1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compilationPolicy.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerEvent.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "compiler/directivesParser.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "jfr/jfrEvents.hpp"
  41 #include "logging/log.hpp"
  42 #include "logging/logStream.hpp"
  43 #include "memory/allocation.inline.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "oops/methodData.hpp"
  47 #include "oops/method.inline.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "prims/whitebox.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.inline.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/os.hpp"
  59 #include "runtime/safepointVerifiers.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/sweeper.hpp"
  62 #include "runtime/timerTrace.hpp"
  63 #include "runtime/vframe.inline.hpp"
  64 #include "utilities/debug.hpp"
  65 #include "utilities/dtrace.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/formatBuffer.hpp"
  68 #include "utilities/macros.hpp"
  69 #ifdef COMPILER1
  70 #include "c1/c1_Compiler.hpp"
  71 #endif
  72 #if INCLUDE_JVMCI
  73 #include "jvmci/jvmciEnv.hpp"
  74 #include "jvmci/jvmciRuntime.hpp"
  75 #endif
  76 #ifdef COMPILER2
  77 #include "opto/c2compiler.hpp"
  78 #endif
  79 
  80 #ifdef DTRACE_ENABLED
  81 
  82 // Only bother with this argument setup if dtrace is available
  83 
  84 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  85   {                                                                      \
  86     Symbol* klass_name = (method)->klass_name();                         \
  87     Symbol* name = (method)->name();                                     \
  88     Symbol* signature = (method)->signature();                           \
  89     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  90       (char *) comp_name, strlen(comp_name),                             \
  91       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  92       (char *) name->bytes(), name->utf8_length(),                       \
  93       (char *) signature->bytes(), signature->utf8_length());            \
  94   }
  95 
  96 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
  97   {                                                                      \
  98     Symbol* klass_name = (method)->klass_name();                         \
  99     Symbol* name = (method)->name();                                     \
 100     Symbol* signature = (method)->signature();                           \
 101     HOTSPOT_METHOD_COMPILE_END(                                          \
 102       (char *) comp_name, strlen(comp_name),                             \
 103       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 104       (char *) name->bytes(), name->utf8_length(),                       \
 105       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 106   }
 107 
 108 #else //  ndef DTRACE_ENABLED
 109 
 110 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 112 
 113 #endif // ndef DTRACE_ENABLED
 114 
 115 bool CompileBroker::_initialized = false;
 116 volatile bool CompileBroker::_should_block = false;
 117 volatile int  CompileBroker::_print_compilation_warning = 0;
 118 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 119 
 120 // The installed compiler(s)
 121 AbstractCompiler* CompileBroker::_compilers[2];
 122 
 123 // The maximum numbers of compiler threads to be determined during startup.
 124 int CompileBroker::_c1_count = 0;
 125 int CompileBroker::_c2_count = 0;
 126 
 127 // An array of compiler names as Java String objects
 128 jobject* CompileBroker::_compiler1_objects = NULL;
 129 jobject* CompileBroker::_compiler2_objects = NULL;
 130 
 131 CompileLog** CompileBroker::_compiler1_logs = NULL;
 132 CompileLog** CompileBroker::_compiler2_logs = NULL;
 133 
 134 // These counters are used to assign an unique ID to each compilation.
 135 volatile jint CompileBroker::_compilation_id     = 0;
 136 volatile jint CompileBroker::_osr_compilation_id = 0;
 137 
 138 // Performance counters
 139 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 140 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 141 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 142 
 143 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 144 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 145 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 146 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 147 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 148 
 149 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 150 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 151 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 152 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 153 
 154 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 155 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 156 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 157 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 158 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 159 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 160 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 161 
 162 // Timers and counters for generating statistics
 163 elapsedTimer CompileBroker::_t_total_compilation;
 164 elapsedTimer CompileBroker::_t_osr_compilation;
 165 elapsedTimer CompileBroker::_t_standard_compilation;
 166 elapsedTimer CompileBroker::_t_invalidated_compilation;
 167 elapsedTimer CompileBroker::_t_bailedout_compilation;
 168 
 169 int CompileBroker::_total_bailout_count            = 0;
 170 int CompileBroker::_total_invalidated_count        = 0;
 171 int CompileBroker::_total_compile_count            = 0;
 172 int CompileBroker::_total_osr_compile_count        = 0;
 173 int CompileBroker::_total_standard_compile_count   = 0;
 174 int CompileBroker::_total_compiler_stopped_count   = 0;
 175 int CompileBroker::_total_compiler_restarted_count = 0;
 176 
 177 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 178 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 179 int CompileBroker::_sum_nmethod_size               = 0;
 180 int CompileBroker::_sum_nmethod_code_size          = 0;
 181 
 182 long CompileBroker::_peak_compilation_time         = 0;
 183 
 184 CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
 185 
 186 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 187 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 188 
 189 
 190 
 191 class CompilationLog : public StringEventLog {
 192  public:
 193   CompilationLog() : StringEventLog("Compilation events", "jit") {
 194   }
 195 
 196   void log_compile(JavaThread* thread, CompileTask* task) {
 197     StringLogMessage lm;
 198     stringStream sstr(lm.buffer(), lm.size());
 199     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 200     task->print(&sstr, NULL, true, false);
 201     log(thread, "%s", (const char*)lm);
 202   }
 203 
 204   void log_nmethod(JavaThread* thread, nmethod* nm) {
 205     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 206         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 207         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 208   }
 209 
 210   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 211     StringLogMessage lm;
 212     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 213     if (retry_message != NULL) {
 214       lm.append(" (%s)", retry_message);
 215     }
 216     lm.print("\n");
 217     log(thread, "%s", (const char*)lm);
 218   }
 219 
 220   void log_metaspace_failure(const char* reason) {
 221     ResourceMark rm;
 222     StringLogMessage lm;
 223     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 224     lm.print("\n");
 225     log(JavaThread::current(), "%s", (const char*)lm);
 226   }
 227 };
 228 
 229 static CompilationLog* _compilation_log = NULL;
 230 
 231 bool compileBroker_init() {
 232   if (LogEvents) {
 233     _compilation_log = new CompilationLog();
 234   }
 235 
 236   // init directives stack, adding default directive
 237   DirectivesStack::init();
 238 
 239   if (DirectivesParser::has_file()) {
 240     return DirectivesParser::parse_from_flag();
 241   } else if (CompilerDirectivesPrint) {
 242     // Print default directive even when no other was added
 243     DirectivesStack::print(tty);
 244   }
 245 
 246   return true;
 247 }
 248 
 249 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 250   CompilerThread* thread = CompilerThread::current();
 251   thread->set_task(task);
 252 #if INCLUDE_JVMCI
 253   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 254     task->set_jvmci_compiler_thread(thread);
 255   }
 256 #endif
 257   CompileLog*     log  = thread->log();
 258   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 259 }
 260 
 261 CompileTaskWrapper::~CompileTaskWrapper() {
 262   CompilerThread* thread = CompilerThread::current();
 263   CompileTask* task = thread->task();
 264   CompileLog*  log  = thread->log();
 265   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 266   thread->set_task(NULL);
 267   task->set_code_handle(NULL);
 268   thread->set_env(NULL);
 269   if (task->is_blocking()) {
 270     bool free_task = false;
 271     {
 272       MutexLocker notifier(thread, task->lock());
 273       task->mark_complete();
 274 #if INCLUDE_JVMCI
 275       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 276         if (!task->has_waiter()) {
 277           // The waiting thread timed out and thus did not free the task.
 278           free_task = true;
 279         }
 280         task->set_jvmci_compiler_thread(NULL);
 281       }
 282 #endif
 283       if (!free_task) {
 284         // Notify the waiting thread that the compilation has completed
 285         // so that it can free the task.
 286         task->lock()->notify_all();
 287       }
 288     }
 289     if (free_task) {
 290       // The task can only be freed once the task lock is released.
 291       CompileTask::free(task);
 292     }
 293   } else {
 294     task->mark_complete();
 295 
 296     // By convention, the compiling thread is responsible for
 297     // recycling a non-blocking CompileTask.
 298     CompileTask::free(task);
 299   }
 300 }
 301 
 302 /**
 303  * Check if a CompilerThread can be removed and update count if requested.
 304  */
 305 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 306   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 307   if (!ReduceNumberOfCompilerThreads) return false;
 308 
 309   AbstractCompiler *compiler = ct->compiler();
 310   int compiler_count = compiler->num_compiler_threads();
 311   bool c1 = compiler->is_c1();
 312 
 313   // Keep at least 1 compiler thread of each type.
 314   if (compiler_count < 2) return false;
 315 
 316   // Keep thread alive for at least some time.
 317   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 318 
 319 #if INCLUDE_JVMCI
 320   if (compiler->is_jvmci()) {
 321     // Handles for JVMCI thread objects may get released concurrently.
 322     if (do_it) {
 323       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 324     } else {
 325       // Skip check if it's the last thread and let caller check again.
 326       return true;
 327     }
 328   }
 329 #endif
 330 
 331   // We only allow the last compiler thread of each type to get removed.
 332   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 333                              : compiler2_object(compiler_count - 1);
 334   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 335     if (do_it) {
 336       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 337       compiler->set_num_compiler_threads(compiler_count - 1);
 338 #if INCLUDE_JVMCI
 339       if (compiler->is_jvmci()) {
 340         // Old j.l.Thread object can die when no longer referenced elsewhere.
 341         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 342         _compiler2_objects[compiler_count - 1] = NULL;
 343       }
 344 #endif
 345     }
 346     return true;
 347   }
 348   return false;
 349 }
 350 
 351 /**
 352  * Add a CompileTask to a CompileQueue.
 353  */
 354 void CompileQueue::add(CompileTask* task) {
 355   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 356 
 357   task->set_next(NULL);
 358   task->set_prev(NULL);
 359 
 360   if (_last == NULL) {
 361     // The compile queue is empty.
 362     assert(_first == NULL, "queue is empty");
 363     _first = task;
 364     _last = task;
 365   } else {
 366     // Append the task to the queue.
 367     assert(_last->next() == NULL, "not last");
 368     _last->set_next(task);
 369     task->set_prev(_last);
 370     _last = task;
 371   }
 372   ++_size;
 373 
 374   // Mark the method as being in the compile queue.
 375   task->method()->set_queued_for_compilation();
 376 
 377   if (CIPrintCompileQueue) {
 378     print_tty();
 379   }
 380 
 381   if (LogCompilation && xtty != NULL) {
 382     task->log_task_queued();
 383   }
 384 
 385   // Notify CompilerThreads that a task is available.
 386   MethodCompileQueue_lock->notify_all();
 387 }
 388 
 389 /**
 390  * Empties compilation queue by putting all compilation tasks onto
 391  * a freelist. Furthermore, the method wakes up all threads that are
 392  * waiting on a compilation task to finish. This can happen if background
 393  * compilation is disabled.
 394  */
 395 void CompileQueue::free_all() {
 396   MutexLocker mu(MethodCompileQueue_lock);
 397   CompileTask* next = _first;
 398 
 399   // Iterate over all tasks in the compile queue
 400   while (next != NULL) {
 401     CompileTask* current = next;
 402     next = current->next();
 403     {
 404       // Wake up thread that blocks on the compile task.
 405       MutexLocker ct_lock(current->lock());
 406       current->lock()->notify();
 407     }
 408     // Put the task back on the freelist.
 409     CompileTask::free(current);
 410   }
 411   _first = NULL;
 412 
 413   // Wake up all threads that block on the queue.
