1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VERSION_X86_HPP
  27 
  28 #include "memory/universe.hpp"
  29 #include "runtime/globals_extension.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32   friend class VMStructs;
  33   friend class JVMCIVMStructs;
  34 
  35  public:
  36   // cpuid result register layouts.  These are all unions of a uint32_t
  37   // (in case anyone wants access to the register as a whole) and a bitfield.
  38 
  39   union StdCpuid1Eax {
  40     uint32_t value;
  41     struct {
  42       uint32_t stepping   : 4,
  43                model      : 4,
  44                family     : 4,
  45                proc_type  : 2,
  46                           : 2,
  47                ext_model  : 4,
  48                ext_family : 8,
  49                           : 4;
  50     } bits;
  51   };
  52 
  53   union StdCpuid1Ebx { // example, unused
  54     uint32_t value;
  55     struct {
  56       uint32_t brand_id         : 8,
  57                clflush_size     : 8,
  58                threads_per_cpu  : 8,
  59                apic_id          : 8;
  60     } bits;
  61   };
  62 
  63   union StdCpuid1Ecx {
  64     uint32_t value;
  65     struct {
  66       uint32_t sse3     : 1,
  67                clmul    : 1,
  68                         : 1,
  69                monitor  : 1,
  70                         : 1,
  71                vmx      : 1,
  72                         : 1,
  73                est      : 1,
  74                         : 1,
  75                ssse3    : 1,
  76                cid      : 1,
  77                         : 1,
  78                fma      : 1,
  79                cmpxchg16: 1,
  80                         : 4,
  81                dca      : 1,
  82                sse4_1   : 1,
  83                sse4_2   : 1,
  84                         : 2,
  85                popcnt   : 1,
  86                         : 1,
  87                aes      : 1,
  88                         : 1,
  89                osxsave  : 1,
  90                avx      : 1,
  91                         : 3;
  92     } bits;
  93   };
  94 
  95   union StdCpuid1Edx {
  96     uint32_t value;
  97     struct {
  98       uint32_t          : 4,
  99                tsc      : 1,
 100                         : 3,
 101                cmpxchg8 : 1,
 102                         : 6,
 103                cmov     : 1,
 104                         : 3,
 105                clflush  : 1,
 106                         : 3,
 107                mmx      : 1,
 108                fxsr     : 1,
 109                sse      : 1,
 110                sse2     : 1,
 111                         : 1,
 112                ht       : 1,
 113                         : 3;
 114     } bits;
 115   };
 116 
 117   union DcpCpuid4Eax {
 118     uint32_t value;
 119     struct {
 120       uint32_t cache_type    : 5,
 121                              : 21,
 122                cores_per_cpu : 6;
 123     } bits;
 124   };
 125 
 126   union DcpCpuid4Ebx {
 127     uint32_t value;
 128     struct {
 129       uint32_t L1_line_size  : 12,
 130                partitions    : 10,
 131                associativity : 10;
 132     } bits;
 133   };
 134 
 135   union TplCpuidBEbx {
 136     uint32_t value;
 137     struct {
 138       uint32_t logical_cpus : 16,
 139                             : 16;
 140     } bits;
 141   };
 142 
 143   union ExtCpuid1Ecx {
 144     uint32_t value;
 145     struct {
 146       uint32_t LahfSahf     : 1,
 147                CmpLegacy    : 1,
 148                             : 3,
 149                lzcnt_intel  : 1,
 150                lzcnt        : 1,
 151                sse4a        : 1,
 152                misalignsse  : 1,
 153                prefetchw    : 1,
 154                             : 22;
 155     } bits;
 156   };
 157 
 158   union ExtCpuid1Edx {
 159     uint32_t value;
 160     struct {
 161       uint32_t           : 22,
 162                mmx_amd   : 1,
 163                mmx       : 1,
 164                fxsr      : 1,
 165                          : 4,
 166                long_mode : 1,
 167                tdnow2    : 1,
 168                tdnow     : 1;
 169     } bits;
 170   };
 171 
 172   union ExtCpuid5Ex {
 173     uint32_t value;
 174     struct {
 175       uint32_t L1_line_size : 8,
 176                L1_tag_lines : 8,
 177                L1_assoc     : 8,
 178                L1_size      : 8;
 179     } bits;
 180   };
 181 
 182   union ExtCpuid7Edx {
 183     uint32_t value;
 184     struct {
 185       uint32_t               : 8,
