/* * Copyright (c) 2002, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/classLoaderData.inline.hpp" #include "classfile/classLoaderDataGraph.hpp" #include "classfile/moduleEntry.hpp" #include "classfile/systemDictionary.hpp" #include "gc/shared/collectedHeap.hpp" #include "logging/log.hpp" #include "logging/logTag.hpp" #include "memory/heapInspection.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/oop.inline.hpp" #include "oops/reflectionAccessorImplKlassHelper.hpp" #include "runtime/atomic.hpp" #include "runtime/os.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/macros.hpp" #include "utilities/stack.inline.hpp" // HeapInspection inline KlassInfoEntry::~KlassInfoEntry() { if (_subclasses != NULL) { delete _subclasses; } } inline void KlassInfoEntry::add_subclass(KlassInfoEntry* cie) { if (_subclasses == NULL) { _subclasses = new (ResourceObj::C_HEAP, mtServiceability) GrowableArray(4, mtServiceability); } _subclasses->append(cie); } int KlassInfoEntry::compare(KlassInfoEntry* e1, KlassInfoEntry* e2) { if(e1->_instance_words > e2->_instance_words) { return -1; } else if(e1->_instance_words < e2->_instance_words) { return 1; } // Sort alphabetically, note 'Z' < '[' < 'a', but it's better to group // the array classes before all the instance classes. ResourceMark rm; const char* name1 = e1->klass()->external_name(); const char* name2 = e2->klass()->external_name(); bool d1 = (name1[0] == JVM_SIGNATURE_ARRAY); bool d2 = (name2[0] == JVM_SIGNATURE_ARRAY); if (d1 && !d2) { return -1; } else if (d2 && !d1) { return 1; } else { return strcmp(name1, name2); } } const char* KlassInfoEntry::name() const { const char* name; if (_klass->name() != NULL) { name = _klass->external_name(); } else { if (_klass == Universe::boolArrayKlassObj()) name = ""; else if (_klass == Universe::charArrayKlassObj()) name = ""; else if (_klass == Universe::floatArrayKlassObj()) name = ""; else if (_klass == Universe::doubleArrayKlassObj()) name = ""; else if (_klass == Universe::byteArrayKlassObj()) name = ""; else if (_klass == Universe::shortArrayKlassObj()) name = ""; else if (_klass == Universe::intArrayKlassObj()) name = ""; else if (_klass == Universe::longArrayKlassObj()) name = ""; else name = ""; } return name; } void KlassInfoEntry::print_on(outputStream* st) const { ResourceMark rm; // simplify the formatting (ILP32 vs LP64) - always cast the numbers to 64-bit ModuleEntry* module = _klass->module(); if (module->is_named()) { st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s (%s%s%s)", (int64_t)_instance_count, (uint64_t)_instance_words * HeapWordSize, name(), module->name()->as_C_string(), module->version() != NULL ? "@" : "", module->version() != NULL ? module->version()->as_C_string() : ""); } else { st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s", (int64_t)_instance_count, (uint64_t)_instance_words * HeapWordSize, name()); } } KlassInfoEntry* KlassInfoBucket::lookup(Klass* const k) { // Can happen if k is an archived class that we haven't loaded yet. if (k->java_mirror_no_keepalive() == NULL) { return NULL; } KlassInfoEntry* elt = _list; while (elt != NULL) { if (elt->is_equal(k)) { return elt; } elt = elt->next(); } elt = new (std::nothrow) KlassInfoEntry(k, list()); // We may be out of space to allocate the new entry. if (elt != NULL) { set_list(elt); } return elt; } void KlassInfoBucket::iterate(KlassInfoClosure* cic) { KlassInfoEntry* elt = _list; while (elt != NULL) { cic->do_cinfo(elt); elt = elt->next(); } } void KlassInfoBucket::empty() { KlassInfoEntry* elt = _list; _list = NULL; while (elt != NULL) { KlassInfoEntry* next = elt->next(); delete elt; elt = next; } } class KlassInfoTable::AllClassesFinder : public LockedClassesDo { KlassInfoTable *_table; public: AllClassesFinder(KlassInfoTable* table) : _table(table) {} virtual void do_klass(Klass* k) { // This has the SIDE EFFECT of creating a KlassInfoEntry // for , if one doesn't exist yet. _table->lookup(k); } }; KlassInfoTable::KlassInfoTable(bool add_all_classes) { _size_of_instances_in_words = 0; _ref = (HeapWord*) Universe::boolArrayKlassObj(); _buckets = (KlassInfoBucket*) AllocateHeap(sizeof(KlassInfoBucket) * _num_buckets, mtInternal, CURRENT_PC, AllocFailStrategy::RETURN_NULL); if (_buckets != NULL) { for (int index = 0; index < _num_buckets; index++) { _buckets[index].initialize(); } if (add_all_classes) { AllClassesFinder