 414   MethodCompileQueue_lock->notify_all();
 415 }
 416 
 417 /**
 418  * Get the next CompileTask from a CompileQueue
 419  */
 420 CompileTask* CompileQueue::get() {
 421   // save methods from RedefineClasses across safepoint
 422   // across MethodCompileQueue_lock below.
 423   methodHandle save_method;
 424   methodHandle save_hot_method;
 425 
 426   MonitorLocker locker(MethodCompileQueue_lock);
 427   // If _first is NULL we have no more compile jobs. There are two reasons for
 428   // having no compile jobs: First, we compiled everything we wanted. Second,
 429   // we ran out of code cache so compilation has been disabled. In the latter
 430   // case we perform code cache sweeps to free memory such that we can re-enable
 431   // compilation.
 432   while (_first == NULL) {
 433     // Exit loop if compilation is disabled forever
 434     if (CompileBroker::is_compilation_disabled_forever()) {
 435       return NULL;
 436     }
 437 
 438     // If there are no compilation tasks and we can compile new jobs
 439     // (i.e., there is enough free space in the code cache) there is
 440     // no need to invoke the sweeper. As a result, the hotness of methods
 441     // remains unchanged. This behavior is desired, since we want to keep
 442     // the stable state, i.e., we do not want to evict methods from the
 443     // code cache if it is unnecessary.
 444     // We need a timed wait here, since compiler threads can exit if compilation
 445     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 446     // is not critical and we do not want idle compiler threads to wake up too often.
 447     locker.wait(5*1000);
 448 
 449     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 450       // Still nothing to compile. Give caller a chance to stop this thread.
 451       if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
 452     }
 453   }
 454 
 455   if (CompileBroker::is_compilation_disabled_forever()) {
 456     return NULL;
 457   }
 458 
 459   CompileTask* task;
 460   {
 461     NoSafepointVerifier nsv;
 462     task = CompilationPolicy::policy()->select_task(this);
 463     if (task != NULL) {
 464       task = task->select_for_compilation();
 465     }
 466   }
 467 
 468   if (task != NULL) {
 469     // Save method pointers across unlock safepoint.  The task is removed from
 470     // the compilation queue, which is walked during RedefineClasses.
 471     Thread* thread = Thread::current();
 472     save_method = methodHandle(thread, task->method());
 473     save_hot_method = methodHandle(thread, task->hot_method());
 474 
 475     remove(task);
 476   }
 477   purge_stale_tasks(); // may temporarily release MCQ lock
 478   return task;
 479 }
 480 
 481 // Clean & deallocate stale compile tasks.
 482 // Temporarily releases MethodCompileQueue lock.
 483 void CompileQueue::purge_stale_tasks() {
 484   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 485   if (_first_stale != NULL) {
 486     // Stale tasks are purged when MCQ lock is released,
 487     // but _first_stale updates are protected by MCQ lock.
 488     // Once task processing starts and MCQ lock is released,
 489     // other compiler threads can reuse _first_stale.
 490     CompileTask* head = _first_stale;
 491     _first_stale = NULL;
 492     {
 493       MutexUnlocker ul(MethodCompileQueue_lock);
 494       for (CompileTask* task = head; task != NULL; ) {
 495         CompileTask* next_task = task->next();
 496         CompileTaskWrapper ctw(task); // Frees the task
 497         task->set_failure_reason("stale task");
 498         task = next_task;
 499       }
 500     }
 501   }
 502 }
 503 
 504 void CompileQueue::remove(CompileTask* task) {
 505   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 506   if (task->prev() != NULL) {
 507     task->prev()->set_next(task->next());
 508   } else {
 509     // max is the first element
 510     assert(task == _first, "Sanity");
 511     _first = task->next();
 512   }
 513 
 514   if (task->next() != NULL) {
 515     task->next()->set_prev(task->prev());
 516   } else {
 517     // max is the last element
 518     assert(task == _last, "Sanity");
 519     _last = task->prev();
 520   }
 521   --_size;
 522 }
 523 
 524 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 525   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 526   remove(task);
 527 
 528   // Enqueue the task for reclamation (should be done outside MCQ lock)
 529   task->set_next(_first_stale);
 530   task->set_prev(NULL);
 531   _first_stale = task;
 532 }
 533 
 534 // methods in the compile queue need to be marked as used on the stack
 535 // so that they don't get reclaimed by Redefine Classes
 536 void CompileQueue::mark_on_stack() {
 537   CompileTask* task = _first;
 538   while (task != NULL) {
 539     task->mark_on_stack();
 540     task = task->next();
 541   }
 542 }
 543 
 544 
 545 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 546   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 547   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 548   return NULL;
 549 }
 550 
 551 void CompileBroker::print_compile_queues(outputStream* st) {
 552   st->print_cr("Current compiles: ");
 553 
 554   char buf[2000];
 555   int buflen = sizeof(buf);
 556   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 557 
 558   st->cr();
 559   if (_c1_compile_queue != NULL) {
 560     _c1_compile_queue->print(st);
 561   }
 562   if (_c2_compile_queue != NULL) {
 563     _c2_compile_queue->print(st);
 564   }
 565 }
 566 
 567 void CompileQueue::print(outputStream* st) {
 568   assert_locked_or_safepoint(MethodCompileQueue_lock);
 569   st->print_cr("%s:", name());
 570   CompileTask* task = _first;
 571   if (task == NULL) {
 572     st->print_cr("Empty");
 573   } else {
 574     while (task != NULL) {
 575       task->print(st, NULL, true, true);
 576       task = task->next();
 577     }
 578   }
 579   st->cr();
 580 }
 581 
 582 void CompileQueue::print_tty() {
 583   ResourceMark rm;
 584   stringStream ss;
 585   // Dump the compile queue into a buffer before locking the tty
 586   print(&ss);
 587   {
 588     ttyLocker ttyl;
 589     tty->print("%s", ss.as_string());
 590   }
 591 }
 592 
 593 CompilerCounters::CompilerCounters() {
 594   _current_method[0] = '\0';
 595   _compile_type = CompileBroker::no_compile;
 596 }
 597 
 598 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 599 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 600 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 601 //
 602 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 603 // so if c2 is used, it should be always registered first.
 604 // This function is called during vm initialization.
 605 void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 606   ResourceMark rm;
 607   static bool first_registration = true;
 608   if (compiler_type == compiler_jvmci) {
 609     // register serializer, phases will be added later lazily.
 610     GrowableArray<const char*>* jvmci_phase_names = new GrowableArray<const char*>(1);
 611     jvmci_phase_names->append("NOT_A_PHASE_NAME");
 612     CompilerEvent::PhaseEvent::register_phases(jvmci_phase_names);
 613     first_registration = false;
 614 #ifdef COMPILER2
 615   } else if (compiler_type == compiler_c2) {
 616     assert(first_registration, "invariant"); // c2 must be registered first.
 617     GrowableArray<const char*>* c2_phase_names = new GrowableArray<const char*>(PHASE_NUM_TYPES);
 618     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 619       c2_phase_names->append(CompilerPhaseTypeHelper::to_string((CompilerPhaseType)i));
 620     }
 621     CompilerEvent::PhaseEvent::register_phases(c2_phase_names);
 622     first_registration = false;
 623 #endif // COMPILER2
 624   }
 625 }
 626 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 627 
 628 // ------------------------------------------------------------------
 629 // CompileBroker::compilation_init
 630 //
 631 // Initialize the Compilation object
 632 void CompileBroker::compilation_init_phase1(Thread* THREAD) {
 633   // No need to initialize compilation system if we do not use it.
 634   if (!UseCompiler) {
 635     return;
 636   }
 637   // Set the interface to the current compiler(s).
 638   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 639   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 640 
 641 #if INCLUDE_JVMCI
 642   if (EnableJVMCI) {
 643     // This is creating a JVMCICompiler singleton.
 644     JVMCICompiler* jvmci = new JVMCICompiler();
 645 
 646     if (UseJVMCICompiler) {
 647       _compilers[1] = jvmci;
 648       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 649         if (BootstrapJVMCI) {
 650           // JVMCI will bootstrap so give it more threads
 651           _c2_count = MIN2(32, os::active_processor_count());
 652         }
 653       } else {
 654         _c2_count = JVMCIThreads;
 655       }
 656       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 657       } else {
 658         _c1_count = JVMCIHostThreads;
 659       }
 660     }
 661   }
 662 #endif // INCLUDE_JVMCI
 663 
 664 #ifdef COMPILER1
 665   if (_c1_count > 0) {
 666     _compilers[0] = new Compiler();
 667   }
 668 #endif // COMPILER1
 669 
 670 #ifdef COMPILER2
 671   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 672     if (_c2_count > 0) {
 673       _compilers[1] = new C2Compiler();
 674       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 675       // idToPhase mapping for c2 is in opto/phasetype.hpp
 676       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 677     }
 678   }
 679 #endif // COMPILER2
 680 
 681 #if INCLUDE_JVMCI
 682    // Register after c2 registration.
 683    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 684    if (EnableJVMCI) {
 685      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 686    }
 687 #endif // INCLUDE_JVMCI
 688 
 689   // Start the compiler thread(s) and the sweeper thread
 690   init_compiler_sweeper_threads();
 691   // totalTime performance counter is always created as it is required
 692   // by the implementation of java.lang.management.CompilationMXBean.
 693   {
 694     // Ensure OOM leads to vm_exit_during_initialization.
 695     EXCEPTION_MARK;
 696     _perf_total_compilation =
 697                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 698                                                  PerfData::U_Ticks, CHECK);
 699   }
 700 
 701   if (UsePerfData) {
 702 
 703     EXCEPTION_MARK;
 704 
 705     // create the jvmstat performance counters
 706     _perf_osr_compilation =
 707                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 708                                                  PerfData::U_Ticks, CHECK);
 709 
 710     _perf_standard_compilation =
 711                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 712                                                  PerfData::U_Ticks, CHECK);
 713 
 714     _perf_total_bailout_count =
 715                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 716                                                  PerfData::U_Events, CHECK);
 717 
 718     _perf_total_invalidated_count =
 719                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 720                                                  PerfData::U_Events, CHECK);
 721 
 722     _perf_total_compile_count =
 723                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 724                                                  PerfData::U_Events, CHECK);
 725     _perf_total_osr_compile_count =
 726                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 727                                                  PerfData::U_Events, CHECK);
 728 
 729     _perf_total_standard_compile_count =
 730                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 731                                                  PerfData::U_Events, CHECK);
 732 
 733     _perf_sum_osr_bytes_compiled =
 734                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 735                                                  PerfData::U_Bytes, CHECK);
 736 
 737     _perf_sum_standard_bytes_compiled =
 738                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 739                                                  PerfData::U_Bytes, CHECK);
 740 
 741     _perf_sum_nmethod_size =
 742                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 743                                                  PerfData::U_Bytes, CHECK);
 744 
 745     _perf_sum_nmethod_code_size =
 746                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 747                                                  PerfData::U_Bytes, CHECK);
 748 
 749     _perf_last_method =
 750                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 751                                        CompilerCounters::cmname_buffer_length,
 752                                        "", CHECK);
 753 
 754     _perf_last_failed_method =
 755             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 756                                        CompilerCounters::cmname_buffer_length,
 757                                        "", CHECK);
 758 
 759     _perf_last_invalidated_method =
 760         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 761                                      CompilerCounters::cmname_buffer_length,
 762                                      "", CHECK);
 763 
 764     _perf_last_compile_type =
 765              PerfDataManager::create_variable(SUN_CI, "lastType",
 766                                               PerfData::U_None,
 767                                               (jlong)CompileBroker::no_compile,
 768                                               CHECK);
 769 
 770     _perf_last_compile_size =
 771              PerfDataManager::create_variable(SUN_CI, "lastSize",
 772                                               PerfData::U_Bytes,
 773                                               (jlong)CompileBroker::no_compile,
 774                                               CHECK);
 775 
 776 
 777     _perf_last_failed_type =
 778              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 779                                               PerfData::U_None,
 780                                               (jlong)CompileBroker::no_compile,
 781                                               CHECK);
 782 
 783     _perf_last_invalidated_type =
 784          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 785                                           PerfData::U_None,
 786                                           (jlong)CompileBroker::no_compile,
 787                                           CHECK);
 788   }
 789 }
 790 
 791 // Completes compiler initialization. Compilation requests submitted
 792 // prior to this will be silently ignored.
