1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2018 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "libo4.hpp"
  41 #include "libperfstat_aix.hpp"
  42 #include "libodm_aix.hpp"
  43 #include "loadlib_aix.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "misc_aix.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "os_aix.inline.hpp"
  49 #include "os_share_aix.hpp"
  50 #include "porting_aix.hpp"
  51 #include "prims/jniFastGetField.hpp"
  52 #include "prims/jvm_misc.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/extendedPC.hpp"
  56 #include "runtime/globals.hpp"
  57 #include "runtime/interfaceSupport.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.hpp"
  63 #include "runtime/os.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/perfMemory.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "runtime/vm_version.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/runtimeService.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/decoder.hpp"
  77 #include "utilities/defaultStream.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/growableArray.hpp"
  80 #include "utilities/vmError.hpp"
  81 
  82 // put OS-includes here (sorted alphabetically)
  83 #include <errno.h>
  84 #include <fcntl.h>
  85 #include <inttypes.h>
  86 #include <poll.h>
  87 #include <procinfo.h>
  88 #include <pthread.h>
  89 #include <pwd.h>
  90 #include <semaphore.h>
  91 #include <signal.h>
  92 #include <stdint.h>
  93 #include <stdio.h>
  94 #include <string.h>
  95 #include <unistd.h>
  96 #include <sys/ioctl.h>
  97 #include <sys/ipc.h>
  98 #include <sys/mman.h>
  99 #include <sys/resource.h>
 100 #include <sys/select.h>
 101 #include <sys/shm.h>
 102 #include <sys/socket.h>
 103 #include <sys/stat.h>
 104 #include <sys/sysinfo.h>
 105 #include <sys/systemcfg.h>
 106 #include <sys/time.h>
 107 #include <sys/times.h>
 108 #include <sys/types.h>
 109 #include <sys/utsname.h>
 110 #include <sys/vminfo.h>
 111 #include <sys/wait.h>
 112 
 113 // Missing prototypes for various system APIs.
 114 extern "C"
 115 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 116 
 117 #if !defined(_AIXVERSION_610)
 118 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 119 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 120 extern "C" int getargs(procsinfo*, int, char*, int);
 121 #endif
 122 
 123 #define MAX_PATH (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 // for multipage initialization error analysis (in 'g_multipage_error')
 128 #define ERROR_MP_OS_TOO_OLD                          100
 129 #define ERROR_MP_EXTSHM_ACTIVE                       101
 130 #define ERROR_MP_VMGETINFO_FAILED                    102
 131 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 132 
 133 // excerpts from systemcfg.h that might be missing on older os levels
 134 #ifndef PV_5_Compat
 135   #define PV_5_Compat 0x0F8000   /* Power PC 5 */
 136 #endif
 137 #ifndef PV_6
 138   #define PV_6 0x100000          /* Power PC 6 */
 139 #endif
 140 #ifndef PV_6_1
 141   #define PV_6_1 0x100001        /* Power PC 6 DD1.x */
 142 #endif
 143 #ifndef PV_6_Compat
 144   #define PV_6_Compat 0x108000   /* Power PC 6 */
 145 #endif
 146 #ifndef PV_7
 147   #define PV_7 0x200000          /* Power PC 7 */
 148 #endif
 149 #ifndef PV_7_Compat
 150   #define PV_7_Compat 0x208000   /* Power PC 7 */
 151 #endif
 152 #ifndef PV_8
 153   #define PV_8 0x300000          /* Power PC 8 */
 154 #endif
 155 #ifndef PV_8_Compat
 156   #define PV_8_Compat 0x308000   /* Power PC 8 */
 157 #endif
 158 
 159 static address resolve_function_descriptor_to_code_pointer(address p);
 160 
 161 static void vmembk_print_on(outputStream* os);
 162 
 163 ////////////////////////////////////////////////////////////////////////////////
 164 // global variables (for a description see os_aix.hpp)
 165 
 166 julong    os::Aix::_physical_memory = 0;
 167 
 168 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 169 int       os::Aix::_page_size = -1;
 170 
 171 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 172 int       os::Aix::_on_pase = -1;
 173 
 174 // 0 = uninitialized, otherwise 32 bit number:
 175 //  0xVVRRTTSS
 176 //  VV - major version
 177 //  RR - minor version
 178 //  TT - tech level, if known, 0 otherwise
 179 //  SS - service pack, if known, 0 otherwise
 180 uint32_t  os::Aix::_os_version = 0;
 181 
 182 // -1 = uninitialized, 0 - no, 1 - yes
 183 int       os::Aix::_xpg_sus_mode = -1;
 184 
 185 // -1 = uninitialized, 0 - no, 1 - yes
 186 int       os::Aix::_extshm = -1;
 187 
 188 ////////////////////////////////////////////////////////////////////////////////
 189 // local variables
 190 
 191 static volatile jlong max_real_time = 0;
 192 static jlong    initial_time_count = 0;
 193 static int      clock_tics_per_sec = 100;
 194 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 195 static bool     check_signals      = true;
 196 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 197 static sigset_t SR_sigset;
 198 
 199 // Process break recorded at startup.
 200 static address g_brk_at_startup = NULL;
 201 
 202 // This describes the state of multipage support of the underlying
 203 // OS. Note that this is of no interest to the outsize world and
 204 // therefore should not be defined in AIX class.
 205 //
 206 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 207 // latter two (16M "large" resp. 16G "huge" pages) require special
 208 // setup and are normally not available.
 209 //
 210 // AIX supports multiple page sizes per process, for:
 211 //  - Stack (of the primordial thread, so not relevant for us)
 212 //  - Data - data, bss, heap, for us also pthread stacks
 213 //  - Text - text code
 214 //  - shared memory
 215 //
 216 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 217 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 218 //
 219 // For shared memory, page size can be set dynamically via
 220 // shmctl(). Different shared memory regions can have different page
 221 // sizes.
 222 //
 223 // More information can be found at AIBM info center:
 224 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 225 //
 226 static struct {
 227   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 228   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 229   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 230   size_t pthr_stack_pagesize; // stack page size of pthread threads
 231   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 232   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 233   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 234   int error;                  // Error describing if something went wrong at multipage init.
 235 } g_multipage_support = {
 236   (size_t) -1,
 237   (size_t) -1,
 238   (size_t) -1,
 239   (size_t) -1,
 240   (size_t) -1,
 241   false, false,
 242   0
 243 };
 244 
 245 // We must not accidentally allocate memory close to the BRK - even if
 246 // that would work - because then we prevent the BRK segment from
 247 // growing which may result in a malloc OOM even though there is
 248 // enough memory. The problem only arises if we shmat() or mmap() at
 249 // a specific wish address, e.g. to place the heap in a
 250 // compressed-oops-friendly way.
 251 static bool is_close_to_brk(address a) {
 252   assert0(g_brk_at_startup != NULL);
 253   if (a >= g_brk_at_startup &&
 254       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 255     return true;
 256   }
 257   return false;
 258 }
 259 
 260 julong os::available_memory() {
 261   return Aix::available_memory();
 262 }
 263 
 264 julong os::Aix::available_memory() {
 265   // Avoid expensive API call here, as returned value will always be null.