 186               tsc_invariance : 1,
 187                              : 23;
 188     } bits;
 189   };
 190 
 191   union ExtCpuid8Ecx {
 192     uint32_t value;
 193     struct {
 194       uint32_t cores_per_cpu : 8,
 195                              : 24;
 196     } bits;
 197   };
 198 
 199   union SefCpuid7Eax {
 200     uint32_t value;
 201   };
 202 
 203   union SefCpuid7Ebx {
 204     uint32_t value;
 205     struct {
 206       uint32_t fsgsbase : 1,
 207                         : 2,
 208                    bmi1 : 1,
 209                         : 1,
 210                    avx2 : 1,
 211                         : 2,
 212                    bmi2 : 1,
 213                    erms : 1,
 214                         : 1,
 215                     rtm : 1,
 216                         : 4,
 217                 avx512f : 1,
 218                avx512dq : 1,
 219                         : 1,
 220                     adx : 1,
 221                         : 3,
 222              clflushopt : 1,
 223                    clwb : 1,
 224                         : 1,
 225                avx512pf : 1,
 226                avx512er : 1,
 227                avx512cd : 1,
 228                     sha : 1,
 229                avx512bw : 1,
 230                avx512vl : 1;
 231     } bits;
 232   };
 233 
 234   union SefCpuid7Ecx {
 235     uint32_t value;
 236     struct {
 237       uint32_t prefetchwt1 : 1,
 238                avx512_vbmi : 1,
 239                       umip : 1,
 240                        pku : 1,
 241                      ospke : 1,
 242                            : 1,
 243               avx512_vbmi2 : 1,
 244                            : 1,
 245                       gfni : 1,
 246                       vaes : 1,
 247                 vpclmulqdq : 1,
 248                avx512_vnni : 1,
 249              avx512_bitalg : 1,
 250                            : 1,
 251           avx512_vpopcntdq : 1,
 252                            : 17;
 253     } bits;
 254   };
 255 
 256   union SefCpuid7Edx {
 257     uint32_t value;
 258     struct {
 259       uint32_t             : 2,
 260              avx512_4vnniw : 1,
 261              avx512_4fmaps : 1,
 262                            : 28;
 263     } bits;
 264   };
 265 
 266   union ExtCpuid1EEbx {
 267     uint32_t value;
 268     struct {
 269       uint32_t                  : 8,
 270                threads_per_core : 8,
 271                                 : 16;
 272     } bits;
 273   };
 274 
 275   union XemXcr0Eax {
 276     uint32_t value;
 277     struct {
 278       uint32_t x87     : 1,
 279                sse     : 1,
 280                ymm     : 1,
 281                bndregs : 1,
 282                bndcsr  : 1,
 283                opmask  : 1,
 284                zmm512  : 1,
 285                zmm32   : 1,
 286                        : 24;
 287     } bits;
 288   };
 289 
 290 protected:
 291   static int _cpu;
 292   static int _model;
 293   static int _stepping;
 294 
 295   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
 296   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
 297 
 298   enum Feature_Flag {
 299     CPU_CX8      = (1 << 0), // next bits are from cpuid 1 (EDX)
 300     CPU_CMOV     = (1 << 1),
 301     CPU_FXSR     = (1 << 2),
 302     CPU_HT       = (1 << 3),
 303     CPU_MMX      = (1 << 4),
 304     CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 305                                    // may not necessarily support other 3dnow instructions
 306     CPU_SSE      = (1 << 6),
 307     CPU_SSE2     = (1 << 7),
 308     CPU_SSE3     = (1 << 8),  // SSE3 comes from cpuid 1 (ECX)
 309     CPU_SSSE3    = (1 << 9),
 310     CPU_SSE4A    = (1 << 10),
 311     CPU_SSE4_1   = (1 << 11),
 312     CPU_SSE4_2   = (1 << 12),
 313     CPU_POPCNT   = (1 << 13),
 314     CPU_LZCNT    = (1 << 14),
 315     CPU_TSC      = (1 << 15),
 316     CPU_TSCINV   = (1 << 16),
 317     CPU_AVX      = (1 << 17),
 318     CPU_AVX2     = (1 << 18),
 319     CPU_AES      = (1 << 19),
 320     CPU_ERMS     = (1 << 20), // enhanced 'rep movsb/stosb' instructions
 321     CPU_CLMUL    = (1 << 21), // carryless multiply for CRC
 322     CPU_BMI1     = (1 << 22),
 323     CPU_BMI2     = (1 << 23),
 324     CPU_RTM      = (1 << 24), // Restricted Transactional Memory instructions
 325     CPU_ADX      = (1 << 25),
 326     CPU_AVX512F  = (1 << 26), // AVX 512bit foundation instructions
 327     CPU_AVX512DQ = (1 << 27),
 328     CPU_AVX512PF = (1 << 28),
 329     CPU_AVX512ER = (1 << 29),
 330     CPU_AVX512CD = (1 << 30)
 331     // Keeping sign bit 31 unassigned.