 793 void CompileBroker::compilation_init_phase2() {
 794   _initialized = true;
 795 }
 796 
 797 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 798   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
 799   Handle thread_group(THREAD, Universe::system_thread_group());
 800   return JavaCalls::construct_new_instance(
 801                        SystemDictionary::Thread_klass(),
 802                        vmSymbols::threadgroup_string_void_signature(),
 803                        thread_group,
 804                        string,
 805                        CHECK_NH);
 806 }
 807 
 808 
 809 JavaThread* CompileBroker::make_thread(jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, Thread* THREAD) {
 810   JavaThread* new_thread = NULL;
 811   {
 812     MutexLocker mu(THREAD, Threads_lock);
 813     if (comp != NULL) {
 814       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 815         CompilerCounters* counters = new CompilerCounters();
 816         new_thread = new CompilerThread(queue, counters);
 817       }
 818     } else {
 819       new_thread = new CodeCacheSweeperThread();
 820     }
 821     // At this point the new CompilerThread data-races with this startup
 822     // thread (which I believe is the primoridal thread and NOT the VM
 823     // thread).  This means Java bytecodes being executed at startup can
 824     // queue compile jobs which will run at whatever default priority the
 825     // newly created CompilerThread runs at.
 826 
 827 
 828     // At this point it may be possible that no osthread was created for the
 829     // JavaThread due to lack of memory. We would have to throw an exception
 830     // in that case. However, since this must work and we do not allow
 831     // exceptions anyway, check and abort if this fails. But first release the
 832     // lock.
 833 
 834     if (new_thread != NULL && new_thread->osthread() != NULL) {
 835 
 836       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), new_thread);
 837 
 838       // Note that this only sets the JavaThread _priority field, which by
 839       // definition is limited to Java priorities and not OS priorities.
 840       // The os-priority is set in the CompilerThread startup code itself
 841 
 842       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
 843 
 844       // Note that we cannot call os::set_priority because it expects Java
 845       // priorities and we are *explicitly* using OS priorities so that it's
 846       // possible to set the compiler thread priority higher than any Java
 847       // thread.
 848 
 849       int native_prio = CompilerThreadPriority;
 850       if (native_prio == -1) {
 851         if (UseCriticalCompilerThreadPriority) {
 852           native_prio = os::java_to_os_priority[CriticalPriority];
 853         } else {
 854           native_prio = os::java_to_os_priority[NearMaxPriority];
 855         }
 856       }
 857       os::set_native_priority(new_thread, native_prio);
 858 
 859       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
 860 
 861       new_thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
 862       if (comp != NULL) {
 863         new_thread->as_CompilerThread()->set_compiler(comp);
 864       }
 865       Threads::add(new_thread);
 866       Thread::start(new_thread);
 867     }
 868   }
 869 
 870   // First release lock before aborting VM.
 871   if (new_thread == NULL || new_thread->osthread() == NULL) {
 872     if (UseDynamicNumberOfCompilerThreads && comp != NULL && comp->num_compiler_threads() > 0) {
 873       if (new_thread != NULL) {
 874         new_thread->smr_delete();
 875       }
 876       return NULL;
 877     }
 878     vm_exit_during_initialization("java.lang.OutOfMemoryError",
 879                                   os::native_thread_creation_failed_msg());
 880   }
 881 
 882   // Let go of Threads_lock before yielding
 883   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 884 
 885   return new_thread;
 886 }
 887 
 888 
 889 void CompileBroker::init_compiler_sweeper_threads() {
 890   NMethodSweeper::set_sweep_threshold_bytes(static_cast<size_t>(SweeperThreshold * ReservedCodeCacheSize / 100.0));
 891   log_info(codecache, sweep)("Sweeper threshold: " SIZE_FORMAT " bytes", NMethodSweeper::sweep_threshold_bytes());
 892 
 893   // Ensure any exceptions lead to vm_exit_during_initialization.
 894   EXCEPTION_MARK;
 895 #if !defined(ZERO)
 896   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 897 #endif // !ZERO
 898   // Initialize the compilation queue
 899   if (_c2_count > 0) {
 900     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 901     _c2_compile_queue  = new CompileQueue(name);
 902     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 903     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 904   }
 905   if (_c1_count > 0) {
 906     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 907     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 908     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 909   }
 910 
 911   char name_buffer[256];
 912 
 913   for (int i = 0; i < _c2_count; i++) {
 914     jobject thread_handle = NULL;
 915     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
 916     // for JVMCI compiler which can create further ones on demand.
 917     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
 918     // Create a name for our thread.
 919     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 920     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 921     thread_handle = JNIHandles::make_global(thread_oop);
 922     JVMCI_ONLY(})
 923     _compiler2_objects[i] = thread_handle;
 924     _compiler2_logs[i] = NULL;
 925 
 926     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 927       JavaThread *ct = make_thread(thread_handle, _c2_compile_queue, _compilers[1], THREAD);
 928       assert(ct != NULL, "should have been handled for initial thread");
 929       _compilers[1]->set_num_compiler_threads(i + 1);
 930       if (TraceCompilerThreads) {
 931         ResourceMark rm;
 932         MutexLocker mu(Threads_lock);
 933         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 934       }
 935     }
 936   }
 937 
 938   for (int i = 0; i < _c1_count; i++) {
 939     // Create a name for our thread.
 940     sprintf(name_buffer, "C1 CompilerThread%d", i);
 941     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 942     jobject thread_handle = JNIHandles::make_global(thread_oop);
 943     _compiler1_objects[i] = thread_handle;
 944     _compiler1_logs[i] = NULL;
 945 
 946     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 947       JavaThread *ct = make_thread(thread_handle, _c1_compile_queue, _compilers[0], THREAD);
 948       assert(ct != NULL, "should have been handled for initial thread");
 949       _compilers[0]->set_num_compiler_threads(i + 1);
 950       if (TraceCompilerThreads) {
 951         ResourceMark rm;
 952         MutexLocker mu(Threads_lock);
 953         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 954       }
 955     }
 956   }
 957 
 958   if (UsePerfData) {
 959     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
 960   }
 961 
 962   if (MethodFlushing) {
 963     // Initialize the sweeper thread
 964     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
 965     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
 966     make_thread(thread_handle, NULL, NULL, THREAD);
 967   }
 968 }
 969 
 970 void CompileBroker::possibly_add_compiler_threads(Thread* THREAD) {
 971 
 972   julong available_memory = os::available_memory();
 973   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
 974   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
 975          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
 976 
 977   // Only do attempt to start additional threads if the lock is free.
 978   if (!CompileThread_lock->try_lock()) return;
 979 
 980   if (_c2_compile_queue != NULL) {
 981     int old_c2_count = _compilers[1]->num_compiler_threads();
 982     int new_c2_count = MIN4(_c2_count,
 983         _c2_compile_queue->size() / 2,
 984         (int)(available_memory / (200*M)),
 985         (int)(available_cc_np / (128*K)));
 986 
 987     for (int i = old_c2_count; i < new_c2_count; i++) {
 988 #if INCLUDE_JVMCI
 989       if (UseJVMCICompiler) {
 990         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
 991         // objects as their existence is completely hidden from the rest of
 992         // the VM (and those compiler threads can't call Java code to do the
 993         // creation anyway). For JVMCI we have to create new j.l.Thread objects
 994         // as they are visible and we can see unexpected thread lifecycle
 995         // transitions if we bind them to new JavaThreads.
 996         if (!THREAD->can_call_java()) break;
 997         char name_buffer[256];
 998         sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 999         Handle thread_oop;
1000         {
1001           // We have to give up the lock temporarily for the Java calls.
1002           MutexUnlocker mu(CompileThread_lock);
1003           thread_oop = create_thread_oop(name_buffer, THREAD);
1004         }
1005         if (HAS_PENDING_EXCEPTION) {
1006           if (TraceCompilerThreads) {
1007             ResourceMark rm;
1008             tty->print_cr("JVMCI compiler thread creation failed:");
1009             PENDING_EXCEPTION->print();
1010           }
1011           CLEAR_PENDING_EXCEPTION;
1012           break;
1013         }
1014         // Check if another thread has beaten us during the Java calls.
1015         if (_compilers[1]->num_compiler_threads() != i) break;
1016         jobject thread_handle = JNIHandles::make_global(thread_oop);
1017         assert(compiler2_object(i) == NULL, "Old one must be released!");
1018         _compiler2_objects[i] = thread_handle;
1019       }
1020 #endif
1021       JavaThread *ct = make_thread(compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1022       if (ct == NULL) break;
1023       _compilers[1]->set_num_compiler_threads(i + 1);
1024       if (TraceCompilerThreads) {
1025         ResourceMark rm;
1026         MutexLocker mu(Threads_lock);
1027         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
1028                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
1029       }
1030     }
1031   }
1032 
1033   if (_c1_compile_queue != NULL) {
1034     int old_c1_count = _compilers[0]->num_compiler_threads();
1035     int new_c1_count = MIN4(_c1_count,
1036         _c1_compile_queue->size() / 4,
1037         (int)(available_memory / (100*M)),
1038         (int)(available_cc_p / (128*K)));
1039 
1040     for (int i = old_c1_count; i < new_c1_count; i++) {
1041       JavaThread *ct = make_thread(compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1042       if (ct == NULL) break;
1043       _compilers[0]->set_num_compiler_threads(i + 1);
1044       if (TraceCompilerThreads) {
1045         ResourceMark rm;
1046         MutexLocker mu(Threads_lock);
1047         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
1048                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
1049       }
1050     }
1051   }
1052 
1053   CompileThread_lock->unlock();
1054 }
1055 
1056 
1057 /**
1058  * Set the methods on the stack as on_stack so that redefine classes doesn't
1059  * reclaim them. This method is executed at a safepoint.
1060  */
1061 void CompileBroker::mark_on_stack() {
1062   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1063   // Since we are at a safepoint, we do not need a lock to access
1064   // the compile queues.
1065   if (_c2_compile_queue != NULL) {
1066     _c2_compile_queue->mark_on_stack();
1067   }
1068   if (_c1_compile_queue != NULL) {
1069     _c1_compile_queue->mark_on_stack();
1070   }
1071 }
1072 
1073 // ------------------------------------------------------------------
1074 // CompileBroker::compile_method
1075 //
1076 // Request compilation of a method.
