1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/heap.hpp"
  27 #include "oops/oop.inline.hpp"
  28 #include "runtime/os.hpp"
  29 #include "services/memTracker.hpp"
  30 #include "utilities/align.hpp"
  31 
  32 size_t CodeHeap::header_size() {
  33   return sizeof(HeapBlock);
  34 }
  35 
  36 
  37 // Implementation of Heap
  38 
  39 CodeHeap::CodeHeap(const char* name, const int code_blob_type)
  40   : _code_blob_type(code_blob_type) {
  41   _name                         = name;
  42   _number_of_committed_segments = 0;
  43   _number_of_reserved_segments  = 0;
  44   _segment_size                 = 0;
  45   _log2_segment_size            = 0;
  46   _next_segment                 = 0;
  47   _freelist                     = NULL;
  48   _freelist_segments            = 0;
  49   _freelist_length              = 0;
  50   _max_allocated_capacity       = 0;
  51   _blob_count                   = 0;
  52   _nmethod_count                = 0;
  53   _adapter_count                = 0;
  54   _full_count                   = 0;
  55 }
  56 
  57 
  58 // The segmap is marked free for that part of the heap
  59 // which has not been allocated yet (beyond _next_segment).
  60 // "Allocated" space in this context means there exists a
  61 // HeapBlock or a FreeBlock describing this space.
  62 void CodeHeap::mark_segmap_as_free(size_t beg, size_t end) {
  63   assert(              beg <  _number_of_committed_segments, "interval begin out of bounds");
  64   assert(beg <  end && end <= _number_of_committed_segments, "interval end   out of bounds");
  65   // setup _segmap pointers for faster indexing
  66   address p = (address)_segmap.low() + beg;
  67   address q = (address)_segmap.low() + end;
  68   // initialize interval
  69   memset(p, free_sentinel, q-p);
  70 }
  71 
  72 // Don't get confused here.
  73 // All existing blocks, no matter if they are used() or free(),
  74 // have their segmap marked as used. This allows to find the
  75 // block header (HeapBlock or FreeBlock) for any pointer
  76 // within the allocated range (upper limit: _next_segment).
  77 void CodeHeap::mark_segmap_as_used(size_t beg, size_t end) {
  78   assert(              beg <  _number_of_committed_segments, "interval begin out of bounds");
  79   assert(beg <  end && end <= _number_of_committed_segments, "interval end   out of bounds");
  80   // setup _segmap pointers for faster indexing
  81   address p = (address)_segmap.low() + beg;
  82   address q = (address)_segmap.low() + end;
  83   // initialize interval
  84   int i = 0;
  85   while (p < q) {
  86     *p++ = i++;
  87     if (i == free_sentinel) i = 1;
  88   }
  89 }
  90 
  91 
  92 static size_t align_to_page_size(size_t size) {
  93   const size_t alignment = (size_t)os::vm_page_size();
  94   assert(is_power_of_2(alignment), "no kidding ???");
  95   return (size + alignment - 1) & ~(alignment - 1);
  96 }
  97 
  98 
  99 void CodeHeap::on_code_mapping(char* base, size_t size) {
 100 #ifdef LINUX
 101   extern void linux_wrap_code(char* base, size_t size);
 102   linux_wrap_code(base, size);
 103 #endif
 104 }
 105 
 106 
 107 bool CodeHeap::reserve(ReservedSpace rs, size_t committed_size, size_t segment_size) {
 108   assert(rs.size() >= committed_size, "reserved < committed");
 109   assert(segment_size >= sizeof(FreeBlock), "segment size is too small");
 110   assert(is_power_of_2(segment_size), "segment_size must be a power of 2");
 111 
 112   _segment_size      = segment_size;
 113   _log2_segment_size = exact_log2(segment_size);
 114 
 115   // Reserve and initialize space for _memory.
