1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.lang.ref.WeakReference;
  29 import java.lang.ref.ReferenceQueue;
  30 import java.util.concurrent.ThreadLocalRandom;
  31 import java.util.function.BiConsumer;
  32 import java.util.function.BiFunction;
  33 import java.util.function.Consumer;
  34 
  35 
  36 /**
  37  * Hash table based implementation of the {@code Map} interface, with
  38  * <em>weak keys</em>.
  39  * An entry in a {@code WeakHashMap} will automatically be removed when
  40  * its key is no longer in ordinary use.  More precisely, the presence of a
  41  * mapping for a given key will not prevent the key from being discarded by the
  42  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  43  * When a key has been discarded its entry is effectively removed from the map,
  44  * so this class behaves somewhat differently from other {@code Map}
  45  * implementations.
  46  *
  47  * <p> Both null values and the null key are supported. This class has
  48  * performance characteristics similar to those of the {@code HashMap}
  49  * class, and has the same efficiency parameters of <em>initial capacity</em>
  50  * and <em>load factor</em>.
  51  *
  52  * <p> Like most collection classes, this class is not synchronized.
  53  * A synchronized {@code WeakHashMap} may be constructed using the
  54  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  55  * method.
  56  *
  57  * <p> This class is intended primarily for use with key objects whose
  58  * {@code equals} methods test for object identity using the
  59  * {@code ==} operator.  Once such a key is discarded it can never be
  60  * recreated, so it is impossible to do a lookup of that key in a
  61  * {@code WeakHashMap} at some later time and be surprised that its entry
  62  * has been removed.  This class will work perfectly well with key objects
  63  * whose {@code equals} methods are not based upon object identity, such
  64  * as {@code String} instances.  With such recreatable key objects,
  65  * however, the automatic removal of {@code WeakHashMap} entries whose
  66  * keys have been discarded may prove to be confusing.
  67  *
  68  * <p> The behavior of the {@code WeakHashMap} class depends in part upon
  69  * the actions of the garbage collector, so several familiar (though not
  70  * required) {@code Map} invariants do not hold for this class.  Because
  71  * the garbage collector may discard keys at any time, a
  72  * {@code WeakHashMap} may behave as though an unknown thread is silently
  73  * removing entries.  In particular, even if you synchronize on a
  74  * {@code WeakHashMap} instance and invoke none of its mutator methods, it
  75  * is possible for the {@code size} method to return smaller values over
  76  * time, for the {@code isEmpty} method to return {@code false} and
  77  * then {@code true}, for the {@code containsKey} method to return
  78  * {@code true} and later {@code false} for a given key, for the
  79  * {@code get} method to return a value for a given key but later return
  80  * {@code null}, for the {@code put} method to return
  81  * {@code null} and the {@code remove} method to return
  82  * {@code false} for a key that previously appeared to be in the map, and
  83  * for successive examinations of the key set, the value collection, and
  84  * the entry set to yield successively smaller numbers of elements.
  85  *
  86  * <p> Each key object in a {@code WeakHashMap} is stored indirectly as
  87  * the referent of a weak reference.  Therefore a key will automatically be
  88  * removed only after the weak references to it, both inside and outside of the
  89  * map, have been cleared by the garbage collector.
  90  *
  91  * <p> <strong>Implementation note:</strong> The value objects in a
  92  * {@code WeakHashMap} are held by ordinary strong references.  Thus care
  93  * should be taken to ensure that value objects do not strongly refer to their
  94  * own keys, either directly or indirectly, since that will prevent the keys
  95  * from being discarded.  Note that a value object may refer indirectly to its
  96  * key via the {@code WeakHashMap} itself; that is, a value object may
  97  * strongly refer to some other key object whose associated value object, in
  98  * turn, strongly refers to the key of the first value object.  If the values
  99  * in the map do not rely on the map holding strong references to them, one way
 100  * to deal with this is to wrap values themselves within
 101  * {@code WeakReferences} before
 102  * inserting, as in: {@code m.put(key, new WeakReference(value))},
 103  * and then unwrapping upon each {@code get}.
 104  *
 105  * <p>The iterators returned by the {@code iterator} method of the collections
 106  * returned by all of this class's "collection view methods" are
 107  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 108  * iterator is created, in any way except through the iterator's own
 109  * {@code remove} method, the iterator will throw a {@link
 110  * ConcurrentModificationException}.  Thus, in the face of concurrent
 111  * modification, the iterator fails quickly and cleanly, rather than risking
 112  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 113  *
 114  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 115  * as it is, generally speaking, impossible to make any hard guarantees in the
 116  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 117  * throw {@code ConcurrentModificationException} on a best-effort basis.
 118  * Therefore, it would be wrong to write a program that depended on this
 119  * exception for its correctness:  <i>the fail-fast behavior of iterators
 120  * should be used only to detect bugs.</i>
 121  *
 122  * <p>This class is a member of the
 123  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 124  * Java Collections Framework</a>.
 125  *
 126  * @param <K> the type of keys maintained by this map
 127  * @param <V> the type of mapped values
 128  *
 129  * @author      Doug Lea
 130  * @author      Josh Bloch
 131  * @author      Mark Reinhold
 132  * @since       1.2
 133  * @see         java.util.HashMap
 134  * @see         java.lang.ref.WeakReference
 135  */
 136 public class WeakHashMap<K,V>
 137     extends AbstractMap<K,V>
 138     implements Map<K,V> {
 139 
 140     /**
 141      * The default initial capacity -- MUST be a power of two.