 332   };
 333 
 334 #define CPU_AVX512BW ((uint64_t)UCONST64(0x100000000)) // enums are limited to 31 bit
 335 #define CPU_AVX512VL ((uint64_t)UCONST64(0x200000000)) // EVEX instructions with smaller vector length
 336 #define CPU_SHA ((uint64_t)UCONST64(0x400000000))      // SHA instructions
 337 #define CPU_FMA ((uint64_t)UCONST64(0x800000000))      // FMA instructions
 338 #define CPU_VZEROUPPER ((uint64_t)UCONST64(0x1000000000))       // Vzeroupper instruction
 339 #define CPU_AVX512_VPOPCNTDQ ((uint64_t)UCONST64(0x2000000000)) // Vector popcount
 340 #define CPU_VPCLMULQDQ ((uint64_t)UCONST64(0x4000000000)) //Vector carryless multiplication
 341 #define CPU_VAES ((uint64_t)UCONST64(0x8000000000))    // Vector AES instructions
 342 #define CPU_VNNI ((uint64_t)UCONST64(0x10000000000))   // Vector Neural Network Instructions
 343 
 344 #define CPU_FLUSH ((uint64_t)UCONST64(0x20000000000))  // flush instruction
 345 #define CPU_FLUSHOPT ((uint64_t)UCONST64(0x40000000000)) // flushopt instruction
 346 #define CPU_CLWB ((uint64_t)UCONST64(0x80000000000))   // clwb instruction
 347 
 348 enum Extended_Family {
 349     // AMD
 350     CPU_FAMILY_AMD_11H       = 0x11,
 351     // ZX
 352     CPU_FAMILY_ZX_CORE_F6    = 6,
 353     CPU_FAMILY_ZX_CORE_F7    = 7,
 354     // Intel
 355     CPU_FAMILY_INTEL_CORE    = 6,
 356     CPU_MODEL_NEHALEM        = 0x1e,
 357     CPU_MODEL_NEHALEM_EP     = 0x1a,
 358     CPU_MODEL_NEHALEM_EX     = 0x2e,
 359     CPU_MODEL_WESTMERE       = 0x25,
 360     CPU_MODEL_WESTMERE_EP    = 0x2c,
 361     CPU_MODEL_WESTMERE_EX    = 0x2f,
 362     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 363     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 364     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
 365     CPU_MODEL_HASWELL_E3     = 0x3c,
 366     CPU_MODEL_HASWELL_E7     = 0x3f,
 367     CPU_MODEL_BROADWELL      = 0x3d,
 368     CPU_MODEL_SKYLAKE        = 0x55
 369   };
 370 
 371   // cpuid information block.  All info derived from executing cpuid with
 372   // various function numbers is stored here.  Intel and AMD info is
 373   // merged in this block: accessor methods disentangle it.