 266   if (os::Aix::on_pase()) {
 267     return 0x0LL;
 268   }
 269   os::Aix::meminfo_t mi;
 270   if (os::Aix::get_meminfo(&mi)) {
 271     return mi.real_free;
 272   } else {
 273     return ULONG_MAX;
 274   }
 275 }
 276 
 277 julong os::physical_memory() {
 278   return Aix::physical_memory();
 279 }
 280 
 281 // Return true if user is running as root.
 282 
 283 bool os::have_special_privileges() {
 284   static bool init = false;
 285   static bool privileges = false;
 286   if (!init) {
 287     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 288     init = true;
 289   }
 290   return privileges;
 291 }
 292 
 293 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 294 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 295 static bool my_disclaim64(char* addr, size_t size) {
 296 
 297   if (size == 0) {
 298     return true;
 299   }
 300 
 301   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 302   const unsigned int maxDisclaimSize = 0x40000000;
 303 
 304   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 305   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 306 
 307   char* p = addr;
 308 
 309   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 310     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 311       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 312       return false;
 313     }
 314     p += maxDisclaimSize;
 315   }
 316 
 317   if (lastDisclaimSize > 0) {
 318     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 319       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 320       return false;
 321     }
 322   }
 323 
 324   return true;
 325 }
 326 
 327 // Cpu architecture string
 328 #if defined(PPC32)
 329 static char cpu_arch[] = "ppc";
 330 #elif defined(PPC64)
 331 static char cpu_arch[] = "ppc64";
 332 #else
 333 #error Add appropriate cpu_arch setting
 334 #endif
 335 
 336 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 337 static int checked_vmgetinfo(void *out, int command, int arg) {
 338   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 339     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 340   }
 341   return ::vmgetinfo(out, command, arg);
 342 }
 343 
 344 // Given an address, returns the size of the page backing that address.
 345 size_t os::Aix::query_pagesize(void* addr) {
 346 
 347   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 348     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 349     return 4*K;
 350   }
 351 
 352   vm_page_info pi;
 353   pi.addr = (uint64_t)addr;
 354   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 355     return pi.pagesize;
 356   } else {
 357     assert(false, "vmgetinfo failed to retrieve page size");
 358     return 4*K;
 359   }
 360 }
 361 
 362 void os::Aix::initialize_system_info() {
 363 
 364   // Get the number of online(logical) cpus instead of configured.
 365   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 366   assert(_processor_count > 0, "_processor_count must be > 0");
 367 
 368   // Retrieve total physical storage.
 369   os::Aix::meminfo_t mi;
 370   if (!os::Aix::get_meminfo(&mi)) {
 371     assert(false, "os::Aix::get_meminfo failed.");
 372   }
 373   _physical_memory = (julong) mi.real_total;
 374 }
 375 
 376 // Helper function for tracing page sizes.
 377 static const char* describe_pagesize(size_t pagesize) {
 378   switch (pagesize) {
 379     case 4*K : return "4K";
 380     case 64*K: return "64K";
 381     case 16*M: return "16M";
 382     case 16*G: return "16G";
 383     default:
 384       assert(false, "surprise");
 385       return "??";
 386   }
 387 }
 388 
 389 // Probe OS for multipage support.
 390 // Will fill the global g_multipage_support structure.
 391 // Must be called before calling os::large_page_init().
 392 static void query_multipage_support() {
 393 
 394   guarantee(g_multipage_support.pagesize == -1,
 395             "do not call twice");
 396 
 397   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 398 
 399   // This really would surprise me.
 400   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 401 
 402   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 403   // Default data page size is defined either by linker options (-bdatapsize)
 404   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 405   // default should be 4K.
 406   {
 407     void* p = ::malloc(16*M);
 408     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 409     ::free(p);
 410   }
 411 
 412   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 413   // Note that this is pure curiosity. We do not rely on default page size but set
 414   // our own page size after allocated.
 415   {
 416     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 417     guarantee(shmid != -1, "shmget failed");
 418     void* p = ::shmat(shmid, NULL, 0);
 419     ::shmctl(shmid, IPC_RMID, NULL);
 420     guarantee(p != (void*) -1, "shmat failed");
 421     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 422     ::shmdt(p);
 423   }
 424 
 425   // Before querying the stack page size, make sure we are not running as primordial
 426   // thread (because primordial thread's stack may have different page size than
 427   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 428   // number of reasons so we may just as well guarantee it here.
 429   guarantee0(!os::is_primordial_thread());
 430 
 431   // Query pthread stack page size. Should be the same as data page size because
 432   // pthread stacks are allocated from C-Heap.
 433   {
 434     int dummy = 0;
 435     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 436   }
 437 
 438   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 439   {
 440     address any_function =
 441       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 442     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 443   }
 444 
 445   // Now probe for support of 64K pages and 16M pages.
 446 
 447   // Before OS/400 V6R1, there is no support for pages other than 4K.
 448   if (os::Aix::on_pase_V5R4_or_older()) {
 449     trcVerbose("OS/400 < V6R1 - no large page support.");
 450     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 451     goto query_multipage_support_end;
 452   }
 453 
 454   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 455   {
 456     const int MAX_PAGE_SIZES = 4;
 457     psize_t sizes[MAX_PAGE_SIZES];
 458     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 459     if (num_psizes == -1) {
 460       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 461       trcVerbose("disabling multipage support.");
 462       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 463       goto query_multipage_support_end;
 464     }
 465     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 466     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 467     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 468     for (int i = 0; i < num_psizes; i ++) {
 469       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 470     }
 471 
 472     // Can we use 64K, 16M pages?
 473     for (int i = 0; i < num_psizes; i ++) {
 474       const size_t pagesize = sizes[i];
 475       if (pagesize != 64*K && pagesize != 16*M) {
 476         continue;
 477       }
 478       bool can_use = false;
 479       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 480       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 481         IPC_CREAT | S_IRUSR | S_IWUSR);
 482       guarantee0(shmid != -1); // Should always work.
 483       // Try to set pagesize.
 484       struct shmid_ds shm_buf = { 0 };
 485       shm_buf.shm_pagesize = pagesize;
 486       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 487         const int en = errno;
 488         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 489         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%n",
 490           errno);
 491       } else {
 492         // Attach and double check pageisze.
 493         void* p = ::shmat(shmid, NULL, 0);
 494         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 495         guarantee0(p != (void*) -1); // Should always work.
