1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Doug Lea, Bill Scherer, and Michael Scott with
  32  * assistance from members of JCP JSR-166 Expert Group and released to
  33  * the public domain, as explained at
  34  * http://creativecommons.org/publicdomain/zero/1.0/
  35  */
  36 
  37 package java.util.concurrent;
  38 
  39 import java.lang.invoke.MethodHandles;
  40 import java.lang.invoke.VarHandle;
  41 import java.util.AbstractQueue;
  42 import java.util.Collection;
  43 import java.util.Collections;
  44 import java.util.Iterator;
  45 import java.util.Objects;
  46 import java.util.Spliterator;
  47 import java.util.Spliterators;
  48 import java.util.concurrent.locks.LockSupport;
  49 import java.util.concurrent.locks.ReentrantLock;
  50 
  51 /**
  52  * A {@linkplain BlockingQueue blocking queue} in which each insert
  53  * operation must wait for a corresponding remove operation by another
  54  * thread, and vice versa.  A synchronous queue does not have any
  55  * internal capacity, not even a capacity of one.  You cannot
  56  * {@code peek} at a synchronous queue because an element is only
  57  * present when you try to remove it; you cannot insert an element
  58  * (using any method) unless another thread is trying to remove it;
  59  * you cannot iterate as there is nothing to iterate.  The
  60  * <em>head</em> of the queue is the element that the first queued
  61  * inserting thread is trying to add to the queue; if there is no such
  62  * queued thread then no element is available for removal and
  63  * {@code poll()} will return {@code null}.  For purposes of other
  64  * {@code Collection} methods (for example {@code contains}), a
  65  * {@code SynchronousQueue} acts as an empty collection.  This queue
  66  * does not permit {@code null} elements.
  67  *
  68  * <p>Synchronous queues are similar to rendezvous channels used in
  69  * CSP and Ada. They are well suited for handoff designs, in which an
  70  * object running in one thread must sync up with an object running
  71  * in another thread in order to hand it some information, event, or
  72  * task.
  73  *
  74  * <p>This class supports an optional fairness policy for ordering
  75  * waiting producer and consumer threads.  By default, this ordering
  76  * is not guaranteed. However, a queue constructed with fairness set
  77  * to {@code true} grants threads access in FIFO order.
  78  *
  79  * <p>This class and its iterator implement all of the <em>optional</em>
  80  * methods of the {@link Collection} and {@link Iterator} interfaces.
  81  *
  82  * <p>This class is a member of the
  83  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
  84  * Java Collections Framework</a>.
  85  *
  86  * @since 1.5
  87  * @author Doug Lea and Bill Scherer and Michael Scott
  88  * @param <E> the type of elements held in this queue
  89  */
  90 public class SynchronousQueue<E> extends AbstractQueue<E>
  91     implements BlockingQueue<E>, java.io.Serializable {
  92     private static final long serialVersionUID = -3223113410248163686L;
  93 
  94     /*
  95      * This class implements extensions of the dual stack and dual
  96      * queue algorithms described in "Nonblocking Concurrent Objects
  97      * with Condition Synchronization", by W. N. Scherer III and
  98      * M. L. Scott.  18th Annual Conf. on Distributed Computing,
  99      * Oct. 2004 (see also
 100      * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
 101      * The (Lifo) stack is used for non-fair mode, and the (Fifo)
 102      * queue for fair mode. The performance of the two is generally
 103      * similar. Fifo usually supports higher throughput under
 104      * contention but Lifo maintains higher thread locality in common
 105      * applications.
 106      *
 107      * A dual queue (and similarly stack) is one that at any given
 108      * time either holds "data" -- items provided by put operations,
 109      * or "requests" -- slots representing take operations, or is
 110      * empty. A call to "fulfill" (i.e., a call requesting an item
 111      * from a queue holding data or vice versa) dequeues a
 112      * complementary node.  The most interesting feature of these
 113      * queues is that any operation can figure out which mode the
 114      * queue is in, and act accordingly without needing locks.
 115      *
 116      * Both the queue and stack extend abstract class Transferer
 117      * defining the single method transfer that does a put or a
 118      * take. These are unified into a single method because in dual
 119      * data structures, the put and take operations are symmetrical,
 120      * so nearly all code can be combined. The resulting transfer
 121      * methods are on the long side, but are easier to follow than
 122      * they would be if broken up into nearly-duplicated parts.
 123      *
 124      * The queue and stack data structures share many conceptual
 125      * similarities but very few concrete details. For simplicity,
 126      * they are kept distinct so that they can later evolve
 127      * separately.
 128      *
 129      * The algorithms here differ from the versions in the above paper
 130      * in extending them for use in synchronous queues, as well as
 131      * dealing with cancellation. The main differences include:
 132      *
 133      *  1. The original algorithms used bit-marked pointers, but
 134      *     the ones here use mode bits in nodes, leading to a number
 135      *     of further adaptations.
 136      *  2. SynchronousQueues must block threads waiting to become
 137      *     fulfilled.
 138      *  3. Support for cancellation via timeout and interrupts,
 139      *     including cleaning out cancelled nodes/threads
 140      *     from lists to avoid garbage retention and memory depletion.
