/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jvm.h" #include "asm/macroAssembler.inline.hpp" #include "logging/log.hpp" #include "logging/logStream.hpp" #include "memory/resourceArea.hpp" #include "oops/compressedOops.hpp" #include "runtime/java.hpp" #include "runtime/os.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/vm_version.hpp" #include uint VM_Version::_L2_data_cache_line_size = 0; void VM_Version::initialize() { assert(_features != 0, "System pre-initialization is not complete."); guarantee(VM_Version::has_v9(), "only SPARC v9 is supported"); PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes(); PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes(); PrefetchFieldsAhead = prefetch_fields_ahead(); // Allocation prefetch settings AllocatePrefetchDistance = allocate_prefetch_distance(); AllocatePrefetchStyle = allocate_prefetch_style(); intx cache_line_size = prefetch_data_size(); if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize)) { AllocatePrefetchStepSize = MAX2(AllocatePrefetchStepSize, cache_line_size); } if (AllocatePrefetchInstr == 1) { if (!has_blk_init()) { warning("BIS instructions required for AllocatePrefetchInstr 1 unavailable"); FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0); } if (cache_line_size <= 0) { warning("Cache-line size must be known for AllocatePrefetchInstr 1 to work"); FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0); } } UseSSE = false; // Only used on x86 and x64. _supports_cx8 = true; // All SPARC V9 implementations. _supports_atomic_getset4 = true; // Using the 'swap' instruction. if (has_fast_ind_br() && FLAG_IS_DEFAULT(UseInlineCaches)) { // Indirect and direct branches are cost equivalent. FLAG_SET_DEFAULT(UseInlineCaches, false); } // Align loops on the proper instruction boundary to fill the instruction // fetch buffer. if (FLAG_IS_DEFAULT(OptoLoopAlignment)) { FLAG_SET_DEFAULT(OptoLoopAlignment, VM_Version::insn_fetch_alignment); } // 32-bit oops don't make sense for the 64-bit VM on SPARC since the 32-bit // VM has the same registers and smaller objects. CompressedOops::set_shift(LogMinObjAlignmentInBytes); CompressedKlassPointers::set_shift(LogKlassAlignmentInBytes); #ifdef COMPILER2 if (has_fast_ind_br() && FLAG_IS_DEFAULT(UseJumpTables)) { // Indirect and direct branches are cost equivalent. FLAG_SET_DEFAULT(UseJumpTables, true); } // Entry and loop tops are aligned to fill the instruction fetch buffer. if (FLAG_IS_DEFAULT(InteriorEntryAlignment)) { FLAG_SET_DEFAULT(InteriorEntryAlignment, VM_Version::insn_fetch_alignment); } if (UseTLAB && cache_line_size > 0 && FLAG_IS_DEFAULT(AllocatePrefetchInstr)) { if (has_fast_bis()) { // Use BIS instruction for TLAB allocation prefetch. FLAG_SET_DEFAULT(AllocatePrefetchInstr, 1); } else if (has_sparc5()) { // Use prefetch instruction to avoid partial RAW issue on Core C4 processors, // also use prefetch style 3. FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0); if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) { FLAG_SET_DEFAULT(AllocatePrefetchStyle, 3); } } } if (AllocatePrefetchInstr == 1) { // Use allocation prefetch style 3 because BIS instructions require // aligned memory addresses. FLAG_SET_DEFAULT(AllocatePrefetchStyle, 3); } if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) { if (AllocatePrefetchInstr == 0) { // Use different prefetch distance without BIS FLAG_SET_DEFAULT(AllocatePrefetchDistance, 256); } else { // Use smaller prefetch distance with BIS FLAG_SET_DEFAULT(AllocatePrefetchDistance, 64); } } // We increase the number of prefetched cache lines, to use just a bit more // aggressive approach, when the L2-cache line size is small (32 bytes), or // when running on newer processor implementations, such as the Core C4. bool inc_prefetch = cache_line_size > 0 && (cache_line_size < 64 || has_sparc5()); if (inc_prefetch) { // We use a factor two for small cache line sizes (as before) but a slightly // more conservative increase when running on more recent hardware that will // benefit from just a bit more aggressive prefetching. if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) { const int ap_lns = AllocatePrefetchLines; const int ap_inc = cache_line_size < 64 ? ap_lns : (ap_lns + 1) / 2; FLAG_SET_ERGO(AllocatePrefetchLines, ap_lns + ap_inc); } if (FLAG_IS_DEFAULT(AllocateInstancePrefetchLines)) { const int ip_lns = AllocateInstancePrefetchLines; const int ip_inc = cache_line_size < 64 ? ip_lns : (ip_lns + 1) / 2; FLAG_SET_ERGO(AllocateInstancePrefetchLines, ip_lns + ip_inc); } } #endif /* COMPILER2 */ // Use hardware population count instruction if available. if (has_popc()) { if (FLAG_IS_DEFAULT(UsePopCountInstruction)) { FLAG_SET_DEFAULT(UsePopCountInstruction, true); } } else if (UsePopCountInstruction) { warning("POPC instruction is not available on this CPU"); FLAG_SET_DEFAULT(UsePopCountInstruction, false); } // Use compare and branch instructions if available. if (has_cbcond()) { if (FLAG_IS_DEFAULT(UseCBCond)) { FLAG_SET_DEFAULT(UseCBCond, true); } } else if (UseCBCond) { warning("CBCOND instruction is not available on this CPU"); FLAG_SET_DEFAULT(UseCBCond, false); } // Use 'mpmul' instruction if available. if (has_mpmul()) { if (FLAG_IS_DEFAULT(UseMPMUL)) { FLAG_SET_DEFAULT(UseMPMUL, true); } } else if (UseMPMUL) { warning("MPMUL instruction is not available on this CPU"); FLAG_SET_DEFAULT(UseMPMUL, false); } assert(BlockZeroingLowLimit > 0, "invalid value"); if (has_blk_zeroing() && cache_line_size > 0) { if (FLAG_IS_DEFAULT(UseBlockZeroing)) { FLAG_SET_DEFAULT(UseBlockZeroing, true); } } else if (UseBlockZeroing) { warning("BIS zeroing instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseBlockZeroing, false); } assert(BlockCopyLowLimit > 0, "invalid value"); if (has_blk_zeroing() && cache_line_size > 0) { if (FLAG_IS_DEFAULT(UseBlockCopy)) { FLAG_SET_DEFAULT(UseBlockCopy, true); } } else if (UseBlockCopy) { warning("BIS instructions are not available or expensive on this CPU"); FLAG_SET_DEFAULT(UseBlockCopy, false); } #ifdef COMPILER2 if (has_fast_rdpc() && FLAG_IS_DEFAULT(UseRDPCForConstantTableBase)) { FLAG_SET_DEFAULT(UseRDPCForConstantTableBase, true); } // Currently not supported anywhere. FLAG_SET_DEFAULT(UseFPUForSpilling, false); MaxVectorSize = 8; assert((InteriorEntryAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size"); #endif assert((CodeEntryAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size"); assert((OptoLoopAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size"); char buf[512]; jio_snprintf(buf, sizeof(buf), "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s", (has_v9() ? "v9" : ""), (has_popc() ? ", popc" : ""), (has_vis1() ? ", vis1" : ""), (has_vis2() ? ", vis2" : ""), (has_blk_init() ? ", blk_init" : ""), (has_fmaf() ? ", fmaf" : ""), (has_hpc() ? ", hpc" : ""), (has_ima() ? ", ima" : ""), (has_aes() ? ", aes" : ""), (has_des() ? ", des" : ""), (has_kasumi() ? ", kas" : ""), (has_camellia() ? ", cam" : ""), (has_md5() ? ", md5" : ""), (has_sha1() ? ", sha1" : ""), (has_sha256() ? ", sha256" : ""), (has_sha512() ? ", sha512" : ""), (has_mpmul() ? ", mpmul" : ""), (has_mont() ? ", mont" : ""), (has_pause() ? ", pause" : ""), (has_cbcond() ? ", cbcond" : ""), (has_crc32c() ? ", crc32c" : ""), (has_athena_plus() ? ", athena_plus" : ""), (has_vis3b() ? ", vis3b" : ""), (has_adi() ? ", adi" : ""), (has_sparc5() ? ", sparc5" : ""), (has_mwait() ? ", mwait" : ""), (has_xmpmul() ? ", xmpmul" : ""), (has_xmont() ? ", xmont" : ""), (has_pause_nsec() ? ", pause_nsec" : ""), (has_vamask() ? ", vamask" : ""), (has_sparc6() ? ", sparc6" : ""), (has_dictunp() ? ", dictunp" : ""), (has_fpcmpshl() ? ", fpcmpshl" : ""), (has_rle() ? ", rle" : ""), (has_sha3() ? ", sha3" : ""), (has_athena_plus2()? ", athena_plus2" : ""), (has_vis3c() ? ", vis3c" : ""), (has_sparc5b() ? ", sparc5b" : ""), (has_mme() ? ", mme" : ""), (has_fast_idiv() ? ", *idiv" : ""), (has_fast_rdpc() ? ", *rdpc" : ""), (has_fast_bis() ? ", *bis" : ""), (has_fast_ld() ? ", *ld" : ""), (has_fast_cmove() ? ", *cmove" : ""), (has_fast_ind_br() ? ", *ind_br" : ""), (has_blk_zeroing() ? ", *blk_zeroing" : "")); assert(strlen(buf) >= 