 496         const size_t real_pagesize = os::Aix::query_pagesize(p);
 497         if (real_pagesize != pagesize) {
 498           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 499         } else {
 500           can_use = true;
 501         }
 502         ::shmdt(p);
 503       }
 504       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 505       if (pagesize == 64*K) {
 506         g_multipage_support.can_use_64K_pages = can_use;
 507       } else if (pagesize == 16*M) {
 508         g_multipage_support.can_use_16M_pages = can_use;
 509       }
 510     }
 511 
 512   } // end: check which pages can be used for shared memory
 513 
 514 query_multipage_support_end:
 515 
 516   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 517       describe_pagesize(g_multipage_support.pagesize));
 518   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 519       describe_pagesize(g_multipage_support.datapsize));
 520   trcVerbose("Text page size: %s",
 521       describe_pagesize(g_multipage_support.textpsize));
 522   trcVerbose("Thread stack page size (pthread): %s",
 523       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 524   trcVerbose("Default shared memory page size: %s",
 525       describe_pagesize(g_multipage_support.shmpsize));
 526   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 527       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 528   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 529       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 530   trcVerbose("Multipage error details: %d",
 531       g_multipage_support.error);
 532 
 533   // sanity checks
 534   assert0(g_multipage_support.pagesize == 4*K);
 535   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 536   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 537   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 538   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 539 
 540 }
 541 
 542 void os::init_system_properties_values() {
 543 
 544 #ifndef OVERRIDE_LIBPATH
 545   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 546 #else
 547   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 548 #endif
 549 #define EXTENSIONS_DIR  "/lib/ext"
 550 
 551   // Buffer that fits several sprintfs.
 552   // Note that the space for the trailing null is provided
 553   // by the nulls included by the sizeof operator.
 554   const size_t bufsize =
 555     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 556          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 557   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 558 
 559   // sysclasspath, java_home, dll_dir
 560   {
 561     char *pslash;
 562     os::jvm_path(buf, bufsize);
 563 
 564     // Found the full path to libjvm.so.
 565     // Now cut the path to <java_home>/jre if we can.
 566     pslash = strrchr(buf, '/');
 567     if (pslash != NULL) {
 568       *pslash = '\0';            // Get rid of /libjvm.so.
 569     }
 570     pslash = strrchr(buf, '/');
 571     if (pslash != NULL) {
 572       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 573     }
 574     Arguments::set_dll_dir(buf);
 575 
 576     if (pslash != NULL) {
 577       pslash = strrchr(buf, '/');
 578       if (pslash != NULL) {
 579         *pslash = '\0';        // Get rid of /lib.
 580       }
 581     }
 582     Arguments::set_java_home(buf);
 583     if (!set_boot_path('/', ':')) {
 584       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 585     }
 586   }
 587 
 588   // Where to look for native libraries.
 589 
 590   // On Aix we get the user setting of LIBPATH.
 591   // Eventually, all the library path setting will be done here.
 592   // Get the user setting of LIBPATH.
 593   const char *v = ::getenv("LIBPATH");
 594   const char *v_colon = ":";
 595   if (v == NULL) { v = ""; v_colon = ""; }
 596 
 597   // Concatenate user and invariant part of ld_library_path.
 598   // That's +1 for the colon and +1 for the trailing '\0'.
 599   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 600   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 601   Arguments::set_library_path(ld_library_path);
 602   FREE_C_HEAP_ARRAY(char, ld_library_path);
 603 
 604   // Extensions directories.
 605   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 606   Arguments::set_ext_dirs(buf);
 607 
 608   FREE_C_HEAP_ARRAY(char, buf);
 609 
 610 #undef DEFAULT_LIBPATH
 611 #undef EXTENSIONS_DIR
 612 }
 613 
 614 ////////////////////////////////////////////////////////////////////////////////
 615 // breakpoint support
 616 
 617 void os::breakpoint() {
 618   BREAKPOINT;
 619 }
 620 
 621 extern "C" void breakpoint() {
 622   // use debugger to set breakpoint here
 623 }
 624 
 625 ////////////////////////////////////////////////////////////////////////////////
 626 // signal support
 627 
 628 debug_only(static bool signal_sets_initialized = false);
 629 static sigset_t unblocked_sigs, vm_sigs;
 630 
 631 void os::Aix::signal_sets_init() {
 632   // Should also have an assertion stating we are still single-threaded.
 633   assert(!signal_sets_initialized, "Already initialized");
 634   // Fill in signals that are necessarily unblocked for all threads in
 635   // the VM. Currently, we unblock the following signals:
 636   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 637   //                         by -Xrs (=ReduceSignalUsage));
 638   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 639   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 640   // the dispositions or masks wrt these signals.
 641   // Programs embedding the VM that want to use the above signals for their
 642   // own purposes must, at this time, use the "-Xrs" option to prevent
 643   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 644   // (See bug 4345157, and other related bugs).
 645   // In reality, though, unblocking these signals is really a nop, since
 646   // these signals are not blocked by default.
 647   sigemptyset(&unblocked_sigs);
 648   sigaddset(&unblocked_sigs, SIGILL);
 649   sigaddset(&unblocked_sigs, SIGSEGV);
 650   sigaddset(&unblocked_sigs, SIGBUS);
 651   sigaddset(&unblocked_sigs, SIGFPE);
 652   sigaddset(&unblocked_sigs, SIGTRAP);
 653   sigaddset(&unblocked_sigs, SR_signum);
 654 
 655   if (!ReduceSignalUsage) {
 656    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 657      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 658    }
 659    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 660      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 661    }
 662    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 663      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 664    }
 665   }
 666   // Fill in signals that are blocked by all but the VM thread.
 667   sigemptyset(&vm_sigs);
 668   if (!ReduceSignalUsage)
 669     sigaddset(&vm_sigs, BREAK_SIGNAL);
 670   debug_only(signal_sets_initialized = true);
 671 }
 672 
 673 // These are signals that are unblocked while a thread is running Java.
 674 // (For some reason, they get blocked by default.)
 675 sigset_t* os::Aix::unblocked_signals() {
 676   assert(signal_sets_initialized, "Not initialized");
 677   return &unblocked_sigs;
 678 }
 679 
 680 // These are the signals that are blocked while a (non-VM) thread is
 681 // running Java. Only the VM thread handles these signals.
 682 sigset_t* os::Aix::vm_signals() {
 683   assert(signal_sets_initialized, "Not initialized");
 684   return &vm_sigs;
 685 }
 686 
 687 void os::Aix::hotspot_sigmask(Thread* thread) {
 688 
 689   //Save caller's signal mask before setting VM signal mask
 690   sigset_t caller_sigmask;
 691   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 692 
 693   OSThread* osthread = thread->osthread();
 694   osthread->set_caller_sigmask(caller_sigmask);
 695 
 696   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 697 
 698   if (!ReduceSignalUsage) {
 699     if (thread->is_VM_thread()) {
 700       // Only the VM thread handles BREAK_SIGNAL ...
 701       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 702     } else {
 703       // ... all other threads block BREAK_SIGNAL
 704       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 705     }
 706   }
 707 }
 708 
 709 // retrieve memory information.
 710 // Returns false if something went wrong;
 711 // content of pmi undefined in this case.
 712 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 713 
 714   assert(pmi, "get_meminfo: invalid parameter");
 715 
 716   memset(pmi, 0, sizeof(meminfo_t));
 717 
 718   if (os::Aix::on_pase()) {
 719     // On PASE, use the libo4 porting library.