 141      *
 142      * Blocking is mainly accomplished using LockSupport park/unpark,
 143      * except that nodes that appear to be the next ones to become
 144      * fulfilled first spin a bit (on multiprocessors only). On very
 145      * busy synchronous queues, spinning can dramatically improve
 146      * throughput. And on less busy ones, the amount of spinning is
 147      * small enough not to be noticeable.
 148      *
 149      * Cleaning is done in different ways in queues vs stacks.  For
 150      * queues, we can almost always remove a node immediately in O(1)
 151      * time (modulo retries for consistency checks) when it is
 152      * cancelled. But if it may be pinned as the current tail, it must
 153      * wait until some subsequent cancellation. For stacks, we need a
 154      * potentially O(n) traversal to be sure that we can remove the
 155      * node, but this can run concurrently with other threads
 156      * accessing the stack.
 157      *
 158      * While garbage collection takes care of most node reclamation
 159      * issues that otherwise complicate nonblocking algorithms, care
 160      * is taken to "forget" references to data, other nodes, and
 161      * threads that might be held on to long-term by blocked
 162      * threads. In cases where setting to null would otherwise
 163      * conflict with main algorithms, this is done by changing a
 164      * node's link to now point to the node itself. This doesn't arise
 165      * much for Stack nodes (because blocked threads do not hang on to
 166      * old head pointers), but references in Queue nodes must be
 167      * aggressively forgotten to avoid reachability of everything any
 168      * node has ever referred to since arrival.
 169      *
 170      * The above steps improve throughput when many threads produce
 171      * and/or consume data. But they don't help much with
 172      * single-source / single-sink usages in which one side or the
 173      * other is always transiently blocked, and so throughput is
 174      * mainly a function of thread scheduling. This is not usually
 175      * noticeably improved with bounded short spin-waits. Instead both
 176      * forms of transfer try Thread.yield if apparently the sole
 177      * waiter. This works well when there are more tasks that cores,
 178      * which is expected to be the main usage context of this mode. In
 179      * other cases, waiters may help with some bookkeeping, then
 180      * park/unpark.
 181      */
 182 
 183     /**
 184      * Shared internal API for dual stacks and queues.
 185      */
 186     abstract static class Transferer<E> {
 187         /**
 188          * Performs a put or take.
 189          *
 190          * @param e if non-null, the item to be handed to a consumer;
 191          *          if null, requests that transfer return an item
 192          *          offered by producer.
 193          * @param timed if this operation should timeout
 194          * @param nanos the timeout, in nanoseconds
 195          * @return if non-null, the item provided or received; if null,
 196          *         the operation failed due to timeout or interrupt --
 197          *         the caller can distinguish which of these occurred
 198          *         by checking Thread.interrupted.
 199          */
 200         abstract E transfer(E e, boolean timed, long nanos);
 201     }
 202 
 203     /**
 204      * The number of nanoseconds for which it is faster to spin
 205      * rather than to use timed park. A rough estimate suffices.
 206      */
 207     static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1023L;
 208 
 209     /** Dual stack */
 210     static final class TransferStack<E> extends Transferer<E> {
 211         /*
 212          * This extends Scherer-Scott dual stack algorithm, differing,
 213          * among other ways, by using "covering" nodes rather than
 214          * bit-marked pointers: Fulfilling operations push on marker
 215          * nodes (with FULFILLING bit set in mode) to reserve a spot
 216          * to match a waiting node.
 217          */
 218 
 219         /* Modes for SNodes, ORed together in node fields */
 220         /** Node represents an unfulfilled consumer */
 221         static final int REQUEST    = 0;
 222         /** Node represents an unfulfilled producer */
 223         static final int DATA       = 1;
 224         /** Node is fulfilling another unfulfilled DATA or REQUEST */
 225         static final int FULFILLING = 2;
 226 
 227         /** Returns true if m has fulfilling bit set. */
 228         static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
 229 
 230         /** Node class for TransferStacks. */
 231         static final class SNode implements ForkJoinPool.ManagedBlocker {
 232             volatile SNode next;        // next node in stack
 233             volatile SNode match;       // the node matched to this
 234             volatile Thread waiter;     // to control park/unpark
 235             Object item;                // data; or null for REQUESTs
 236             int mode;
 237             // Note: item and mode fields don't need to be volatile
 238             // since they are always written before, and read after,
 239             // other volatile/atomic operations.
 240 
 241             SNode(Object item) {
 242                 this.item = item;
 243             }
 244 
 245             boolean casNext(SNode cmp, SNode val) {
 246                 return cmp == next &&
 247                     SNEXT.compareAndSet(this, cmp, val);
 248             }
 249 
 250             /**
 251              * Tries to match node s to this node, if so, waking up thread.
 252              * Fulfillers call tryMatch to identify their waiters.
 253              * Waiters block until they have been matched.
 254              *
 255              * @param s the node to match
 256              * @return true if successfully matched to s
 257              */
 258             boolean tryMatch(SNode s) {
 259                 SNode m; Thread w;
 260                 if ((m = match) == null) {
 261                     if (SMATCH.compareAndSet(this, null, s)) {
 262                         if ((w = waiter) != null)
 263                             LockSupport.unpark(w);
 264                         return true;
 265                     }
 266                     else
 267                         m = match;
 268                 }
 269                 return m == s;
 270             }
 271 
 272             /**
 273              * Tries to cancel a wait by matching node to itself.