 374   //
 375   // The info block is laid out in subblocks of 4 dwords corresponding to
 376   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 377   struct CpuidInfo {
 378     // cpuid function 0
 379     uint32_t std_max_function;
 380     uint32_t std_vendor_name_0;
 381     uint32_t std_vendor_name_1;
 382     uint32_t std_vendor_name_2;
 383 
 384     // cpuid function 1
 385     StdCpuid1Eax std_cpuid1_eax;
 386     StdCpuid1Ebx std_cpuid1_ebx;
 387     StdCpuid1Ecx std_cpuid1_ecx;
 388     StdCpuid1Edx std_cpuid1_edx;
 389 
 390     // cpuid function 4 (deterministic cache parameters)
 391     DcpCpuid4Eax dcp_cpuid4_eax;
 392     DcpCpuid4Ebx dcp_cpuid4_ebx;
 393     uint32_t     dcp_cpuid4_ecx; // unused currently
 394     uint32_t     dcp_cpuid4_edx; // unused currently
 395 
 396     // cpuid function 7 (structured extended features)
 397     SefCpuid7Eax sef_cpuid7_eax;
 398     SefCpuid7Ebx sef_cpuid7_ebx;
 399     SefCpuid7Ecx sef_cpuid7_ecx;
 400     SefCpuid7Edx sef_cpuid7_edx;
 401 
 402     // cpuid function 0xB (processor topology)
 403     // ecx = 0
 404     uint32_t     tpl_cpuidB0_eax;
 405     TplCpuidBEbx tpl_cpuidB0_ebx;
 406     uint32_t     tpl_cpuidB0_ecx; // unused currently
 407     uint32_t     tpl_cpuidB0_edx; // unused currently
 408 
 409     // ecx = 1
 410     uint32_t     tpl_cpuidB1_eax;
 411     TplCpuidBEbx tpl_cpuidB1_ebx;
 412     uint32_t     tpl_cpuidB1_ecx; // unused currently
 413     uint32_t     tpl_cpuidB1_edx; // unused currently
 414 
 415     // ecx = 2
 416     uint32_t     tpl_cpuidB2_eax;
 417     TplCpuidBEbx tpl_cpuidB2_ebx;
 418     uint32_t     tpl_cpuidB2_ecx; // unused currently
 419     uint32_t     tpl_cpuidB2_edx; // unused currently
 420 
 421     // cpuid function 0x80000000 // example, unused
 422     uint32_t ext_max_function;
 423     uint32_t ext_vendor_name_0;
 424     uint32_t ext_vendor_name_1;
 425     uint32_t ext_vendor_name_2;
 426 
 427     // cpuid function 0x80000001
 428     uint32_t     ext_cpuid1_eax; // reserved
 429     uint32_t     ext_cpuid1_ebx; // reserved
 430     ExtCpuid1Ecx ext_cpuid1_ecx;
 431     ExtCpuid1Edx ext_cpuid1_edx;
 432 
 433     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 434     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 435     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 436     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 437 
 438     // cpuid function 0x80000005 // AMD L1, Intel reserved
 439     uint32_t     ext_cpuid5_eax; // unused currently
 440     uint32_t     ext_cpuid5_ebx; // reserved
 441     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 442     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 443 
 444     // cpuid function 0x80000007
 445     uint32_t     ext_cpuid7_eax; // reserved
 446     uint32_t     ext_cpuid7_ebx; // reserved
 447     uint32_t     ext_cpuid7_ecx; // reserved
 448     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 449 
 450     // cpuid function 0x80000008
 451     uint32_t     ext_cpuid8_eax; // unused currently
 452     uint32_t     ext_cpuid8_ebx; // reserved
 453     ExtCpuid8Ecx ext_cpuid8_ecx;
 454     uint32_t     ext_cpuid8_edx; // reserved
 455 
 456     // cpuid function 0x8000001E // AMD 17h
 457     uint32_t      ext_cpuid1E_eax;
 458     ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h)
 459     uint32_t      ext_cpuid1E_ecx;
 460     uint32_t      ext_cpuid1E_edx; // unused currently
 461 
 462     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 463     XemXcr0Eax   xem_xcr0_eax;
 464     uint32_t     xem_xcr0_edx; // reserved
 465 
 466     // Space to save ymm registers after signal handle
 467     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
 468 
 469     // Space to save zmm registers after signal handle
 470     int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
 471   };
 472 
 473   // The actual cpuid info block
 474   static CpuidInfo _cpuid_info;
 475 
 476   // Extractors and predicates
 477   static uint32_t extended_cpu_family() {
 478     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 479     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 480     return result;
 481   }
 482 
 483   static uint32_t extended_cpu_model() {
 484     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 485     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 486     return result;
 487   }
 488 
 489   static uint32_t cpu_stepping() {
 490     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 491     return result;
 492   }
 493 
 494   static uint logical_processor_count() {
 495     uint result = threads_per_core();
 496     return result;
 497   }
 498 
 499   static uint64_t feature_flags() {
 500     uint64_t result = 0;
 501     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 502       result |= CPU_CX8;
 503     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 504       result |= CPU_CMOV;
 505     if (_cpuid_info.std_cpuid1_edx.bits.clflush != 0)
 506       result |= CPU_FLUSH;
 507 #ifdef _LP64
 508     // clflush should always be available on x86_64
 509     // if not we are in real trouble because we rely on it
 510     // to flush the code cache.