 116   size_t page_size = os::vm_page_size();
 117   if (os::can_execute_large_page_memory()) {
 118     const size_t min_pages = 8;
 119     page_size = MIN2(os::page_size_for_region_aligned(committed_size, min_pages),
 120                      os::page_size_for_region_aligned(rs.size(), min_pages));
 121   }
 122 
 123   const size_t granularity = os::vm_allocation_granularity();
 124   const size_t c_size = align_up(committed_size, page_size);
 125 
 126   os::trace_page_sizes(_name, committed_size, rs.size(), page_size,
 127                        rs.base(), rs.size());
 128   if (!_memory.initialize(rs, c_size)) {
 129     return false;
 130   }
 131 
 132   on_code_mapping(_memory.low(), _memory.committed_size());
 133   _number_of_committed_segments = size_to_segments(_memory.committed_size());
 134   _number_of_reserved_segments  = size_to_segments(_memory.reserved_size());
 135   assert(_number_of_reserved_segments >= _number_of_committed_segments, "just checking");
 136   const size_t reserved_segments_alignment = MAX2((size_t)os::vm_page_size(), granularity);
 137   const size_t reserved_segments_size = align_up(_number_of_reserved_segments, reserved_segments_alignment);
 138   const size_t committed_segments_size = align_to_page_size(_number_of_committed_segments);
 139 
 140   // reserve space for _segmap
 141   if (!_segmap.initialize(reserved_segments_size, committed_segments_size)) {
 142     return false;
 143   }
 144 
 145   MemTracker::record_virtual_memory_type((address)_segmap.low_boundary(), mtCode);
 146 
 147   assert(_segmap.committed_size() >= (size_t) _number_of_committed_segments, "could not commit  enough space for segment map");
 148   assert(_segmap.reserved_size()  >= (size_t) _number_of_reserved_segments , "could not reserve enough space for segment map");
 149   assert(_segmap.reserved_size()  >= _segmap.committed_size()     , "just checking");
 150 
 151   // initialize remaining instance variables
 152   clear();
 153   return true;
 154 }
 155 
 156 
 157 bool CodeHeap::expand_by(size_t size) {
 158   // expand _memory space
 159   size_t dm = align_to_page_size(_memory.committed_size() + size) - _memory.committed_size();
 160   if (dm > 0) {
 161     // Use at least the available uncommitted space if 'size' is larger
 162     if (_memory.uncommitted_size() != 0 && dm > _memory.uncommitted_size()) {
 163       dm = _memory.uncommitted_size();
 164     }
 165     char* base = _memory.low() + _memory.committed_size();
 166     if (!_memory.expand_by(dm)) return false;
 167     on_code_mapping(base, dm);
 168     size_t i = _number_of_committed_segments;
 169     _number_of_committed_segments = size_to_segments(_memory.committed_size());
 170     assert(_number_of_reserved_segments == size_to_segments(_memory.reserved_size()), "number of reserved segments should not change");
 171     assert(_number_of_reserved_segments >= _number_of_committed_segments, "just checking");
 172     // expand _segmap space
 173     size_t ds = align_to_page_size(_number_of_committed_segments) - _segmap.committed_size();
 174     if ((ds > 0) && !_segmap.expand_by(ds)) {
 175       return false;
 176     }
 177     assert(_segmap.committed_size() >= (size_t) _number_of_committed_segments, "just checking");
 178     // initialize additional segmap entries
 179     mark_segmap_as_free(i, _number_of_committed_segments);
 180   }
 181   return true;
 182 }
 183 
 184 void CodeHeap::clear() {
 185   _next_segment = 0;
 186   mark_segmap_as_free(0, _number_of_committed_segments);
 187 }
 188 
 189 
 190 void* CodeHeap::allocate(size_t instance_size) {
 191   size_t number_of_segments = size_to_segments(instance_size + header_size());
 192   assert(segments_to_size(number_of_segments) >= sizeof(FreeBlock), "not enough room for FreeList");
 193 
 194   // First check if we can satisfy request from freelist
 195   NOT_PRODUCT(verify());
 196   HeapBlock* block = search_freelist(number_of_segments);
 197   NOT_PRODUCT(verify());
 198 
 199   if (block != NULL) {
 200     assert(!block->free(), "must be marked free");
 201     guarantee((char*) block >= _memory.low_boundary() && (char*) block < _memory.high(),
 202               "The newly allocated block " INTPTR_FORMAT " is not within the heap "
 203               "starting with "  INTPTR_FORMAT " and ending with "  INTPTR_FORMAT,
 204               p2i(block), p2i(_memory.low_boundary()), p2i(_memory.high()));
 205     DEBUG_ONLY(memset((void*)block->allocated_space(), badCodeHeapNewVal, instance_size));
 206     _max_allocated_capacity = MAX2(_max_allocated_capacity, allocated_capacity());
 207     _blob_count++;
 208     return block->allocated_space();
 209   }
 210 
 211   // Ensure minimum size for allocation to the heap.