 274              */
 275             boolean tryCancel() {
 276                 return SMATCH.compareAndSet(this, null, this);
 277             }
 278 
 279             boolean isCancelled() {
 280                 return match == this;
 281             }
 282 
 283             public final boolean isReleasable() {
 284                 return match != null || Thread.currentThread().isInterrupted();
 285             }
 286 
 287             public final boolean block() {
 288                 while (!isReleasable()) LockSupport.park();
 289                 return true;
 290             }
 291 
 292             void forgetWaiter() {
 293                 SWAITER.setOpaque(this, null);
 294             }
 295 
 296             // VarHandle mechanics
 297             private static final VarHandle SMATCH;
 298             private static final VarHandle SNEXT;
 299             private static final VarHandle SWAITER;
 300             static {
 301                 try {
 302                     MethodHandles.Lookup l = MethodHandles.lookup();
 303                     SMATCH = l.findVarHandle(SNode.class, "match", SNode.class);
 304                     SNEXT = l.findVarHandle(SNode.class, "next", SNode.class);
 305                     SWAITER = l.findVarHandle(SNode.class, "waiter", Thread.class);
 306                 } catch (ReflectiveOperationException e) {
 307                     throw new ExceptionInInitializerError(e);
 308                 }
 309             }
 310         }
 311 
 312         /** The head (top) of the stack */
 313         volatile SNode head;
 314 
 315         boolean casHead(SNode h, SNode nh) {
 316             return h == head &&
 317                 SHEAD.compareAndSet(this, h, nh);
 318         }
 319 
 320         /**
 321          * Creates or resets fields of a node. Called only from transfer
 322          * where the node to push on stack is lazily created and
 323          * reused when possible to help reduce intervals between reads
 324          * and CASes of head and to avoid surges of garbage when CASes
 325          * to push nodes fail due to contention.
 326          */
 327         static SNode snode(SNode s, Object e, SNode next, int mode) {
 328             if (s == null) s = new SNode(e);
 329             s.mode = mode;
 330             s.next = next;
 331             return s;
 332         }
 333 
 334         /**
 335          * Puts or takes an item.
 336          */
 337         @SuppressWarnings("unchecked")
 338         E transfer(E e, boolean timed, long nanos) {
 339             /*
 340              * Basic algorithm is to loop trying one of three actions:
 341              *
 342              * 1. If apparently empty or already containing nodes of same
 343              *    mode, try to push node on stack and wait for a match,
 344              *    returning it, or null if cancelled.
 345              *
 346              * 2. If apparently containing node of complementary mode,
 347              *    try to push a fulfilling node on to stack, match
 348              *    with corresponding waiting node, pop both from
 349              *    stack, and return matched item. The matching or
 350              *    unlinking might not actually be necessary because of
 351              *    other threads performing action 3:
 352              *
 353              * 3. If top of stack already holds another fulfilling node,
 354              *    help it out by doing its match and/or pop
 355              *    operations, and then continue. The code for helping
 356              *    is essentially the same as for fulfilling, except
 357              *    that it doesn't return the item.
 358              */
 359 
 360             SNode s = null; // constructed/reused as needed
 361             int mode = (e == null) ? REQUEST : DATA;
 362 
 363             for (;;) {
 364                 SNode h = head;
 365                 if (h == null || h.mode == mode) {  // empty or same-mode
 366                     if (timed && nanos <= 0L) {     // can't wait
 367                         if (h != null && h.isCancelled())
 368                             casHead(h, h.next);     // pop cancelled node
 369                         else
 370                             return null;
 371                     } else if (casHead(h, s = snode(s, e, h, mode))) {
 372                         long deadline = timed ? System.nanoTime() + nanos : 0L;
 373                         Thread w = Thread.currentThread();
 374                         int stat = -1; // -1: may yield, +1: park, else 0
 375                         SNode m;                    // await fulfill or cancel
 376                         while ((m = s.match) == null) {
 377                             if ((timed &&
 378                                  (nanos = deadline - System.nanoTime()) <= 0) ||
 379                                 w.isInterrupted()) {
 380                                 if (s.tryCancel()) {
 381                                     clean(s);       // wait cancelled
 382                                     return null;
 383                                 }
 384                             } else if ((m = s.match) != null) {
 385                                 break;              // recheck
 386                             } else if (stat <= 0) {
 387                                 if (stat < 0 && h == null && head == s) {
 388                                     stat = 0;       // yield once if was empty
 389                                     Thread.yield();
 390                                 } else {
 391                                     stat = 1;
 392                                     s.waiter = w;   // enable signal
 393                                 }
 394                             } else if (!timed) {
 395                                 LockSupport.setCurrentBlocker(this);
 396                                 try {
 397                                     ForkJoinPool.managedBlock(s);
 398                                 } catch (InterruptedException cannotHappen) { }
 399                                 LockSupport.setCurrentBlocker(null);
 400                             } else if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
 401                                 LockSupport.parkNanos(this, nanos);
 402                         }
 403                         if (stat == 1)
 404                             s.forgetWaiter();
 405                         Object result = (mode == REQUEST) ? m.item : s.item;
 406                         if (h != null && h.next == s)
 407                             casHead(h, s.next);     // help fulfiller
 408                         return (E) result;
 409                     }
 410                 } else if (!isFulfilling(h.mode)) { // try to fulfill
 411                     if (h.isCancelled())            // already cancelled
 412                         casHead(h, h.next);         // pop and retry
 413                     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
 414                         for (;;) { // loop until matched or waiters disappear
 415                             SNode m = s.next;       // m is s's match
 416                             if (m == null) {        // all waiters are gone
 417                                 casHead(s, null);   // pop fulfill node
 418                                 s = null;           // use new node next time
 419                                 break;              // restart main loop
 420                             }
 421                             SNode mn = m.next;
 422                             if (m.tryMatch(s)) {
 423                                 casHead(s, mn);     // pop both s and m
 424                                 return (E) ((mode == REQUEST) ? m.item : s.item);
 425                             } else                  // lost match
 426                                 s.casNext(m, mn);   // help unlink
 427                         }
 428                     }
 429                 } else {                            // help a fulfiller
 430                     SNode m = h.next;               // m is h's match
 431                     if (m == null)                  // waiter is gone
 432                         casHead(h, null);           // pop fulfilling node
 433                     else {
 434                         SNode mn = m.next;
 435                         if (m.tryMatch(h))          // help match
 436                             casHead(h, mn);         // pop both h and m
 437                         else                        // lost match
 438                             h.casNext(m, mn);       // help unlink
 439                     }
 440                 }
 441             }
 442         }
 443 
 444         /**
 445          * Unlinks s from the stack.