 511     assert ((result & CPU_FLUSH) != 0, "clflush should be available");
 512 #endif
 513     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd_family() &&
 514         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 515       result |= CPU_FXSR;
 516     // HT flag is set for multi-core processors also.
 517     if (threads_per_core() > 1)
 518       result |= CPU_HT;
 519     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd_family() &&
 520         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 521       result |= CPU_MMX;
 522     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 523       result |= CPU_SSE;
 524     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 525       result |= CPU_SSE2;
 526     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 527       result |= CPU_SSE3;
 528     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 529       result |= CPU_SSSE3;
 530     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 531       result |= CPU_SSE4_1;
 532     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 533       result |= CPU_SSE4_2;
 534     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 535       result |= CPU_POPCNT;
 536     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 537         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 538         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 539         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 540       result |= CPU_AVX;
 541       result |= CPU_VZEROUPPER;
 542       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 543         result |= CPU_AVX2;
 544       if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
 545           _cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
 546           _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
 547           _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
 548         result |= CPU_AVX512F;
 549         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
 550           result |= CPU_AVX512CD;
 551         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
 552           result |= CPU_AVX512DQ;
 553         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
 554           result |= CPU_AVX512PF;
 555         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
 556           result |= CPU_AVX512ER;
 557         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
 558           result |= CPU_AVX512BW;
 559         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
 560           result |= CPU_AVX512VL;
 561         if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vpopcntdq != 0)
 562           result |= CPU_AVX512_VPOPCNTDQ;
 563         if (_cpuid_info.sef_cpuid7_ecx.bits.vpclmulqdq != 0)
 564           result |= CPU_VPCLMULQDQ;
 565         if (_cpuid_info.sef_cpuid7_ecx.bits.vaes != 0)
 566           result |= CPU_VAES;
 567         if (_cpuid_info.sef_cpuid7_ecx.bits.avx512_vnni != 0)
 568           result |= CPU_VNNI;
 569       }
 570     }
 571     if (_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
 572       result |= CPU_BMI1;
 573     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 574       result |= CPU_TSC;
 575     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 576       result |= CPU_TSCINV;
 577     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
 578       result |= CPU_AES;
 579     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
 580       result |= CPU_ERMS;
 581     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
 582       result |= CPU_CLMUL;
 583     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
 584       result |= CPU_RTM;
 585     if (_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
 586        result |= CPU_ADX;
 587     if (_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
 588       result |= CPU_BMI2;
 589     if (_cpuid_info.sef_cpuid7_ebx.bits.sha != 0)
 590       result |= CPU_SHA;
 591     if (_cpuid_info.std_cpuid1_ecx.bits.fma != 0)
 592       result |= CPU_FMA;
 593     if (_cpuid_info.sef_cpuid7_ebx.bits.clflushopt != 0)
 594       result |= CPU_FLUSHOPT;
 595 
 596     // AMD|Hygon features.
 597     if (is_amd_family()) {
 598       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 599           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 600         result |= CPU_3DNOW_PREFETCH;
 601       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 602         result |= CPU_LZCNT;
 603       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 604         result |= CPU_SSE4A;
 605     }
 606     // Intel features.
 607     if (is_intel()) {
 608       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 609         result |= CPU_LZCNT;
 610       // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 611       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 612         result |= CPU_3DNOW_PREFETCH;
 613       }
 614       if (_cpuid_info.sef_cpuid7_ebx.bits.clwb != 0) {
 615         result |= CPU_CLWB;
 616       }
 617     }
 618 
 619     // ZX features.
 620     if (is_zx()) {
 621       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 622         result |= CPU_LZCNT;
 623       // for ZX, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 624       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 625         result |= CPU_3DNOW_PREFETCH;
 626       }
 627     }
 628 
 629     return result;
 630   }
 631 
 632   static bool os_supports_avx_vectors() {
 633     bool retVal = false;
 634     int nreg = 2 LP64_ONLY(+2);
 635     if (supports_evex()) {
 636       // Verify that OS save/restore all bits of EVEX registers
 637       // during signal processing.
 638       retVal = true;
 639       for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 640         if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 641           retVal = false;
 642           break;
 643         }
 644       }
 645     } else if (supports_avx()) {
 646       // Verify that OS save/restore all bits of AVX registers
 647       // during signal processing.