 142      */
 143     private static final int DEFAULT_INITIAL_CAPACITY = 16;
 144 
 145     /**
 146      * The maximum capacity, used if a higher value is implicitly specified
 147      * by either of the constructors with arguments.
 148      * MUST be a power of two <= 1<<30.
 149      */
 150     private static final int MAXIMUM_CAPACITY = 1 << 30;
 151 
 152     /**
 153      * The load factor used when none specified in constructor.
 154      */
 155     private static final float DEFAULT_LOAD_FACTOR = 0.75f;
 156 
 157     /**
 158      * The table, resized as necessary. Length MUST Always be a power of two.
 159      */
 160     Entry<K,V>[] table;
 161 
 162     /**
 163      * The number of key-value mappings contained in this weak hash map.
 164      */
 165     private int size;
 166 
 167     /**
 168      * The next size value at which to resize (capacity * load factor).
 169      */
 170     private int threshold;
 171 
 172     /**
 173      * The load factor for the hash table.
 174      */
 175     private final float loadFactor;
 176 
 177     /**
 178      * Reference queue for cleared WeakEntries
 179      */
 180     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 181 
 182     /**
 183      * The number of times this WeakHashMap has been structurally modified.
 184      * Structural modifications are those that change the number of
 185      * mappings in the map or otherwise modify its internal structure
 186      * (e.g., rehash).  This field is used to make iterators on
 187      * Collection-views of the map fail-fast.
 188      *
 189      * @see ConcurrentModificationException
 190      */
 191     int modCount;
 192 
 193     @SuppressWarnings("unchecked")
 194     private Entry<K,V>[] newTable(int n) {
 195         return (Entry<K,V>[]) new Entry<?,?>[n];
 196     }
 197 
 198     /**
 199      * Constructs a new, empty {@code WeakHashMap} with the given initial
 200      * capacity and the given load factor.
 201      *
 202      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 203      * @param  loadFactor      The load factor of the {@code WeakHashMap}
 204      * @throws IllegalArgumentException if the initial capacity is negative,
 205      *         or if the load factor is nonpositive.
 206      */
 207     public WeakHashMap(int initialCapacity, float loadFactor) {
 208         if (initialCapacity < 0)
 209             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 210                                                initialCapacity);
 211         if (initialCapacity > MAXIMUM_CAPACITY)
 212             initialCapacity = MAXIMUM_CAPACITY;
 213 
 214         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 215             throw new IllegalArgumentException("Illegal Load factor: "+
 216                                                loadFactor);
 217         int capacity = 1;
 218         while (capacity < initialCapacity)
 219             capacity <<= 1;
 220         table = newTable(capacity);
 221         this.loadFactor = loadFactor;
 222         threshold = (int)(capacity * loadFactor);
 223     }
 224 
 225     /**
 226      * Constructs a new, empty {@code WeakHashMap} with the given initial
 227      * capacity and the default load factor (0.75).
 228      *
 229      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 230      * @throws IllegalArgumentException if the initial capacity is negative
 231      */
 232     public WeakHashMap(int initialCapacity) {
 233         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 234     }
 235 
 236     /**
 237      * Constructs a new, empty {@code WeakHashMap} with the default initial
 238      * capacity (16) and load factor (0.75).
 239      */
 240     public WeakHashMap() {
 241         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 242     }
 243 
 244     /**
 245      * Constructs a new {@code WeakHashMap} with the same mappings as the
 246      * specified map.  The {@code WeakHashMap} is created with the default
 247      * load factor (0.75) and an initial capacity sufficient to hold the
 248      * mappings in the specified map.
 249      *
 250      * @param   m the map whose mappings are to be placed in this map
 251      * @throws  NullPointerException if the specified map is null
 252      * @since   1.3
 253      */
 254     public WeakHashMap(Map<? extends K, ? extends V> m) {
 255         this(Math.max((int) ((float)m.size() / DEFAULT_LOAD_FACTOR + 1.0F),
 256                 DEFAULT_INITIAL_CAPACITY),
 257              DEFAULT_LOAD_FACTOR);
 258         putAll(m);
 259     }
 260 
 261     // internal utilities
 262 
 263     /**
 264      * Value representing null keys inside tables.
 265      */
 266     private static final Object NULL_KEY = new Object();
 267 
 268     /**
 269      * Use NULL_KEY for key if it is null.
 270      */
 271     private static Object maskNull(Object key) {
 272         return (key == null) ? NULL_KEY : key;
 273     }
 274 
 275     /**
 276      * Returns internal representation of null key back to caller as null.
 277      */
 278     static Object unmaskNull(Object key) {
 279         return (key == NULL_KEY) ? null : key;
 280     }
 281 
 282     /**
 283      * Checks for equality of non-null reference x and possibly-null y.  By
 284      * default uses Object.equals.
 285      */
 286     private static boolean eq(Object x, Object y) {
 287         return x == y || x.equals(y);
 288     }
 289 
 290     /**
 291      * Retrieve object hash code and applies a supplemental hash function to the
 292      * result hash, which defends against poor quality hash functions.  This is
 293      * critical because HashMap uses power-of-two length hash tables, that
 294      * otherwise encounter collisions for hashCodes that do not differ
 295      * in lower bits.
 296      */
 297     final int hash(Object k) {
 298         int h = k.hashCode();
 299 
 300         // This function ensures that hashCodes that differ only by
 301         // constant multiples at each bit position have a bounded
 302         // number of collisions (approximately 8 at default load factor).
