1 /*
   2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * Written by Doug Lea with assistance from members of JCP JSR-166
  26  * Expert Group and released to the public domain, as explained at
  27  * http://creativecommons.org/publicdomain/zero/1.0/
  28  */
  29 
  30 /* Adapted from Dougs CVS test/jsr166e/DoubleAdderDemo.java
  31  *
  32  * The demo is a micro-benchmark to compare synchronized access to a primitive
  33  * double and DoubleAdder (run without any args), this restricted version simply
  34  * exercises the basic functionality of DoubleAdder, suitable for automated
  35  * testing (-shortrun).
  36  */
  37 
  38 /*
  39  * @test
  40  * @bug 8005311
  41  * @run main DoubleAdderDemo -shortrun
  42  * @summary Basic test for Doubledder
  43  */
  44 
  45 import java.util.concurrent.ExecutorService;
  46 import java.util.concurrent.Executors;
  47 import java.util.concurrent.Phaser;
  48 import java.util.concurrent.atomic.DoubleAdder;
  49 
  50 public class DoubleAdderDemo {
  51     static final int INCS_PER_THREAD = 10000000;
  52     static final int NCPU = Runtime.getRuntime().availableProcessors();
  53     static final int SHORT_RUN_MAX_THREADS = NCPU > 1 ? NCPU / 2 : 1;
  54     static final int LONG_RUN_MAX_THREADS = NCPU * 2;
  55     static final ExecutorService pool = Executors.newCachedThreadPool();
  56 
  57     static final class SynchronizedDoubleAdder {
  58         double value;
  59         synchronized double sum() { return value; }
  60         synchronized void add(double x) { value += x; }
  61     }
  62 
  63     public static void main(String[] args) {
  64         boolean shortRun = args.length > 0 && args[0].equals("-shortrun");
  65         int maxNumThreads = shortRun ? SHORT_RUN_MAX_THREADS : LONG_RUN_MAX_THREADS;
  66 
  67         System.out.println("Warmup...");
  68         int half = NCPU > 1 ? NCPU / 2 : 1;
  69         if (!shortRun)
  70             syncTest(half, 1000);
  71         adderTest(half, 1000);
  72 
  73         for (int reps = 0; reps < 2; ++reps) {
  74             System.out.println("Running...");
  75             for (int i = 1; i <= maxNumThreads; i <<= 1) {
  76                 if (!shortRun)
  77                     syncTest(i, INCS_PER_THREAD);
  78                 adderTest(i, INCS_PER_THREAD);
  79             }
  80         }
  81         pool.shutdown();
  82     }
  83 
  84     static void syncTest(int nthreads, int incs) {
  85         System.out.print("Synchronized ");
  86         Phaser phaser = new Phaser(nthreads + 1);
  87         SynchronizedDoubleAdder a = new SynchronizedDoubleAdder();
  88         for (int i = 0; i < nthreads; ++i)
  89             pool.execute(new SyncTask(a, phaser, incs));
  90         report(nthreads, incs, timeTasks(phaser), a.sum());
  91     }
  92 
  93     static void adderTest(int nthreads, int incs) {
  94         System.out.print("DoubleAdder  ");
  95         Phaser phaser = new Phaser(nthreads + 1);
  96         DoubleAdder a = new DoubleAdder();
  97         for (int i = 0; i < nthreads; ++i)
  98             pool.execute(new AdderTask(a, phaser, incs));
  99         report(nthreads, incs, timeTasks(phaser), a.sum());
 100     }
 101 
 102     static void report(int nthreads, int incs, long time, double sum) {
 103         long total = (long)nthreads * incs;
 104         if (sum != (double)total)
 105             throw new Error(sum + " != " + total);
 106         double secs = (double)time / (1000L * 1000 * 1000);
 107         long rate = total * (1000L) / time;
 108         System.out.printf("threads:%3d  Time: %7.3fsec  Incs per microsec: %4d\n",
 109                           nthreads, secs, rate);
 110     }
 111 
 112     static long timeTasks(Phaser phaser) {
 113         phaser.arriveAndAwaitAdvance();
 114         long start = System.nanoTime();
 115         phaser.arriveAndAwaitAdvance();
 116         phaser.arriveAndAwaitAdvance();
 117         return System.nanoTime() - start;
 118     }
 119 
 120     static final class AdderTask implements Runnable {
 121         final DoubleAdder adder;
 122         final Phaser phaser;
 123         final int incs;
 124         volatile double result;
 125         AdderTask(DoubleAdder adder, Phaser phaser, int incs) {
 126             this.adder = adder;
 127             this.phaser = phaser;
 128             this.incs = incs;
 129         }
 130 
 131         public void run() {
 132             phaser.arriveAndAwaitAdvance();
 133             phaser.arriveAndAwaitAdvance();
 134             DoubleAdder a = adder;
 135             for (int i = 0; i < incs; ++i)
 136                 a.add(1.0);
 137             result = a.sum();
 138             phaser.arrive();
 139         }
 140     }
 141 
 142     static final class SyncTask implements Runnable {
 143         final SynchronizedDoubleAdder adder;
 144         final Phaser phaser;
 145         final int incs;
 146         volatile double result;
 147         SyncTask(SynchronizedDoubleAdder adder, Phaser phaser, int incs) {
 148             this.adder = adder;
 149             this.phaser = phaser;
 150             this.incs = incs;
 151         }
 152 
 153         public void run() {
 154             phaser.arriveAndAwaitAdvance();
 155             phaser.arriveAndAwaitAdvance();
 156             SynchronizedDoubleAdder a = adder;
 157             for (int i = 0; i < incs; ++i)
 158                 a.add(1.0);
 159             result = a.sum();
 160             phaser.arrive();
 161         }
 162     }
 163 
 164 }