1077 void CompileBroker::compile_method_base(const methodHandle& method,
1078                                         int osr_bci,
1079                                         int comp_level,
1080                                         const methodHandle& hot_method,
1081                                         int hot_count,
1082                                         CompileTask::CompileReason compile_reason,
1083                                         bool blocking,
1084                                         Thread* thread) {
1085   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1086   assert(method->method_holder()->is_instance_klass(),
1087          "sanity check");
1088   assert(!method->method_holder()->is_not_initialized(),
1089          "method holder must be initialized");
1090   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1091 
1092   if (CIPrintRequests) {
1093     tty->print("request: ");
1094     method->print_short_name(tty);
1095     if (osr_bci != InvocationEntryBci) {
1096       tty->print(" osr_bci: %d", osr_bci);
1097     }
1098     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1099     if (!hot_method.is_null()) {
1100       tty->print(" hot: ");
1101       if (hot_method() != method()) {
1102           hot_method->print_short_name(tty);
1103       } else {
1104         tty->print("yes");
1105       }
1106     }
1107     tty->cr();
1108   }
1109 
1110   // A request has been made for compilation.  Before we do any
1111   // real work, check to see if the method has been compiled
1112   // in the meantime with a definitive result.
1113   if (compilation_is_complete(method, osr_bci, comp_level)) {
1114     return;
1115   }
1116 
1117 #ifndef PRODUCT
1118   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1119     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1120       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1121       return;
1122     }
1123   }
1124 #endif
1125 
1126   // If this method is already in the compile queue, then
1127   // we do not block the current thread.
1128   if (compilation_is_in_queue(method)) {
1129     // We may want to decay our counter a bit here to prevent
1130     // multiple denied requests for compilation.  This is an
1131     // open compilation policy issue. Note: The other possibility,
1132     // in the case that this is a blocking compile request, is to have
1133     // all subsequent blocking requesters wait for completion of
1134     // ongoing compiles. Note that in this case we'll need a protocol
1135     // for freeing the associated compile tasks. [Or we could have
1136     // a single static monitor on which all these waiters sleep.]
1137     return;
1138   }
1139 
1140   if (TieredCompilation) {
1141     // Tiered policy requires MethodCounters to exist before adding a method to
1142     // the queue. Create if we don't have them yet.
1143     method->get_method_counters(thread);
1144   }
1145 
1146   // Outputs from the following MutexLocker block:
1147   CompileTask* task     = NULL;
1148   CompileQueue* queue  = compile_queue(comp_level);
1149 
1150   // Acquire our lock.
1151   {
1152     MutexLocker locker(thread, MethodCompileQueue_lock);
1153 
1154     // Make sure the method has not slipped into the queues since
1155     // last we checked; note that those checks were "fast bail-outs".
1156     // Here we need to be more careful, see 14012000 below.
1157     if (compilation_is_in_queue(method)) {
1158       return;
1159     }
1160 
1161     // We need to check again to see if the compilation has
1162     // completed.  A previous compilation may have registered
1163     // some result.
1164     if (compilation_is_complete(method, osr_bci, comp_level)) {
1165       return;
1166     }
1167 
1168     // We now know that this compilation is not pending, complete,
1169     // or prohibited.  Assign a compile_id to this compilation
1170     // and check to see if it is in our [Start..Stop) range.
1171     int compile_id = assign_compile_id(method, osr_bci);
1172     if (compile_id == 0) {
1173       // The compilation falls outside the allowed range.
1174       return;
1175     }
1176 
1177 #if INCLUDE_JVMCI
1178     if (UseJVMCICompiler && blocking) {
1179       // Don't allow blocking compiles for requests triggered by JVMCI.
1180       if (thread->is_Compiler_thread()) {
1181         blocking = false;
1182       }
1183 
1184       if (!UseJVMCINativeLibrary) {
1185         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1186         vframeStream vfst((JavaThread*) thread);
1187         for (; !vfst.at_end(); vfst.next()) {
1188           if (vfst.method()->is_static_initializer() ||
1189               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1190                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1191             blocking = false;
1192             break;
1193           }
1194         }
1195       }
1196 
1197       // Don't allow blocking compilation requests to JVMCI
1198       // if JVMCI itself is not yet initialized
1199       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1200         blocking = false;
1201       }
1202 
1203       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1204       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1205       // such as the DestroyJavaVM thread.
1206       if (JVMCI::in_shutdown()) {
1207         blocking = false;
1208       }
1209     }
1210 #endif // INCLUDE_JVMCI
1211 
1212     // We will enter the compilation in the queue.
1213     // 14012000: Note that this sets the queued_for_compile bits in
1214     // the target method. We can now reason that a method cannot be
1215     // queued for compilation more than once, as follows:
1216     // Before a thread queues a task for compilation, it first acquires
1217     // the compile queue lock, then checks if the method's queued bits
1218     // are set or it has already been compiled. Thus there can not be two
1219     // instances of a compilation task for the same method on the
1220     // compilation queue. Consider now the case where the compilation
1221     // thread has already removed a task for that method from the queue
1222     // and is in the midst of compiling it. In this case, the
1223     // queued_for_compile bits must be set in the method (and these
1224     // will be visible to the current thread, since the bits were set
1225     // under protection of the compile queue lock, which we hold now.
1226     // When the compilation completes, the compiler thread first sets
1227     // the compilation result and then clears the queued_for_compile
1228     // bits. Neither of these actions are protected by a barrier (or done
1229     // under the protection of a lock), so the only guarantee we have
1230     // (on machines with TSO (Total Store Order)) is that these values
1231     // will update in that order. As a result, the only combinations of
1232     // these bits that the current thread will see are, in temporal order:
1233     // <RESULT, QUEUE> :
1234     //     <0, 1> : in compile queue, but not yet compiled
1235     //     <1, 1> : compiled but queue bit not cleared
1236     //     <1, 0> : compiled and queue bit cleared
1237     // Because we first check the queue bits then check the result bits,
1238     // we are assured that we cannot introduce a duplicate task.
1239     // Note that if we did the tests in the reverse order (i.e. check
1240     // result then check queued bit), we could get the result bit before
1241     // the compilation completed, and the queue bit after the compilation
1242     // completed, and end up introducing a "duplicate" (redundant) task.
1243     // In that case, the compiler thread should first check if a method
1244     // has already been compiled before trying to compile it.
1245     // NOTE: in the event that there are multiple compiler threads and
1246     // there is de-optimization/recompilation, things will get hairy,
1247     // and in that case it's best to protect both the testing (here) of
1248     // these bits, and their updating (here and elsewhere) under a
1249     // common lock.
1250     task = create_compile_task(queue,
1251                                compile_id, method,
1252                                osr_bci, comp_level,
1253                                hot_method, hot_count, compile_reason,
1254                                blocking);
1255   }
1256 
1257   if (blocking) {
1258     wait_for_completion(task);
1259   }
1260 }
1261 
1262 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1263                                        int comp_level,
1264                                        const methodHandle& hot_method, int hot_count,
1265                                        CompileTask::CompileReason compile_reason,
1266                                        Thread* THREAD) {
1267   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1268   if (!_initialized || comp_level == CompLevel_none) {
1269     return NULL;
1270   }
1271 
1272   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1273   assert(comp != NULL, "Ensure we have a compiler");
1274 
1275   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1276   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1277   DirectivesStack::release(directive);
1278   return nm;
1279 }
1280 
1281 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1282                                          int comp_level,
1283                                          const methodHandle& hot_method, int hot_count,
1284                                          CompileTask::CompileReason compile_reason,
1285                                          DirectiveSet* directive,
1286                                          Thread* THREAD) {
1287 
1288   // make sure arguments make sense
1289   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1290   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1291   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1292   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1293   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1294   // allow any levels for WhiteBox
1295   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1296   // return quickly if possible
1297 
1298   // lock, make sure that the compilation
1299   // isn't prohibited in a straightforward way.
1300   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1301   if (comp == NULL || !comp->can_compile_method(method) ||
1302       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1303     return NULL;
1304   }
1305 
1306 #if INCLUDE_JVMCI
1307   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1308     return NULL;
1309   }
1310 #endif
1311 
1312   if (osr_bci == InvocationEntryBci) {
1313     // standard compilation
1314     CompiledMethod* method_code = method->code();
1315     if (method_code != NULL && method_code->is_nmethod()) {
1316       if (compilation_is_complete(method, osr_bci, comp_level)) {
1317         return (nmethod*) method_code;
1318       }
1319     }
1320     if (method->is_not_compilable(comp_level)) {
1321       return NULL;
1322     }
1323   } else {
1324     // osr compilation
1325 #ifndef TIERED
1326     // seems like an assert of dubious value
1327     assert(comp_level == CompLevel_highest_tier,
1328            "all OSR compiles are assumed to be at a single compilation level");
1329 #endif // TIERED
1330     // We accept a higher level osr method
1331     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1332     if (nm != NULL) return nm;
1333     if (method->is_not_osr_compilable(comp_level)) return NULL;
1334   }
1335 
1336   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1337   // some prerequisites that are compiler specific
1338   if (comp->is_c2()) {
1339     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1340     // Resolve all classes seen in the signature of the method
1341     // we are compiling.
1342     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1343   }
1344 
1345   // If the method is native, do the lookup in the thread requesting
1346   // the compilation. Native lookups can load code, which is not
1347   // permitted during compilation.
1348   //
1349   // Note: A native method implies non-osr compilation which is
1350   //       checked with an assertion at the entry of this method.
1351   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1352     bool in_base_library;
1353     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1354     if (HAS_PENDING_EXCEPTION) {
1355       // In case of an exception looking up the method, we just forget
1356       // about it. The interpreter will kick-in and throw the exception.
1357       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1358       CLEAR_PENDING_EXCEPTION;
1359       return NULL;
1360     }
1361     assert(method->has_native_function(), "must have native code by now");
1362   }
1363 
1364   // RedefineClasses() has replaced this method; just return
1365   if (method->is_old()) {
1366     return NULL;
1367   }
1368 
1369   // JVMTI -- post_compile_event requires jmethod_id() that may require
1370   // a lock the compiling thread can not acquire. Prefetch it here.
1371   if (JvmtiExport::should_post_compiled_method_load()) {
1372     method->jmethod_id();
1373   }
1374 
1375   // do the compilation
1376   if (method->is_native()) {
1377     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1378 #if defined(X86) && !defined(ZERO)
1379       // The following native methods:
1380       //
1381       // java.lang.Float.intBitsToFloat
1382       // java.lang.Float.floatToRawIntBits
1383       // java.lang.Double.longBitsToDouble
1384       // java.lang.Double.doubleToRawLongBits
1385       //
1386       // are called through the interpreter even if interpreter native stubs
1387       // are not preferred (i.e., calling through adapter handlers is preferred).
1388       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1389       // if the version of the methods from the native libraries is called.
1390       // As the interpreter and the C2-intrinsified version of the methods preserves
1391       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1392       if ((UseSSE >= 1 &&
1393           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1394            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1395           (UseSSE >= 2 &&
1396            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1397             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1398         return NULL;
1399       }
1400 #endif // X86 && !ZERO
1401 
1402       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1403       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1404       //
1405       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1406       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1407       AdapterHandlerLibrary::create_native_wrapper(method);
1408     } else {
1409       return NULL;
1410     }
1411   } else {
1412     // If the compiler is shut off due to code cache getting full
1413     // fail out now so blocking compiles dont hang the java thread
1414     if (!should_compile_new_jobs()) {
1415       CompilationPolicy::policy()->delay_compilation(method());
1416       return NULL;
1417     }
1418     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1419     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1420   }
1421 
1422   // return requested nmethod
1423   // We accept a higher level osr method
1424   if (osr_bci == InvocationEntryBci) {
1425     CompiledMethod* code = method->code();
1426     if (code == NULL) {
1427       return (nmethod*) code;
1428     } else {
1429       return code->as_nmethod_or_null();
1430     }
1431   }
1432   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1433 }
1434 
1435 
1436 // ------------------------------------------------------------------
1437 // CompileBroker::compilation_is_complete
1438 //
1439 // See if compilation of this method is already complete.