 648       retVal = true;
 649       for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
 650         if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
 651           retVal = false;
 652           break;
 653         }
 654       }
 655       // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen
 656       if (retVal == false) {
 657         // Verify that OS save/restore all bits of EVEX registers
 658         // during signal processing.
 659         retVal = true;
 660         for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 661           if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 662             retVal = false;
 663             break;
 664           }
 665         }
 666       }
 667     }
 668     return retVal;
 669   }
 670 
 671   static void get_processor_features();
 672 
 673 public:
 674   // Offsets for cpuid asm stub
 675   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 676   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 677   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 678   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 679   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 680   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 681   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 682   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 683   static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); }
 684   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 685   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 686   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 687   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 688   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
 689   static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
 690 
 691   // The value used to check ymm register after signal handle
 692   static int ymm_test_value()    { return 0xCAFEBABE; }
 693 
 694   static void get_cpu_info_wrapper();
 695   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
 696   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
 697   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
 698   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
 699 
 700   static void clean_cpuFeatures()   { _features = 0; }
 701   static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); }
 702   static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); }
 703 
 704 
 705   // Initialization
 706   static void initialize();
 707 
 708   // Override Abstract_VM_Version implementation
 709   static void print_platform_virtualization_info(outputStream*);
 710 
 711   // Override Abstract_VM_Version implementation
 712   static bool use_biased_locking();
 713 
 714   // Asserts
 715   static void assert_is_initialized() {
 716     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 717   }
 718 
 719   //
 720   // Processor family:
 721   //       3   -  386
 722   //       4   -  486
 723   //       5   -  Pentium
 724   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 725   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 726   //    family 6 model:   9,        13,       14,        15
 727   //    0x0f   -  Pentium 4, Opteron
 728   //
 729   // Note: The cpu family should be used to select between
 730   //       instruction sequences which are valid on all Intel
 731   //       processors.  Use the feature test functions below to
 732   //       determine whether a particular instruction is supported.
 733   //
 734   static int  cpu_family()        { return _cpu;}
 735   static bool is_P6()             { return cpu_family() >= 6; }
 736   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 737   static bool is_hygon()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH'
 738   static bool is_amd_family()     { return is_amd() || is_hygon(); }
 739   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 740   static bool is_zx()             { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS  '
 741   static bool is_atom_family()    { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton
 742   static bool is_knights_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi
 743 
 744   static bool supports_processor_topology() {
 745     return (_cpuid_info.std_max_function >= 0xB) &&
 746            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 747            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 748            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 749   }
 750 
 751   static uint cores_per_cpu()  {
 752     uint result = 1;
 753     if (is_intel()) {
 754       bool supports_topology = supports_processor_topology();
 755       if (supports_topology) {
 756         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 757                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 758       }
 759       if (!supports_topology || result == 0) {
 760         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 761       }
 762     } else if (is_amd_family()) {
 763       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 764     } else if (is_zx()) {
 765       bool supports_topology = supports_processor_topology();
 766       if (supports_topology) {
 767         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 768                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 769       }
 770       if (!supports_topology || result == 0) {
 771         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 772       }
 773     }
 774     return result;
 775   }
 776 
 777   static uint threads_per_core()  {
 778     uint result = 1;
 779     if (is_intel() && supports_processor_topology()) {
 780       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 781     } else if (is_zx() && supports_processor_topology()) {
 782       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 783     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 784       if (cpu_family() >= 0x17) {
 785         result = _cpuid_info.ext_cpuid1E_ebx.bits.threads_per_core + 1;
 786       } else {
 787         result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 788                  cores_per_cpu();
 789       }
 790     }
 791     return (result == 0 ? 1 : result);
 792   }
 793 
 794   static intx L1_line_size()  {
 795     intx result = 0;
 796     if (is_intel()) {
 797       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 798     } else if (is_amd_family()) {
 799       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 800     } else if (is_zx()) {
 801       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 802     }
 803     if (result < 32) // not defined ?