 212   number_of_segments = MAX2((int)CodeCacheMinBlockLength, (int)number_of_segments);
 213 
 214   if (_next_segment + number_of_segments <= _number_of_committed_segments) {
 215     mark_segmap_as_used(_next_segment, _next_segment + number_of_segments);
 216     HeapBlock* b =  block_at(_next_segment);
 217     b->initialize(number_of_segments);
 218     _next_segment += number_of_segments;
 219     guarantee((char*) b >= _memory.low_boundary() && (char*) block < _memory.high(),
 220               "The newly allocated block " INTPTR_FORMAT " is not within the heap "
 221               "starting with "  INTPTR_FORMAT " and ending with " INTPTR_FORMAT,
 222               p2i(b), p2i(_memory.low_boundary()), p2i(_memory.high()));
 223     DEBUG_ONLY(memset((void *)b->allocated_space(), badCodeHeapNewVal, instance_size));
 224     _max_allocated_capacity = MAX2(_max_allocated_capacity, allocated_capacity());
 225     _blob_count++;
 226     return b->allocated_space();
 227   } else {
 228     return NULL;
 229   }
 230 }
 231 
 232 // Split the given block into two at the given segment.
 233 // This is helpful when a block was allocated too large
 234 // to trim off the unused space at the end (interpreter).
 235 // It also helps with splitting a large free block during allocation.
 236 // Usage state (used or free) must be set by caller since
 237 // we don't know if the resulting blocks will be used or free.
 238 // split_at is the segment number (relative to segment_for(b))
 239 //          where the split happens. The segment with relative
 240 //          number split_at is the first segment of the split-off block.
 241 HeapBlock* CodeHeap::split_block(HeapBlock *b, size_t split_at) {
 242   if (b == NULL) return NULL;
 243   // After the split, both blocks must have a size of at least CodeCacheMinBlockLength
 244   assert((split_at >= CodeCacheMinBlockLength) && (split_at + CodeCacheMinBlockLength <= b->length()),
 245          "split position(%d) out of range [0..%d]", (int)split_at, (int)b->length());
 246   size_t split_segment = segment_for(b) + split_at;
 247   size_t b_size        = b->length();
 248   size_t newb_size     = b_size - split_at;
 249 
 250   HeapBlock* newb = block_at(split_segment);
 251   newb->set_length(newb_size);
 252   mark_segmap_as_used(segment_for(newb), segment_for(newb) + newb_size);
 253   b->set_length(split_at);
 254   return newb;
 255 }
 256 
 257 void CodeHeap::deallocate_tail(void* p, size_t used_size) {
 258   assert(p == find_start(p), "illegal deallocation");
 259   // Find start of HeapBlock
 260   HeapBlock* b = (((HeapBlock *)p) - 1);
 261   assert(b->allocated_space() == p, "sanity check");
 262 
 263   size_t actual_number_of_segments = b->length();
 264   size_t used_number_of_segments   = size_to_segments(used_size + header_size());
 265   size_t unused_number_of_segments = actual_number_of_segments - used_number_of_segments;
 266   guarantee(used_number_of_segments <= actual_number_of_segments, "Must be!");
 267 
 268   HeapBlock* f = split_block(b, used_number_of_segments);
 269   DEBUG_ONLY(memset((void *)f->allocated_space(), badCodeHeapFreeVal,
 270              segments_to_size(unused_number_of_segments) - sizeof(HeapBlock)));
 271   add_to_freelist(f);
 272   NOT_PRODUCT(verify());
 273 }
 274 
 275 void CodeHeap::deallocate(void* p) {
 276   assert(p == find_start(p), "illegal deallocation");
 277   // Find start of HeapBlock
 278   HeapBlock* b = (((HeapBlock *)p) - 1);
 279   assert(b->allocated_space() == p, "sanity check");
 280   guarantee((char*) b >= _memory.low_boundary() && (char*) b < _memory.high(),
 281             "The block to be deallocated " INTPTR_FORMAT " is not within the heap "
