1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1BiasedArray.hpp"
  30 #include "gc/g1/g1CardTable.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1EvacuationInfo.hpp"
  38 #include "gc/g1/g1GCPhaseTimes.hpp"
  39 #include "gc/g1/g1HeapTransition.hpp"
  40 #include "gc/g1/g1HeapVerifier.hpp"
  41 #include "gc/g1/g1HRPrinter.hpp"
  42 #include "gc/g1/g1HeapRegionAttr.hpp"
  43 #include "gc/g1/g1MonitoringSupport.hpp"
  44 #include "gc/g1/g1NUMA.hpp"
  45 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  46 #include "gc/g1/g1SurvivorRegions.hpp"
  47 #include "gc/g1/g1YCTypes.hpp"
  48 #include "gc/g1/heapRegionManager.hpp"
  49 #include "gc/g1/heapRegionSet.hpp"
  50 #include "gc/g1/heterogeneousHeapRegionManager.hpp"
  51 #include "gc/shared/barrierSet.hpp"
  52 #include "gc/shared/collectedHeap.hpp"
  53 #include "gc/shared/gcHeapSummary.hpp"
  54 #include "gc/shared/plab.hpp"
  55 #include "gc/shared/preservedMarks.hpp"
  56 #include "gc/shared/softRefPolicy.hpp"
  57 #include "gc/shared/taskqueue.hpp"
  58 #include "memory/memRegion.hpp"
  59 #include "utilities/stack.hpp"
  60 
  61 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  62 // It uses the "Garbage First" heap organization and algorithm, which
  63 // may combine concurrent marking with parallel, incremental compaction of
  64 // heap subsets that will yield large amounts of garbage.
  65 
  66 // Forward declarations
  67 class HeapRegion;
  68 class GenerationSpec;
  69 class G1ParScanThreadState;
  70 class G1ParScanThreadStateSet;
  71 class G1ParScanThreadState;
  72 class MemoryPool;
  73 class MemoryManager;
  74 class ObjectClosure;
  75 class SpaceClosure;
  76 class CompactibleSpaceClosure;
  77 class Space;
  78 class G1CardTableEntryClosure;
  79 class G1CollectionSet;
  80 class G1Policy;
  81 class G1HotCardCache;
  82 class G1RemSet;
  83 class G1YoungRemSetSamplingThread;
  84 class G1ConcurrentMark;
  85 class G1ConcurrentMarkThread;
  86 class G1ConcurrentRefine;
  87 class GenerationCounters;
  88 class STWGCTimer;
  89 class G1NewTracer;
  90 class EvacuationFailedInfo;
  91 class nmethod;
  92 class WorkGang;
  93 class G1Allocator;
  94 class G1ArchiveAllocator;
  95 class G1FullGCScope;
  96 class G1HeapVerifier;
  97 class G1HeapSizingPolicy;
  98 class G1HeapSummary;
  99 class G1EvacSummary;
 100 
 101 typedef OverflowTaskQueue<ScannerTask, mtGC>           G1ScannerTasksQueue;
 102 typedef GenericTaskQueueSet<G1ScannerTasksQueue, mtGC> G1ScannerTasksQueueSet;
 103 
 104 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 105 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 106 
 107 // The G1 STW is alive closure.
 108 // An instance is embedded into the G1CH and used as the
 109 // (optional) _is_alive_non_header closure in the STW
 110 // reference processor. It is also extensively used during
 111 // reference processing during STW evacuation pauses.
 112 class G1STWIsAliveClosure : public BoolObjectClosure {
 113   G1CollectedHeap* _g1h;
 114 public:
 115   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 116   bool do_object_b(oop p);
 117 };
 118 
 119 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
 120   G1CollectedHeap* _g1h;
 121 public:
 122   G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 123   bool do_object_b(oop p);
 124 };
 125 
 126 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 127  private:
 128   void reset_from_card_cache(uint start_idx, size_t num_regions);
 129  public:
 130   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 131 };
 132 
 133 class G1CollectedHeap : public CollectedHeap {
 134   friend class VM_CollectForMetadataAllocation;
 135   friend class VM_G1CollectForAllocation;
 136   friend class VM_G1CollectFull;
 137   friend class VM_G1TryInitiateConcMark;
 138   friend class VMStructs;
 139   friend class MutatorAllocRegion;
 140   friend class G1FullCollector;
 141   friend class G1GCAllocRegion;
 142   friend class G1HeapVerifier;
 143 
 144   // Closures used in implementation.
 145   friend class G1ParScanThreadState;
 146   friend class G1ParScanThreadStateSet;
 147   friend class G1EvacuateRegionsTask;
 148   friend class G1PLABAllocator;
 149 
 150   // Other related classes.
 151   friend class HeapRegionClaimer;
 152 
 153   // Testing classes.
 154   friend class G1CheckRegionAttrTableClosure;
 155 
 156 private:
 157   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 158 
 159   WorkGang* _workers;
 160   G1CardTable* _card_table;
 161 
 162   Ticks _collection_pause_end;
 163 
 164   SoftRefPolicy      _soft_ref_policy;
 165 
 166   static size_t _humongous_object_threshold_in_words;
 167 
 168   // These sets keep track of old, archive and humongous regions respectively.
 169   HeapRegionSet _old_set;
 170   HeapRegionSet _archive_set;
 171   HeapRegionSet _humongous_set;
 172 
 173   void eagerly_reclaim_humongous_regions();
 174   // Start a new incremental collection set for the next pause.
 175   void start_new_collection_set();
 176 
 177   // The block offset table for the G1 heap.
 178   G1BlockOffsetTable* _bot;
 179 
 180   // Tears down the region sets / lists so that they are empty and the
 181   // regions on the heap do not belong to a region set / list. The
 182   // only exception is the humongous set which we leave unaltered. If
 183   // free_list_only is true, it will only tear down the master free
 184   // list. It is called before a Full GC (free_list_only == false) or
 185   // before heap shrinking (free_list_only == true).
 186   void tear_down_region_sets(bool free_list_only);
 187 
 188   // Rebuilds the region sets / lists so that they are repopulated to
 189   // reflect the contents of the heap. The only exception is the
 190   // humongous set which was not torn down in the first place. If
 191   // free_list_only is true, it will only rebuild the master free
 192   // list. It is called after a Full GC (free_list_only == false) or
 193   // after heap shrinking (free_list_only == true).
 194   void rebuild_region_sets(bool free_list_only);
 195 
 196   // Callback for region mapping changed events.
 197   G1RegionMappingChangedListener _listener;
 198 
 199   // Handle G1 NUMA support.
 200   G1NUMA* _numa;
 201 
 202   // The sequence of all heap regions in the heap.
 203   HeapRegionManager* _hrm;
 204 
 205   // Manages all allocations with regions except humongous object allocations.
 206   G1Allocator* _allocator;
 207 
 208   // Manages all heap verification.
 209   G1HeapVerifier* _verifier;
 210 
 211   // Outside of GC pauses, the number of bytes used in all regions other
 212   // than the current allocation region(s).
 213   volatile size_t _summary_bytes_used;
 214 
 215   void increase_used(size_t bytes);
 216   void decrease_used(size_t bytes);
 217 
 218   void set_used(size_t bytes);
 219 
 220   // Number of bytes used in all regions during GC. Typically changed when
 221   // retiring a GC alloc region.