 720 
 721     unsigned long long virt_total = 0;
 722     unsigned long long real_total = 0;
 723     unsigned long long real_free = 0;
 724     unsigned long long pgsp_total = 0;
 725     unsigned long long pgsp_free = 0;
 726     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 727       pmi->virt_total = virt_total;
 728       pmi->real_total = real_total;
 729       pmi->real_free = real_free;
 730       pmi->pgsp_total = pgsp_total;
 731       pmi->pgsp_free = pgsp_free;
 732       return true;
 733     }
 734     return false;
 735 
 736   } else {
 737 
 738     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 739     // See:
 740     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 741     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 742     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 743     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 744 
 745     perfstat_memory_total_t psmt;
 746     memset (&psmt, '\0', sizeof(psmt));
 747     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 748     if (rc == -1) {
 749       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 750       assert(0, "perfstat_memory_total() failed");
 751       return false;
 752     }
 753 
 754     assert(rc == 1, "perfstat_memory_total() - weird return code");
 755 
 756     // excerpt from
 757     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 758     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 759     // The fields of perfstat_memory_total_t:
 760     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 761     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 762     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 763     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 764     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 765 
 766     pmi->virt_total = psmt.virt_total * 4096;
 767     pmi->real_total = psmt.real_total * 4096;
 768     pmi->real_free = psmt.real_free * 4096;
 769     pmi->pgsp_total = psmt.pgsp_total * 4096;
 770     pmi->pgsp_free = psmt.pgsp_free * 4096;
 771 
 772     return true;
 773 
 774   }
 775 } // end os::Aix::get_meminfo
 776 
 777 //////////////////////////////////////////////////////////////////////////////
 778 // create new thread
 779 
 780 // Thread start routine for all newly created threads
 781 static void *thread_native_entry(Thread *thread) {
 782 
 783   thread->record_stack_base_and_size();
 784 
 785   const pthread_t pthread_id = ::pthread_self();
 786   const tid_t kernel_thread_id = ::thread_self();
 787 
 788   LogTarget(Info, os, thread) lt;
 789   if (lt.is_enabled()) {
 790     address low_address = thread->stack_end();
 791     address high_address = thread->stack_base();
 792     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 793              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 794              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 795              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 796   }
 797 
 798   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 799   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 800   // tools hook pthread_create(). In this case, we may run into problems establishing
 801   // guard pages on those stacks, because the stacks may reside in memory which is not
 802   // protectable (shmated).
 803   if (thread->stack_base() > ::sbrk(0)) {
 804     log_warning(os, thread)("Thread stack not in data segment.");
 805   }
 806 
 807   // Try to randomize the cache line index of hot stack frames.
 808   // This helps when threads of the same stack traces evict each other's
 809   // cache lines. The threads can be either from the same JVM instance, or
 810   // from different JVM instances. The benefit is especially true for
 811   // processors with hyperthreading technology.
 812 
 813   static int counter = 0;
 814   int pid = os::current_process_id();
 815   alloca(((pid ^ counter++) & 7) * 128);
 816 
 817   thread->initialize_thread_current();
 818 
 819   OSThread* osthread = thread->osthread();
 820 
 821   // Thread_id is pthread id.
 822   osthread->set_thread_id(pthread_id);
 823 
 824   // .. but keep kernel thread id too for diagnostics
 825   osthread->set_kernel_thread_id(kernel_thread_id);
 826 
 827   // Initialize signal mask for this thread.
 828   os::Aix::hotspot_sigmask(thread);
 829 
 830   // Initialize floating point control register.
 831   os::Aix::init_thread_fpu_state();
 832 
 833   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 834 
 835   // Call one more level start routine.
 836   thread->call_run();
 837 
 838   // Note: at this point the thread object may already have deleted itself.
 839   // Prevent dereferencing it from here on out.
 840   thread = NULL;
 841 
 842   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 843     os::current_thread_id(), (uintx) kernel_thread_id);
 844 
 845   return 0;
 846 }
 847 
 848 bool os::create_thread(Thread* thread, ThreadType thr_type,
 849                        size_t req_stack_size) {
 850 
 851   assert(thread->osthread() == NULL, "caller responsible");
 852 
 853   // Allocate the OSThread object.
 854   OSThread* osthread = new OSThread(NULL, NULL);
 855   if (osthread == NULL) {
 856     return false;
 857   }
 858 
 859   // Set the correct thread state.
 860   osthread->set_thread_type(thr_type);
 861 
 862   // Initial state is ALLOCATED but not INITIALIZED
 863   osthread->set_state(ALLOCATED);
 864 
 865   thread->set_osthread(osthread);
 866 
 867   // Init thread attributes.
 868   pthread_attr_t attr;
 869   pthread_attr_init(&attr);
 870   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 871 
 872   // Make sure we run in 1:1 kernel-user-thread mode.
 873   if (os::Aix::on_aix()) {
 874     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 875     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 876   }
 877 
 878   // Start in suspended state, and in os::thread_start, wake the thread up.
 879   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 880 
 881   // Calculate stack size if it's not specified by caller.
 882   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 883 
 884   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 885   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 886   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 887   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 888   if (stack_size < 4096 * K) {
 889     stack_size += 64 * K;
 890   }
 891 
 892   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 893   // thread size in attr unchanged. If this is the minimal stack size as set
 894   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 895   // guard pages might not fit on the tiny stack created.
 896   int ret = pthread_attr_setstacksize(&attr, stack_size);
 897   if (ret != 0) {
 898     log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
 899                             (thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
 900                             stack_size / K);
 901     thread->set_osthread(NULL);
 902     delete osthread;
 903     return false;
 904   }
 905 
 906   // Save some cycles and a page by disabling OS guard pages where we have our own
 907   // VM guard pages (in java threads). For other threads, keep system default guard
 908   // pages in place.
 909   if (thr_type == java_thread || thr_type == compiler_thread) {
 910     ret = pthread_attr_setguardsize(&attr, 0);
 911   }
 912 
 913   pthread_t tid = 0;
 914   if (ret == 0) {
 915     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 916   }
 917 
 918   if (ret == 0) {
 919     char buf[64];
 920     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 921       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 922   } else {
 923     char buf[64];
 924     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 925       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 926   }
 927 
 928   pthread_attr_destroy(&attr);
 929 
 930   if (ret != 0) {
 931     // Need to clean up stuff we've allocated so far.
 932     thread->set_osthread(NULL);
 933     delete osthread;
 934     return false;
 935   }
 936 
 937   // OSThread::thread_id is the pthread id.