1440 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1441                                             int                 osr_bci,
1442                                             int                 comp_level) {
1443   bool is_osr = (osr_bci != standard_entry_bci);
1444   if (is_osr) {
1445     if (method->is_not_osr_compilable(comp_level)) {
1446       return true;
1447     } else {
1448       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1449       return (result != NULL);
1450     }
1451   } else {
1452     if (method->is_not_compilable(comp_level)) {
1453       return true;
1454     } else {
1455       CompiledMethod* result = method->code();
1456       if (result == NULL) return false;
1457       return comp_level == result->comp_level();
1458     }
1459   }
1460 }
1461 
1462 
1463 /**
1464  * See if this compilation is already requested.
1465  *
1466  * Implementation note: there is only a single "is in queue" bit
1467  * for each method.  This means that the check below is overly
1468  * conservative in the sense that an osr compilation in the queue
1469  * will block a normal compilation from entering the queue (and vice
1470  * versa).  This can be remedied by a full queue search to disambiguate
1471  * cases.  If it is deemed profitable, this may be done.
1472  */
1473 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1474   return method->queued_for_compilation();
1475 }
1476 
1477 // ------------------------------------------------------------------
1478 // CompileBroker::compilation_is_prohibited
1479 //
1480 // See if this compilation is not allowed.
1481 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1482   bool is_native = method->is_native();
1483   // Some compilers may not support the compilation of natives.
1484   AbstractCompiler *comp = compiler(comp_level);
1485   if (is_native &&
1486       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1487     method->set_not_compilable_quietly("native methods not supported", comp_level);
1488     return true;
1489   }
1490 
1491   bool is_osr = (osr_bci != standard_entry_bci);
1492   // Some compilers may not support on stack replacement.
1493   if (is_osr &&
1494       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1495     method->set_not_osr_compilable("OSR not supported", comp_level);
1496     return true;
1497   }
1498 
1499   // The method may be explicitly excluded by the user.
1500   double scale;
1501   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1502     bool quietly = CompilerOracle::should_exclude_quietly();
1503     if (PrintCompilation && !quietly) {
1504       // This does not happen quietly...
1505       ResourceMark rm;
1506       tty->print("### Excluding %s:%s",
1507                  method->is_native() ? "generation of native wrapper" : "compile",
1508                  (method->is_static() ? " static" : ""));
1509       method->print_short_name(tty);
1510       tty->cr();
1511     }
1512     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1513   }
1514 
1515   return false;
1516 }
1517 
1518 /**
1519  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1520  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1521  * The function also allows to generate separate compilation IDs for OSR compilations.
1522  */
1523 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1524 #ifdef ASSERT
1525   bool is_osr = (osr_bci != standard_entry_bci);
1526   int id;
1527   if (method->is_native()) {
1528     assert(!is_osr, "can't be osr");
1529     // Adapters, native wrappers and method handle intrinsics
1530     // should be generated always.
1531     return Atomic::add(&_compilation_id, 1);
1532   } else if (CICountOSR && is_osr) {
1533     id = Atomic::add(&_osr_compilation_id, 1);
1534     if (CIStartOSR <= id && id < CIStopOSR) {
1535       return id;
1536     }
1537   } else {
1538     id = Atomic::add(&_compilation_id, 1);
1539     if (CIStart <= id && id < CIStop) {
1540       return id;
1541     }
1542   }
1543 
1544   // Method was not in the appropriate compilation range.
1545   method->set_not_compilable_quietly("Not in requested compile id range");
1546   return 0;
1547 #else
1548   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1549   // only _compilation_id is incremented.
1550   return Atomic::add(&_compilation_id, 1);
1551 #endif
1552 }
1553 
1554 // ------------------------------------------------------------------
1555 // CompileBroker::assign_compile_id_unlocked
1556 //
1557 // Public wrapper for assign_compile_id that acquires the needed locks
1558 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1559   MutexLocker locker(thread, MethodCompileQueue_lock);
1560   return assign_compile_id(method, osr_bci);
1561 }
1562 
1563 // ------------------------------------------------------------------
1564 // CompileBroker::create_compile_task
1565 //
1566 // Create a CompileTask object representing the current request for
1567 // compilation.  Add this task to the queue.
1568 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1569                                                 int                 compile_id,
1570                                                 const methodHandle& method,
1571                                                 int                 osr_bci,
1572                                                 int                 comp_level,
1573                                                 const methodHandle& hot_method,
1574                                                 int                 hot_count,
1575                                                 CompileTask::CompileReason compile_reason,
1576                                                 bool                blocking) {
1577   CompileTask* new_task = CompileTask::allocate();
1578   new_task->initialize(compile_id, method, osr_bci, comp_level,
1579                        hot_method, hot_count, compile_reason,
1580                        blocking);
1581   queue->add(new_task);
1582   return new_task;
1583 }
1584 
1585 #if INCLUDE_JVMCI
1586 // The number of milliseconds to wait before checking if
1587 // JVMCI compilation has made progress.
1588 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1589 
1590 // The number of JVMCI compilation progress checks that must fail
1591 // before unblocking a thread waiting for a blocking compilation.
1592 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1593 
1594 /**
1595  * Waits for a JVMCI compiler to complete a given task. This thread
1596  * waits until either the task completes or it sees no JVMCI compilation
1597  * progress for N consecutive milliseconds where N is
1598  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1599  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1600  *
1601  * @return true if this thread needs to free/recycle the task
1602  */
1603 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1604   assert(UseJVMCICompiler, "sanity");
1605   MonitorLocker ml(thread, task->lock());
1606   int progress_wait_attempts = 0;
1607   int methods_compiled = jvmci->methods_compiled();
1608   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1609          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1610     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1611 
1612     bool progress;
1613     if (jvmci_compiler_thread != NULL) {
1614       // If the JVMCI compiler thread is not blocked or suspended, we deem it to be making progress.
1615       progress = jvmci_compiler_thread->thread_state() != _thread_blocked &&
1616         !jvmci_compiler_thread->is_external_suspend();
1617     } else {
1618       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1619       // that all JVMCI compiler threads are blocked on. We use the counter for
1620       // successful JVMCI compilations to determine whether JVMCI compilation
1621       // is still making progress through the JVMCI compiler queue.
1622       progress = jvmci->methods_compiled() != methods_compiled;
1623     }
1624 
1625     if (!progress) {
1626       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1627         if (PrintCompilation) {
1628           task->print(tty, "wait for blocking compilation timed out");
1629         }
1630         break;
1631       }
1632     } else {
1633       progress_wait_attempts = 0;
1634       if (jvmci_compiler_thread == NULL) {
1635         methods_compiled = jvmci->methods_compiled();
1636       }
1637     }
1638   }
1639   task->clear_waiter();
1640   return task->is_complete();
1641 }
1642 #endif
1643 
1644 /**
1645  *  Wait for the compilation task to complete.
1646  */
1647 void CompileBroker::wait_for_completion(CompileTask* task) {
1648   if (CIPrintCompileQueue) {
1649     ttyLocker ttyl;
1650     tty->print_cr("BLOCKING FOR COMPILE");
1651   }
1652 
1653   assert(task->is_blocking(), "can only wait on blocking task");
1654 
1655   JavaThread* thread = JavaThread::current();
1656 
1657   methodHandle method(thread, task->method());
1658   bool free_task;
1659 #if INCLUDE_JVMCI
1660   AbstractCompiler* comp = compiler(task->comp_level());
1661   if (comp->is_jvmci() && !task->should_wait_for_compilation()) {
1662     // It may return before compilation is completed.
1663     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1664   } else
1665 #endif
1666   {
1667     MonitorLocker ml(thread, task->lock());
1668     free_task = true;
1669     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1670       ml.wait();
1671     }
1672   }
1673 
1674   if (free_task) {
1675     if (is_compilation_disabled_forever()) {
1676       CompileTask::free(task);
1677       return;
1678     }
1679 
1680     // It is harmless to check this status without the lock, because
1681     // completion is a stable property (until the task object is recycled).
1682     assert(task->is_complete(), "Compilation should have completed");
1683     assert(task->code_handle() == NULL, "must be reset");
1684 
1685     // By convention, the waiter is responsible for recycling a
1686     // blocking CompileTask. Since there is only one waiter ever
1687     // waiting on a CompileTask, we know that no one else will
1688     // be using this CompileTask; we can free it.
1689     CompileTask::free(task);
1690   }
1691 }
1692 
1693 /**
1694  * Initialize compiler thread(s) + compiler object(s). The postcondition
1695  * of this function is that the compiler runtimes are initialized and that
1696  * compiler threads can start compiling.
1697  */
1698 bool CompileBroker::init_compiler_runtime() {
1699   CompilerThread* thread = CompilerThread::current();
1700   AbstractCompiler* comp = thread->compiler();
1701   // Final sanity check - the compiler object must exist
1702   guarantee(comp != NULL, "Compiler object must exist");
1703 
1704   {
1705     // Must switch to native to allocate ci_env
1706     ThreadToNativeFromVM ttn(thread);
1707     ciEnv ci_env((CompileTask*)NULL);
1708     // Cache Jvmti state
1709     ci_env.cache_jvmti_state();
1710     // Cache DTrace flags
1711     ci_env.cache_dtrace_flags();
1712 
1713     // Switch back to VM state to do compiler initialization
1714     ThreadInVMfromNative tv(thread);
1715     ResetNoHandleMark rnhm;
1716 
1717     // Perform per-thread and global initializations
1718     comp->initialize();
1719   }
1720 
1721   if (comp->is_failed()) {
1722     disable_compilation_forever();
1723     // If compiler initialization failed, no compiler thread that is specific to a
1724     // particular compiler runtime will ever start to compile methods.
1725     shutdown_compiler_runtime(comp, thread);
1726     return false;
1727   }
1728 
1729   // C1 specific check
1730   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1731     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1732     return false;
1733   }
1734 
1735   return true;
1736 }
1737 
1738 /**
1739  * If C1 and/or C2 initialization failed, we shut down all compilation.
1740  * We do this to keep things simple. This can be changed if it ever turns
1741  * out to be a problem.
1742  */
1743 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1744   // Free buffer blob, if allocated
1745   if (thread->get_buffer_blob() != NULL) {
1746     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1747     CodeCache::free(thread->get_buffer_blob());
1748   }
1749 
1750   if (comp->should_perform_shutdown()) {
1751     // There are two reasons for shutting down the compiler
1752     // 1) compiler runtime initialization failed
1753     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1754     warning("%s initialization failed. Shutting down all compilers", comp->name());
1755 
1756     // Only one thread per compiler runtime object enters here
1757     // Set state to shut down
1758     comp->set_shut_down();
1759 
1760     // Delete all queued compilation tasks to make compiler threads exit faster.
1761     if (_c1_compile_queue != NULL) {
1762       _c1_compile_queue->free_all();
1763     }
1764 
1765     if (_c2_compile_queue != NULL) {
1766       _c2_compile_queue->free_all();
1767     }
1768 
1769     // Set flags so that we continue execution with using interpreter only.