 222   size_t _bytes_used_during_gc;
 223 
 224   // Class that handles archive allocation ranges.
 225   G1ArchiveAllocator* _archive_allocator;
 226 
 227   // GC allocation statistics policy for survivors.
 228   G1EvacStats _survivor_evac_stats;
 229 
 230   // GC allocation statistics policy for tenured objects.
 231   G1EvacStats _old_evac_stats;
 232 
 233   // It specifies whether we should attempt to expand the heap after a
 234   // region allocation failure. If heap expansion fails we set this to
 235   // false so that we don't re-attempt the heap expansion (it's likely
 236   // that subsequent expansion attempts will also fail if one fails).
 237   // Currently, it is only consulted during GC and it's reset at the
 238   // start of each GC.
 239   bool _expand_heap_after_alloc_failure;
 240 
 241   // Helper for monitoring and management support.
 242   G1MonitoringSupport* _g1mm;
 243 
 244   // Records whether the region at the given index is (still) a
 245   // candidate for eager reclaim.  Only valid for humongous start
 246   // regions; other regions have unspecified values.  Humongous start
 247   // regions are initialized at start of collection pause, with
 248   // candidates removed from the set as they are found reachable from
 249   // roots or the young generation.
 250   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 251    protected:
 252     bool default_value() const { return false; }
 253    public:
 254     void clear() { G1BiasedMappedArray<bool>::clear(); }
 255     void set_candidate(uint region, bool value) {
 256       set_by_index(region, value);
 257     }
 258     bool is_candidate(uint region) {
 259       return get_by_index(region);
 260     }
 261   };
 262 
 263   HumongousReclaimCandidates _humongous_reclaim_candidates;
 264   // Stores whether during humongous object registration we found candidate regions.
 265   // If not, we can skip a few steps.
 266   bool _has_humongous_reclaim_candidates;
 267 
 268   G1HRPrinter _hr_printer;
 269 
 270   // Return true if an explicit GC should start a concurrent cycle instead
 271   // of doing a STW full GC. A concurrent cycle should be started if:
 272   // (a) cause == _g1_humongous_allocation,
 273   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent,
 274   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent,
 275   // (d) cause == _wb_conc_mark or _wb_breakpoint,
 276   // (e) cause == _g1_periodic_collection and +G1PeriodicGCInvokesConcurrent.
 277   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 278 
 279   // Attempt to start a concurrent cycle with the indicated cause.
 280   // precondition: should_do_concurrent_full_gc(cause)
 281   bool try_collect_concurrently(GCCause::Cause cause,
 282                                 uint gc_counter,
 283                                 uint old_marking_started_before);
 284 
 285   // Return true if should upgrade to full gc after an incremental one.
 286   bool should_upgrade_to_full_gc(GCCause::Cause cause);
 287 
 288   // indicates whether we are in young or mixed GC mode
 289   G1CollectorState _collector_state;
 290 
 291   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 292   // concurrent cycles) we have started.
 293   volatile uint _old_marking_cycles_started;
 294 
 295   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 296   // concurrent cycles) we have completed.
 297   volatile uint _old_marking_cycles_completed;
 298 
 299   // This is a non-product method that is helpful for testing. It is
 300   // called at the end of a GC and artificially expands the heap by
 301   // allocating a number of dead regions. This way we can induce very
 302   // frequent marking cycles and stress the cleanup / concurrent
 303   // cleanup code more (as all the regions that will be allocated by
 304   // this method will be found dead by the marking cycle).
 305   void allocate_dummy_regions() PRODUCT_RETURN;
 306 
 307   // If the HR printer is active, dump the state of the regions in the
 308   // heap after a compaction.
 309   void print_hrm_post_compaction();
 310 
 311   // Create a memory mapper for auxiliary data structures of the given size and
 312   // translation factor.
 313   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 314                                                          size_t size,
 315                                                          size_t translation_factor);
 316 
 317   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 318 
 319   // These are macros so that, if the assert fires, we get the correct
 320   // line number, file, etc.
 321 
 322 #define heap_locking_asserts_params(_extra_message_)                          \
 323   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 324   (_extra_message_),                                                          \
 325   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 326   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 327   BOOL_TO_STR(Thread::current()->is_VM_thread())
 328 
 329 #define assert_heap_locked()                                                  \
 330   do {                                                                        \
 331     assert(Heap_lock->owned_by_self(),                                        \
 332            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 333   } while (0)
 334 
 335 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 336   do {                                                                        \
 337     assert(Heap_lock->owned_by_self() ||                                      \
 338            (SafepointSynchronize::is_at_safepoint() &&                        \
 339              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 340            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 341                                         "should be at a safepoint"));         \
 342   } while (0)
 343 
 344 #define assert_heap_locked_and_not_at_safepoint()                             \
 345   do {                                                                        \
 346     assert(Heap_lock->owned_by_self() &&                                      \
 347                                     !SafepointSynchronize::is_at_safepoint(), \
 348           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 349                                        "should not be at a safepoint"));      \
 350   } while (0)
 351 
 352 #define assert_heap_not_locked()                                              \
 353   do {                                                                        \
 354     assert(!Heap_lock->owned_by_self(),                                       \
 355         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 356   } while (0)
 357 
 358 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 359   do {                                                                        \
 360     assert(!Heap_lock->owned_by_self() &&                                     \
 361                                     !SafepointSynchronize::is_at_safepoint(), \
 362       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 363                                    "should not be at a safepoint"));          \
 364   } while (0)
 365 
 366 #define assert_at_safepoint_on_vm_thread()                                    \
 367   do {                                                                        \
 368     assert_at_safepoint();                                                    \
 369     assert(Thread::current_or_null() != NULL, "no current thread");           \
 370     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 371   } while (0)
 372 
 373 #ifdef ASSERT
 374 #define assert_used_and_recalculate_used_equal(g1h)                           \
 375   do {                                                                        \
 376     size_t cur_used_bytes = g1h->used();                                      \
 377     size_t recal_used_bytes = g1h->recalculate_used();                        \
 378     assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \
 379            " same as recalculated used(" SIZE_FORMAT ").",                    \
 380            cur_used_bytes, recal_used_bytes);                                 \
 381   } while (0)
 382 #else
 383 #define assert_used_and_recalculate_used_equal(g1h) do {} while(0)
 384 #endif
 385 
 386   const char* young_gc_name() const;
 387 
 388   // The young region list.
 389   G1EdenRegions _eden;
 390   G1SurvivorRegions _survivor;
 391 
 392   STWGCTimer* _gc_timer_stw;
 393 
 394   G1NewTracer* _gc_tracer_stw;
 395 
 396   // The current policy object for the collector.
 397   G1Policy* _policy;
 398   G1HeapSizingPolicy* _heap_sizing_policy;
 399 
 400   G1CollectionSet _collection_set;
 401 
 402   // Try to allocate a single non-humongous HeapRegion sufficient for
 403   // an allocation of the given word_size. If do_expand is true,
 404   // attempt to expand the heap if necessary to satisfy the allocation
 405   // request. 'type' takes the type of region to be allocated. (Use constants
 406   // Old, Eden, Humongous, Survivor defined in HeapRegionType.)