 938   osthread->set_thread_id(tid);
 939 
 940   return true;
 941 }
 942 
 943 /////////////////////////////////////////////////////////////////////////////
 944 // attach existing thread
 945 
 946 // bootstrap the main thread
 947 bool os::create_main_thread(JavaThread* thread) {
 948   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 949   return create_attached_thread(thread);
 950 }
 951 
 952 bool os::create_attached_thread(JavaThread* thread) {
 953 #ifdef ASSERT
 954     thread->verify_not_published();
 955 #endif
 956 
 957   // Allocate the OSThread object
 958   OSThread* osthread = new OSThread(NULL, NULL);
 959 
 960   if (osthread == NULL) {
 961     return false;
 962   }
 963 
 964   const pthread_t pthread_id = ::pthread_self();
 965   const tid_t kernel_thread_id = ::thread_self();
 966 
 967   // OSThread::thread_id is the pthread id.
 968   osthread->set_thread_id(pthread_id);
 969 
 970   // .. but keep kernel thread id too for diagnostics
 971   osthread->set_kernel_thread_id(kernel_thread_id);
 972 
 973   // initialize floating point control register
 974   os::Aix::init_thread_fpu_state();
 975 
 976   // Initial thread state is RUNNABLE
 977   osthread->set_state(RUNNABLE);
 978 
 979   thread->set_osthread(osthread);
 980 
 981   if (UseNUMA) {
 982     int lgrp_id = os::numa_get_group_id();
 983     if (lgrp_id != -1) {
 984       thread->set_lgrp_id(lgrp_id);
 985     }
 986   }
 987 
 988   // initialize signal mask for this thread
 989   // and save the caller's signal mask
 990   os::Aix::hotspot_sigmask(thread);
 991 
 992   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 993     os::current_thread_id(), (uintx) kernel_thread_id);
 994 
 995   return true;
 996 }
 997 
 998 void os::pd_start_thread(Thread* thread) {
 999   int status = pthread_continue_np(thread->osthread()->pthread_id());
1000   assert(status == 0, "thr_continue failed");
1001 }
1002 
1003 // Free OS resources related to the OSThread
1004 void os::free_thread(OSThread* osthread) {
1005   assert(osthread != NULL, "osthread not set");
1006 
1007   // We are told to free resources of the argument thread,
1008   // but we can only really operate on the current thread.
1009   assert(Thread::current()->osthread() == osthread,
1010          "os::free_thread but not current thread");
1011 
1012   // Restore caller's signal mask
1013   sigset_t sigmask = osthread->caller_sigmask();
1014   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1015 
1016   delete osthread;
1017 }
1018 
1019 ////////////////////////////////////////////////////////////////////////////////
1020 // time support
1021 
1022 // Time since start-up in seconds to a fine granularity.
1023 // Used by VMSelfDestructTimer and the MemProfiler.
1024 double os::elapsedTime() {
1025   return (double)(os::elapsed_counter()) * 0.000001;
1026 }
1027 
1028 jlong os::elapsed_counter() {
1029   timeval time;
1030   int status = gettimeofday(&time, NULL);
1031   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1032 }
1033 
1034 jlong os::elapsed_frequency() {
1035   return (1000 * 1000);
1036 }
1037 
1038 bool os::supports_vtime() { return true; }
1039 bool os::enable_vtime()   { return false; }
1040 bool os::vtime_enabled()  { return false; }
1041 
1042 double os::elapsedVTime() {
1043   struct rusage usage;
1044   int retval = getrusage(RUSAGE_THREAD, &usage);
1045   if (retval == 0) {
1046     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1047   } else {
1048     // better than nothing, but not much
1049     return elapsedTime();
1050   }
1051 }
1052 
1053 jlong os::javaTimeMillis() {
1054   timeval time;
1055   int status = gettimeofday(&time, NULL);
1056   assert(status != -1, "aix error at gettimeofday()");
1057   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1058 }
1059 
1060 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1061   timeval time;
1062   int status = gettimeofday(&time, NULL);
1063   assert(status != -1, "aix error at gettimeofday()");
1064   seconds = jlong(time.tv_sec);
1065   nanos = jlong(time.tv_usec) * 1000;
1066 }
1067 
1068 // We use mread_real_time here.
1069 // On AIX: If the CPU has a time register, the result will be RTC_POWER and
1070 // it has to be converted to real time. AIX documentations suggests to do
1071 // this unconditionally, so we do it.
1072 //
1073 // See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
1074 //
1075 // On PASE: mread_real_time will always return RTC_POWER_PC data, so no
1076 // conversion is necessary. However, mread_real_time will not return
1077 // monotonic results but merely matches read_real_time. So we need a tweak
1078 // to ensure monotonic results.
1079 //
1080 // For PASE no public documentation exists, just word by IBM
1081 jlong os::javaTimeNanos() {
1082   timebasestruct_t time;
1083   int rc = mread_real_time(&time, TIMEBASE_SZ);
1084   if (os::Aix::on_pase()) {
1085     assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
1086     jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1087     jlong prev = max_real_time;
1088     if (now <= prev) {
1089       return prev;   // same or retrograde time;
1090     }
1091     jlong obsv = Atomic::cmpxchg(now, &max_real_time, prev);
1092     assert(obsv >= prev, "invariant");   // Monotonicity
1093     // If the CAS succeeded then we're done and return "now".
1094     // If the CAS failed and the observed value "obsv" is >= now then
1095     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1096     // some other thread raced this thread and installed a new value, in which case
1097     // we could either (a) retry the entire operation, (b) retry trying to install now
1098     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1099     // we might discard a higher "now" value in deference to a slightly lower but freshly
1100     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1101     // to (a) or (b) -- and greatly reduces coherence traffic.
1102     // We might also condition (c) on the magnitude of the delta between obsv and now.
1103     // Avoiding excessive CAS operations to hot RW locations is critical.
1104     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1105     return (prev == obsv) ? now : obsv;
1106   } else {
1107     if (rc != RTC_POWER) {
1108       rc = time_base_to_time(&time, TIMEBASE_SZ);
1109       assert(rc != -1, "error calling time_base_to_time()");
1110     }
1111     return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1112   }
1113 }
1114 
1115 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1116   info_ptr->max_value = ALL_64_BITS;
1117   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1118   info_ptr->may_skip_backward = false;
1119   info_ptr->may_skip_forward = false;
1120   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1121 }
1122 
1123 // Return the real, user, and system times in seconds from an
1124 // arbitrary fixed point in the past.
1125 bool os::getTimesSecs(double* process_real_time,
1126                       double* process_user_time,
1127                       double* process_system_time) {
1128   struct tms ticks;
1129   clock_t real_ticks = times(&ticks);
1130 
1131   if (real_ticks == (clock_t) (-1)) {
1132     return false;
1133   } else {
1134     double ticks_per_second = (double) clock_tics_per_sec;
1135     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1136     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1137     *process_real_time = ((double) real_ticks) / ticks_per_second;
1138 
1139     return true;
1140   }
1141 }
1142 
1143 char * os::local_time_string(char *buf, size_t buflen) {
1144   struct tm t;
1145   time_t long_time;
1146   time(&long_time);
1147   localtime_r(&long_time, &t);
1148   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1149                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1150                t.tm_hour, t.tm_min, t.tm_sec);
1151   return buf;
1152 }
1153 
1154 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1155   return localtime_r(clock, res);
1156 }
1157 
1158 ////////////////////////////////////////////////////////////////////////////////
1159 // runtime exit support
1160 
1161 // Note: os::shutdown() might be called very early during initialization, or
1162 // called from signal handler. Before adding something to os::shutdown(), make
1163 // sure it is async-safe and can handle partially initialized VM.