 282             "starting with "  INTPTR_FORMAT " and ending with " INTPTR_FORMAT,
 283             p2i(b), p2i(_memory.low_boundary()), p2i(_memory.high()));
 284   DEBUG_ONLY(memset((void *)b->allocated_space(), badCodeHeapFreeVal,
 285              segments_to_size(b->length()) - sizeof(HeapBlock)));
 286   add_to_freelist(b);
 287   NOT_PRODUCT(verify());
 288 }
 289 
 290 /**
 291  * Uses segment map to find the the start (header) of a nmethod. This works as follows:
 292  * The memory of the code cache is divided into 'segments'. The size of a segment is
 293  * determined by -XX:CodeCacheSegmentSize=XX. Allocation in the code cache can only
 294  * happen at segment boundaries. A pointer in the code cache can be mapped to a segment
 295  * by calling segment_for(addr). Each time memory is requested from the code cache,
 296  * the segmap is updated accordingly. See the following example, which illustrates the
 297  * state of code cache and the segment map: (seg -> segment, nm ->nmethod)
 298  *
 299  *          code cache          segmap
 300  *         -----------        ---------
 301  * seg 1   | nm 1    |   ->   | 0     |
 302  * seg 2   | nm 1    |   ->   | 1     |
 303  * ...     | nm 1    |   ->   | ..    |
 304  * seg m   | nm 2    |   ->   | 0     |
 305  * seg m+1 | nm 2    |   ->   | 1     |
 306  * ...     | nm 2    |   ->   | 2     |
 307  * ...     | nm 2    |   ->   | ..    |
 308  * ...     | nm 2    |   ->   | 0xFE  |
 309  * seg m+n | nm 2    |   ->   | 1     |
 310  * ...     | nm 2    |   ->   |       |
 311  *
 312  * A value of '0' in the segmap indicates that this segment contains the beginning of
 313  * an nmethod. Let's walk through a simple example: If we want to find the start of
 314  * an nmethod that falls into seg 2, we read the value of the segmap[2]. The value
 315  * is an offset that points to the segment that contains the start of the nmethod.
 316  * Another example: If we want to get the start of nm 2, and we happen to get a pointer
 317  * that points to seg m+n, we first read seg[n+m], which returns '1'. So we have to
 318  * do one more read of the segmap[m+n-1] to finally get the segment header.
 319  */
 320 void* CodeHeap::find_start(void* p) const {
 321   if (!contains(p)) {
 322     return NULL;
 323   }
 324   size_t seg_idx = segment_for(p);
 325   address seg_map = (address)_segmap.low();
 326   if (is_segment_unused(seg_map[seg_idx])) {
 327     return NULL;
 328   }
 329   while (seg_map[seg_idx] > 0) {
 330     seg_idx -= (int)seg_map[seg_idx];
 331   }
 332 
 333   HeapBlock* h = block_at(seg_idx);
 334   if (h->free()) {
 335     return NULL;
 336   }
 337   return h->allocated_space();
 338 }
 339 
 340 CodeBlob* CodeHeap::find_blob_unsafe(void* start) const {
 341   CodeBlob* result = (CodeBlob*)CodeHeap::find_start(start);
 342   if (result != NULL && result->blob_contains((address)start)) {
 343     return result;
 344   }
 345   return NULL;
 346 }
 347 
 348 size_t CodeHeap::alignment_unit() const {
 349   // this will be a power of two
 350   return _segment_size;
 351 }
 352 
 353 
 354 size_t CodeHeap::alignment_offset() const {
 355   // The lowest address in any allocated block will be
 356   // equal to alignment_offset (mod alignment_unit).
 357   return sizeof(HeapBlock) & (_segment_size - 1);
 358 }
 359 
 360 // Returns the current block if available and used.
 361 // If not, it returns the subsequent block (if available), NULL otherwise.
 362 // Free blocks are merged, therefore there is at most one free block
 363 // between two used ones. As a result, the subsequent block (if available) is
 364 // guaranteed to be used.