 303         h ^= (h >>> 20) ^ (h >>> 12);
 304         return h ^ (h >>> 7) ^ (h >>> 4);
 305     }
 306 
 307     /**
 308      * Returns index for hash code h.
 309      */
 310     private static int indexFor(int h, int length) {
 311         return h & (length-1);
 312     }
 313 
 314     /**
 315      * Expunges stale entries from the table.
 316      */
 317     private void expungeStaleEntries() {
 318         for (Object x; (x = queue.poll()) != null; ) {
 319             synchronized (queue) {
 320                 @SuppressWarnings("unchecked")
 321                     Entry<K,V> e = (Entry<K,V>) x;
 322                 int i = indexFor(e.hash, table.length);
 323 
 324                 Entry<K,V> prev = table[i];
 325                 Entry<K,V> p = prev;
 326                 while (p != null) {
 327                     Entry<K,V> next = p.next;
 328                     if (p == e) {
 329                         if (prev == e)
 330                             table[i] = next;
 331                         else
 332                             prev.next = next;
 333                         // Must not null out e.next;
 334                         // stale entries may be in use by a HashIterator
 335                         e.value = null; // Help GC
 336                         size--;
 337                         break;
 338                     }
 339                     prev = p;
 340                     p = next;
 341                 }
 342             }
 343         }
 344     }
 345 
 346     /**
 347      * Returns the table after first expunging stale entries.
 348      */
 349     private Entry<K,V>[] getTable() {
 350         expungeStaleEntries();
 351         return table;
 352     }
 353 
 354     /**
 355      * Returns the number of key-value mappings in this map.
 356      * This result is a snapshot, and may not reflect unprocessed
 357      * entries that will be removed before next attempted access
 358      * because they are no longer referenced.
 359      */
 360     public int size() {
 361         if (size == 0)
 362             return 0;
 363         expungeStaleEntries();
 364         return size;
 365     }
 366 
 367     /**
 368      * Returns {@code true} if this map contains no key-value mappings.
 369      * This result is a snapshot, and may not reflect unprocessed
 370      * entries that will be removed before next attempted access
 371      * because they are no longer referenced.
 372      */
 373     public boolean isEmpty() {
 374         return size() == 0;
 375     }
 376 
 377     /**
 378      * Returns the value to which the specified key is mapped,
 379      * or {@code null} if this map contains no mapping for the key.
 380      *
 381      * <p>More formally, if this map contains a mapping from a key
 382      * {@code k} to a value {@code v} such that
 383      * {@code Objects.equals(key, k)},
 384      * then this method returns {@code v}; otherwise
 385      * it returns {@code null}.  (There can be at most one such mapping.)
 386      *
 387      * <p>A return value of {@code null} does not <i>necessarily</i>
 388      * indicate that the map contains no mapping for the key; it's also
 389      * possible that the map explicitly maps the key to {@code null}.
 390      * The {@link #containsKey containsKey} operation may be used to
 391      * distinguish these two cases.
 392      *
 393      * @see #put(Object, Object)
 394      */
 395     public V get(Object key) {
 396         Object k = maskNull(key);
 397         int h = hash(k);
 398         Entry<K,V>[] tab = getTable();
 399         int index = indexFor(h, tab.length);
 400         Entry<K,V> e = tab[index];
 401         while (e != null) {
 402             if (e.hash == h && eq(k, e.get()))
 403                 return e.value;
 404             e = e.next;
 405         }
 406         return null;
 407     }
 408 
 409     /**
 410      * Returns {@code true} if this map contains a mapping for the
 411      * specified key.
 412      *
 413      * @param  key   The key whose presence in this map is to be tested
 414      * @return {@code true} if there is a mapping for {@code key};
 415      *         {@code false} otherwise
 416      */
 417     public boolean containsKey(Object key) {
 418         return getEntry(key) != null;
 419     }
 420 
 421     /**
 422      * Returns the entry associated with the specified key in this map.
 423      * Returns null if the map contains no mapping for this key.
 424      */
 425     Entry<K,V> getEntry(Object key) {
 426         Object k = maskNull(key);
 427         int h = hash(k);
 428         Entry<K,V>[] tab = getTable();
 429         int index = indexFor(h, tab.length);
 430         Entry<K,V> e = tab[index];
 431         while (e != null && !(e.hash == h && eq(k, e.get())))
 432             e = e.next;
 433         return e;
 434     }
 435 
 436     /**
 437      * Associates the specified value with the specified key in this map.
 438      * If the map previously contained a mapping for this key, the old
 439      * value is replaced.
 440      *
 441      * @param key key with which the specified value is to be associated.
 442      * @param value value to be associated with the specified key.
 443      * @return the previous value associated with {@code key}, or
 444      *         {@code null} if there was no mapping for {@code key}.
 445      *         (A {@code null} return can also indicate that the map
 446      *         previously associated {@code null} with {@code key}.)
 447      */
 448     public V put(K key, V value) {
 449         Object k = maskNull(key);
 450         int h = hash(k);
 451         Entry<K,V>[] tab = getTable();
 452         int i = indexFor(h, tab.length);
 453 
 454         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 455             if (h == e.hash && eq(k, e.get())) {
 456                 V oldValue = e.value;
 457                 if (value != oldValue)
 458                     e.value = value;
 459                 return oldValue;
 460             }
 461         }
 462 
 463         modCount++;
 464         Entry<K,V> e = tab[i];
 465         tab[i] = new Entry<>(k, value, queue, h, e);
 466         if (++size >= threshold)
 467             resize(tab.length * 2);
 468         return null;
 469     }
 470 
 471     /**
 472      * Rehashes the contents of this map into a new array with a
 473      * larger capacity.  This method is called automatically when the
 474      * number of keys in this map reaches its threshold.