finder(this); ClassLoaderDataGraph::classes_do(&finder); } } } KlassInfoTable::~KlassInfoTable() { if (_buckets != NULL) { for (int index = 0; index < _num_buckets; index++) { _buckets[index].empty(); } FREE_C_HEAP_ARRAY(KlassInfoBucket, _buckets); _buckets = NULL; } } uint KlassInfoTable::hash(const Klass* p) { return (uint)(((uintptr_t)p - (uintptr_t)_ref) >> 2); } KlassInfoEntry* KlassInfoTable::lookup(Klass* k) { uint idx = hash(k) % _num_buckets; assert(_buckets != NULL, "Allocation failure should have been caught"); KlassInfoEntry* e = _buckets[idx].lookup(k); // Lookup may fail if this is a new klass for which we // could not allocate space for an new entry, or if it's // an archived class that we haven't loaded yet. assert(e == NULL || k == e->klass(), "must be equal"); return e; } // Return false if the entry could not be recorded on account // of running out of space required to create a new entry. bool KlassInfoTable::record_instance(const oop obj) { Klass* k = obj->klass(); KlassInfoEntry* elt = lookup(k); // elt may be NULL if it's a new klass for which we // could not allocate space for a new entry in the hashtable. if (elt != NULL) { elt->set_count(elt->count() + 1); elt->set_words(elt->words() + obj->size()); _size_of_instances_in_words += obj->size(); return true; } else { return false; } } void KlassInfoTable::iterate(KlassInfoClosure* cic) { assert(_buckets != NULL, "Allocation failure should have been caught"); for (int index = 0; index < _num_buckets; index++) { _buckets[index].iterate(cic); } } size_t KlassInfoTable::size_of_instances_in_words() const { return _size_of_instances_in_words; } // Return false if the entry could not be recorded on account // of running out of space required to create a new entry. bool KlassInfoTable::merge_entry(const KlassInfoEntry* cie) { Klass* k = cie->klass(); KlassInfoEntry* elt = lookup(k); // elt may be NULL if it's a new klass for which we // could not allocate space for a new entry in the hashtable. if (elt != NULL) { elt->set_count(elt->count() + cie->count()); elt->set_words(elt->words() + cie->words()); _size_of_instances_in_words += cie->words(); return true; } return false; } class KlassInfoTableMergeClosure : public KlassInfoClosure { private: KlassInfoTable* _dest; bool _success; public: KlassInfoTableMergeClosure(KlassInfoTable* table) : _dest(table), _success(true) {} void do_cinfo(KlassInfoEntry* cie) { _success &= _dest->merge_entry(cie); } bool success() { return _success; } }; // merge from table bool KlassInfoTable::merge(KlassInfoTable* table) { KlassInfoTableMergeClosure closure(this); table->iterate(&closure); return closure.success(); } int KlassInfoHisto::sort_helper(KlassInfoEntry** e1, KlassInfoEntry** e2) { return (*e1)->compare(*e1,*e2); } KlassInfoHisto::KlassInfoHisto(KlassInfoTable* cit) : _cit(cit) { _elements = new (ResourceObj::C_HEAP, mtServiceability) GrowableArray(_histo_initial_size, mtServiceability); } KlassInfoHisto::~KlassInfoHisto() { delete _elements; } void KlassInfoHisto::add(KlassInfoEntry* cie) { elements()->append(cie); } void KlassInfoHisto::sort() { elements()->sort(KlassInfoHisto::sort_helper); } void KlassInfoHisto::print_elements(outputStream* st) const { // simplify the formatting (ILP32 vs LP64) - store the sum in 64-bit int64_t total = 0; uint64_t totalw = 0; for(int i=0; i < elements()->length(); i++) { st->print("%4d: ", i+1); elements()->at(i)->print_on(st); total += elements()->at(i)->count(); totalw += elements()->at(i)->words(); } st->print_cr("Total " INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13), total, totalw * HeapWordSize); } class HierarchyClosure : public KlassInfoClosure { private: GrowableArray *_elements; public: HierarchyClosure(GrowableArray *_elements) : _elements(_elements) {} void do_cinfo(KlassInfoEntry* cie) { // ignore array classes if (cie->klass()->is_instance_klass()) { _elements->append(cie); } } }; void KlassHierarchy::print_class_hierarchy(outputStream* st, bool print_interfaces, bool print_subclasses, char* classname) { ResourceMark rm; Stack class_stack; GrowableArray elements; // Add all classes to the KlassInfoTable, which allows for quick lookup. // A KlassInfoEntry will be created for each class. KlassInfoTable cit(true); if (cit.allocation_failed()) { st->print_cr("ERROR: Ran out of C-heap; hierarchy not generated"); return; } // Add all created KlassInfoEntry instances to the elements array for