 365 void* CodeHeap::next_used(HeapBlock* b) const {
 366   if (b != NULL && b->free()) b = next_block(b);
 367   assert(b == NULL || !b->free(), "must be in use or at end of heap");
 368   return (b == NULL) ? NULL : b->allocated_space();
 369 }
 370 
 371 // Returns the first used HeapBlock
 372 HeapBlock* CodeHeap::first_block() const {
 373   if (_next_segment > 0)
 374     return block_at(0);
 375   return NULL;
 376 }
 377 
 378 HeapBlock* CodeHeap::block_start(void* q) const {
 379   HeapBlock* b = (HeapBlock*)find_start(q);
 380   if (b == NULL) return NULL;
 381   return b - 1;
 382 }
 383 
 384 // Returns the next Heap block an offset into one
 385 HeapBlock* CodeHeap::next_block(HeapBlock *b) const {
 386   if (b == NULL) return NULL;
 387   size_t i = segment_for(b) + b->length();
 388   if (i < _next_segment)
 389     return block_at(i);
 390   return NULL;
 391 }
 392 
 393 
 394 // Returns current capacity
 395 size_t CodeHeap::capacity() const {
 396   return _memory.committed_size();
 397 }
 398 
 399 size_t CodeHeap::max_capacity() const {
 400   return _memory.reserved_size();
 401 }
 402 
 403 int CodeHeap::allocated_segments() const {
 404   return (int)_next_segment;
 405 }
 406 
 407 size_t CodeHeap::allocated_capacity() const {
 408   // size of used heap - size on freelist
 409   return segments_to_size(_next_segment - _freelist_segments);
 410 }
 411 
 412 // Returns size of the unallocated heap block
 413 size_t CodeHeap::heap_unallocated_capacity() const {
 414   // Total number of segments - number currently used
 415   return segments_to_size(_number_of_reserved_segments - _next_segment);
 416 }
 417 
 418 // Free list management
 419 
 420 FreeBlock* CodeHeap::following_block(FreeBlock *b) {
 421   return (FreeBlock*)(((address)b) + _segment_size * b->length());
 422 }
 423 
 424 // Inserts block b after a
 425 void CodeHeap::insert_after(FreeBlock* a, FreeBlock* b) {
 426   assert(a != NULL && b != NULL, "must be real pointers");
 427 
 428   // Link b into the list after a
 429   b->set_link(a->link());
 430   a->set_link(b);
 431 
 432   // See if we can merge blocks
 433   merge_right(b); // Try to make b bigger
 434   merge_right(a); // Try to make a include b
 435 }
 436 
 437 // Try to merge this block with the following block
 438 bool CodeHeap::merge_right(FreeBlock* a) {
 439   assert(a->free(), "must be a free block");
 440   if (following_block(a) == a->link()) {
 441     assert(a->link() != NULL && a->link()->free(), "must be free too");
 442     // Update block a to include the following block
 443     a->set_length(a->length() + a->link()->length());
 444     a->set_link(a->link()->link());
 445     // Update find_start map
 446     size_t beg = segment_for(a);
 447     mark_segmap_as_used(beg, beg + a->length());
 448     _freelist_length--;
 449     return true;
 450   }
 451   return false;
 452 }
 453 
 454 
 455 void CodeHeap::add_to_freelist(HeapBlock* a) {
 456   FreeBlock* b = (FreeBlock*)a;
 457   _freelist_length++;
 458 
 459   assert(b != _freelist, "cannot be removed twice");
 460 
 461 
 462   // Mark as free and update free space count
 463   _freelist_segments += b->length();
 464   b->set_free();
 465 
 466   // First element in list?
 467   if (_freelist == NULL) {
 468     b->set_link(NULL);
 469     _freelist = b;
 470     return;
 471   }
 472 
 473   // Since the freelist is ordered (smaller addresses -> larger addresses) and the
 474   // element we want to insert into the freelist has a smaller address than the first
 475   // element, we can simply add 'b' as the first element and we are done.
 476   if (b < _freelist) {
 477     // Insert first in list
 478     b->set_link(_freelist);
 479     _freelist = b;
 480     merge_right(_freelist);
 481     return;
 482   }
 483 
 484   // Scan for right place to put into list. List
 485   // is sorted by increasing addresses
 486   FreeBlock* prev = _freelist;
 487   FreeBlock* cur  = _freelist->link();
 488   while(cur != NULL && cur < b) {
 489     assert(prev < cur, "Freelist must be ordered");
 490     prev = cur;
 491     cur  = cur->link();
 492   }
 493   assert((prev < b) && (cur == NULL || b < cur), "free-list must be ordered");
 494   insert_after(prev, b);
 495 }
 496 
 497 /**
 498  * Search freelist for an entry on the list with the best fit.