 475      *
 476      * If current capacity is MAXIMUM_CAPACITY, this method does not
 477      * resize the map, but sets threshold to Integer.MAX_VALUE.
 478      * This has the effect of preventing future calls.
 479      *
 480      * @param newCapacity the new capacity, MUST be a power of two;
 481      *        must be greater than current capacity unless current
 482      *        capacity is MAXIMUM_CAPACITY (in which case value
 483      *        is irrelevant).
 484      */
 485     void resize(int newCapacity) {
 486         Entry<K,V>[] oldTable = getTable();
 487         int oldCapacity = oldTable.length;
 488         if (oldCapacity == MAXIMUM_CAPACITY) {
 489             threshold = Integer.MAX_VALUE;
 490             return;
 491         }
 492 
 493         Entry<K,V>[] newTable = newTable(newCapacity);
 494         transfer(oldTable, newTable);
 495         table = newTable;
 496 
 497         /*
 498          * If ignoring null elements and processing ref queue caused massive
 499          * shrinkage, then restore old table.  This should be rare, but avoids
 500          * unbounded expansion of garbage-filled tables.
 501          */
 502         if (size >= threshold / 2) {
 503             threshold = (int)(newCapacity * loadFactor);
 504         } else {
 505             expungeStaleEntries();
 506             transfer(newTable, oldTable);
 507             table = oldTable;
 508         }
 509     }
 510 
 511     /** Transfers all entries from src to dest tables */
 512     private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
 513         for (int j = 0; j < src.length; ++j) {
 514             Entry<K,V> e = src[j];
 515             src[j] = null;
 516             while (e != null) {
 517                 Entry<K,V> next = e.next;
 518                 Object key = e.get();
 519                 if (key == null) {
 520                     e.next = null;  // Help GC
 521                     e.value = null; //  "   "
 522                     size--;
 523                 } else {
 524                     int i = indexFor(e.hash, dest.length);
 525                     e.next = dest[i];
 526                     dest[i] = e;
 527                 }
 528                 e = next;
 529             }
 530         }
 531     }
 532 
 533     /**
 534      * Copies all of the mappings from the specified map to this map.
 535      * These mappings will replace any mappings that this map had for any
 536      * of the keys currently in the specified map.
 537      *
 538      * @param m mappings to be stored in this map.
 539      * @throws  NullPointerException if the specified map is null.
 540      */
 541     public void putAll(Map<? extends K, ? extends V> m) {
 542         int numKeysToBeAdded = m.size();
 543         if (numKeysToBeAdded == 0)
 544             return;
 545 
 546         /*
 547          * Expand the map if the map if the number of mappings to be added
 548          * is greater than or equal to threshold.  This is conservative; the
 549          * obvious condition is (m.size() + size) >= threshold, but this
 550          * condition could result in a map with twice the appropriate capacity,
 551          * if the keys to be added overlap with the keys already in this map.
 552          * By using the conservative calculation, we subject ourself
 553          * to at most one extra resize.
 554          */
 555         if (numKeysToBeAdded > threshold) {
 556             int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
 557             if (targetCapacity > MAXIMUM_CAPACITY)
 558                 targetCapacity = MAXIMUM_CAPACITY;
 559             int newCapacity = table.length;
 560             while (newCapacity < targetCapacity)
 561                 newCapacity <<= 1;
 562             if (newCapacity > table.length)
 563                 resize(newCapacity);
 564         }
 565 
 566         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 567             put(e.getKey(), e.getValue());
 568     }
 569 
 570     /**
 571      * Removes the mapping for a key from this weak hash map if it is present.
 572      * More formally, if this map contains a mapping from key {@code k} to
 573      * value {@code v} such that <code>(key==null ?  k==null :
 574      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 575      * at most one such mapping.)
 576      *
 577      * <p>Returns the value to which this map previously associated the key,
 578      * or {@code null} if the map contained no mapping for the key.  A
 579      * return value of {@code null} does not <i>necessarily</i> indicate
 580      * that the map contained no mapping for the key; it's also possible
 581      * that the map explicitly mapped the key to {@code null}.
 582      *
 583      * <p>The map will not contain a mapping for the specified key once the
 584      * call returns.
 585      *
 586      * @param key key whose mapping is to be removed from the map
 587      * @return the previous value associated with {@code key}, or
 588      *         {@code null} if there was no mapping for {@code key}
 589      */
 590     public V remove(Object key) {
 591         Object k = maskNull(key);
 592         int h = hash(k);
 593         Entry<K,V>[] tab = getTable();
 594         int i = indexFor(h, tab.length);
 595         Entry<K,V> prev = tab[i];
 596         Entry<K,V> e = prev;
 597 
 598         while (e != null) {
 599             Entry<K,V> next = e.next;
 600             if (h == e.hash && eq(k, e.get())) {
 601                 modCount++;
 602                 size--;
 603                 if (prev == e)
 604                     tab[i] = next;
 605                 else
 606                     prev.next = next;
 607                 return e.value;
 608             }
 609             prev = e;
 610             e = next;
 611         }
 612 
 613         return null;
 614     }
 615 
 616     /** Special version of remove needed by Entry set */
 617     boolean removeMapping(Object o) {
 618         if (!(o instanceof Map.Entry))
 619             return false;
 620         Entry<K,V>[] tab = getTable();
 621         Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
 622         Object k = maskNull(entry.getKey());
 623         int h = hash(k);
 624         int i = indexFor(h, tab.length);
 625         Entry<K,V> prev = tab[i];
 626         Entry<K,V> e = prev;
 627 
 628         while (e != null) {
 629             Entry<K,V> next = e.next;
 630             if (h == e.hash && e.equals(entry)) {
 631                 modCount++;
 632                 size--;
 633                 if (prev == e)
 634                     tab[i] = next;
 635                 else
 636                     prev.next = next;
 637                 return true;
 638             }
 639             prev = e;
 640             e = next;
 641         }
 642 
 643         return false;
 644     }
 645 
 646     /**
 647      * Removes all of the mappings from this map.