 407   HeapRegion* new_region(size_t word_size,
 408                          HeapRegionType type,
 409                          bool do_expand,
 410                          uint node_index = G1NUMA::AnyNodeIndex);
 411 
 412   // Initialize a contiguous set of free regions of length num_regions
 413   // and starting at index first so that they appear as a single
 414   // humongous region.
 415   HeapWord* humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 416                                                       uint num_regions,
 417                                                       size_t word_size);
 418 
 419   // Attempt to allocate a humongous object of the given size. Return
 420   // NULL if unsuccessful.
 421   HeapWord* humongous_obj_allocate(size_t word_size);
 422 
 423   // The following two methods, allocate_new_tlab() and
 424   // mem_allocate(), are the two main entry points from the runtime
 425   // into the G1's allocation routines. They have the following
 426   // assumptions:
 427   //
 428   // * They should both be called outside safepoints.
 429   //
 430   // * They should both be called without holding the Heap_lock.
 431   //
 432   // * All allocation requests for new TLABs should go to
 433   //   allocate_new_tlab().
 434   //
 435   // * All non-TLAB allocation requests should go to mem_allocate().
 436   //
 437   // * If either call cannot satisfy the allocation request using the
 438   //   current allocating region, they will try to get a new one. If
 439   //   this fails, they will attempt to do an evacuation pause and
 440   //   retry the allocation.
 441   //
 442   // * If all allocation attempts fail, even after trying to schedule
 443   //   an evacuation pause, allocate_new_tlab() will return NULL,
 444   //   whereas mem_allocate() will attempt a heap expansion and/or
 445   //   schedule a Full GC.
 446   //
 447   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 448   //   should never be called with word_size being humongous. All
 449   //   humongous allocation requests should go to mem_allocate() which
 450   //   will satisfy them with a special path.
 451 
 452   virtual HeapWord* allocate_new_tlab(size_t min_size,
 453                                       size_t requested_size,
 454                                       size_t* actual_size);
 455 
 456   virtual HeapWord* mem_allocate(size_t word_size,
 457                                  bool*  gc_overhead_limit_was_exceeded);
 458 
 459   // First-level mutator allocation attempt: try to allocate out of
 460   // the mutator alloc region without taking the Heap_lock. This
 461   // should only be used for non-humongous allocations.
 462   inline HeapWord* attempt_allocation(size_t min_word_size,
 463                                       size_t desired_word_size,
 464                                       size_t* actual_word_size);
 465 
 466   // Second-level mutator allocation attempt: take the Heap_lock and
 467   // retry the allocation attempt, potentially scheduling a GC
 468   // pause. This should only be used for non-humongous allocations.
 469   HeapWord* attempt_allocation_slow(size_t word_size);
 470 
 471   // Takes the Heap_lock and attempts a humongous allocation. It can
 472   // potentially schedule a GC pause.
 473   HeapWord* attempt_allocation_humongous(size_t word_size);
 474 
 475   // Allocation attempt that should be called during safepoints (e.g.,
 476   // at the end of a successful GC). expect_null_mutator_alloc_region
 477   // specifies whether the mutator alloc region is expected to be NULL
 478   // or not.
 479   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 480                                             bool expect_null_mutator_alloc_region);
 481 
 482   // These methods are the "callbacks" from the G1AllocRegion class.
 483 
 484   // For mutator alloc regions.
 485   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force, uint node_index);
 486   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 487                                    size_t allocated_bytes);
 488 
 489   // For GC alloc regions.
 490   bool has_more_regions(G1HeapRegionAttr dest);
 491   HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index);
 492   void retire_gc_alloc_region(HeapRegion* alloc_region,
 493                               size_t allocated_bytes, G1HeapRegionAttr dest);
 494 
 495   // - if explicit_gc is true, the GC is for a System.gc() etc,
 496   //   otherwise it's for a failed allocation.
 497   // - if clear_all_soft_refs is true, all soft references should be
 498   //   cleared during the GC.
 499   // - it returns false if it is unable to do the collection due to the
 500   //   GC locker being active, true otherwise.
 501   bool do_full_collection(bool explicit_gc,
 502                           bool clear_all_soft_refs);
 503 
 504   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 505   virtual void do_full_collection(bool clear_all_soft_refs);
 506 
 507   // Callback from VM_G1CollectForAllocation operation.
 508   // This function does everything necessary/possible to satisfy a
 509   // failed allocation request (including collection, expansion, etc.)
 510   HeapWord* satisfy_failed_allocation(size_t word_size,
 511                                       bool* succeeded);
 512   // Internal helpers used during full GC to split it up to
 513   // increase readability.
 514   void abort_concurrent_cycle();
 515   void verify_before_full_collection(bool explicit_gc);
 516   void prepare_heap_for_full_collection();
 517   void prepare_heap_for_mutators();
 518   void abort_refinement();
 519   void verify_after_full_collection();
 520   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 521 
 522   // Helper method for satisfy_failed_allocation()
 523   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 524                                              bool do_gc,
 525                                              bool clear_all_soft_refs,
 526                                              bool expect_null_mutator_alloc_region,
 527                                              bool* gc_succeeded);
 528 
 529   // Attempting to expand the heap sufficiently
 530   // to support an allocation of the given "word_size".  If
 531   // successful, perform the allocation and return the address of the
 532   // allocated block, or else "NULL".
 533   HeapWord* expand_and_allocate(size_t word_size);
 534 
 535   // Process any reference objects discovered.
 536   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 537 
 538   // If during a concurrent start pause we may install a pending list head which is not
 539   // otherwise reachable, ensure that it is marked in the bitmap for concurrent marking
 540   // to discover.
 541   void make_pending_list_reachable();
 542 
 543   // Merges the information gathered on a per-thread basis for all worker threads
 544   // during GC into global variables.
 545   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 546 
 547   void verify_numa_regions(const char* desc);
 548 
 549 public:
 550   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 551 
 552   WorkGang* workers() const { return _workers; }
 553 
 554   // Runs the given AbstractGangTask with the current active workers.
 555   virtual void run_task(AbstractGangTask* task);
 556 
 557   // Runs the given AbstractGangTask with the current active workers,
 558   // returning the total time taken.
 559   Tickspan run_task_timed(AbstractGangTask* task);
 560 
 561   G1Allocator* allocator() {
 562     return _allocator;
 563   }
 564 
 565   G1HeapVerifier* verifier() {
 566     return _verifier;
 567   }
 568 
 569   G1MonitoringSupport* g1mm() {
 570     assert(_g1mm != NULL, "should have been initialized");
 571     return _g1mm;
 572   }
 573 
 574   void resize_heap_if_necessary();
 575 
 576   G1NUMA* numa() const { return _numa; }
 577 
 578   // Expand the garbage-first heap by at least the given size (in bytes!).
 579   // Returns true if the heap was expanded by the requested amount;
 580   // false otherwise.
 581   // (Rounds up to a HeapRegion boundary.)
 582   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 583   bool expand_single_region(uint node_index);
 584 
 585   // Returns the PLAB statistics for a given destination.
 586   inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest);
 587 
 588   // Determines PLAB size for a given destination.
 589   inline size_t desired_plab_sz(G1HeapRegionAttr dest);
 590 
 591   // Do anything common to GC's.
 592   void gc_prologue(bool full);
 593   void gc_epilogue(bool full);
 594 
 595   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 596   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 597 
 598   // Modify the reclaim candidate set and test for presence.