1164 void os::shutdown() {
1165 
1166   // allow PerfMemory to attempt cleanup of any persistent resources
1167   perfMemory_exit();
1168 
1169   // needs to remove object in file system
1170   AttachListener::abort();
1171 
1172   // flush buffered output, finish log files
1173   ostream_abort();
1174 
1175   // Check for abort hook
1176   abort_hook_t abort_hook = Arguments::abort_hook();
1177   if (abort_hook != NULL) {
1178     abort_hook();
1179   }
1180 }
1181 
1182 // Note: os::abort() might be called very early during initialization, or
1183 // called from signal handler. Before adding something to os::abort(), make
1184 // sure it is async-safe and can handle partially initialized VM.
1185 void os::abort(bool dump_core, void* siginfo, const void* context) {
1186   os::shutdown();
1187   if (dump_core) {
1188 #ifndef PRODUCT
1189     fdStream out(defaultStream::output_fd());
1190     out.print_raw("Current thread is ");
1191     char buf[16];
1192     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1193     out.print_raw_cr(buf);
1194     out.print_raw_cr("Dumping core ...");
1195 #endif
1196     ::abort(); // dump core
1197   }
1198 
1199   ::exit(1);
1200 }
1201 
1202 // Die immediately, no exit hook, no abort hook, no cleanup.
1203 void os::die() {
1204   ::abort();
1205 }
1206 
1207 intx os::current_thread_id() {
1208   return (intx)pthread_self();
1209 }
1210 
1211 int os::current_process_id() {
1212   return getpid();
1213 }
1214 
1215 // DLL functions
1216 
1217 const char* os::dll_file_extension() { return ".so"; }
1218 
1219 // This must be hard coded because it's the system's temporary
1220 // directory not the java application's temp directory, ala java.io.tmpdir.
1221 const char* os::get_temp_directory() { return "/tmp"; }
1222 
1223 // Check if addr is inside libjvm.so.
1224 bool os::address_is_in_vm(address addr) {
1225 
1226   // Input could be a real pc or a function pointer literal. The latter
1227   // would be a function descriptor residing in the data segment of a module.
1228   loaded_module_t lm;
1229   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1230     return lm.is_in_vm;
1231   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1232     return lm.is_in_vm;
1233   } else {
1234     return false;
1235   }
1236 
1237 }
1238 
1239 // Resolve an AIX function descriptor literal to a code pointer.
1240 // If the input is a valid code pointer to a text segment of a loaded module,
1241 //   it is returned unchanged.
1242 // If the input is a valid AIX function descriptor, it is resolved to the
1243 //   code entry point.
1244 // If the input is neither a valid function descriptor nor a valid code pointer,
1245 //   NULL is returned.
1246 static address resolve_function_descriptor_to_code_pointer(address p) {
1247 
1248   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1249     // It is a real code pointer.
1250     return p;
1251   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1252     // Pointer to data segment, potential function descriptor.
1253     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1254     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1255       // It is a function descriptor.
1256       return code_entry;
1257     }
1258   }
1259 
1260   return NULL;
1261 }
1262 
1263 bool os::dll_address_to_function_name(address addr, char *buf,
1264                                       int buflen, int *offset,
1265                                       bool demangle) {
1266   if (offset) {
1267     *offset = -1;
1268   }
1269   // Buf is not optional, but offset is optional.
1270   assert(buf != NULL, "sanity check");
1271   buf[0] = '\0';
1272 
1273   // Resolve function ptr literals first.
1274   addr = resolve_function_descriptor_to_code_pointer(addr);
1275   if (!addr) {
1276     return false;
1277   }
1278 
1279   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1280 }
1281 
1282 bool os::dll_address_to_library_name(address addr, char* buf,
1283                                      int buflen, int* offset) {
1284   if (offset) {
1285     *offset = -1;
1286   }
1287   // Buf is not optional, but offset is optional.
1288   assert(buf != NULL, "sanity check");
1289   buf[0] = '\0';
1290 
1291   // Resolve function ptr literals first.
1292   addr = resolve_function_descriptor_to_code_pointer(addr);
1293   if (!addr) {
1294     return false;
1295   }
1296 
1297   return AixSymbols::get_module_name(addr, buf, buflen);
1298 }
1299 
1300 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1301 // for the same architecture as Hotspot is running on.
1302 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1303 
1304   if (ebuf && ebuflen > 0) {
1305     ebuf[0] = '\0';
1306     ebuf[ebuflen - 1] = '\0';
1307   }
1308 
1309   if (!filename || strlen(filename) == 0) {
1310     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1311     return NULL;
1312   }
1313 
1314   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1315   void * result= ::dlopen(filename, RTLD_LAZY);
1316   if (result != NULL) {
1317     // Reload dll cache. Don't do this in signal handling.
1318     LoadedLibraries::reload();
1319     return result;
1320   } else {
1321     // error analysis when dlopen fails
1322     const char* const error_report = ::dlerror();
1323     if (error_report && ebuf && ebuflen > 0) {
1324       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1325                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1326     }
1327   }
1328   return NULL;
1329 }
1330 
1331 void* os::dll_lookup(void* handle, const char* name) {
1332   void* res = dlsym(handle, name);
1333   return res;
1334 }
1335 
1336 void* os::get_default_process_handle() {
1337   return (void*)::dlopen(NULL, RTLD_LAZY);
1338 }
1339 
1340 void os::print_dll_info(outputStream *st) {
1341   st->print_cr("Dynamic libraries:");
1342   LoadedLibraries::print(st);
1343 }
1344 
1345 void os::get_summary_os_info(char* buf, size_t buflen) {
1346   // There might be something more readable than uname results for AIX.
1347   struct utsname name;
1348   uname(&name);
1349   snprintf(buf, buflen, "%s %s", name.release, name.version);
1350 }
1351 
1352 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1353   // Not yet implemented.
1354   return 0;
1355 }
1356 
1357 void os::print_os_info_brief(outputStream* st) {
1358   uint32_t ver = os::Aix::os_version();
1359   st->print_cr("AIX kernel version %u.%u.%u.%u",
1360                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1361 
1362   os::Posix::print_uname_info(st);
1363 
1364   // Linux uses print_libversion_info(st); here.
1365 }
1366 
1367 void os::print_os_info(outputStream* st) {
1368   st->print("OS:");
1369 
1370   st->print("uname:");
1371   struct utsname name;
1372   uname(&name);
1373   st->print(name.sysname); st->print(" ");
1374   st->print(name.nodename); st->print(" ");
1375   st->print(name.release); st->print(" ");
1376   st->print(name.version); st->print(" ");
1377   st->print(name.machine);
1378   st->cr();
1379 
1380   uint32_t ver = os::Aix::os_version();
1381   st->print_cr("AIX kernel version %u.%u.%u.%u",
1382                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1383 
1384   os::Posix::print_rlimit_info(st);
1385 
1386   // load average
1387   st->print("load average:");
1388   double loadavg[3] = {-1.L, -1.L, -1.L};
1389   os::loadavg(loadavg, 3);
1390   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1391   st->cr();
1392 
1393   // print wpar info
1394   libperfstat::wparinfo_t wi;
1395   if (libperfstat::get_wparinfo(&wi)) {
1396     st->print_cr("wpar info");
1397     st->print_cr("name: %s", wi.name);
1398     st->print_cr("id:   %d", wi.wpar_id);
1399     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1400   }
1401 
1402   // print partition info
1403   libperfstat::partitioninfo_t pi;
1404   if (libperfstat::get_partitioninfo(&pi)) {
1405     st->print_cr("partition info");
1406     st->print_cr(" name: %s", pi.name);
1407   }
1408 
1409 }
1410 
1411 void os::print_memory_info(outputStream* st) {
1412 
1413   st->print_cr("Memory:");
1414 
1415   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1416     describe_pagesize(g_multipage_support.pagesize));
1417   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1418     describe_pagesize(g_multipage_support.datapsize));
1419   st->print_cr("  Text page size:                         %s",
1420     describe_pagesize(g_multipage_support.textpsize));
1421   st->print_cr("  Thread stack page size (pthread):       %s",
1422     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1423   st->print_cr("  Default shared memory page size:        %s",
1424     describe_pagesize(g_multipage_support.shmpsize));
1425   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1426     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1427   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1428     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1429   st->print_cr("  Multipage error: %d",
1430     g_multipage_support.error);
1431   st->cr();
1432   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1433 
1434   // print out LDR_CNTRL because it affects the default page sizes
1435   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1436   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1437 
1438   // Print out EXTSHM because it is an unsupported setting.
1439   const char* const extshm = ::getenv("EXTSHM");
1440   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1441   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1442     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1443   }
1444 
1445   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1446   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1447   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1448       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1449   st->cr();
1450 
1451   os::Aix::meminfo_t mi;
1452   if (os::Aix::get_meminfo(&mi)) {
1453     if (os::Aix::on_aix()) {
1454       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1455       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1456       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1457       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1458     } else {
1459       // PASE - Numbers are result of QWCRSSTS; they mean:
1460       // real_total: Sum of all system pools
1461       // real_free: always 0
1462       // pgsp_total: we take the size of the system ASP
1463       // pgsp_free: size of system ASP times percentage of system ASP unused
1464       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1465       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1466       st->print_cr("%% system asp used : %.2f",
1467         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1468     }
1469   }
1470   st->cr();
1471 
1472   // Print program break.
1473   st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
1474   address brk_now = (address)::sbrk(0);
1475   if (brk_now != (address)-1) {
1476     st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
1477                  p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
1478   }
1479   st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
1480   st->cr();
1481 
1482   // Print segments allocated with os::reserve_memory.
1483   st->print_cr("internal virtual memory regions used by vm:");
1484   vmembk_print_on(st);
1485 }
1486 
1487 // Get a string for the cpuinfo that is a summary of the cpu type
1488 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1489   // read _system_configuration.version
1490   switch (_system_configuration.version) {
1491   case PV_8:
1492     strncpy(buf, "Power PC 8", buflen);
1493     break;
1494   case PV_7:
1495     strncpy(buf, "Power PC 7", buflen);
1496     break;
1497   case PV_6_1:
1498     strncpy(buf, "Power PC 6 DD1.x", buflen);
1499     break;
1500   case PV_6:
1501     strncpy(buf, "Power PC 6", buflen);
1502     break;
1503   case PV_5:
1504     strncpy(buf, "Power PC 5", buflen);
1505     break;
1506   case PV_5_2:
1507     strncpy(buf, "Power PC 5_2", buflen);
1508     break;
1509   case PV_5_3:
1510     strncpy(buf, "Power PC 5_3", buflen);
1511     break;
1512   case PV_5_Compat:
1513     strncpy(buf, "PV_5_Compat", buflen);
1514     break;
1515   case PV_6_Compat:
1516     strncpy(buf, "PV_6_Compat", buflen);
1517     break;
1518   case PV_7_Compat:
1519     strncpy(buf, "PV_7_Compat", buflen);
1520     break;
1521   case PV_8_Compat:
1522     strncpy(buf, "PV_8_Compat", buflen);
1523     break;
1524   default:
1525     strncpy(buf, "unknown", buflen);
1526   }
1527 }
1528 
1529 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1530   // Nothing to do beyond of what os::print_cpu_info() does.
1531 }
1532 
1533 static void print_signal_handler(outputStream* st, int sig,
1534                                  char* buf, size_t buflen);
1535 
1536 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1537   st->print_cr("Signal Handlers:");
1538   print_signal_handler(st, SIGSEGV, buf, buflen);
1539   print_signal_handler(st, SIGBUS , buf, buflen);
1540   print_signal_handler(st, SIGFPE , buf, buflen);
1541   print_signal_handler(st, SIGPIPE, buf, buflen);
1542   print_signal_handler(st, SIGXFSZ, buf, buflen);
1543   print_signal_handler(st, SIGILL , buf, buflen);
1544   print_signal_handler(st, SR_signum, buf, buflen);
1545   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1546   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1547   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1548   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1549   print_signal_handler(st, SIGTRAP, buf, buflen);
1550   // We also want to know if someone else adds a SIGDANGER handler because
1551   // that will interfere with OOM killling.
1552   print_signal_handler(st, SIGDANGER, buf, buflen);
1553 }
1554 
1555 static char saved_jvm_path[MAXPATHLEN] = {0};
1556 
1557 // Find the full path to the current module, libjvm.so.
1558 void os::jvm_path(char *buf, jint buflen) {
1559   // Error checking.
1560   if (buflen < MAXPATHLEN) {
1561     assert(false, "must use a large-enough buffer");
1562     buf[0] = '\0';
1563     return;
1564   }
1565   // Lazy resolve the path to current module.
1566   if (saved_jvm_path[0] != 0) {
1567     strcpy(buf, saved_jvm_path);
1568     return;
1569   }
1570 
1571   Dl_info dlinfo;
1572   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1573   assert(ret != 0, "cannot locate libjvm");
1574   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1575   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1576 
1577   if (Arguments::sun_java_launcher_is_altjvm()) {
1578     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1579     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1580     // If "/jre/lib/" appears at the right place in the string, then
1581     // assume we are installed in a JDK and we're done. Otherwise, check
1582     // for a JAVA_HOME environment variable and fix up the path so it
1583     // looks like libjvm.so is installed there (append a fake suffix
1584     // hotspot/libjvm.so).
1585     const char *p = buf + strlen(buf) - 1;
1586     for (int count = 0; p > buf && count < 4; ++count) {
1587       for (--p; p > buf && *p != '/'; --p)
1588         /* empty */ ;
1589     }
1590 
1591     if (strncmp(p, "/jre/lib/", 9) != 0) {
1592       // Look for JAVA_HOME in the environment.