 648      * The map will be empty after this call returns.
 649      */
 650     public void clear() {
 651         // clear out ref queue. We don't need to expunge entries
 652         // since table is getting cleared.
 653         while (queue.poll() != null)
 654             ;
 655 
 656         modCount++;
 657         Arrays.fill(table, null);
 658         size = 0;
 659 
 660         // Allocation of array may have caused GC, which may have caused
 661         // additional entries to go stale.  Removing these entries from the
 662         // reference queue will make them eligible for reclamation.
 663         while (queue.poll() != null)
 664             ;
 665     }
 666 
 667     /**
 668      * Returns {@code true} if this map maps one or more keys to the
 669      * specified value.
 670      *
 671      * @param value value whose presence in this map is to be tested
 672      * @return {@code true} if this map maps one or more keys to the
 673      *         specified value
 674      */
 675     public boolean containsValue(Object value) {
 676         if (value==null)
 677             return containsNullValue();
 678 
 679         Entry<K,V>[] tab = getTable();
 680         for (int i = tab.length; i-- > 0;)
 681             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 682                 if (value.equals(e.value))
 683                     return true;
 684         return false;
 685     }
 686 
 687     /**
 688      * Special-case code for containsValue with null argument
 689      */
 690     private boolean containsNullValue() {
 691         Entry<K,V>[] tab = getTable();
 692         for (int i = tab.length; i-- > 0;)
 693             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 694                 if (e.value==null)
 695                     return true;
 696         return false;
 697     }
 698 
 699     /**
 700      * The entries in this hash table extend WeakReference, using its main ref
 701      * field as the key.
 702      */
 703     private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
 704         V value;
 705         final int hash;
 706         Entry<K,V> next;
 707 
 708         /**
 709          * Creates new entry.
 710          */
 711         Entry(Object key, V value,
 712               ReferenceQueue<Object> queue,
 713               int hash, Entry<K,V> next) {
 714             super(key, queue);
 715             this.value = value;
 716             this.hash  = hash;
 717             this.next  = next;
 718         }
 719 
 720         @SuppressWarnings("unchecked")
 721         public K getKey() {
 722             return (K) WeakHashMap.unmaskNull(get());
 723         }
 724 
 725         public V getValue() {
 726             return value;
 727         }
 728 
 729         public V setValue(V newValue) {
 730             V oldValue = value;
 731             value = newValue;
 732             return oldValue;
 733         }
 734 
 735         public boolean equals(Object o) {
 736             if (!(o instanceof Map.Entry))
 737                 return false;
 738             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 739             K k1 = getKey();
 740             Object k2 = e.getKey();
 741             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 742                 V v1 = getValue();
 743                 Object v2 = e.getValue();
 744                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 745                     return true;
 746             }
 747             return false;
 748         }
 749 
 750         public int hashCode() {
 751             K k = getKey();
 752             V v = getValue();
 753             return Objects.hashCode(k) ^ Objects.hashCode(v);
 754         }
 755 
 756         public String toString() {
 757             return getKey() + "=" + getValue();
 758         }
 759     }
 760 
 761     private abstract class HashIterator<T> implements Iterator<T> {
 762         private int index;
 763         private Entry<K,V> entry;
 764         private Entry<K,V> lastReturned;
 765         private int expectedModCount = modCount;
 766 
 767         /**
 768          * Strong reference needed to avoid disappearance of key
 769          * between hasNext and next
 770          */
 771         private Object nextKey;
 772 
 773         /**
 774          * Strong reference needed to avoid disappearance of key
 775          * between nextEntry() and any use of the entry
 776          */
 777         private Object currentKey;
 778 
 779         HashIterator() {
 780             index = isEmpty() ? 0 : table.length;
 781         }
 782 
 783         public boolean hasNext() {
 784             Entry<K,V>[] t = table;
 785 
 786             while (nextKey == null) {
 787                 Entry<K,V> e = entry;
 788                 int i = index;
 789                 while (e == null && i > 0)
 790                     e = t[--i];
 791                 entry = e;
 792                 index = i;
 793                 if (e == null) {
 794                     currentKey = null;
 795                     return false;
 796                 }
 797                 nextKey = e.get(); // hold on to key in strong ref
 798                 if (nextKey == null)
 799                     entry = entry.next;
 800             }
 801             return true;
 802         }
 803 
 804         /** The common parts of next() across different types of iterators */
 805         protected Entry<K,V> nextEntry() {
 806             if (modCount != expectedModCount)
 807                 throw new ConcurrentModificationException();
 808             if (nextKey == null && !hasNext())
 809                 throw new NoSuchElementException();
 810 
 811             lastReturned = entry;
 812             entry = entry.next;
 813             currentKey = nextKey;
 814             nextKey = null;
 815             return lastReturned;
 816         }
 817 
 818         public void remove() {
 819             if (lastReturned == null)
 820                 throw new IllegalStateException();
 821             if (modCount != expectedModCount)
 822                 throw new ConcurrentModificationException();
 823 
 824             WeakHashMap.this.remove(currentKey);
 825             expectedModCount = modCount;
 826             lastReturned = null;
 827             currentKey = null;
 828         }
 829 
 830     }
 831 
 832     private class ValueIterator extends HashIterator<V> {
 833         public V next() {
 834             return nextEntry().value;
 835         }
 836     }
 837 
 838     private class KeyIterator extends HashIterator<K> {
 839         public K next() {
 840             return nextEntry().getKey();
 841         }
 842     }
 843 
 844     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
 845         public Map.Entry<K,V> next() {
 846             return nextEntry();
 847         }
 848     }
 849 
 850     // Views
 851 
 852     private transient Set<Map.Entry<K,V>> entrySet;
 853 
 854     /**
 855      * Returns a {@link Set} view of the keys contained in this map.