 599   // These are only valid for starts_humongous regions.
 600   inline void set_humongous_reclaim_candidate(uint region, bool value);
 601   inline bool is_humongous_reclaim_candidate(uint region);
 602   inline void set_has_humongous_reclaim_candidate(bool value);
 603 
 604   // Remove from the reclaim candidate set.  Also remove from the
 605   // collection set so that later encounters avoid the slow path.
 606   inline void set_humongous_is_live(oop obj);
 607 
 608   // Register the given region to be part of the collection set.
 609   inline void register_humongous_region_with_region_attr(uint index);
 610 
 611   // We register a region with the fast "in collection set" test. We
 612   // simply set to true the array slot corresponding to this region.
 613   void register_young_region_with_region_attr(HeapRegion* r) {
 614     _region_attr.set_in_young(r->hrm_index());
 615   }
 616   inline void register_region_with_region_attr(HeapRegion* r);
 617   inline void register_old_region_with_region_attr(HeapRegion* r);
 618   inline void register_optional_region_with_region_attr(HeapRegion* r);
 619 
 620   void clear_region_attr(const HeapRegion* hr) {
 621     _region_attr.clear(hr);
 622   }
 623 
 624   void clear_region_attr() {
 625     _region_attr.clear();
 626   }
 627 
 628   // Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking
 629   // for all regions.
 630   void verify_region_attr_remset_update() PRODUCT_RETURN;
 631 
 632   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 633 
 634   // This is called at the start of either a concurrent cycle or a Full
 635   // GC to update the number of old marking cycles started.
 636   void increment_old_marking_cycles_started();
 637 
 638   // This is called at the end of either a concurrent cycle or a Full
 639   // GC to update the number of old marking cycles completed. Those two
 640   // can happen in a nested fashion, i.e., we start a concurrent
 641   // cycle, a Full GC happens half-way through it which ends first,
 642   // and then the cycle notices that a Full GC happened and ends
 643   // too. The concurrent parameter is a boolean to help us do a bit
 644   // tighter consistency checking in the method. If concurrent is
 645   // false, the caller is the inner caller in the nesting (i.e., the
 646   // Full GC). If concurrent is true, the caller is the outer caller
 647   // in this nesting (i.e., the concurrent cycle). Further nesting is
 648   // not currently supported. The end of this call also notifies
 649   // the G1OldGCCount_lock in case a Java thread is waiting for a full
 650   // GC to happen (e.g., it called System.gc() with
 651   // +ExplicitGCInvokesConcurrent).
 652   // whole_heap_examined should indicate that during that old marking
 653   // cycle the whole heap has been examined for live objects (as opposed
 654   // to only parts, or aborted before completion).
 655   void increment_old_marking_cycles_completed(bool concurrent, bool whole_heap_examined);
 656 
 657   uint old_marking_cycles_completed() {
 658     return _old_marking_cycles_completed;
 659   }
 660 
 661   G1HRPrinter* hr_printer() { return &_hr_printer; }
 662 
 663   // Allocates a new heap region instance.
 664   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 665 
 666   // Allocate the highest free region in the reserved heap. This will commit
 667   // regions as necessary.
 668   HeapRegion* alloc_highest_free_region();
 669 
 670   // Frees a region by resetting its metadata and adding it to the free list
 671   // passed as a parameter (this is usually a local list which will be appended
 672   // to the master free list later or NULL if free list management is handled
 673   // in another way).
 674   // Callers must ensure they are the only one calling free on the given region
 675   // at the same time.
 676   void free_region(HeapRegion* hr, FreeRegionList* free_list);
 677 
 678   // It dirties the cards that cover the block so that the post
 679   // write barrier never queues anything when updating objects on this
 680   // block. It is assumed (and in fact we assert) that the block
 681   // belongs to a young region.
 682   inline void dirty_young_block(HeapWord* start, size_t word_size);
 683 
 684   // Frees a humongous region by collapsing it into individual regions
 685   // and calling free_region() for each of them. The freed regions
 686   // will be added to the free list that's passed as a parameter (this
 687   // is usually a local list which will be appended to the master free
 688   // list later).
 689   // The method assumes that only a single thread is ever calling
 690   // this for a particular region at once.
 691   void free_humongous_region(HeapRegion* hr,
 692                              FreeRegionList* free_list);
 693 
 694   // Facility for allocating in 'archive' regions in high heap memory and
 695   // recording the allocated ranges. These should all be called from the
 696   // VM thread at safepoints, without the heap lock held. They can be used
 697   // to create and archive a set of heap regions which can be mapped at the
 698   // same fixed addresses in a subsequent JVM invocation.
 699   void begin_archive_alloc_range(bool open = false);
 700 
 701   // Check if the requested size would be too large for an archive allocation.
 702   bool is_archive_alloc_too_large(size_t word_size);
 703 
 704   // Allocate memory of the requested size from the archive region. This will
 705   // return NULL if the size is too large or if no memory is available. It
 706   // does not trigger a garbage collection.
 707   HeapWord* archive_mem_allocate(size_t word_size);
 708 
 709   // Optionally aligns the end address and returns the allocated ranges in
 710   // an array of MemRegions in order of ascending addresses.
 711   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 712                                size_t end_alignment_in_bytes = 0);
 713 
 714   // Facility for allocating a fixed range within the heap and marking
 715   // the containing regions as 'archive'. For use at JVM init time, when the
 716   // caller may mmap archived heap data at the specified range(s).
 717   // Verify that the MemRegions specified in the argument array are within the
 718   // reserved heap.
 719   bool check_archive_addresses(MemRegion* range, size_t count);
 720 
 721   // Commit the appropriate G1 regions containing the specified MemRegions
 722   // and mark them as 'archive' regions. The regions in the array must be
 723   // non-overlapping and in order of ascending address.
 724   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 725 
 726   // Insert any required filler objects in the G1 regions around the specified
 727   // ranges to make the regions parseable. This must be called after
 728   // alloc_archive_regions, and after class loading has occurred.
 729   void fill_archive_regions(MemRegion* range, size_t count);
 730 
 731   // For each of the specified MemRegions, uncommit the containing G1 regions
 732   // which had been allocated by alloc_archive_regions. This should be called
 733   // rather than fill_archive_regions at JVM init time if the archive file
 734   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 735   void dealloc_archive_regions(MemRegion* range, size_t count);
 736 
 737   oop materialize_archived_object(oop obj);
 738 
 739 private:
 740 
 741   // Shrink the garbage-first heap by at most the given size (in bytes!).
 742   // (Rounds down to a HeapRegion boundary.)
 743   void shrink(size_t shrink_bytes);
 744   void shrink_helper(size_t expand_bytes);
 745 
 746   #if TASKQUEUE_STATS
 747   static void print_taskqueue_stats_hdr(outputStream* const st);
 748   void print_taskqueue_stats() const;
 749   void reset_taskqueue_stats();
 750   #endif // TASKQUEUE_STATS
 751 
 752   // Schedule the VM operation that will do an evacuation pause to
 753   // satisfy an allocation request of word_size. *succeeded will
 754   // return whether the VM operation was successful (it did do an
 755   // evacuation pause) or not (another thread beat us to it or the GC
 756   // locker was active). Given that we should not be holding the
 757   // Heap_lock when we enter this method, we will pass the
 758   // gc_count_before (i.e., total_collections()) as a parameter since
 759   // it has to be read while holding the Heap_lock. Currently, both
 760   // methods that call do_collection_pause() release the Heap_lock
 761   // before the call, so it's easy to read gc_count_before just before.