easy // iteration, and to allow each KlassInfoEntry instance to have a unique index. HierarchyClosure hc(&elements); cit.iterate(&hc); for(int i = 0; i < elements.length(); i++) { KlassInfoEntry* cie = elements.at(i); Klass* super = cie->klass()->super(); // Set the index for the class. cie->set_index(i + 1); // Add the class to the subclass array of its superclass. if (super != NULL) { KlassInfoEntry* super_cie = cit.lookup(super); assert(super_cie != NULL, "could not lookup superclass"); super_cie->add_subclass(cie); } } // Set the do_print flag for each class that should be printed. for(int i = 0; i < elements.length(); i++) { KlassInfoEntry* cie = elements.at(i); if (classname == NULL) { // We are printing all classes. cie->set_do_print(true); } else { // We are only printing the hierarchy of a specific class. if (strcmp(classname, cie->klass()->external_name()) == 0) { KlassHierarchy::set_do_print_for_class_hierarchy(cie, &cit, print_subclasses); } } } // Now we do a depth first traversal of the class hierachry. The class_stack will // maintain the list of classes we still need to process. Start things off // by priming it with java.lang.Object. KlassInfoEntry* jlo_cie = cit.lookup(SystemDictionary::Object_klass()); assert(jlo_cie != NULL, "could not lookup java.lang.Object"); class_stack.push(jlo_cie); // Repeatedly pop the top item off the stack, print its class info, // and push all of its subclasses on to the stack. Do this until there // are no classes left on the stack. while (!class_stack.is_empty()) { KlassInfoEntry* curr_cie = class_stack.pop(); if (curr_cie->do_print()) { print_class(st, curr_cie, print_interfaces); if (curr_cie->subclasses() != NULL) { // Current class has subclasses, so push all of them onto the stack. for (int i = 0; i < curr_cie->subclasses()->length(); i++) { KlassInfoEntry* cie = curr_cie->subclasses()->at(i); if (cie->do_print()) { class_stack.push(cie); } } } } } st->flush(); } // Sets the do_print flag for every superclass and subclass of the specified class. void KlassHierarchy::set_do_print_for_class_hierarchy(KlassInfoEntry* cie, KlassInfoTable* cit, bool print_subclasses) { // Set do_print for all superclasses of this class. Klass* super = ((InstanceKlass*)cie->klass())->java_super(); while (super != NULL) { KlassInfoEntry* super_cie = cit->lookup(super); super_cie->set_do_print(true); super = super->super(); } // Set do_print for this class and all of its subclasses. Stack class_stack; class_stack.push(cie); while (!class_stack.is_empty()) { KlassInfoEntry* curr_cie = class_stack.pop(); curr_cie->set_do_print(true); if (print_subclasses && curr_cie->subclasses() != NULL) { // Current class has subclasses, so push all of them onto the stack. for (int i = 0; i < curr_cie->subclasses()->length(); i++) { KlassInfoEntry* cie = curr_cie->subclasses()->at(i); class_stack.push(cie); } } } } static void print_indent(outputStream* st, int indent) { while (indent != 0) { st->print("|"); indent--; if (indent != 0) { st->print(" "); } } } // Print the class name and its unique ClassLoader identifer. static void print_classname(outputStream* st, Klass* klass) { oop loader_oop = klass->class_loader_data()->class_loader(); st->print("%s/", klass->external_name()); if (loader_oop == NULL) { st->print("null"); } else { st->print(INTPTR_FORMAT, p2i(klass->class_loader_data())); } } static void print_interface(outputStream* st, InstanceKlass* intf_klass, const char* intf_type, int indent) { print_indent(st, indent); st->print(" implements "); print_classname(st, intf_klass); st->print(" (%s intf)\n", intf_type); } void KlassHierarchy::print_class(outputStream* st, KlassInfoEntry* cie, bool print_interfaces) { ResourceMark rm; InstanceKlass* klass = (InstanceKlass*)cie->klass(); int indent = 0; // Print indentation with proper indicators of superclass. Klass* super = klass->super(); while (super != NULL) { super = super->super(); indent++; } print_indent(st, indent); if (indent != 0) st->print("--"); // Print the class name, its unique ClassLoader identifer, and if it is an interface. print_classname(st, klass); if (klass->is_interface()) { st->print(" (intf)"); } // Special treatment for generated core reflection accessor classes: print invocation target. if (ReflectionAccessorImplKlassHelper::is_generated_accessor(klass)) { st->print(" (invokes: "); ReflectionAccessorImplKlassHelper::print_invocation_target(st, klass); st->print(")"); } st->print("\n"); // Print