 804       result = 32;   // 32 bytes by default on x86 and other x64
 805     return result;
 806   }
 807 
 808   static intx prefetch_data_size()  {
 809     return L1_line_size();
 810   }
 811 
 812   //
 813   // Feature identification
 814   //
 815   static bool supports_cpuid()    { return _features  != 0; }
 816   static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; }
 817   static bool supports_cmov()     { return (_features & CPU_CMOV) != 0; }
 818   static bool supports_fxsr()     { return (_features & CPU_FXSR) != 0; }
 819   static bool supports_ht()       { return (_features & CPU_HT) != 0; }
 820   static bool supports_mmx()      { return (_features & CPU_MMX) != 0; }
 821   static bool supports_sse()      { return (_features & CPU_SSE) != 0; }
 822   static bool supports_sse2()     { return (_features & CPU_SSE2) != 0; }
 823   static bool supports_sse3()     { return (_features & CPU_SSE3) != 0; }
 824   static bool supports_ssse3()    { return (_features & CPU_SSSE3)!= 0; }
 825   static bool supports_sse4_1()   { return (_features & CPU_SSE4_1) != 0; }
 826   static bool supports_sse4_2()   { return (_features & CPU_SSE4_2) != 0; }
 827   static bool supports_popcnt()   { return (_features & CPU_POPCNT) != 0; }
 828   static bool supports_avx()      { return (_features & CPU_AVX) != 0; }
 829   static bool supports_avx2()     { return (_features & CPU_AVX2) != 0; }
 830   static bool supports_tsc()      { return (_features & CPU_TSC)    != 0; }
 831   static bool supports_aes()      { return (_features & CPU_AES) != 0; }
 832   static bool supports_erms()     { return (_features & CPU_ERMS) != 0; }
 833   static bool supports_clmul()    { return (_features & CPU_CLMUL) != 0; }
 834   static bool supports_rtm()      { return (_features & CPU_RTM) != 0; }
 835   static bool supports_bmi1()     { return (_features & CPU_BMI1) != 0; }
 836   static bool supports_bmi2()     { return (_features & CPU_BMI2) != 0; }
 837   static bool supports_adx()      { return (_features & CPU_ADX) != 0; }
 838   static bool supports_evex()     { return (_features & CPU_AVX512F) != 0; }
 839   static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; }
 840   static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; }
 841   static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; }
 842   static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; }
 843   static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; }
 844   static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; }
 845   static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); }
 846   static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); }
 847   static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() &&
 848                                                 supports_avx512bw() && supports_avx512dq()); }
 849   static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
 850   static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); }
 851   static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); }
 852   static bool supports_avxonly()    { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
 853   static bool supports_sha()        { return (_features & CPU_SHA) != 0; }
 854   static bool supports_fma()        { return (_features & CPU_FMA) != 0 && supports_avx(); }
 855   static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; }
 856   static bool supports_vpopcntdq()  { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; }
 857   static bool supports_vpclmulqdq() { return (_features & CPU_VPCLMULQDQ) != 0; }
 858   static bool supports_vaes()       { return (_features & CPU_VAES) != 0; }
 859   static bool supports_vnni()       { return (_features & CPU_VNNI) != 0; }
 860 
 861   // Intel features
 862   static bool is_intel_family_core() { return is_intel() &&
 863                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 864 
 865   static bool is_intel_tsc_synched_at_init()  {
 866     if (is_intel_family_core()) {
 867       uint32_t ext_model = extended_cpu_model();
 868       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 869           ext_model == CPU_MODEL_WESTMERE_EP    ||
 870           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 871           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 872         // <= 2-socket invariant tsc support. EX versions are usually used
 873         // in > 2-socket systems and likely don't synchronize tscs at
 874         // initialization.
 875         // Code that uses tsc values must be prepared for them to arbitrarily
 876         // jump forward or backward.
 877         return true;
 878       }
 879     }
 880     return false;
 881   }
 882 
 883   // AMD features
 884   static bool supports_3dnow_prefetch()    { return (_features & CPU_3DNOW_PREFETCH) != 0; }
 885   static bool supports_mmx_ext()  { return is_amd_family() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 886   static bool supports_lzcnt()    { return (_features & CPU_LZCNT) != 0; }
 887   static bool supports_sse4a()    { return (_features & CPU_SSE4A) != 0; }
 888 
 889   static bool is_amd_Barcelona()  { return is_amd() &&
 890                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
 891 
 892   // Intel and AMD newer cores support fast timestamps well
 893   static bool supports_tscinv_bit() {
 894     return (_features & CPU_TSCINV) != 0;
 895   }
 896   static bool supports_tscinv() {
 897     return supports_tscinv_bit() &&
 898       ((is_amd_family() && !is_amd_Barcelona()) ||
 899         is_intel_tsc_synched_at_init());
 900   }
 901 
 902   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 903   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 904                                            supports_sse3() && _model != 0x1C; }
 905 
 906   static bool supports_compare_and_exchange() { return true; }
 907 
 908   static intx allocate_prefetch_distance(bool use_watermark_prefetch) {
 909     // Hardware prefetching (distance/size in bytes):
 910     // Pentium 3 -  64 /  32
 911     // Pentium 4 - 256 / 128
 912     // Athlon    -  64 /  32 ????