 762   HeapWord* do_collection_pause(size_t         word_size,
 763                                 uint           gc_count_before,
 764                                 bool*          succeeded,
 765                                 GCCause::Cause gc_cause);
 766 
 767   void wait_for_root_region_scanning();
 768 
 769   // Perform an incremental collection at a safepoint, possibly
 770   // followed by a by-policy upgrade to a full collection.  Returns
 771   // false if unable to do the collection due to the GC locker being
 772   // active, true otherwise.
 773   // precondition: at safepoint on VM thread
 774   // precondition: !is_gc_active()
 775   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 776 
 777   // Helper for do_collection_pause_at_safepoint, containing the guts
 778   // of the incremental collection pause, executed by the vm thread.
 779   void do_collection_pause_at_safepoint_helper(double target_pause_time_ms);
 780 
 781   G1HeapVerifier::G1VerifyType young_collection_verify_type() const;
 782   void verify_before_young_collection(G1HeapVerifier::G1VerifyType type);
 783   void verify_after_young_collection(G1HeapVerifier::G1VerifyType type);
 784 
 785   void calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms);
 786 
 787   // Actually do the work of evacuating the parts of the collection set.
 788   void evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states);
 789   void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states);
 790 private:
 791   // Evacuate the next set of optional regions.
 792   void evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states);
 793 
 794 public:
 795   void pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 796   void post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
 797                                     G1RedirtyCardsQueueSet* rdcqs,
 798                                     G1ParScanThreadStateSet* pss);
 799 
 800   void expand_heap_after_young_collection();
 801   // Update object copying statistics.
 802   void record_obj_copy_mem_stats();
 803 
 804   // The hot card cache for remembered set insertion optimization.
 805   G1HotCardCache* _hot_card_cache;
 806 
 807   // The g1 remembered set of the heap.
 808   G1RemSet* _rem_set;
 809 
 810   // After a collection pause, convert the regions in the collection set into free
 811   // regions.
 812   void free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 813 
 814   // Abandon the current collection set without recording policy
 815   // statistics or updating free lists.
 816   void abandon_collection_set(G1CollectionSet* collection_set);
 817 
 818   // The concurrent marker (and the thread it runs in.)
 819   G1ConcurrentMark* _cm;
 820   G1ConcurrentMarkThread* _cm_thread;
 821 
 822   // The concurrent refiner.
 823   G1ConcurrentRefine* _cr;
 824 
 825   // The parallel task queues
 826   G1ScannerTasksQueueSet *_task_queues;
 827 
 828   // True iff a evacuation has failed in the current collection.
 829   bool _evacuation_failed;
 830 
 831   EvacuationFailedInfo* _evacuation_failed_info_array;
 832 
 833   // Failed evacuations cause some logical from-space objects to have
 834   // forwarding pointers to themselves.  Reset them.
 835   void remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs);
 836 
 837   // Restore the objects in the regions in the collection set after an
 838   // evacuation failure.
 839   void restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs);
 840 
 841   PreservedMarksSet _preserved_marks_set;
 842 
 843   // Preserve the mark of "obj", if necessary, in preparation for its mark
 844   // word being overwritten with a self-forwarding-pointer.
 845   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m);
 846 
 847 #ifndef PRODUCT
 848   // Support for forcing evacuation failures. Analogous to
 849   // PromotionFailureALot for the other collectors.
 850 
 851   // Records whether G1EvacuationFailureALot should be in effect
 852   // for the current GC
 853   bool _evacuation_failure_alot_for_current_gc;
 854 
 855   // Used to record the GC number for interval checking when
 856   // determining whether G1EvaucationFailureALot is in effect
 857   // for the current GC.
 858   size_t _evacuation_failure_alot_gc_number;
 859 
 860   // Count of the number of evacuations between failures.
 861   volatile size_t _evacuation_failure_alot_count;
 862 
 863   // Set whether G1EvacuationFailureALot should be in effect
 864   // for the current GC (based upon the type of GC and which
 865   // command line flags are set);
 866   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 867                                                   bool during_concurrent_start,
 868                                                   bool mark_or_rebuild_in_progress);
 869 
 870   inline void set_evacuation_failure_alot_for_current_gc();
 871 
 872   // Return true if it's time to cause an evacuation failure.
 873   inline bool evacuation_should_fail();
 874 
 875   // Reset the G1EvacuationFailureALot counters.  Should be called at
 876   // the end of an evacuation pause in which an evacuation failure occurred.
 877   inline void reset_evacuation_should_fail();
 878 #endif // !PRODUCT
 879 
 880   // ("Weak") Reference processing support.
 881   //
 882   // G1 has 2 instances of the reference processor class. One
 883   // (_ref_processor_cm) handles reference object discovery
 884   // and subsequent processing during concurrent marking cycles.
 885   //
 886   // The other (_ref_processor_stw) handles reference object
 887   // discovery and processing during full GCs and incremental
 888   // evacuation pauses.
 889   //
 890   // During an incremental pause, reference discovery will be
 891   // temporarily disabled for _ref_processor_cm and will be
 892   // enabled for _ref_processor_stw. At the end of the evacuation
 893   // pause references discovered by _ref_processor_stw will be
 894   // processed and discovery will be disabled. The previous
 895   // setting for reference object discovery for _ref_processor_cm
 896   // will be re-instated.
 897   //
 898   // At the start of marking:
 899   //  * Discovery by the CM ref processor is verified to be inactive
 900   //    and it's discovered lists are empty.
 901   //  * Discovery by the CM ref processor is then enabled.
 902   //
 903   // At the end of marking:
 904   //  * Any references on the CM ref processor's discovered
 905   //    lists are processed (possibly MT).
 906   //
 907   // At the start of full GC we:
 908   //  * Disable discovery by the CM ref processor and
 909   //    empty CM ref processor's discovered lists
 910   //    (without processing any entries).
 911   //  * Verify that the STW ref processor is inactive and it's
 912   //    discovered lists are empty.
 913   //  * Temporarily set STW ref processor discovery as single threaded.
 914   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 915   //    field.
 916   //  * Finally enable discovery by the STW ref processor.
 917   //
 918   // The STW ref processor is used to record any discovered
 919   // references during the full GC.
 920   //
 921   // At the end of a full GC we:
 922   //  * Enqueue any reference objects discovered by the STW ref processor
 923   //    that have non-live referents. This has the side-effect of
 924   //    making the STW ref processor inactive by disabling discovery.
 925   //  * Verify that the CM ref processor is still inactive
 926   //    and no references have been placed on it's discovered
 927   //    lists (also checked as a precondition during concurrent start).
 928 
 929   // The (stw) reference processor...
 930   ReferenceProcessor* _ref_processor_stw;
 931 
 932   // During reference object discovery, the _is_alive_non_header
 933   // closure (if non-null) is applied to the referent object to
 934   // determine whether the referent is live. If so then the
 935   // reference object does not need to be 'discovered' and can
 936   // be treated as a regular oop. This has the benefit of reducing
 937   // the number of 'discovered' reference objects that need to
 938   // be processed.