 856      * The set is backed by the map, so changes to the map are
 857      * reflected in the set, and vice-versa.  If the map is modified
 858      * while an iteration over the set is in progress (except through
 859      * the iterator's own {@code remove} operation), the results of
 860      * the iteration are undefined.  The set supports element removal,
 861      * which removes the corresponding mapping from the map, via the
 862      * {@code Iterator.remove}, {@code Set.remove},
 863      * {@code removeAll}, {@code retainAll}, and {@code clear}
 864      * operations.  It does not support the {@code add} or {@code addAll}
 865      * operations.
 866      */
 867     public Set<K> keySet() {
 868         Set<K> ks = keySet;
 869         if (ks == null) {
 870             ks = new KeySet();
 871             keySet = ks;
 872         }
 873         return ks;
 874     }
 875 
 876     private class KeySet extends AbstractSet<K> {
 877         public Iterator<K> iterator() {
 878             return new KeyIterator();
 879         }
 880 
 881         public int size() {
 882             return WeakHashMap.this.size();
 883         }
 884 
 885         public boolean contains(Object o) {
 886             return containsKey(o);
 887         }
 888 
 889         public boolean remove(Object o) {
 890             if (containsKey(o)) {
 891                 WeakHashMap.this.remove(o);
 892                 return true;
 893             }
 894             else
 895                 return false;
 896         }
 897 
 898         public void clear() {
 899             WeakHashMap.this.clear();
 900         }
 901 
 902         public Spliterator<K> spliterator() {
 903             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 904         }
 905     }
 906 
 907     /**
 908      * Returns a {@link Collection} view of the values contained in this map.
 909      * The collection is backed by the map, so changes to the map are
 910      * reflected in the collection, and vice-versa.  If the map is
 911      * modified while an iteration over the collection is in progress
 912      * (except through the iterator's own {@code remove} operation),
 913      * the results of the iteration are undefined.  The collection
 914      * supports element removal, which removes the corresponding
 915      * mapping from the map, via the {@code Iterator.remove},
 916      * {@code Collection.remove}, {@code removeAll},
 917      * {@code retainAll} and {@code clear} operations.  It does not
 918      * support the {@code add} or {@code addAll} operations.
 919      */
 920     public Collection<V> values() {
 921         Collection<V> vs = values;
 922         if (vs == null) {
 923             vs = new Values();
 924             values = vs;
 925         }
 926         return vs;
 927     }
 928 
 929     private class Values extends AbstractCollection<V> {
 930         public Iterator<V> iterator() {
 931             return new ValueIterator();
 932         }
 933 
 934         public int size() {
 935             return WeakHashMap.this.size();
 936         }
 937 
 938         public boolean contains(Object o) {
 939             return containsValue(o);
 940         }
 941 
 942         public void clear() {
 943             WeakHashMap.this.clear();
 944         }
 945 
 946         public Spliterator<V> spliterator() {
 947             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 948         }
 949     }
 950 
 951     /**
 952      * Returns a {@link Set} view of the mappings contained in this map.
 953      * The set is backed by the map, so changes to the map are
 954      * reflected in the set, and vice-versa.  If the map is modified
 955      * while an iteration over the set is in progress (except through
 956      * the iterator's own {@code remove} operation, or through the
 957      * {@code setValue} operation on a map entry returned by the
 958      * iterator) the results of the iteration are undefined.  The set
 959      * supports element removal, which removes the corresponding
 960      * mapping from the map, via the {@code Iterator.remove},
 961      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
 962      * {@code clear} operations.  It does not support the
 963      * {@code add} or {@code addAll} operations.