 446          */
 447         void clean(SNode s) {
 448             s.item = null;   // forget item
 449             s.forgetWaiter();
 450 
 451             /*
 452              * At worst we may need to traverse entire stack to unlink
 453              * s. If there are multiple concurrent calls to clean, we
 454              * might not see s if another thread has already removed
 455              * it. But we can stop when we see any node known to
 456              * follow s. We use s.next unless it too is cancelled, in
 457              * which case we try the node one past. We don't check any
 458              * further because we don't want to doubly traverse just to
 459              * find sentinel.
 460              */
 461 
 462             SNode past = s.next;
 463             if (past != null && past.isCancelled())
 464                 past = past.next;
 465 
 466             // Absorb cancelled nodes at head
 467             SNode p;
 468             while ((p = head) != null && p != past && p.isCancelled())
 469                 casHead(p, p.next);
 470 
 471             // Unsplice embedded nodes
 472             while (p != null && p != past) {
 473                 SNode n = p.next;
 474                 if (n != null && n.isCancelled())
 475                     p.casNext(n, n.next);
 476                 else
 477                     p = n;
 478             }
 479         }
 480 
 481         // VarHandle mechanics
 482         private static final VarHandle SHEAD;
 483         static {
 484             try {
 485                 MethodHandles.Lookup l = MethodHandles.lookup();
 486                 SHEAD = l.findVarHandle(TransferStack.class, "head", SNode.class);
 487             } catch (ReflectiveOperationException e) {
 488                 throw new ExceptionInInitializerError(e);
 489             }
 490         }
 491     }
 492 
 493     /** Dual Queue */
 494     static final class TransferQueue<E> extends Transferer<E> {
 495         /*
 496          * This extends Scherer-Scott dual queue algorithm, differing,
 497          * among other ways, by using modes within nodes rather than
 498          * marked pointers. The algorithm is a little simpler than
 499          * that for stacks because fulfillers do not need explicit
 500          * nodes, and matching is done by CAS'ing QNode.item field
 501          * from non-null to null (for put) or vice versa (for take).
 502          */
 503 
 504         /** Node class for TransferQueue. */
 505         static final class QNode implements ForkJoinPool.ManagedBlocker {
 506             volatile QNode next;          // next node in queue
 507             volatile Object item;         // CAS'ed to or from null
 508             volatile Thread waiter;       // to control park/unpark
 509             final boolean isData;
 510 
 511             QNode(Object item, boolean isData) {
 512                 this.item = item;
 513                 this.isData = isData;
 514             }
 515 
 516             boolean casNext(QNode cmp, QNode val) {
 517                 return next == cmp &&
 518                     QNEXT.compareAndSet(this, cmp, val);
 519             }
 520 
 521             boolean casItem(Object cmp, Object val) {
 522                 return item == cmp &&
 523                     QITEM.compareAndSet(this, cmp, val);
 524             }
 525 
 526             /**
 527              * Tries to cancel by CAS'ing ref to this as item.
 528              */
 529             boolean tryCancel(Object cmp) {
 530                 return QITEM.compareAndSet(this, cmp, this);
 531             }
 532 
 533             boolean isCancelled() {
 534                 return item == this;
 535             }
 536 
 537             /**
 538              * Returns true if this node is known to be off the queue
 539              * because its next pointer has been forgotten due to
 540              * an advanceHead operation.