1770     UseCompiler    = false;
1771     UseInterpreter = true;
1772 
1773     // We could delete compiler runtimes also. However, there are references to
1774     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1775     // fail. This can be done later if necessary.
1776   }
1777 }
1778 
1779 /**
1780  * Helper function to create new or reuse old CompileLog.
1781  */
1782 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1783   if (!LogCompilation) return NULL;
1784 
1785   AbstractCompiler *compiler = ct->compiler();
1786   bool c1 = compiler->is_c1();
1787   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1788   assert(compiler_objects != NULL, "must be initialized at this point");
1789   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1790   assert(logs != NULL, "must be initialized at this point");
1791   int count = c1 ? _c1_count : _c2_count;
1792 
1793   // Find Compiler number by its threadObj.
1794   oop compiler_obj = ct->threadObj();
1795   int compiler_number = 0;
1796   bool found = false;
1797   for (; compiler_number < count; compiler_number++) {
1798     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1799       found = true;
1800       break;
1801     }
1802   }
1803   assert(found, "Compiler must exist at this point");
1804 
1805   // Determine pointer for this thread's log.
1806   CompileLog** log_ptr = &logs[compiler_number];
1807 
1808   // Return old one if it exists.
1809   CompileLog* log = *log_ptr;
1810   if (log != NULL) {
1811     ct->init_log(log);
1812     return log;
1813   }
1814 
1815   // Create a new one and remember it.
1816   init_compiler_thread_log();
1817   log = ct->log();
1818   *log_ptr = log;
1819   return log;
1820 }
1821 
1822 // ------------------------------------------------------------------
1823 // CompileBroker::compiler_thread_loop
1824 //
1825 // The main loop run by a CompilerThread.
1826 void CompileBroker::compiler_thread_loop() {
1827   CompilerThread* thread = CompilerThread::current();
1828   CompileQueue* queue = thread->queue();
1829   // For the thread that initializes the ciObjectFactory
1830   // this resource mark holds all the shared objects
1831   ResourceMark rm;
1832 
1833   // First thread to get here will initialize the compiler interface
1834 
1835   {
1836     ASSERT_IN_VM;
1837     MutexLocker only_one (thread, CompileThread_lock);
1838     if (!ciObjectFactory::is_initialized()) {
1839       ciObjectFactory::initialize();
1840     }
1841   }
1842 
1843   // Open a log.
1844   CompileLog* log = get_log(thread);
1845   if (log != NULL) {
1846     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1847                     thread->name(),
1848                     os::current_thread_id(),
1849                     os::current_process_id());
1850     log->stamp();
1851     log->end_elem();
1852   }
1853 
1854   // If compiler thread/runtime initialization fails, exit the compiler thread
1855   if (!init_compiler_runtime()) {
1856     return;
1857   }
1858 
1859   thread->start_idle_timer();
1860 
1861   // Poll for new compilation tasks as long as the JVM runs. Compilation
1862   // should only be disabled if something went wrong while initializing the
1863   // compiler runtimes. This, in turn, should not happen. The only known case
1864   // when compiler runtime initialization fails is if there is not enough free
1865   // space in the code cache to generate the necessary stubs, etc.
1866   while (!is_compilation_disabled_forever()) {
1867     // We need this HandleMark to avoid leaking VM handles.
1868     HandleMark hm(thread);
1869 
1870     CompileTask* task = queue->get();
1871     if (task == NULL) {
1872       if (UseDynamicNumberOfCompilerThreads) {
1873         // Access compiler_count under lock to enforce consistency.
1874         MutexLocker only_one(CompileThread_lock);
1875         if (can_remove(thread, true)) {
1876           if (TraceCompilerThreads) {
1877             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1878                           thread->name(), thread->idle_time_millis());
1879           }
1880           // Free buffer blob, if allocated
1881           if (thread->get_buffer_blob() != NULL) {
1882             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1883             CodeCache::free(thread->get_buffer_blob());
1884           }
1885           return; // Stop this thread.
1886         }
1887       }
1888     } else {
1889       // Assign the task to the current thread.  Mark this compilation
1890       // thread as active for the profiler.
1891       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1892       // occurs after fetching the compile task off the queue.
1893       CompileTaskWrapper ctw(task);
1894       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1895       task->set_code_handle(&result_handle);
1896       methodHandle method(thread, task->method());
1897 
1898       // Never compile a method if breakpoints are present in it
1899       if (method()->number_of_breakpoints() == 0) {
1900         // Compile the method.
1901         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1902           invoke_compiler_on_method(task);
1903           thread->start_idle_timer();
1904         } else {
1905           // After compilation is disabled, remove remaining methods from queue
1906           method->clear_queued_for_compilation();
1907           task->set_failure_reason("compilation is disabled");
1908         }
1909       }
1910 
1911       if (UseDynamicNumberOfCompilerThreads) {
1912         possibly_add_compiler_threads(thread);
1913         assert(!thread->has_pending_exception(), "should have been handled");
1914       }
1915     }
1916   }
1917 
1918   // Shut down compiler runtime
1919   shutdown_compiler_runtime(thread->compiler(), thread);
1920 }
1921 
1922 // ------------------------------------------------------------------
1923 // CompileBroker::init_compiler_thread_log
1924 //
1925 // Set up state required by +LogCompilation.
1926 void CompileBroker::init_compiler_thread_log() {
1927     CompilerThread* thread = CompilerThread::current();
1928     char  file_name[4*K];
1929     FILE* fp = NULL;
1930     intx thread_id = os::current_thread_id();
1931     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1932       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
1933       if (dir == NULL) {
1934         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1935                      thread_id, os::current_process_id());
1936       } else {
1937         jio_snprintf(file_name, sizeof(file_name),
1938                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1939                      os::file_separator(), thread_id, os::current_process_id());
1940       }
1941 
1942       fp = fopen(file_name, "wt");
1943       if (fp != NULL) {
1944         if (LogCompilation && Verbose) {
1945           tty->print_cr("Opening compilation log %s", file_name);
1946         }
1947         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
1948         if (log == NULL) {
1949           fclose(fp);
1950           return;
1951         }
1952         thread->init_log(log);
1953 
1954         if (xtty != NULL) {
1955           ttyLocker ttyl;
1956           // Record any per thread log files
1957           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
1958         }
1959         return;
1960       }
1961     }
1962     warning("Cannot open log file: %s", file_name);
1963 }
1964 
1965 void CompileBroker::log_metaspace_failure() {
1966   const char* message = "some methods may not be compiled because metaspace "
1967                         "is out of memory";
1968   if (_compilation_log != NULL) {
1969     _compilation_log->log_metaspace_failure(message);
1970   }
1971   if (PrintCompilation) {
1972     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
1973   }
1974 }
1975 
1976 
1977 // ------------------------------------------------------------------
1978 // CompileBroker::set_should_block
1979 //
1980 // Set _should_block.
1981 // Call this from the VM, with Threads_lock held and a safepoint requested.
1982 void CompileBroker::set_should_block() {
1983   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
1984   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
1985 #ifndef PRODUCT
1986   if (PrintCompilation && (Verbose || WizardMode))
1987     tty->print_cr("notifying compiler thread pool to block");
1988 #endif
1989   _should_block = true;
1990 }
1991 
1992 // ------------------------------------------------------------------
1993 // CompileBroker::maybe_block
1994 //
1995 // Call this from the compiler at convenient points, to poll for _should_block.
1996 void CompileBroker::maybe_block() {
1997   if (_should_block) {
1998 #ifndef PRODUCT
1999     if (PrintCompilation && (Verbose || WizardMode))
2000       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2001 #endif
2002     ThreadInVMfromNative tivfn(JavaThread::current());
2003   }
2004 }
2005 
2006 // wrapper for CodeCache::print_summary()
2007 static void codecache_print(bool detailed)
2008 {
2009   ResourceMark rm;
2010   stringStream s;
2011   // Dump code cache  into a buffer before locking the tty,
2012   {
2013     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2014     CodeCache::print_summary(&s, detailed);
2015   }
2016   ttyLocker ttyl;
2017   tty->print("%s", s.as_string());
2018 }
2019 
2020 // wrapper for CodeCache::print_summary() using outputStream
2021 static void codecache_print(outputStream* out, bool detailed) {
2022   ResourceMark rm;
2023   stringStream s;
2024 
2025   // Dump code cache into a buffer
2026   {
2027     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2028     CodeCache::print_summary(&s, detailed);
2029   }
2030 
2031   char* remaining_log = s.as_string();
2032   while (*remaining_log != '\0') {
2033     char* eol = strchr(remaining_log, '\n');
2034     if (eol == NULL) {
2035       out->print_cr("%s", remaining_log);
2036       remaining_log = remaining_log + strlen(remaining_log);
2037     } else {
2038       *eol = '\0';
2039       out->print_cr("%s", remaining_log);
2040       remaining_log = eol + 1;
2041     }
2042   }
2043 }
2044 
2045 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
2046                                  int compilable, const char* failure_reason) {
2047   if (success) {
2048     task->mark_success();
2049     if (ci_env != NULL) {
2050       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
2051     }
2052     if (_compilation_log != NULL) {
2053       nmethod* code = task->code();
2054       if (code != NULL) {
2055         _compilation_log->log_nmethod(thread, code);
2056       }
2057     }
2058   } else if (AbortVMOnCompilationFailure) {
2059     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2060       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2061     }
2062     if (compilable == ciEnv::MethodCompilable_never) {
2063       fatal("Never compilable: %s", failure_reason);
2064     }
2065   }
2066   // simulate crash during compilation
2067   assert(task->compile_id() != CICrashAt, "just as planned");
2068 }
2069 
2070 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2071   assert(task != NULL, "invariant");
2072   CompilerEvent::CompilationEvent::post(event,
2073                                         task->compile_id(),
2074                                         task->compiler()->type(),
2075                                         task->method(),
2076                                         task->comp_level(),
2077                                         task->is_success(),
2078                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2079                                         (task->code() == NULL) ? 0 : task->code()->total_size(),
2080                                         task->num_inlined_bytecodes());
2081 }
2082 
2083 int DirectivesStack::_depth = 0;
2084 CompilerDirectives* DirectivesStack::_top = NULL;
2085 CompilerDirectives* DirectivesStack::_bottom = NULL;
2086 
2087 // ------------------------------------------------------------------
2088 // CompileBroker::invoke_compiler_on_method
2089 //
2090 // Compile a method.
2091 //
2092 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2093   task->print_ul();
2094   if (PrintCompilation) {
2095     ResourceMark rm;
2096     task->print_tty();
2097   }
2098   elapsedTimer time;
2099 
2100   CompilerThread* thread = CompilerThread::current();
2101   ResourceMark rm(thread);
2102 
2103   if (LogEvents) {
2104     _compilation_log->log_compile(thread, task);
2105   }
2106 
2107   // Common flags.
2108   uint compile_id = task->compile_id();
2109   int osr_bci = task->osr_bci();
2110   bool is_osr = (osr_bci != standard_entry_bci);
2111   bool should_log = (thread->log() != NULL);
2112   bool should_break = false;
2113   const int task_level = task->comp_level();
2114   AbstractCompiler* comp = task->compiler();
2115 
2116   DirectiveSet* directive;
2117   {
2118     // create the handle inside it's own block so it can't
2119     // accidentally be referenced once the thread transitions to
2120     // native.  The NoHandleMark before the transition should catch
2121     // any cases where this occurs in the future.