 499  * @return NULL, if no one was found
 500  */
 501 HeapBlock* CodeHeap::search_freelist(size_t length) {
 502   FreeBlock* found_block  = NULL;
 503   FreeBlock* found_prev   = NULL;
 504   size_t     found_length = _next_segment; // max it out to begin with
 505 
 506   HeapBlock* res  = NULL;
 507   FreeBlock* prev = NULL;
 508   FreeBlock* cur  = _freelist;
 509 
 510   length = length < CodeCacheMinBlockLength ? CodeCacheMinBlockLength : length;
 511 
 512   // Search for best-fitting block
 513   while(cur != NULL) {
 514     size_t cur_length = cur->length();
 515     if (cur_length == length) {
 516       // We have a perfect fit
 517       found_block  = cur;
 518       found_prev   = prev;
 519       found_length = cur_length;
 520       break;
 521     } else if ((cur_length > length) && (cur_length < found_length)) {
 522       // This is a new, closer fit. Remember block, its previous element, and its length
 523       found_block  = cur;
 524       found_prev   = prev;
 525       found_length = cur_length;
 526     }
 527     // Next element in list
 528     prev = cur;
 529     cur  = cur->link();
 530   }
 531 
 532   if (found_block == NULL) {
 533     // None found
 534     return NULL;
 535   }
 536 
 537   // Exact (or at least good enough) fit. Remove from list.
 538   // Don't leave anything on the freelist smaller than CodeCacheMinBlockLength.
 539   if (found_length - length < CodeCacheMinBlockLength) {
 540     _freelist_length--;
 541     length = found_length;
 542     if (found_prev == NULL) {
 543       assert(_freelist == found_block, "sanity check");
 544       _freelist = _freelist->link();
 545     } else {
 546       assert((found_prev->link() == found_block), "sanity check");
 547       // Unmap element
 548       found_prev->set_link(found_block->link());
 549     }
 550     res = found_block;
 551   } else {
 552     // Truncate the free block and return the truncated part
 553     // as new HeapBlock. The remaining free block does not
 554     // need to be updated, except for it's length. Truncating
 555     // the segment map does not invalidate the leading part.
 556     res = split_block(found_block, found_length - length);
 557   }
 558 
 559   res->set_used();
 560   _freelist_segments -= length;
 561   return res;
 562 }
 563 
 564 //----------------------------------------------------------------------------
 565 // Non-product code
 566 
 567 #ifndef PRODUCT
 568 
 569 void CodeHeap::print() {
 570   tty->print_cr("The Heap");
 571 }
 572 
 573 void CodeHeap::verify() {
 574   if (VerifyCodeCache) {
 575     size_t len = 0;
 576     int count = 0;
 577     for(FreeBlock* b = _freelist; b != NULL; b = b->link()) {
 578       len += b->length();
 579       count++;
 580       // Check if we have merged all free blocks
 581       assert(merge_right(b) == false, "Missed merging opportunity");
 582     }
 583     // Verify that freelist contains the right amount of free space
 584     assert(len == _freelist_segments, "wrong freelist");
 585 
 586     for(HeapBlock* h = first_block(); h != NULL; h = next_block(h)) {
 587       if (h->free()) count--;
 588     }
 589     // Verify that the freelist contains the same number of blocks
 590     // than free blocks found on the full list.
 591     assert(count == 0, "missing free blocks");
 592 
 593     // Verify segment map marking.
 594     // All allocated segments, no matter if in a free or used block,
 595     // must be marked "in use".
 596     address seg_map = (address)_segmap.low();
 597     size_t  nseg    = 0;
 598     for(HeapBlock* b = first_block(); b != NULL; b = next_block(b)) {
 599       size_t seg1 = segment_for(b);
 600       size_t segn = seg1 + b->length();
 601       for (size_t i = seg1; i < segn; i++) {
 602         nseg++;
 603         if (is_segment_unused(seg_map[i])) {
 604           warning("CodeHeap: unused segment. %d [%d..%d], %s block", (int)i, (int)seg1, (int)segn, b->free()? "free":"used");
 605         }
 606       }
 607     }
 608     if (nseg != _next_segment) {
 609       warning("CodeHeap: segment count mismatch. found %d, expected %d.", (int)nseg, (int)_next_segment);
 610     }
 611 
 612     // Verify that the number of free blocks is not out of hand.
 613     static int free_block_threshold = 10000;
 614     if (count > free_block_threshold) {
 615       warning("CodeHeap: # of free blocks > %d", free_block_threshold);
 616       // Double the warning limit
 617       free_block_threshold *= 2;
 618     }
 619   }
 620 }
 621 
 622 #endif