 939   //
 940   // Instance of the is_alive closure for embedding into the
 941   // STW reference processor as the _is_alive_non_header field.
 942   // Supplying a value for the _is_alive_non_header field is
 943   // optional but doing so prevents unnecessary additions to
 944   // the discovered lists during reference discovery.
 945   G1STWIsAliveClosure _is_alive_closure_stw;
 946 
 947   G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
 948 
 949   // The (concurrent marking) reference processor...
 950   ReferenceProcessor* _ref_processor_cm;
 951 
 952   // Instance of the concurrent mark is_alive closure for embedding
 953   // into the Concurrent Marking reference processor as the
 954   // _is_alive_non_header field. Supplying a value for the
 955   // _is_alive_non_header field is optional but doing so prevents
 956   // unnecessary additions to the discovered lists during reference
 957   // discovery.
 958   G1CMIsAliveClosure _is_alive_closure_cm;
 959 
 960   G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
 961 public:
 962 
 963   G1ScannerTasksQueue* task_queue(uint i) const;
 964 
 965   uint num_task_queues() const;
 966 
 967   // Create a G1CollectedHeap.
 968   // Must call the initialize method afterwards.
 969   // May not return if something goes wrong.
 970   G1CollectedHeap();
 971 
 972 private:
 973   jint initialize_concurrent_refinement();
 974   jint initialize_young_gen_sampling_thread();
 975 public:
 976   // Initialize the G1CollectedHeap to have the initial and
 977   // maximum sizes and remembered and barrier sets
 978   // specified by the policy object.
 979   jint initialize();
 980 
 981   virtual void stop();
 982   virtual void safepoint_synchronize_begin();
 983   virtual void safepoint_synchronize_end();
 984 
 985   // Does operations required after initialization has been done.
 986   void post_initialize();
 987 
 988   // Initialize weak reference processing.
 989   void ref_processing_init();
 990 
 991   virtual Name kind() const {
 992     return CollectedHeap::G1;
 993   }
 994 
 995   virtual const char* name() const {
 996     return "G1";
 997   }
 998 
 999   const G1CollectorState* collector_state() const { return &_collector_state; }
1000   G1CollectorState* collector_state() { return &_collector_state; }
1001 
1002   // The current policy object for the collector.
1003   G1Policy* policy() const { return _policy; }
1004   // The remembered set.
1005   G1RemSet* rem_set() const { return _rem_set; }
1006 
1007   inline G1GCPhaseTimes* phase_times() const;
1008 
1009   HeapRegionManager* hrm() const { return _hrm; }
1010 
1011   const G1CollectionSet* collection_set() const { return &_collection_set; }
1012   G1CollectionSet* collection_set() { return &_collection_set; }
1013 
1014   virtual SoftRefPolicy* soft_ref_policy();
1015 
1016   virtual void initialize_serviceability();
1017   virtual MemoryUsage memory_usage();
1018   virtual GrowableArray<GCMemoryManager*> memory_managers();
1019   virtual GrowableArray<MemoryPool*> memory_pools();
1020 
1021   // Try to minimize the remembered set.
1022   void scrub_rem_set();
1023 
1024   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1025   void iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id);
1026 
1027   // The shared block offset table array.
1028   G1BlockOffsetTable* bot() const { return _bot; }
1029 
1030   // Reference Processing accessors
1031 
1032   // The STW reference processor....
1033   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1034 
1035   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1036 
1037   // The Concurrent Marking reference processor...
1038   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1039 
1040   size_t unused_committed_regions_in_bytes() const;
1041 
1042   virtual size_t capacity() const;
1043   virtual size_t used() const;
1044   // This should be called when we're not holding the heap lock. The
1045   // result might be a bit inaccurate.
1046   size_t used_unlocked() const;
1047   size_t recalculate_used() const;
1048 
1049   // These virtual functions do the actual allocation.
1050   // Some heaps may offer a contiguous region for shared non-blocking
1051   // allocation, via inlined code (by exporting the address of the top and
1052   // end fields defining the extent of the contiguous allocation region.)
1053   // But G1CollectedHeap doesn't yet support this.
1054 
1055   virtual bool is_maximal_no_gc() const {
1056     return _hrm->available() == 0;
1057   }
1058 
1059   // Returns whether there are any regions left in the heap for allocation.
1060   bool has_regions_left_for_allocation() const {
1061     return !is_maximal_no_gc() || num_free_regions() != 0;
1062   }
1063 
1064   // The current number of regions in the heap.
1065   uint num_regions() const { return _hrm->length(); }
1066 
1067   // The max number of regions in the heap.
1068   uint max_regions() const { return _hrm->max_length(); }
1069 
1070   // Max number of regions that can be comitted.
1071   uint max_expandable_regions() const { return _hrm->max_expandable_length(); }
1072 
1073   // The number of regions that are completely free.
1074   uint num_free_regions() const { return _hrm->num_free_regions(); }
1075 
1076   // The number of regions that can be allocated into.
1077   uint num_free_or_available_regions() const { return num_free_regions() + _hrm->available(); }
1078 
1079   MemoryUsage get_auxiliary_data_memory_usage() const {
1080     return _hrm->get_auxiliary_data_memory_usage();
1081   }
1082 
1083   // The number of regions that are not completely free.
1084   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1085 
1086 #ifdef ASSERT
1087   bool is_on_master_free_list(HeapRegion* hr) {
1088     return _hrm->is_free(hr);
1089   }
1090 #endif // ASSERT
1091 
1092   inline void old_set_add(HeapRegion* hr);
1093   inline void old_set_remove(HeapRegion* hr);
1094 
1095   inline void archive_set_add(HeapRegion* hr);
1096 
1097   size_t non_young_capacity_bytes() {
1098     return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes;
1099   }
1100 
1101   // Determine whether the given region is one that we are using as an
1102   // old GC alloc region.
1103   bool is_old_gc_alloc_region(HeapRegion* hr);
1104 
1105   // Perform a collection of the heap; intended for use in implementing
1106   // "System.gc".  This probably implies as full a collection as the
1107   // "CollectedHeap" supports.
1108   virtual void collect(GCCause::Cause cause);
1109 
1110   // Perform a collection of the heap with the given cause.
1111   // Returns whether this collection actually executed.
1112   bool try_collect(GCCause::Cause cause);
1113 
1114   // True iff an evacuation has failed in the most-recent collection.
1115   bool evacuation_failed() { return _evacuation_failed; }
1116 
1117   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1118   void prepend_to_freelist(FreeRegionList* list);
1119   void decrement_summary_bytes(size_t bytes);
1120 
1121   virtual bool is_in(const void* p) const;
1122 #ifdef ASSERT
1123   // Returns whether p is in one of the available areas of the heap. Slow but
1124   // extensive version.
1125   bool is_in_exact(const void* p) const;
1126 #endif
1127 
1128   // Return "TRUE" iff the given object address is within the collection
1129   // set. Assumes that the reference points into the heap.
1130   inline bool is_in_cset(const HeapRegion *hr);
1131   inline bool is_in_cset(oop obj);
1132   inline bool is_in_cset(HeapWord* addr);
1133 
1134   inline bool is_in_cset_or_humongous(const oop obj);
1135 
1136  private:
1137   // This array is used for a quick test on whether a reference points into
1138   // the collection set or not. Each of the array's elements denotes whether the
1139   // corresponding region is in the collection set or not.