2122     methodHandle method(thread, task->method());
2123     assert(!method->is_native(), "no longer compile natives");
2124 
2125     // Look up matching directives
2126     directive = DirectivesStack::getMatchingDirective(method, comp);
2127 
2128     // Update compile information when using perfdata.
2129     if (UsePerfData) {
2130       update_compile_perf_data(thread, method, is_osr);
2131     }
2132 
2133     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2134   }
2135 
2136   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2137   if (should_log && !directive->LogOption) {
2138     should_log = false;
2139   }
2140 
2141   // Allocate a new set of JNI handles.
2142   push_jni_handle_block();
2143   Method* target_handle = task->method();
2144   int compilable = ciEnv::MethodCompilable;
2145   const char* failure_reason = NULL;
2146   bool failure_reason_on_C_heap = false;
2147   const char* retry_message = NULL;
2148 
2149 #if INCLUDE_JVMCI
2150   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2151     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2152 
2153     TraceTime t1("compilation", &time);
2154     EventCompilation event;
2155     JVMCICompileState compile_state(task);
2156     JVMCIRuntime *runtime = NULL;
2157 
2158     if (JVMCI::in_shutdown()) {
2159       failure_reason = "in JVMCI shutdown";
2160       retry_message = "not retryable";
2161       compilable = ciEnv::MethodCompilable_never;
2162     } else if (compile_state.target_method_is_old()) {
2163       // Skip redefined methods
2164       failure_reason = "redefined method";
2165       retry_message = "not retryable";
2166       compilable = ciEnv::MethodCompilable_never;
2167     } else {
2168       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2169       methodHandle method(thread, target_handle);
2170       runtime = env.runtime();
2171       runtime->compile_method(&env, jvmci, method, osr_bci);
2172 
2173       failure_reason = compile_state.failure_reason();
2174       failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2175       if (!compile_state.retryable()) {
2176         retry_message = "not retryable";
2177         compilable = ciEnv::MethodCompilable_not_at_tier;
2178       }
2179       if (task->code() == NULL) {
2180         assert(failure_reason != NULL, "must specify failure_reason");
2181       }
2182     }
2183     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2184     if (event.should_commit()) {
2185       post_compilation_event(event, task);
2186     }
2187 
2188   } else
2189 #endif // INCLUDE_JVMCI
2190   {
2191     NoHandleMark  nhm;
2192     ThreadToNativeFromVM ttn(thread);
2193 
2194     ciEnv ci_env(task);
2195     if (should_break) {
2196       ci_env.set_break_at_compile(true);
2197     }
2198     if (should_log) {
2199       ci_env.set_log(thread->log());
2200     }
2201     assert(thread->env() == &ci_env, "set by ci_env");
2202     // The thread-env() field is cleared in ~CompileTaskWrapper.
2203 
2204     // Cache Jvmti state
2205     bool method_is_old = ci_env.cache_jvmti_state();
2206 
2207     // Skip redefined methods
2208     if (method_is_old) {
2209       ci_env.record_method_not_compilable("redefined method", true);
2210     }
2211 
2212     // Cache DTrace flags
2213     ci_env.cache_dtrace_flags();
2214 
2215     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2216 
2217     TraceTime t1("compilation", &time);
2218     EventCompilation event;
2219 
2220     if (comp == NULL) {
2221       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2222     } else if (!ci_env.failing()) {
2223       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2224         MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2225         while (WhiteBox::compilation_locked) {
2226           locker.wait();
2227         }
2228       }
2229       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2230 
2231       /* Repeat compilation without installing code for profiling purposes */
2232       int repeat_compilation_count = directive->RepeatCompilationOption;
2233       while (repeat_compilation_count > 0) {
2234         task->print_ul("NO CODE INSTALLED");
2235         comp->compile_method(&ci_env, target, osr_bci, false , directive);
2236         repeat_compilation_count--;
2237       }
2238     }
2239 
2240     if (!ci_env.failing() && task->code() == NULL) {
2241       //assert(false, "compiler should always document failure");
2242       // The compiler elected, without comment, not to register a result.
2243       // Do not attempt further compilations of this method.
2244       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2245     }
2246 
2247     // Copy this bit to the enclosing block:
2248     compilable = ci_env.compilable();
2249 
2250     if (ci_env.failing()) {
2251       failure_reason = ci_env.failure_reason();
2252       retry_message = ci_env.retry_message();
2253       ci_env.report_failure(failure_reason);
2254     }
2255 
2256     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2257     if (event.should_commit()) {
2258       post_compilation_event(event, task);
2259     }
2260   }
2261   // Remove the JNI handle block after the ciEnv destructor has run in
2262   // the previous block.
2263   pop_jni_handle_block();
2264 
2265   if (failure_reason != NULL) {
2266     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2267     if (_compilation_log != NULL) {
2268       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2269     }
2270     if (PrintCompilation) {
2271       FormatBufferResource msg = retry_message != NULL ?
2272         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2273         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2274       task->print(tty, msg);
2275     }
2276   }
2277 
2278   methodHandle method(thread, task->method());
2279 
2280   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2281 
2282   collect_statistics(thread, time, task);
2283 
2284   nmethod* nm = task->code();
2285   if (nm != NULL) {
2286     nm->maybe_print_nmethod(directive);
2287   }
2288   DirectivesStack::release(directive);
2289 
2290   if (PrintCompilation && PrintCompilation2) {
2291     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2292     tty->print("%4d ", compile_id);    // print compilation number
2293     tty->print("%s ", (is_osr ? "%" : " "));
2294     if (task->code() != NULL) {
2295       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2296     }
2297     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2298   }
2299 
2300   Log(compilation, codecache) log;
2301   if (log.is_debug()) {
2302     LogStream ls(log.debug());
2303     codecache_print(&ls, /* detailed= */ false);
2304   }
2305   if (PrintCodeCacheOnCompilation) {
2306     codecache_print(/* detailed= */ false);
2307   }
2308   // Disable compilation, if required.
2309   switch (compilable) {
2310   case ciEnv::MethodCompilable_never:
2311     if (is_osr)
2312       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2313     else
2314       method->set_not_compilable_quietly("MethodCompilable_never");
2315     break;
2316   case ciEnv::MethodCompilable_not_at_tier:
2317     if (is_osr)
2318       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2319     else
2320       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2321     break;
2322   }
2323 
2324   // Note that the queued_for_compilation bits are cleared without
2325   // protection of a mutex. [They were set by the requester thread,
2326   // when adding the task to the compile queue -- at which time the
2327   // compile queue lock was held. Subsequently, we acquired the compile
2328   // queue lock to get this task off the compile queue; thus (to belabour
2329   // the point somewhat) our clearing of the bits must be occurring
2330   // only after the setting of the bits. See also 14012000 above.
2331   method->clear_queued_for_compilation();
2332 }
2333 
2334 /**
2335  * The CodeCache is full. Print warning and disable compilation.
2336  * Schedule code cache cleaning so compilation can continue later.
2337  * This function needs to be called only from CodeCache::allocate(),
2338  * since we currently handle a full code cache uniformly.
2339  */
2340 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2341   UseInterpreter = true;
2342   if (UseCompiler || AlwaysCompileLoopMethods ) {
2343     if (xtty != NULL) {
2344       ResourceMark rm;
2345       stringStream s;
2346       // Dump code cache state into a buffer before locking the tty,
2347       // because log_state() will use locks causing lock conflicts.
2348       CodeCache::log_state(&s);
2349       // Lock to prevent tearing
2350       ttyLocker ttyl;
2351       xtty->begin_elem("code_cache_full");
2352       xtty->print("%s", s.as_string());
2353       xtty->stamp();
2354       xtty->end_elem();
2355     }
2356 
2357 #ifndef PRODUCT
2358     if (ExitOnFullCodeCache) {
2359       codecache_print(/* detailed= */ true);
2360       before_exit(JavaThread::current());
2361       exit_globals(); // will delete tty
2362       vm_direct_exit(1);
2363     }
2364 #endif
2365     if (UseCodeCacheFlushing) {
2366       // Since code cache is full, immediately stop new compiles
2367       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2368         NMethodSweeper::log_sweep("disable_compiler");
2369       }
2370     } else {
2371       disable_compilation_forever();
2372     }
2373 
2374     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2375   }
2376 }
2377 
2378 // ------------------------------------------------------------------
2379 // CompileBroker::update_compile_perf_data
2380 //
2381 // Record this compilation for debugging purposes.
2382 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2383   ResourceMark rm;
2384   char* method_name = method->name()->as_C_string();
2385   char current_method[CompilerCounters::cmname_buffer_length];
2386   size_t maxLen = CompilerCounters::cmname_buffer_length;
2387 
2388   const char* class_name = method->method_holder()->name()->as_C_string();
2389 
2390   size_t s1len = strlen(class_name);
2391   size_t s2len = strlen(method_name);
2392 
2393   // check if we need to truncate the string
2394   if (s1len + s2len + 2 > maxLen) {
2395 
2396     // the strategy is to lop off the leading characters of the
2397     // class name and the trailing characters of the method name.
2398 
2399     if (s2len + 2 > maxLen) {
2400       // lop of the entire class name string, let snprintf handle
2401       // truncation of the method name.
2402       class_name += s1len; // null string
2403     }
2404     else {
2405       // lop off the extra characters from the front of the class name
2406       class_name += ((s1len + s2len + 2) - maxLen);
2407     }
2408   }
2409 
2410   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2411 
2412   int last_compile_type = normal_compile;
2413   if (CICountOSR && is_osr) {
2414     last_compile_type = osr_compile;
2415   }
2416 
2417   CompilerCounters* counters = thread->counters();
2418   counters->set_current_method(current_method);
2419   counters->set_compile_type((jlong) last_compile_type);
2420 }
2421 
2422 // ------------------------------------------------------------------
2423 // CompileBroker::push_jni_handle_block
2424 //
2425 // Push on a new block of JNI handles.
2426 void CompileBroker::push_jni_handle_block() {
2427   JavaThread* thread = JavaThread::current();
2428 
2429   // Allocate a new block for JNI handles.
2430   // Inlined code from jni_PushLocalFrame()
2431   JNIHandleBlock* java_handles = thread->active_handles();
2432   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2433   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2434   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2435   thread->set_active_handles(compile_handles);
2436 }
2437 
2438 
2439 // ------------------------------------------------------------------
2440 // CompileBroker::pop_jni_handle_block
2441 //
2442 // Pop off the current block of JNI handles.
2443 void CompileBroker::pop_jni_handle_block() {
2444   JavaThread* thread = JavaThread::current();
2445 
2446   // Release our JNI handle block
2447   JNIHandleBlock* compile_handles = thread->active_handles();
2448   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2449   thread->set_active_handles(java_handles);
2450   compile_handles->set_pop_frame_link(NULL);
2451   JNIHandleBlock::release_block(compile_handles, thread); // may block
2452 }
2453 
2454 // ------------------------------------------------------------------
2455 // CompileBroker::collect_statistics
2456 //
2457 // Collect statistics about the compilation.