 964      */
 965     public Set<Map.Entry<K,V>> entrySet() {
 966         Set<Map.Entry<K,V>> es = entrySet;
 967         return es != null ? es : (entrySet = new EntrySet());
 968     }
 969 
 970     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 971         public Iterator<Map.Entry<K,V>> iterator() {
 972             return new EntryIterator();
 973         }
 974 
 975         public boolean contains(Object o) {
 976             if (!(o instanceof Map.Entry))
 977                 return false;
 978             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 979             Entry<K,V> candidate = getEntry(e.getKey());
 980             return candidate != null && candidate.equals(e);
 981         }
 982 
 983         public boolean remove(Object o) {
 984             return removeMapping(o);
 985         }
 986 
 987         public int size() {
 988             return WeakHashMap.this.size();
 989         }
 990 
 991         public void clear() {
 992             WeakHashMap.this.clear();
 993         }
 994 
 995         private List<Map.Entry<K,V>> deepCopy() {
 996             List<Map.Entry<K,V>> list = new ArrayList<>(size());
 997             for (Map.Entry<K,V> e : this)
 998                 list.add(new AbstractMap.SimpleEntry<>(e));
 999             return list;
1000         }
1001 
1002         public Object[] toArray() {
1003             return deepCopy().toArray();
1004         }
1005 
1006         public <T> T[] toArray(T[] a) {
1007             return deepCopy().toArray(a);
1008         }
1009 
1010         public Spliterator<Map.Entry<K,V>> spliterator() {
1011             return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1012         }
1013     }
1014 
1015     @SuppressWarnings("unchecked")
1016     @Override
1017     public void forEach(BiConsumer<? super K, ? super V> action) {
1018         Objects.requireNonNull(action);
1019         int expectedModCount = modCount;
1020 
1021         Entry<K, V>[] tab = getTable();
1022         for (Entry<K, V> entry : tab) {
1023             while (entry != null) {
1024                 Object key = entry.get();
1025                 if (key != null) {
1026                     action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1027                 }
1028                 entry = entry.next;
1029 
1030                 if (expectedModCount != modCount) {
1031                     throw new ConcurrentModificationException();
1032                 }
1033             }
1034         }
1035     }
1036 
1037     @SuppressWarnings("unchecked")
1038     @Override
1039     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1040         Objects.requireNonNull(function);
1041         int expectedModCount = modCount;
1042 
1043         Entry<K, V>[] tab = getTable();;
1044         for (Entry<K, V> entry : tab) {
1045             while (entry != null) {
1046                 Object key = entry.get();
1047                 if (key != null) {
1048                     entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1049                 }
1050                 entry = entry.next;
1051 
1052                 if (expectedModCount != modCount) {
1053                     throw new ConcurrentModificationException();
1054                 }
1055             }
1056         }
1057     }
1058 
1059     /**
1060      * Similar form as other hash Spliterators, but skips dead
1061      * elements.
1062      */
1063     static class WeakHashMapSpliterator<K,V> {
1064         final WeakHashMap<K,V> map;
1065         WeakHashMap.Entry<K,V> current; // current node
1066         int index;             // current index, modified on advance/split
1067         int fence;             // -1 until first use; then one past last index
1068         int est;               // size estimate
1069         int expectedModCount;  // for comodification checks
1070 
1071         WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1072                                int fence, int est,
1073                                int expectedModCount) {
1074             this.map = m;
1075             this.index = origin;
1076             this.fence = fence;
1077             this.est = est;
1078             this.expectedModCount = expectedModCount;
1079         }
1080 
1081         final int getFence() { // initialize fence and size on first use
1082             int hi;
1083             if ((hi = fence) < 0) {
1084                 WeakHashMap<K,V> m = map;
1085                 est = m.size();
1086                 expectedModCount = m.modCount;
1087                 hi = fence = m.table.length;
1088             }
1089             return hi;
1090         }
1091 
1092         public final long estimateSize() {
1093             getFence(); // force init
1094             return (long) est;
1095         }
1096     }
1097 
1098     static final class KeySpliterator<K,V>
1099         extends WeakHashMapSpliterator<K,V>
1100         implements Spliterator<K> {
1101         KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1102                        int expectedModCount) {
1103             super(m, origin, fence, est, expectedModCount);
1104         }
1105 
1106         public KeySpliterator<K,V> trySplit() {
1107             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1108             return (lo >= mid) ? null :
1109                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1110                                      expectedModCount);
1111         }
1112 
1113         public void forEachRemaining(Consumer<? super K> action) {
1114             int i, hi, mc;
1115             if (action == null)
1116                 throw new NullPointerException();
1117             WeakHashMap<K,V> m = map;
1118             WeakHashMap.Entry<K,V>[] tab = m.table;
1119             if ((hi = fence) < 0) {
1120                 mc = expectedModCount = m.modCount;
1121                 hi = fence = tab.length;
1122             }
1123             else
1124                 mc = expectedModCount;
1125             if (tab.length >= hi && (i = index) >= 0 &&
1126                 (i < (index = hi) || current != null)) {
1127                 WeakHashMap.Entry<K,V> p = current;
1128                 current = null; // exhaust
1129                 do {
1130                     if (p == null)
1131                         p = tab[i++];
1132                     else {
1133                         Object x = p.get();
1134                         p = p.next;
1135                         if (x != null) {
1136                             @SuppressWarnings("unchecked") K k =
1137                                 (K) WeakHashMap.unmaskNull(x);
1138                             action.accept(k);
1139                         }
1140                     }
1141                 } while (p != null || i < hi);
1142             }
1143             if (m.modCount != mc)
1144                 throw new ConcurrentModificationException();
1145         }
1146 
1147         public boolean tryAdvance(Consumer<? super K> action) {
1148             int hi;
1149             if (action == null)
1150                 throw new NullPointerException();
1151             WeakHashMap.Entry<K,V>[] tab = map.table;
1152             if (tab.length >= (hi = getFence()) && index >= 0) {
1153                 while (current != null || index < hi) {
1154                     if (current == null)
1155                         current = tab[index++];
1156                     else {
1157                         Object x = current.get();
1158                         current = current.next;
1159                         if (x != null) {