1140   G1HeapRegionAttrBiasedMappedArray _region_attr;
1141 
1142  public:
1143 
1144   inline G1HeapRegionAttr region_attr(const void* obj) const;
1145   inline G1HeapRegionAttr region_attr(uint idx) const;
1146 
1147   // Return "TRUE" iff the given object address is in the reserved
1148   // region of g1.
1149   bool is_in_g1_reserved(const void* p) const {
1150     return _hrm->reserved().contains(p);
1151   }
1152 
1153   // Returns a MemRegion that corresponds to the space that has been
1154   // reserved for the heap
1155   MemRegion g1_reserved() const {
1156     return _hrm->reserved();
1157   }
1158 
1159   MemRegion reserved_region() const {
1160     return _reserved;
1161   }
1162 
1163   HeapWord* base() const {
1164     return _reserved.start();
1165   }
1166 
1167   bool is_in_reserved(const void* addr) const {
1168     return _reserved.contains(addr);
1169   }
1170 
1171   G1HotCardCache* hot_card_cache() const { return _hot_card_cache; }
1172 
1173   G1CardTable* card_table() const {
1174     return _card_table;
1175   }
1176 
1177   // Iteration functions.
1178 
1179   void object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer);
1180 
1181   // Iterate over all objects, calling "cl.do_object" on each.
1182   virtual void object_iterate(ObjectClosure* cl);
1183 
1184   virtual ParallelObjectIterator* parallel_object_iterator(uint thread_num);
1185 
1186   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1187   virtual void keep_alive(oop obj);
1188 
1189   // Iterate over heap regions, in address order, terminating the
1190   // iteration early if the "do_heap_region" method returns "true".
1191   void heap_region_iterate(HeapRegionClosure* blk) const;
1192 
1193   // Return the region with the given index. It assumes the index is valid.
1194   inline HeapRegion* region_at(uint index) const;
1195   inline HeapRegion* region_at_or_null(uint index) const;
1196 
1197   // Return the next region (by index) that is part of the same
1198   // humongous object that hr is part of.
1199   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1200 
1201   // Calculate the region index of the given address. Given address must be
1202   // within the heap.
1203   inline uint addr_to_region(HeapWord* addr) const;
1204 
1205   inline HeapWord* bottom_addr_for_region(uint index) const;
1206 
1207   // Two functions to iterate over the heap regions in parallel. Threads
1208   // compete using the HeapRegionClaimer to claim the regions before
1209   // applying the closure on them.
1210   // The _from_worker_offset version uses the HeapRegionClaimer and
1211   // the worker id to calculate a start offset to prevent all workers to
1212   // start from the point.
1213   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1214                                                   HeapRegionClaimer* hrclaimer,
1215                                                   uint worker_id) const;
1216 
1217   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1218                                           HeapRegionClaimer* hrclaimer) const;
1219 
1220   // Iterate over all regions in the collection set in parallel.
1221   void collection_set_par_iterate_all(HeapRegionClosure* cl,
1222                                       HeapRegionClaimer* hr_claimer,
1223                                       uint worker_id);
1224 
1225   // Iterate over all regions currently in the current collection set.
1226   void collection_set_iterate_all(HeapRegionClosure* blk);
1227 
1228   // Iterate over the regions in the current increment of the collection set.
1229   // Starts the iteration so that the start regions of a given worker id over the
1230   // set active_workers are evenly spread across the set of collection set regions
1231   // to be iterated.
1232   // The variant with the HeapRegionClaimer guarantees that the closure will be
1233   // applied to a particular region exactly once.
1234   void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id) {
1235     collection_set_iterate_increment_from(blk, NULL, worker_id);
1236   }
1237   void collection_set_iterate_increment_from(HeapRegionClosure *blk, HeapRegionClaimer* hr_claimer, uint worker_id);
1238 
1239   // Returns the HeapRegion that contains addr. addr must not be NULL.
1240   template <class T>
1241   inline HeapRegion* heap_region_containing(const T addr) const;
1242 
1243   // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted
1244   // region. addr must not be NULL.
1245   template <class T>
1246   inline HeapRegion* heap_region_containing_or_null(const T addr) const;
1247 
1248   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1249   // each address in the (reserved) heap is a member of exactly
1250   // one block.  The defining characteristic of a block is that it is
1251   // possible to find its size, and thus to progress forward to the next
1252   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1253   // represent Java objects, or they might be free blocks in a
1254   // free-list-based heap (or subheap), as long as the two kinds are
1255   // distinguishable and the size of each is determinable.
1256 
1257   // Returns the address of the start of the "block" that contains the
1258   // address "addr".  We say "blocks" instead of "object" since some heaps
1259   // may not pack objects densely; a chunk may either be an object or a
1260   // non-object.
1261   HeapWord* block_start(const void* addr) const;
1262 
1263   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1264   // the block is an object.
1265   bool block_is_obj(const HeapWord* addr) const;
1266 
1267   // Section on thread-local allocation buffers (TLABs)
1268   // See CollectedHeap for semantics.
1269 
1270   bool supports_tlab_allocation() const;
1271   size_t tlab_capacity(Thread* ignored) const;
1272   size_t tlab_used(Thread* ignored) const;
1273   size_t max_tlab_size() const;
1274   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1275 
1276   inline bool is_in_young(const oop obj);
1277 
1278   // Returns "true" iff the given word_size is "very large".
1279   static bool is_humongous(size_t word_size) {
1280     // Note this has to be strictly greater-than as the TLABs
1281     // are capped at the humongous threshold and we want to
1282     // ensure that we don't try to allocate a TLAB as
1283     // humongous and that we don't allocate a humongous
1284     // object in a TLAB.
1285     return word_size > _humongous_object_threshold_in_words;
1286   }
1287 
1288   // Returns the humongous threshold for a specific region size
1289   static size_t humongous_threshold_for(size_t region_size) {
1290     return (region_size / 2);
1291   }
1292 
1293   // Returns the number of regions the humongous object of the given word size
1294   // requires.
1295   static size_t humongous_obj_size_in_regions(size_t word_size);
1296 
1297   // Print the maximum heap capacity.
1298   virtual size_t max_capacity() const;
1299 
1300   // Return the size of reserved memory. Returns different value than max_capacity() when AllocateOldGenAt is used.
1301   virtual size_t max_reserved_capacity() const;
1302 
1303   Tickspan time_since_last_collection() const { return Ticks::now() - _collection_pause_end; }
1304 
1305   // Convenience function to be used in situations where the heap type can be
1306   // asserted to be this type.