2458 
2459 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2460   bool success = task->is_success();
2461   methodHandle method (thread, task->method());
2462   uint compile_id = task->compile_id();
2463   bool is_osr = (task->osr_bci() != standard_entry_bci);
2464   const int comp_level = task->comp_level();
2465   nmethod* code = task->code();
2466   CompilerCounters* counters = thread->counters();
2467 
2468   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2469   MutexLocker locker(CompileStatistics_lock);
2470 
2471   // _perf variables are production performance counters which are
2472   // updated regardless of the setting of the CITime and CITimeEach flags
2473   //
2474 
2475   // account all time, including bailouts and failures in this counter;
2476   // C1 and C2 counters are counting both successful and unsuccessful compiles
2477   _t_total_compilation.add(time);
2478 
2479   if (!success) {
2480     _total_bailout_count++;
2481     if (UsePerfData) {
2482       _perf_last_failed_method->set_value(counters->current_method());
2483       _perf_last_failed_type->set_value(counters->compile_type());
2484       _perf_total_bailout_count->inc();
2485     }
2486     _t_bailedout_compilation.add(time);
2487   } else if (code == NULL) {
2488     if (UsePerfData) {
2489       _perf_last_invalidated_method->set_value(counters->current_method());
2490       _perf_last_invalidated_type->set_value(counters->compile_type());
2491       _perf_total_invalidated_count->inc();
2492     }
2493     _total_invalidated_count++;
2494     _t_invalidated_compilation.add(time);
2495   } else {
2496     // Compilation succeeded
2497 
2498     // update compilation ticks - used by the implementation of
2499     // java.lang.management.CompilationMXBean
2500     _perf_total_compilation->inc(time.ticks());
2501     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2502 
2503     if (CITime) {
2504       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2505       if (is_osr) {
2506         _t_osr_compilation.add(time);
2507         _sum_osr_bytes_compiled += bytes_compiled;
2508       } else {
2509         _t_standard_compilation.add(time);
2510         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2511       }
2512 
2513       // Collect statistic per compilation level
2514       if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2515         CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2516         if (is_osr) {
2517           stats->_osr.update(time, bytes_compiled);
2518         } else {
2519           stats->_standard.update(time, bytes_compiled);
2520         }
2521         stats->_nmethods_size += code->total_size();
2522         stats->_nmethods_code_size += code->insts_size();
2523       } else {
2524         assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2525       }
2526 
2527       // Collect statistic per compiler
2528       AbstractCompiler* comp = compiler(comp_level);
2529       if (comp) {
2530         CompilerStatistics* stats = comp->stats();
2531         if (is_osr) {
2532           stats->_osr.update(time, bytes_compiled);
2533         } else {
2534           stats->_standard.update(time, bytes_compiled);
2535         }
2536         stats->_nmethods_size += code->total_size();
2537         stats->_nmethods_code_size += code->insts_size();
2538       } else { // if (!comp)
2539         assert(false, "Compiler object must exist");
2540       }
2541     }
2542 
2543     if (UsePerfData) {
2544       // save the name of the last method compiled
2545       _perf_last_method->set_value(counters->current_method());
2546       _perf_last_compile_type->set_value(counters->compile_type());
2547       _perf_last_compile_size->set_value(method->code_size() +
2548                                          task->num_inlined_bytecodes());
2549       if (is_osr) {
2550         _perf_osr_compilation->inc(time.ticks());
2551         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2552       } else {
2553         _perf_standard_compilation->inc(time.ticks());
2554         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2555       }
2556     }
2557 
2558     if (CITimeEach) {
2559       double compile_time = time.seconds();
2560       double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2561       tty->print_cr("%3d   seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2562                     compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2563     }
2564 
2565     // Collect counts of successful compilations
2566     _sum_nmethod_size      += code->total_size();
2567     _sum_nmethod_code_size += code->insts_size();
2568     _total_compile_count++;
2569 
2570     if (UsePerfData) {
2571       _perf_sum_nmethod_size->inc(     code->total_size());
2572       _perf_sum_nmethod_code_size->inc(code->insts_size());
2573       _perf_total_compile_count->inc();
2574     }
2575 
2576     if (is_osr) {
2577       if (UsePerfData) _perf_total_osr_compile_count->inc();
2578       _total_osr_compile_count++;
2579     } else {
2580       if (UsePerfData) _perf_total_standard_compile_count->inc();
2581       _total_standard_compile_count++;
2582     }
2583   }
2584   // set the current method for the thread to null
2585   if (UsePerfData) counters->set_current_method("");
2586 }
2587 
2588 const char* CompileBroker::compiler_name(int comp_level) {
2589   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2590   if (comp == NULL) {
2591     return "no compiler";
2592   } else {
2593     return (comp->name());
2594   }
2595 }
2596 
2597 void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2598   tty->print_cr("  %s {speed: %6.3f bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2599                 name, stats->bytes_per_second(),
2600                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2601                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2602                 stats->_nmethods_size, stats->_nmethods_code_size);
2603 }
2604 
2605 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2606   if (per_compiler) {
2607     if (aggregate) {
2608       tty->cr();
2609       tty->print_cr("Individual compiler times (for compiled methods only)");
2610       tty->print_cr("------------------------------------------------");
2611       tty->cr();
2612     }
2613     for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2614       AbstractCompiler* comp = _compilers[i];
2615       if (comp != NULL) {
2616         print_times(comp->name(), comp->stats());
2617       }
2618     }
2619     if (aggregate) {
2620       tty->cr();
2621       tty->print_cr("Individual compilation Tier times (for compiled methods only)");
2622       tty->print_cr("------------------------------------------------");
2623       tty->cr();
2624     }
2625     char tier_name[256];
2626     for (int tier = CompLevel_simple; tier <= CompLevel_highest_tier; tier++) {
2627       CompilerStatistics* stats = &_stats_per_level[tier-1];
2628       sprintf(tier_name, "Tier%d", tier);
2629       print_times(tier_name, stats);
2630     }
2631   }
2632 
2633 #if INCLUDE_JVMCI
2634   // In hosted mode, print the JVMCI compiler specific counters manually.
2635   if (EnableJVMCI && !UseJVMCICompiler) {
2636     JVMCICompiler::print_compilation_timers();
2637   }
2638 #endif
2639 
2640   if (!aggregate) {
2641     return;
2642   }
2643 
2644   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2645   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2646   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2647 
2648   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2649   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2650 
2651   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2652   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2653   int total_compile_count = CompileBroker::_total_compile_count;
2654   int total_bailout_count = CompileBroker::_total_bailout_count;
2655   int total_invalidated_count = CompileBroker::_total_invalidated_count;
2656 
2657   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2658   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2659 
2660   tty->cr();
2661   tty->print_cr("Accumulated compiler times");
2662   tty->print_cr("----------------------------------------------------------");
2663                //0000000000111111111122222222223333333333444444444455555555556666666666
2664                //0123456789012345678901234567890123456789012345678901234567890123456789
2665   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2666   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2667                 standard_compilation.seconds(),
2668                 standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
2669   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2670                 CompileBroker::_t_bailedout_compilation.seconds(),
2671                 total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
2672   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2673                 osr_compilation.seconds(),
2674                 osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
2675   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2676                 CompileBroker::_t_invalidated_compilation.seconds(),
2677                 total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
2678 
2679   AbstractCompiler *comp = compiler(CompLevel_simple);
2680   if (comp != NULL) {
2681     tty->cr();
2682     comp->print_timers();
2683   }
2684   comp = compiler(CompLevel_full_optimization);
2685   if (comp != NULL) {
2686     tty->cr();
2687     comp->print_timers();
2688   }
2689   tty->cr();
2690   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2691   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2692   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2693   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2694   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2695   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2696   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2697   double tcs = total_compilation.seconds();
2698   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2699   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2700   tty->cr();
2701   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2702   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2703 }
2704 
2705 // Print general/accumulated JIT information.
2706 void CompileBroker::print_info(outputStream *out) {
2707   if (out == NULL) out = tty;
2708   out->cr();
2709   out->print_cr("======================");
2710   out->print_cr("   General JIT info   ");
2711   out->print_cr("======================");
2712   out->cr();
2713   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2714   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2715   out->cr();
2716   out->print_cr("CodeCache overview");
2717   out->print_cr("--------------------------------------------------------");
2718   out->cr();
2719   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2720   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2721   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2722   out->cr();
2723 
2724   out->cr();
2725   out->print_cr("CodeCache cleaning overview");
2726   out->print_cr("--------------------------------------------------------");
2727   out->cr();
2728   NMethodSweeper::print(out);
2729   out->print_cr("--------------------------------------------------------");
2730   out->cr();
2731 }
2732 
2733 // Note: tty_lock must not be held upon entry to this function.
2734 //       Print functions called from herein do "micro-locking" on tty_lock.
2735 //       That's a tradeoff which keeps together important blocks of output.
2736 //       At the same time, continuous tty_lock hold time is kept in check,
2737 //       preventing concurrently printing threads from stalling a long time.
2738 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2739   TimeStamp ts_total;
2740   TimeStamp ts_global;
2741   TimeStamp ts;
2742 
2743   bool allFun = !strcmp(function, "all");
2744   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2745   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2746   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2747   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2748   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2749   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2750   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2751   bool discard = !strcmp(function, "discard") || allFun;
2752 
2753   if (out == NULL) {
2754     out = tty;
2755   }
2756 
2757   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2758     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2759     out->cr();
2760     return;
2761   }
2762 
2763   ts_total.update(); // record starting point
2764 
2765   if (aggregate) {
2766     print_info(out);
2767   }
2768 
2769   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2770   // That prevents another thread from destroying our view on the CodeHeap.
2771   // When we request individual parts of the analysis via the jcmd interface, it is possible
2772   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2773   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2774   // across user interaction.
2775   // Acquire this lock before acquiring the CodeCache_lock.
2776   // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2777   // leading to an unnecessarily long hold time of the CodeCache_lock.
2778   ts.update(); // record starting point
2779   MutexLocker mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2780   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2781 
2782   // If we serve an "allFun" call, it is beneficial to hold the CodeCache_lock
2783   // for the entire duration of aggregation and printing. That makes sure
2784   // we see a consistent picture and do not run into issues caused by
2785   // the CodeHeap being altered concurrently.
2786   Mutex* global_lock   = allFun ? CodeCache_lock : NULL;
2787   Mutex* function_lock = allFun ? NULL : CodeCache_lock;
2788   ts_global.update(); // record starting point
2789   MutexLocker mu2(global_lock, Mutex::_no_safepoint_check_flag);
2790   if (global_lock != NULL) {
2791     out->print_cr("\n__ CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2792     ts_global.update(); // record starting point
2793   }
2794 
2795   if (aggregate) {
2796     ts.update(); // record starting point
2797     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2798     if (function_lock != NULL) {
2799       out->print_cr("\n__ CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2800     }
2801 
2802     ts.update(); // record starting point
2803     CodeCache::aggregate(out, granularity);
2804     if (function_lock != NULL) {
2805       out->print_cr("\n__ CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2806     }
2807   }
2808 
2809   if (usedSpace) CodeCache::print_usedSpace(out);
2810   if (freeSpace) CodeCache::print_freeSpace(out);
2811   if (methodCount) CodeCache::print_count(out);
2812   if (methodSpace) CodeCache::print_space(out);
2813   if (methodAge) CodeCache::print_age(out);
2814   if (methodNames) {
2815     // print_names() has shown to be sensitive to concurrent CodeHeap modifications.
2816     // Therefore, request  the CodeCache_lock before calling...
2817     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2818     CodeCache::print_names(out);
2819   }
2820   if (discard) CodeCache::discard(out);
2821 
2822   if (global_lock != NULL) {
2823     out->print_cr("\n__ CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2824   }
2825   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2826 }