 541              */
 542             boolean isOffList() {
 543                 return next == this;
 544             }
 545 
 546             void forgetWaiter() {
 547                 QWAITER.setOpaque(this, null);
 548             }
 549 
 550             boolean isFulfilled() {
 551                 Object x;
 552                 return isData == ((x = item) == null) || x == this;
 553             }
 554 
 555             public final boolean isReleasable() {
 556                 Object x;
 557                 return isData == ((x = item) == null) || x == this ||
 558                     Thread.currentThread().isInterrupted();
 559             }
 560 
 561             public final boolean block() {
 562                 while (!isReleasable()) LockSupport.park();
 563                 return true;
 564             }
 565 
 566             // VarHandle mechanics
 567             private static final VarHandle QITEM;
 568             private static final VarHandle QNEXT;
 569             private static final VarHandle QWAITER;
 570             static {
 571                 try {
 572                     MethodHandles.Lookup l = MethodHandles.lookup();
 573                     QITEM = l.findVarHandle(QNode.class, "item", Object.class);
 574                     QNEXT = l.findVarHandle(QNode.class, "next", QNode.class);
 575                     QWAITER = l.findVarHandle(QNode.class, "waiter", Thread.class);
 576                 } catch (ReflectiveOperationException e) {
 577                     throw new ExceptionInInitializerError(e);
 578                 }
 579             }
 580         }
 581 
 582         /** Head of queue */
 583         transient volatile QNode head;
 584         /** Tail of queue */
 585         transient volatile QNode tail;
 586         /**
 587          * Reference to a cancelled node that might not yet have been
 588          * unlinked from queue because it was the last inserted node
 589          * when it was cancelled.
 590          */
 591         transient volatile QNode cleanMe;
 592 
 593         TransferQueue() {
 594             QNode h = new QNode(null, false); // initialize to dummy node.
 595             head = h;
 596             tail = h;
 597         }
 598 
 599         /**
 600          * Tries to cas nh as new head; if successful, unlink
 601          * old head's next node to avoid garbage retention.
 602          */
 603         void advanceHead(QNode h, QNode nh) {
 604             if (h == head &&
 605                 QHEAD.compareAndSet(this, h, nh))
 606                 h.next = h; // forget old next
 607         }
 608 
 609         /**
 610          * Tries to cas nt as new tail.
 611          */
 612         void advanceTail(QNode t, QNode nt) {
 613             if (tail == t)
 614                 QTAIL.compareAndSet(this, t, nt);
 615         }
 616 
 617         /**
 618          * Tries to CAS cleanMe slot.
 619          */
 620         boolean casCleanMe(QNode cmp, QNode val) {
 621             return cleanMe == cmp &&
 622                 QCLEANME.compareAndSet(this, cmp, val);
 623         }
 624 
 625         /**
 626          * Puts or takes an item.
 627          */
 628         @SuppressWarnings("unchecked")
 629         E transfer(E e, boolean timed, long nanos) {
 630             /* Basic algorithm is to loop trying to take either of
 631              * two actions:
 632              *
 633              * 1. If queue apparently empty or holding same-mode nodes,
 634              *    try to add node to queue of waiters, wait to be
 635              *    fulfilled (or cancelled) and return matching item.
 636              *
 637              * 2. If queue apparently contains waiting items, and this
 638              *    call is of complementary mode, try to fulfill by CAS'ing
 639              *    item field of waiting node and dequeuing it, and then
 640              *    returning matching item.
 641              *
 642              * In each case, along the way, check for and try to help
 643              * advance head and tail on behalf of other stalled/slow
 644              * threads.
 645              *
 646              * The loop starts off with a null check guarding against
 647              * seeing uninitialized head or tail values. This never
 648              * happens in current SynchronousQueue, but could if
 649              * callers held non-volatile/final ref to the
 650              * transferer. The check is here anyway because it places
 651              * null checks at top of loop, which is usually faster
 652              * than having them implicitly interspersed.
 653              */
 654 
 655             QNode s = null;                  // constructed/reused as needed
 656             boolean isData = (e != null);
 657             for (;;) {
 658                 QNode t = tail, h = head, m, tn;         // m is node to fulfill
 659                 if (t == null || h == null)
 660                     ;                                    // inconsistent
 661                 else if (h == t || t.isData == isData) { // empty or same-mode
 662                     if (t != tail)                       // inconsistent
 663                         ;
 664                     else if ((tn = t.next) != null)      // lagging tail
 665                         advanceTail(t, tn);
 666                     else if (timed && nanos <= 0L)       // can't wait
 667                         return null;
 668                     else if (t.casNext(null, (s != null) ? s :
 669                                        (s = new QNode(e, isData)))) {
 670                         advanceTail(t, s);
 671                         long deadline = timed ? System.nanoTime() + nanos : 0L;
 672                         Thread w = Thread.currentThread();
 673                         int stat = -1; // same idea as TransferStack
 674                         Object item;
 675                         while ((item = s.item) == e) {
 676                             if ((timed &&
 677                                  (nanos = deadline - System.nanoTime()) <= 0) ||
 678                                 w.isInterrupted()) {
 679                                 if (s.tryCancel(e)) {
 680                                     clean(t, s);
 681                                     return null;
 682                                 }
 683                             } else if ((item = s.item) != e) {
 684                                 break;                   // recheck
 685                             } else if (stat <= 0) {
 686                                 if (t.next == s) {
 687                                     if (stat < 0 && t.isFulfilled()) {
 688                                         stat = 0;        // yield once if first
 689                                         Thread.yield();
 690                                     }
 691                                     else {
 692                                         stat = 1;
 693                                         s.waiter = w;
 694                                     }
 695                                 }
 696                             } else if (!timed) {
 697                                 LockSupport.setCurrentBlocker(this);
 698                                 try {
 699                                     ForkJoinPool.managedBlock(s);
 700                                 } catch (InterruptedException cannotHappen) { }
 701                                 LockSupport.setCurrentBlocker(null);
 702                             }
 703                             else if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
 704                                 LockSupport.parkNanos(this, nanos);
 705                         }
 706                         if (stat == 1)
 707                             s.forgetWaiter();
 708                         if (!s.isOffList()) {            // not already unlinked
 709                             advanceHead(t, s);           // unlink if head
 710                             if (item != null)            // and forget fields
 711                                 s.item = s;
 712                         }
 713                         return (item != null) ? (E)item : e;
 714                     }
 715 
 716                 } else if ((m = h.next) != null && t == tail && h == head) {
 717                     Thread waiter;
 718                     Object x = m.item;
 719                     boolean fulfilled = ((isData == (x == null)) &&
 720                                          x != m && m.casItem(x, e));
 721                     advanceHead(h, m);                    // (help) dequeue
 722                     if (fulfilled) {
 723                         if ((waiter = m.waiter) != null)
 724                             LockSupport.unpark(waiter);
 725                         return (x != null) ? (E)x : e;
 726                     }
 727                 }
 728             }
 729         }
 730 
 731         /**
 732          * Gets rid of cancelled node s with original predecessor pred.