1307   static G1CollectedHeap* heap() {
1308     return named_heap<G1CollectedHeap>(CollectedHeap::G1);
1309   }
1310 
1311   void set_region_short_lived_locked(HeapRegion* hr);
1312   // add appropriate methods for any other surv rate groups
1313 
1314   const G1SurvivorRegions* survivor() const { return &_survivor; }
1315 
1316   uint eden_regions_count() const { return _eden.length(); }
1317   uint eden_regions_count(uint node_index) const { return _eden.regions_on_node(node_index); }
1318   uint survivor_regions_count() const { return _survivor.length(); }
1319   uint survivor_regions_count(uint node_index) const { return _survivor.regions_on_node(node_index); }
1320   size_t eden_regions_used_bytes() const { return _eden.used_bytes(); }
1321   size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); }
1322   uint young_regions_count() const { return _eden.length() + _survivor.length(); }
1323   uint old_regions_count() const { return _old_set.length(); }
1324   uint archive_regions_count() const { return _archive_set.length(); }
1325   uint humongous_regions_count() const { return _humongous_set.length(); }
1326 
1327 #ifdef ASSERT
1328   bool check_young_list_empty();
1329 #endif
1330 
1331   // *** Stuff related to concurrent marking.  It's not clear to me that so
1332   // many of these need to be public.
1333 
1334   // The functions below are helper functions that a subclass of
1335   // "CollectedHeap" can use in the implementation of its virtual
1336   // functions.
1337   // This performs a concurrent marking of the live objects in a
1338   // bitmap off to the side.
1339   void do_concurrent_mark();
1340 
1341   bool is_marked_next(oop obj) const;
1342 
1343   // Determine if an object is dead, given the object and also
1344   // the region to which the object belongs. An object is dead
1345   // iff a) it was not allocated since the last mark, b) it
1346   // is not marked, and c) it is not in an archive region.
1347   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1348     return
1349       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1350       !hr->is_archive();
1351   }
1352 
1353   // This function returns true when an object has been
1354   // around since the previous marking and hasn't yet
1355   // been marked during this marking, and is not in an archive region.
1356   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1357     return
1358       !hr->obj_allocated_since_next_marking(obj) &&
1359       !is_marked_next(obj) &&
1360       !hr->is_archive();
1361   }
1362 
1363   // Determine if an object is dead, given only the object itself.
1364   // This will find the region to which the object belongs and
1365   // then call the region version of the same function.
1366 
1367   // Added if it is NULL it isn't dead.
1368 
1369   inline bool is_obj_dead(const oop obj) const;
1370 
1371   inline bool is_obj_ill(const oop obj) const;
1372 
1373   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1374   inline bool is_obj_dead_full(const oop obj) const;
1375 
1376   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1377 
1378   // Refinement
1379 
1380   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1381 
1382   // Optimized nmethod scanning support routines
1383 
1384   // Register the given nmethod with the G1 heap.
1385   virtual void register_nmethod(nmethod* nm);
1386 
1387   // Unregister the given nmethod from the G1 heap.
1388   virtual void unregister_nmethod(nmethod* nm);
1389 
1390   // No nmethod flushing needed.
1391   virtual void flush_nmethod(nmethod* nm) {}
1392 
1393   // No nmethod verification implemented.
1394   virtual void verify_nmethod(nmethod* nm) {}
1395 
1396   // Free up superfluous code root memory.
1397   void purge_code_root_memory();
1398 
1399   // Rebuild the strong code root lists for each region
1400   // after a full GC.
1401   void rebuild_strong_code_roots();
1402 
1403   // Partial cleaning of VM internal data structures.
1404   void string_dedup_cleaning(BoolObjectClosure* is_alive,
1405                              OopClosure* keep_alive,
1406                              G1GCPhaseTimes* phase_times = NULL);
1407 
1408   // Performs cleaning of data structures after class unloading.
1409   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1410 
1411   // Redirty logged cards in the refinement queue.
1412   void redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs);
1413 
1414   // Verification
1415 
1416   // Deduplicate the string
1417   virtual void deduplicate_string(oop str);
1418 
1419   // Perform any cleanup actions necessary before allowing a verification.
1420   virtual void prepare_for_verify();
1421 
1422   // Perform verification.
1423 
1424   // vo == UsePrevMarking -> use "prev" marking information,
1425   // vo == UseNextMarking -> use "next" marking information
1426   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1427   //
1428   // NOTE: Only the "prev" marking information is guaranteed to be
1429   // consistent most of the time, so most calls to this should use
1430   // vo == UsePrevMarking.
1431   // Currently, there is only one case where this is called with
1432   // vo == UseNextMarking, which is to verify the "next" marking
1433   // information at the end of remark.
1434   // Currently there is only one place where this is called with
1435   // vo == UseFullMarking, which is to verify the marking during a
1436   // full GC.
1437   void verify(VerifyOption vo);
1438 
1439   // WhiteBox testing support.
1440   virtual bool supports_concurrent_gc_breakpoints() const;
1441   bool is_heterogeneous_heap() const;
1442 
1443   virtual WorkGang* get_safepoint_workers() { return _workers; }
1444 
1445   // The methods below are here for convenience and dispatch the
1446   // appropriate method depending on value of the given VerifyOption
1447   // parameter. The values for that parameter, and their meanings,
1448   // are the same as those above.
1449 
1450   bool is_obj_dead_cond(const oop obj,
1451                         const HeapRegion* hr,
1452                         const VerifyOption vo) const;
1453 
1454   bool is_obj_dead_cond(const oop obj,
1455                         const VerifyOption vo) const;
1456 
1457   G1HeapSummary create_g1_heap_summary();
1458   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1459 
1460   // Printing
1461 private:
1462   void print_heap_regions() const;
1463   void print_regions_on(outputStream* st) const;
1464 
1465 public:
1466   virtual void print_on(outputStream* st) const;
1467   virtual void print_extended_on(outputStream* st) const;
1468   virtual void print_on_error(outputStream* st) const;
1469 
1470   virtual void gc_threads_do(ThreadClosure* tc) const;
1471 
1472   // Override
1473   void print_tracing_info() const;
1474 
1475   // The following two methods are helpful for debugging RSet issues.
1476   void print_cset_rsets() PRODUCT_RETURN;
1477   void print_all_rsets() PRODUCT_RETURN;
1478 
1479   // Used to print information about locations in the hs_err file.
1480   virtual bool print_location(outputStream* st, void* addr) const;
1481 };
1482 
1483 class G1ParEvacuateFollowersClosure : public VoidClosure {
1484 private:
1485   double _start_term;
1486   double _term_time;
1487   size_t _term_attempts;
1488 
1489   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1490   void end_term_time() { _term_time += (os::elapsedTime() - _start_term); }
1491 protected:
1492   G1CollectedHeap*              _g1h;
1493   G1ParScanThreadState*         _par_scan_state;
1494   G1ScannerTasksQueueSet*       _queues;
1495   TaskTerminator*               _terminator;
1496   G1GCPhaseTimes::GCParPhases   _phase;
1497 
1498   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1499   G1ScannerTasksQueueSet* queues()         { return _queues; }
1500   TaskTerminator*         terminator()     { return _terminator; }
1501 
1502 public:
1503   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1504                                 G1ParScanThreadState* par_scan_state,
1505                                 G1ScannerTasksQueueSet* queues,
1506                                 TaskTerminator* terminator,
1507                                 G1GCPhaseTimes::GCParPhases phase)
1508     : _start_term(0.0), _term_time(0.0), _term_attempts(0),
1509       _g1h(g1h), _par_scan_state(par_scan_state),
1510       _queues(queues), _terminator(terminator), _phase(phase) {}
1511 
1512   void do_void();
1513 
1514   double term_time() const { return _term_time; }
1515   size_t term_attempts() const { return _term_attempts; }
1516 
1517 private:
1518   inline bool offer_termination();
1519 };
1520 
1521 #endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP