, start, end, st, max_instr_size_in_bytes); //---< Close the output (Marker for post-mortem disassembler) >--- st->bol(); st->print_cr("[/MachCode]"); }