 913     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 914     // Core      - 128 /  64
 915     //
 916     // Software prefetching (distance in bytes / instruction with best score):
 917     // Pentium 3 - 128 / prefetchnta
 918     // Pentium 4 - 512 / prefetchnta
 919     // Athlon    - 128 / prefetchnta
 920     // Opteron   - 256 / prefetchnta
 921     // Core      - 256 / prefetchnta
 922     // It will be used only when AllocatePrefetchStyle > 0
 923 
 924     if (is_amd_family()) { // AMD | Hygon
 925       if (supports_sse2()) {
 926         return 256; // Opteron
 927       } else {
 928         return 128; // Athlon
 929       }
 930     } else { // Intel
 931       if (supports_sse3() && cpu_family() == 6) {
 932         if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus
 933           return 192;
 934         } else if (use_watermark_prefetch) { // watermark prefetching on Core
 935 #ifdef _LP64
 936           return 384;
 937 #else
 938           return 320;
 939 #endif
 940         }
 941       }
 942       if (supports_sse2()) {
 943         if (cpu_family() == 6) {
 944           return 256; // Pentium M, Core, Core2
 945         } else {
 946           return 512; // Pentium 4
 947         }
 948       } else {
 949         return 128; // Pentium 3 (and all other old CPUs)
 950       }
 951     }
 952   }
 953 
 954   // SSE2 and later processors implement a 'pause' instruction
 955   // that can be used for efficient implementation of
 956   // the intrinsic for java.lang.Thread.onSpinWait()
 957   static bool supports_on_spin_wait() { return supports_sse2(); }
 958 
 959   // x86_64 supports fast class initialization checks for static methods.
 960   static bool supports_fast_class_init_checks() {
 961     return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32
 962   }
 963 
 964   // there are several insns to force cache line sync to memory which
 965   // we can use to ensure mapped non-volatile memory is up to date with
 966   // pending in-cache changes.
 967   //
 968   // 64 bit cpus always support clflush which writes back and evicts
 969   // on 32 bit cpus support is recorded via a feature flag
 970   //
 971   // clflushopt is optional and acts like clflush except it does
 972   // not synchronize with other memory ops. it needs a preceding
 973   // and trailing StoreStore fence
 974   //
 975   // clwb is an optional, intel-specific instruction optional which
 976   // writes back without evicting the line. it also does not
 977   // synchronize with other memory ops. so, it also needs a preceding
 978   // and trailing StoreStore fence.
 979 
 980 #ifdef _LP64
 981   static bool supports_clflush() {
 982     // clflush should always be available on x86_64
 983     // if not we are in real trouble because we rely on it
 984     // to flush the code cache.
 985     // Unfortunately, Assembler::clflush is currently called as part
 986     // of generation of the code cache flush routine. This happens
 987     // under Universe::init before the processor features are set
 988     // up. Assembler::flush calls this routine to check that clflush
 989     // is allowed. So, we give the caller a free pass if Universe init
 990     // is still in progress.
 991     assert ((!Universe::is_fully_initialized() || (_features & CPU_FLUSH) != 0), "clflush should be available");
 992     return true;
 993   }
 994   static bool supports_clflushopt() { return ((_features & CPU_FLUSHOPT) != 0); }
 995   static bool supports_clwb() { return ((_features & CPU_CLWB) != 0); }
 996 #else
 997   static bool supports_clflush() { return  ((_features & CPU_FLUSH) != 0); }
 998   static bool supports_clflushopt() { return false; }
 999   static bool supports_clwb() { return false; }
1000 #endif // _LP64
1001 
1002   // support functions for virtualization detection
1003  private:
1004   static void check_virt_cpuid(uint32_t idx, uint32_t *regs);
1005   static void check_virtualizations();
1006 };
1007 
1008 #endif // CPU_X86_VM_VERSION_X86_HPP