 733          */
 734         void clean(QNode pred, QNode s) {
 735             s.forgetWaiter();
 736             /*
 737              * At any given time, exactly one node on list cannot be
 738              * deleted -- the last inserted node. To accommodate this,
 739              * if we cannot delete s, we save its predecessor as
 740              * "cleanMe", deleting the previously saved version
 741              * first. At least one of node s or the node previously
 742              * saved can always be deleted, so this always terminates.
 743              */
 744             while (pred.next == s) { // Return early if already unlinked
 745                 QNode h = head;
 746                 QNode hn = h.next;   // Absorb cancelled first node as head
 747                 if (hn != null && hn.isCancelled()) {
 748                     advanceHead(h, hn);
 749                     continue;
 750                 }
 751                 QNode t = tail;      // Ensure consistent read for tail
 752                 if (t == h)
 753                     return;
 754                 QNode tn = t.next;
 755                 if (t != tail)
 756                     continue;
 757                 if (tn != null) {
 758                     advanceTail(t, tn);
 759                     continue;
 760                 }
 761                 if (s != t) {        // If not tail, try to unsplice
 762                     QNode sn = s.next;
 763                     if (sn == s || pred.casNext(s, sn))
 764                         return;
 765                 }
 766                 QNode dp = cleanMe;
 767                 if (dp != null) {    // Try unlinking previous cancelled node
 768                     QNode d = dp.next;
 769                     QNode dn;
 770                     if (d == null ||               // d is gone or
 771                         d == dp ||                 // d is off list or
 772                         !d.isCancelled() ||        // d not cancelled or
 773                         (d != t &&                 // d not tail and
 774                          (dn = d.next) != null &&  //   has successor
 775                          dn != d &&                //   that is on list
 776                          dp.casNext(d, dn)))       // d unspliced
 777                         casCleanMe(dp, null);
 778                     if (dp == pred)
 779                         return;      // s is already saved node
 780                 } else if (casCleanMe(null, pred))
 781                     return;          // Postpone cleaning s
 782             }
 783         }
 784 
 785         // VarHandle mechanics
 786         private static final VarHandle QHEAD;
 787         private static final VarHandle QTAIL;
 788         private static final VarHandle QCLEANME;
 789         static {
 790             try {
 791                 MethodHandles.Lookup l = MethodHandles.lookup();
 792                 QHEAD = l.findVarHandle(TransferQueue.class, "head",
 793                                         QNode.class);
 794                 QTAIL = l.findVarHandle(TransferQueue.class, "tail",
 795                                         QNode.class);
 796                 QCLEANME = l.findVarHandle(TransferQueue.class, "cleanMe",
 797                                            QNode.class);
 798             } catch (ReflectiveOperationException e) {
 799                 throw new ExceptionInInitializerError(e);
 800             }
 801         }
 802     }
 803 
 804     /**
 805      * The transferer. Set only in constructor, but cannot be declared
 806      * as final without further complicating serialization.  Since
 807      * this is accessed only at most once per public method, there
 808      * isn't a noticeable performance penalty for using volatile
 809      * instead of final here.
 810      */
 811     private transient volatile Transferer<E> transferer;
 812 
 813     /**
 814      * Creates a {@code SynchronousQueue} with nonfair access policy.
 815      */
 816     public SynchronousQueue() {
 817         this(false);
 818     }
 819 
 820     /**
 821      * Creates a {@code SynchronousQueue} with the specified fairness policy.
 822      *
 823      * @param fair if true, waiting threads contend in FIFO order for
 824      *        access; otherwise the order is unspecified.
 825      */
 826     public SynchronousQueue(boolean fair) {
 827         transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
 828     }
 829 
 830     /**
 831      * Adds the specified element to this queue, waiting if necessary for
 832      * another thread to receive it.