2, "must be"); _features_string = os::strdup(buf); log_info(os, cpu)("SPARC features detected: %s", _features_string); // UseVIS is set to the smallest of what hardware supports and what the command // line requires, i.e. you cannot set UseVIS to 3 on older UltraSparc which do // not support it. if (UseVIS > 3) UseVIS = 3; if (UseVIS < 0) UseVIS = 0; if (!has_vis3()) // Drop to 2 if no VIS3 support UseVIS = MIN2((intx)2, UseVIS); if (!has_vis2()) // Drop to 1 if no VIS2 support UseVIS = MIN2((intx)1, UseVIS); if (!has_vis1()) // Drop to 0 if no VIS1 support UseVIS = 0; if (has_aes()) { if (FLAG_IS_DEFAULT(UseAES)) { FLAG_SET_DEFAULT(UseAES, true); } if (!UseAES) { if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseAESIntrinsics, false); } else { // The AES intrinsic stubs require AES instruction support (of course) // but also require VIS3 mode or higher for instructions it use. if (UseVIS > 2) { if (FLAG_IS_DEFAULT(UseAESIntrinsics)) { FLAG_SET_DEFAULT(UseAESIntrinsics, true); } } else { if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("SPARC AES intrinsics require VIS3 instructions. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseAESIntrinsics, false); } } } else if (UseAES || UseAESIntrinsics) { if (UseAES && !FLAG_IS_DEFAULT(UseAES)) { warning("AES instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseAES, false); } if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("AES intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESIntrinsics, false); } } if (UseAESCTRIntrinsics) { warning("AES/CTR intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); } // GHASH/GCM intrinsics if (has_vis3() && (UseVIS > 2)) { if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) { UseGHASHIntrinsics = true; } } else if (UseGHASHIntrinsics) { if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics)) warning("GHASH intrinsics require VIS3 instruction support. Intrinsics will be disabled"); FLAG_SET_DEFAULT(UseGHASHIntrinsics, false); } if (has_fmaf()) { if (FLAG_IS_DEFAULT(UseFMA)) { UseFMA = true; } } else if (UseFMA) { warning("FMA instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseFMA, false); } // SHA1, SHA256, and SHA512 instructions were added to SPARC at different times if (has_sha1() || has_sha256() || has_sha512()) { if (UseVIS > 0) { // SHA intrinsics use VIS1 instructions if (FLAG_IS_DEFAULT(UseSHA)) { FLAG_SET_DEFAULT(UseSHA, true); } } else { if (UseSHA) { warning("SPARC SHA intrinsics require VIS1 instruction support. Intrinsics will be disabled."); FLAG_SET_DEFAULT(UseSHA, false); } } } else if (UseSHA) { warning("SHA instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseSHA, false); } if (UseSHA && has_sha1()) { if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) { FLAG_SET_DEFAULT(UseSHA1Intrinsics, true); } } else if (UseSHA1Intrinsics) { warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA1Intrinsics, false); } if (UseSHA && has_sha256()) { if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) { FLAG_SET_DEFAULT(UseSHA256Intrinsics, true); } } else if (UseSHA256Intrinsics) { warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA256Intrinsics, false); } if (UseSHA && has_sha512()) { if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA512Intrinsics, true); } } else if (UseSHA512Intrinsics) { warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA512Intrinsics, false); } if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA, false); } if (has_crc32c()) { if (UseVIS > 2) { // CRC32C intrinsics use VIS3 instructions if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) { FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true); } } else { if (UseCRC32CIntrinsics) { warning("SPARC CRC32C intrinsics require VIS3 instruction support. Intrinsics will be disabled."); FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false); } } } else if (UseCRC32CIntrinsics) { warning("CRC32C instruction is not available on this CPU"); FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false); } if (UseVIS > 2) { if (FLAG_IS_DEFAULT(UseAdler32Intrinsics)) { FLAG_SET_DEFAULT(UseAdler32Intrinsics, true); } } else if (UseAdler32Intrinsics) { warning("SPARC Adler32 intrinsics require VIS3 instruction support. Intrinsics will be disabled."); FLAG_SET_DEFAULT(UseAdler32Intrinsics, false); } if (UseVIS > 2) { if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) { FLAG_SET_DEFAULT(UseCRC32Intrinsics, true); } } else if (UseCRC32Intrinsics) { warning("SPARC CRC32 intrinsics require VIS3 instructions support. Intrinsics will be disabled"); FLAG_SET_DEFAULT(UseCRC32Intrinsics, false); } if (UseVIS > 2) { if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) { FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, true); } } else if (UseMultiplyToLenIntrinsic) { warning("SPARC multiplyToLen intrinsics require VIS3 instructions support. Intrinsics will be disabled"); FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false); } if (UseVectorizedMismatchIntrinsic) { warning("UseVectorizedMismatchIntrinsic specified, but not available on this CPU."); FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false); } if (FLAG_IS_DEFAULT(ContendedPaddingWidth) && (cache_line_size > ContendedPaddingWidth)) ContendedPaddingWidth = cache_line_size; // This machine does not allow unaligned memory accesses if (UseUnalignedAccesses) { if (!FLAG_IS_DEFAULT(UseUnalignedAccesses)) warning("Unaligned memory access is not available on this CPU"); FLAG_SET_DEFAULT(UseUnalignedAccesses, false); } if (log_is_enabled(Info, os, cpu)) { ResourceMark rm; LogStream ls(Log(os, cpu)::info()); outputStream* log = &ls; log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size()); log->print_cr("L2 data cache line size: %u", L2_data_cache_line_size()); log->print("Allocation"); if (AllocatePrefetchStyle <= 0) { log->print(": no prefetching"); } else { log->print(" prefetching: "); if (AllocatePrefetchInstr == 0) { log->print("PREFETCH"); } else if (AllocatePrefetchInstr == 1) { log->print("BIS"); } if (AllocatePrefetchLines > 1) { log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize); } else { log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize); } } if (PrefetchCopyIntervalInBytes > 0) { log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes); } if (PrefetchScanIntervalInBytes > 0) { log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes); } if (PrefetchFieldsAhead > 0) { log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead); } if (ContendedPaddingWidth > 0) { log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth); } } } void VM_Version::print_features() { tty->print("ISA features [0x%0" PRIx64 "]:", _features); if (_features_string != NULL) { tty->print(" %s", _features_string); } tty->cr(); } void VM_Version::determine_features() { platform_features(); // platform_features() is os_arch specific. assert(has_v9(), "must be"); if (UseNiagaraInstrs) { // Limit code generation to Niagara. _features &= niagara1_msk; } } static uint64_t saved_features = 0; void VM_Version::allow_all() { saved_features = _features; _features = full_feature_msk; } void VM_Version::revert() { _features = saved_features; }