any interfaces the class has. if (print_interfaces) { Array* local_intfs = klass->local_interfaces(); Array* trans_intfs = klass->transitive_interfaces(); for (int i = 0; i < local_intfs->length(); i++) { print_interface(st, local_intfs->at(i), "declared", indent); } for (int i = 0; i < trans_intfs->length(); i++) { InstanceKlass* trans_interface = trans_intfs->at(i); // Only print transitive interfaces if they are not also declared. if (!local_intfs->contains(trans_interface)) { print_interface(st, trans_interface, "inherited", indent); } } } } void KlassInfoHisto::print_histo_on(outputStream* st) { st->print_cr(" num #instances #bytes class name (module)"); st->print_cr("-------------------------------------------------------"); print_elements(st); } class HistoClosure : public KlassInfoClosure { private: KlassInfoHisto* _cih; public: HistoClosure(KlassInfoHisto* cih) : _cih(cih) {} void do_cinfo(KlassInfoEntry* cie) { _cih->add(cie); } }; class RecordInstanceClosure : public ObjectClosure { private: KlassInfoTable* _cit; uint _missed_count; BoolObjectClosure* _filter; public: RecordInstanceClosure(KlassInfoTable* cit, BoolObjectClosure* filter) : _cit(cit), _missed_count(0), _filter(filter) {} void do_object(oop obj) { if (should_visit(obj)) { if (!_cit->record_instance(obj)) { _missed_count++; } } } uint missed_count() { return _missed_count; } private: bool should_visit(oop obj) { return _filter == NULL || _filter->do_object_b(obj); } }; // Heap inspection for every worker. // When native OOM hanppens for KlassInfoTable, set _success to false. void ParHeapInspectTask::work(uint worker_id) { uint missed_count = 0; bool merge_success = true; if (!Atomic::load(&_success)) { // other worker has failed on parallel iteration. return; } KlassInfoTable cit(false); if (cit.allocation_failed()) { // fail to allocate memory, stop parallel mode Atomic::store(&_success, false); return; } RecordInstanceClosure ric(&cit, _filter); _poi->object_iterate(&ric, worker_id); missed_count = ric.missed_count(); { MutexLocker x(&_mutex); merge_success = _shared_cit->merge(&cit); } if (merge_success) { Atomic::add(&_missed_count, missed_count); } else { Atomic::store(&_success, false); } } size_t HeapInspection::populate_table(KlassInfoTable* cit, BoolObjectClosure *filter, uint parallel_thread_num) { // Try parallel first. if (parallel_thread_num > 1) { ResourceMark rm; ParallelObjectIterator* poi = Universe::heap()->parallel_object_iterator(parallel_thread_num); if (poi != NULL) { ParHeapInspectTask task(poi, cit, filter); Universe::heap()->run_task(&task); delete poi; if (task.success()) { return task.missed_count(); } } } ResourceMark rm; // If no parallel iteration available, run serially. RecordInstanceClosure ric(cit, filter); Universe::heap()->object_iterate(&ric); return ric.missed_count(); } void HeapInspection::heap_inspection(outputStream* st, uint parallel_thread_num) { ResourceMark rm; KlassInfoTable cit(false); if (!cit.allocation_failed()) { // populate table with object allocation info uint missed_count = populate_table(&cit, NULL, parallel_thread_num); if (missed_count != 0) { log_info(gc, classhisto)("WARNING: Ran out of C-heap; undercounted " UINTX_FORMAT " total instances in data below", (uintx)missed_count); } // Sort and print klass instance info KlassInfoHisto histo(&cit); HistoClosure hc(&histo); cit.iterate(&hc); histo.sort(); histo.print_histo_on(st); } else { st->print_cr("ERROR: Ran out of C-heap; histogram not generated"); } st->flush(); } class FindInstanceClosure : public ObjectClosure { private: Klass* _klass; GrowableArray* _result; public: FindInstanceClosure(Klass* k, GrowableArray* result) : _klass(k), _result(result) {}; void do_object(oop obj) { if (obj->is_a(_klass)) { // obj was read with AS_NO_KEEPALIVE, or equivalent. // The object needs to be kept alive when it is published. Universe::heap()->keep_alive(obj); _result->append(obj); } } }; void HeapInspection::find_instances_at_safepoint(Klass* k, GrowableArray* result) { assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped"); assert(Heap_lock->is_locked(), "should have the Heap_lock"); // Ensure that the heap is parsable Universe::heap()->ensure_parsability(false); // no need to retire TALBs // Iterate over objects in the heap FindInstanceClosure fic(k, result); Universe::heap()->object_iterate(&fic); }