 833      *
 834      * @throws InterruptedException {@inheritDoc}
 835      * @throws NullPointerException {@inheritDoc}
 836      */
 837     public void put(E e) throws InterruptedException {
 838         if (e == null) throw new NullPointerException();
 839         if (transferer.transfer(e, false, 0) == null) {
 840             Thread.interrupted();
 841             throw new InterruptedException();
 842         }
 843     }
 844 
 845     /**
 846      * Inserts the specified element into this queue, waiting if necessary
 847      * up to the specified wait time for another thread to receive it.
 848      *
 849      * @return {@code true} if successful, or {@code false} if the
 850      *         specified waiting time elapses before a consumer appears
 851      * @throws InterruptedException {@inheritDoc}
 852      * @throws NullPointerException {@inheritDoc}
 853      */
 854     public boolean offer(E e, long timeout, TimeUnit unit)
 855         throws InterruptedException {
 856         if (e == null) throw new NullPointerException();
 857         if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
 858             return true;
 859         if (!Thread.interrupted())
 860             return false;
 861         throw new InterruptedException();
 862     }
 863 
 864     /**
 865      * Inserts the specified element into this queue, if another thread is
 866      * waiting to receive it.
 867      *
 868      * @param e the element to add
 869      * @return {@code true} if the element was added to this queue, else
 870      *         {@code false}
 871      * @throws NullPointerException if the specified element is null
 872      */
 873     public boolean offer(E e) {
 874         if (e == null) throw new NullPointerException();
 875         return transferer.transfer(e, true, 0) != null;
 876     }
 877 
 878     /**
 879      * Retrieves and removes the head of this queue, waiting if necessary
 880      * for another thread to insert it.
 881      *
 882      * @return the head of this queue
 883      * @throws InterruptedException {@inheritDoc}
 884      */
 885     public E take() throws InterruptedException {
 886         E e = transferer.transfer(null, false, 0);
 887         if (e != null)
 888             return e;
 889         Thread.interrupted();
 890         throw new InterruptedException();
 891     }
 892 
 893     /**
 894      * Retrieves and removes the head of this queue, waiting
 895      * if necessary up to the specified wait time, for another thread
 896      * to insert it.
 897      *
 898      * @return the head of this queue, or {@code null} if the
 899      *         specified waiting time elapses before an element is present
 900      * @throws InterruptedException {@inheritDoc}
 901      */
 902     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
 903         E e = transferer.transfer(null, true, unit.toNanos(timeout));
 904         if (e != null || !Thread.interrupted())
 905             return e;
 906         throw new InterruptedException();
 907     }
 908 
 909     /**
 910      * Retrieves and removes the head of this queue, if another thread
 911      * is currently making an element available.
 912      *
 913      * @return the head of this queue, or {@code null} if no
 914      *         element is available
 915      */
 916     public E poll() {
 917         return transferer.transfer(null, true, 0);
 918     }
 919 
 920     /**
 921      * Always returns {@code true}.
 922      * A {@code SynchronousQueue} has no internal capacity.
 923      *
 924      * @return {@code true}
 925      */
 926     public boolean isEmpty() {
 927         return true;
 928     }
 929 
 930     /**
 931      * Always returns zero.
 932      * A {@code SynchronousQueue} has no internal capacity.
 933      *
 934      * @return zero
 935      */
 936     public int size() {
 937         return 0;
 938     }
 939 
 940     /**
 941      * Always returns zero.
 942      * A {@code SynchronousQueue} has no internal capacity.
 943      *
 944      * @return zero
 945      */
 946     public int remainingCapacity() {
 947         return 0;
 948     }
 949 
 950     /**
 951      * Does nothing.
 952      * A {@code SynchronousQueue} has no internal capacity.
 953      */
 954     public void clear() {
 955     }
 956 
 957     /**
 958      * Always returns {@code false}.
 959      * A {@code SynchronousQueue} has no internal capacity.
 960      *
 961      * @param o the element
 962      * @return {@code false}
 963      */
 964     public boolean contains(Object o) {
 965         return false;
 966     }
 967 
 968     /**
 969      * Always returns {@code false}.
 970      * A {@code SynchronousQueue} has no internal capacity.
 971      *
 972      * @param o the element to remove
 973      * @return {@code false}
 974      */
 975     public boolean remove(Object o) {
 976         return false;
 977     }
 978 
 979     /**
 980      * Returns {@code false} unless the given collection is empty.
 981      * A {@code SynchronousQueue} has no internal capacity.
 982      *
 983      * @param c the collection
 984      * @return {@code false} unless given collection is empty
 985      */
 986     public boolean containsAll(Collection<?> c) {
 987         return c.isEmpty();
 988     }
 989 
 990     /**
 991      * Always returns {@code false}.
 992      * A {@code SynchronousQueue} has no internal capacity.
 993      *
 994      * @param c the collection
 995      * @return {@code false}
 996      */
 997     public boolean removeAll(Collection<?> c) {
 998         return false;
 999     }
1000 
1001     /**
1002      * Always returns {@code false}.
1003      * A {@code SynchronousQueue} has no internal capacity.
1004      *
1005      * @param c the collection
1006      * @return {@code false}
1007      */
1008     public boolean retainAll(Collection<?> c) {
1009         return false;
1010     }
1011 
1012     /**
1013      * Always returns {@code null}.