1160                             @SuppressWarnings("unchecked") K k =
1161                                 (K) WeakHashMap.unmaskNull(x);
1162                             action.accept(k);
1163                             if (map.modCount != expectedModCount)
1164                                 throw new ConcurrentModificationException();
1165                             return true;
1166                         }
1167                     }
1168                 }
1169             }
1170             return false;
1171         }
1172 
1173         public int characteristics() {
1174             return Spliterator.DISTINCT;
1175         }
1176     }
1177 
1178     static final class ValueSpliterator<K,V>
1179         extends WeakHashMapSpliterator<K,V>
1180         implements Spliterator<V> {
1181         ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1182                          int expectedModCount) {
1183             super(m, origin, fence, est, expectedModCount);
1184         }
1185 
1186         public ValueSpliterator<K,V> trySplit() {
1187             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1188             return (lo >= mid) ? null :
1189                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1190                                        expectedModCount);
1191         }
1192 
1193         public void forEachRemaining(Consumer<? super V> action) {
1194             int i, hi, mc;
1195             if (action == null)
1196                 throw new NullPointerException();
1197             WeakHashMap<K,V> m = map;
1198             WeakHashMap.Entry<K,V>[] tab = m.table;
1199             if ((hi = fence) < 0) {
1200                 mc = expectedModCount = m.modCount;
1201                 hi = fence = tab.length;
1202             }
1203             else
1204                 mc = expectedModCount;
1205             if (tab.length >= hi && (i = index) >= 0 &&
1206                 (i < (index = hi) || current != null)) {
1207                 WeakHashMap.Entry<K,V> p = current;
1208                 current = null; // exhaust
1209                 do {
1210                     if (p == null)
1211                         p = tab[i++];
1212                     else {
1213                         Object x = p.get();
1214                         V v = p.value;
1215                         p = p.next;
1216                         if (x != null)
1217                             action.accept(v);
1218                     }
1219                 } while (p != null || i < hi);
1220             }
1221             if (m.modCount != mc)
1222                 throw new ConcurrentModificationException();
1223         }
1224 
1225         public boolean tryAdvance(Consumer<? super V> action) {
1226             int hi;
1227             if (action == null)
1228                 throw new NullPointerException();
1229             WeakHashMap.Entry<K,V>[] tab = map.table;
1230             if (tab.length >= (hi = getFence()) && index >= 0) {
1231                 while (current != null || index < hi) {
1232                     if (current == null)
1233                         current = tab[index++];
1234                     else {
1235                         Object x = current.get();
1236                         V v = current.value;
1237                         current = current.next;
1238                         if (x != null) {
1239                             action.accept(v);
1240                             if (map.modCount != expectedModCount)
1241                                 throw new ConcurrentModificationException();
1242                             return true;
1243                         }
1244                     }
1245                 }
1246             }
1247             return false;
1248         }
1249 
1250         public int characteristics() {
1251             return 0;
1252         }
1253     }
1254 
1255     static final class EntrySpliterator<K,V>
1256         extends WeakHashMapSpliterator<K,V>
1257         implements Spliterator<Map.Entry<K,V>> {
1258         EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1259                        int expectedModCount) {
1260             super(m, origin, fence, est, expectedModCount);
1261         }
1262 
1263         public EntrySpliterator<K,V> trySplit() {
1264             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1265             return (lo >= mid) ? null :
1266                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1267                                        expectedModCount);
1268         }
1269 
1270 
1271         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1272             int i, hi, mc;
1273             if (action == null)
1274                 throw new NullPointerException();
1275             WeakHashMap<K,V> m = map;
1276             WeakHashMap.Entry<K,V>[] tab = m.table;
1277             if ((hi = fence) < 0) {
1278                 mc = expectedModCount = m.modCount;
1279                 hi = fence = tab.length;
1280             }
1281             else
1282                 mc = expectedModCount;
1283             if (tab.length >= hi && (i = index) >= 0 &&
1284                 (i < (index = hi) || current != null)) {
1285                 WeakHashMap.Entry<K,V> p = current;
1286                 current = null; // exhaust
1287                 do {
1288                     if (p == null)
1289                         p = tab[i++];
1290                     else {
1291                         Object x = p.get();
1292                         V v = p.value;
1293                         p = p.next;
1294                         if (x != null) {
1295                             @SuppressWarnings("unchecked") K k =
1296                                 (K) WeakHashMap.unmaskNull(x);
1297                             action.accept
1298                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1299                         }
1300                     }
1301                 } while (p != null || i < hi);
1302             }
1303             if (m.modCount != mc)
1304                 throw new ConcurrentModificationException();
1305         }
1306 
1307         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1308             int hi;
1309             if (action == null)
1310                 throw new NullPointerException();
1311             WeakHashMap.Entry<K,V>[] tab = map.table;
1312             if (tab.length >= (hi = getFence()) && index >= 0) {
1313                 while (current != null || index < hi) {
1314                     if (current == null)
1315                         current = tab[index++];
1316                     else {
1317                         Object x = current.get();
1318                         V v = current.value;
1319                         current = current.next;
1320                         if (x != null) {
1321                             @SuppressWarnings("unchecked") K k =
1322                                 (K) WeakHashMap.unmaskNull(x);
1323                             action.accept
1324                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1325                             if (map.modCount != expectedModCount)
1326                                 throw new ConcurrentModificationException();
1327                             return true;
1328                         }
1329                     }
1330                 }
1331             }
1332             return false;
1333         }
1334 
1335         public int characteristics() {
1336             return Spliterator.DISTINCT;
1337         }
1338     }
1339 
1340 }