1014      * A {@code SynchronousQueue} does not return elements
1015      * unless actively waited on.
1016      *
1017      * @return {@code null}
1018      */
1019     public E peek() {
1020         return null;
1021     }
1022 
1023     /**
1024      * Returns an empty iterator in which {@code hasNext} always returns
1025      * {@code false}.
1026      *
1027      * @return an empty iterator
1028      */
1029     public Iterator<E> iterator() {
1030         return Collections.emptyIterator();
1031     }
1032 
1033     /**
1034      * Returns an empty spliterator in which calls to
1035      * {@link Spliterator#trySplit() trySplit} always return {@code null}.
1036      *
1037      * @return an empty spliterator
1038      * @since 1.8
1039      */
1040     public Spliterator<E> spliterator() {
1041         return Spliterators.emptySpliterator();
1042     }
1043 
1044     /**
1045      * Returns a zero-length array.
1046      * @return a zero-length array
1047      */
1048     public Object[] toArray() {
1049         return new Object[0];
1050     }
1051 
1052     /**
1053      * Sets the zeroth element of the specified array to {@code null}
1054      * (if the array has non-zero length) and returns it.
1055      *
1056      * @param a the array
1057      * @return the specified array
1058      * @throws NullPointerException if the specified array is null
1059      */
1060     public <T> T[] toArray(T[] a) {
1061         if (a.length > 0)
1062             a[0] = null;
1063         return a;
1064     }
1065 
1066     /**
1067      * Always returns {@code "[]"}.
1068      * @return {@code "[]"}
1069      */
1070     public String toString() {
1071         return "[]";
1072     }
1073 
1074     /**
1075      * @throws UnsupportedOperationException {@inheritDoc}
1076      * @throws ClassCastException            {@inheritDoc}
1077      * @throws NullPointerException          {@inheritDoc}
1078      * @throws IllegalArgumentException      {@inheritDoc}
1079      */
1080     public int drainTo(Collection<? super E> c) {
1081         Objects.requireNonNull(c);
1082         if (c == this)
1083             throw new IllegalArgumentException();
1084         int n = 0;
1085         for (E e; (e = poll()) != null; n++)
1086             c.add(e);
1087         return n;
1088     }
1089 
1090     /**
1091      * @throws UnsupportedOperationException {@inheritDoc}
1092      * @throws ClassCastException            {@inheritDoc}
1093      * @throws NullPointerException          {@inheritDoc}
1094      * @throws IllegalArgumentException      {@inheritDoc}
1095      */
1096     public int drainTo(Collection<? super E> c, int maxElements) {
1097         Objects.requireNonNull(c);
1098         if (c == this)
1099             throw new IllegalArgumentException();
1100         int n = 0;
1101         for (E e; n < maxElements && (e = poll()) != null; n++)
1102             c.add(e);
1103         return n;
1104     }
1105 
1106     /*
1107      * To cope with serialization strategy in the 1.5 version of
1108      * SynchronousQueue, we declare some unused classes and fields
1109      * that exist solely to enable serializability across versions.
1110      * These fields are never used, so are initialized only if this
1111      * object is ever serialized or deserialized.
1112      */
1113 
1114     @SuppressWarnings("serial")
1115     static class WaitQueue implements java.io.Serializable { }
1116     static class LifoWaitQueue extends WaitQueue {
1117         private static final long serialVersionUID = -3633113410248163686L;
1118     }
1119     static class FifoWaitQueue extends WaitQueue {
1120         private static final long serialVersionUID = -3623113410248163686L;
1121     }
1122     private ReentrantLock qlock;
1123     private WaitQueue waitingProducers;
1124     private WaitQueue waitingConsumers;
1125 
1126     /**
1127      * Saves this queue to a stream (that is, serializes it).
1128      * @param s the stream
1129      * @throws java.io.IOException if an I/O error occurs
1130      */
1131     private void writeObject(java.io.ObjectOutputStream s)
1132         throws java.io.IOException {
1133         boolean fair = transferer instanceof TransferQueue;
1134         if (fair) {
1135             qlock = new ReentrantLock(true);
1136             waitingProducers = new FifoWaitQueue();
1137             waitingConsumers = new FifoWaitQueue();
1138         }
1139         else {
1140             qlock = new ReentrantLock();
1141             waitingProducers = new LifoWaitQueue();
1142             waitingConsumers = new LifoWaitQueue();
1143         }
1144         s.defaultWriteObject();
1145     }
1146 
1147     /**
1148      * Reconstitutes this queue from a stream (that is, deserializes it).
1149      * @param s the stream
1150      * @throws ClassNotFoundException if the class of a serialized object
1151      *         could not be found
1152      * @throws java.io.IOException if an I/O error occurs
1153      */
1154     private void readObject(java.io.ObjectInputStream s)
1155         throws java.io.IOException, ClassNotFoundException {
1156         s.defaultReadObject();
1157         if (waitingProducers instanceof FifoWaitQueue)
1158             transferer = new TransferQueue<E>();
1159         else
1160             transferer = new TransferStack<E>();
1161     }
1162 
1163     static {
1164         // Reduce the risk of rare disastrous classloading in first call to
1165         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1166         Class<?> ensureLoaded = LockSupport.class;
1167     }
1168 }