1593       char* java_home_var = ::getenv("JAVA_HOME");
1594       if (java_home_var != NULL && java_home_var[0] != 0) {
1595         char* jrelib_p;
1596         int len;
1597 
1598         // Check the current module name "libjvm.so".
1599         p = strrchr(buf, '/');
1600         if (p == NULL) {
1601           return;
1602         }
1603         assert(strstr(p, "/libjvm") == p, "invalid library name");
1604 
1605         rp = os::Posix::realpath(java_home_var, buf, buflen);
1606         if (rp == NULL) {
1607           return;
1608         }
1609 
1610         // determine if this is a legacy image or modules image
1611         // modules image doesn't have "jre" subdirectory
1612         len = strlen(buf);
1613         assert(len < buflen, "Ran out of buffer room");
1614         jrelib_p = buf + len;
1615         snprintf(jrelib_p, buflen-len, "/jre/lib");
1616         if (0 != access(buf, F_OK)) {
1617           snprintf(jrelib_p, buflen-len, "/lib");
1618         }
1619 
1620         if (0 == access(buf, F_OK)) {
1621           // Use current module name "libjvm.so"
1622           len = strlen(buf);
1623           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1624         } else {
1625           // Go back to path of .so
1626           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1627           if (rp == NULL) {
1628             return;
1629           }
1630         }
1631       }
1632     }
1633   }
1634 
1635   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1636   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1637 }
1638 
1639 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1640   // no prefix required, not even "_"
1641 }
1642 
1643 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1644   // no suffix required
1645 }
1646 
1647 ////////////////////////////////////////////////////////////////////////////////
1648 // sun.misc.Signal support
1649 
1650 static volatile jint sigint_count = 0;
1651 
1652 static void
1653 UserHandler(int sig, void *siginfo, void *context) {
1654   // 4511530 - sem_post is serialized and handled by the manager thread. When
1655   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1656   // don't want to flood the manager thread with sem_post requests.
1657   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1658     return;
1659 
1660   // Ctrl-C is pressed during error reporting, likely because the error
1661   // handler fails to abort. Let VM die immediately.
1662   if (sig == SIGINT && VMError::is_error_reported()) {
1663     os::die();
1664   }
1665 
1666   os::signal_notify(sig);
1667 }
1668 
1669 void* os::user_handler() {
1670   return CAST_FROM_FN_PTR(void*, UserHandler);
1671 }
1672 
1673 extern "C" {
1674   typedef void (*sa_handler_t)(int);
1675   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1676 }
1677 
1678 void* os::signal(int signal_number, void* handler) {
1679   struct sigaction sigAct, oldSigAct;
1680 
1681   sigfillset(&(sigAct.sa_mask));
1682 
1683   // Do not block out synchronous signals in the signal handler.
1684   // Blocking synchronous signals only makes sense if you can really
1685   // be sure that those signals won't happen during signal handling,
1686   // when the blocking applies. Normal signal handlers are lean and
1687   // do not cause signals. But our signal handlers tend to be "risky"
1688   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1689   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1690   // by a SIGILL, which was blocked due to the signal mask. The process
1691   // just hung forever. Better to crash from a secondary signal than to hang.
1692   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1693   sigdelset(&(sigAct.sa_mask), SIGBUS);
1694   sigdelset(&(sigAct.sa_mask), SIGILL);
1695   sigdelset(&(sigAct.sa_mask), SIGFPE);
1696   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1697 
1698   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1699 
1700   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1701 
1702   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1703     // -1 means registration failed
1704     return (void *)-1;
1705   }
1706 
1707   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1708 }
1709 
1710 void os::signal_raise(int signal_number) {
1711   ::raise(signal_number);
1712 }
1713 
1714 //
1715 // The following code is moved from os.cpp for making this
1716 // code platform specific, which it is by its very nature.
1717 //
1718 
1719 // Will be modified when max signal is changed to be dynamic
1720 int os::sigexitnum_pd() {
1721   return NSIG;
1722 }
1723 
1724 // a counter for each possible signal value
1725 static volatile jint pending_signals[NSIG+1] = { 0 };
1726 
1727 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1728 // On AIX, we use sem_init(), sem_post(), sem_wait()
1729 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1730 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1731 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1732 // on AIX, msem_..() calls are suspected of causing problems.
1733 static sem_t sig_sem;
1734 static msemaphore* p_sig_msem = 0;
1735 
1736 static void local_sem_init() {
1737   if (os::Aix::on_aix()) {
1738     int rc = ::sem_init(&sig_sem, 0, 0);
1739     guarantee(rc != -1, "sem_init failed");
1740   } else {
1741     // Memory semaphores must live in shared mem.
1742     guarantee0(p_sig_msem == NULL);
1743     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1744     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1745     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1746   }
1747 }
1748 
1749 static void local_sem_post() {
1750   static bool warn_only_once = false;
1751   if (os::Aix::on_aix()) {
1752     int rc = ::sem_post(&sig_sem);
1753     if (rc == -1 && !warn_only_once) {
1754       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1755       warn_only_once = true;
1756     }
1757   } else {
1758     guarantee0(p_sig_msem != NULL);
1759     int rc = ::msem_unlock(p_sig_msem, 0);
1760     if (rc == -1 && !warn_only_once) {
1761       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1762       warn_only_once = true;
1763     }
1764   }
1765 }
1766 
1767 static void local_sem_wait() {
1768   static bool warn_only_once = false;
1769   if (os::Aix::on_aix()) {
1770     int rc = ::sem_wait(&sig_sem);
1771     if (rc == -1 && !warn_only_once) {
1772       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1773       warn_only_once = true;
1774     }
1775   } else {
1776     guarantee0(p_sig_msem != NULL); // must init before use
1777     int rc = ::msem_lock(p_sig_msem, 0);
1778     if (rc == -1 && !warn_only_once) {
1779       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1780       warn_only_once = true;
1781     }
1782   }
1783 }
1784 
1785 static void jdk_misc_signal_init() {
1786   // Initialize signal structures
1787   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1788 
1789   // Initialize signal semaphore
1790   local_sem_init();
1791 }
1792 
1793 void os::signal_notify(int sig) {
1794   Atomic::inc(&pending_signals[sig]);
1795   local_sem_post();
1796 }
1797 
1798 static int check_pending_signals() {
1799   Atomic::store(0, &sigint_count);
1800   for (;;) {
1801     for (int i = 0; i < NSIG + 1; i++) {
1802       jint n = pending_signals[i];
1803       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1804         return i;
1805       }
1806     }
1807     JavaThread *thread = JavaThread::current();
1808     ThreadBlockInVM tbivm(thread);
1809 
1810     bool threadIsSuspended;
1811     do {
1812       thread->set_suspend_equivalent();
1813       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1814 
1815       local_sem_wait();
1816 
1817       // were we externally suspended while we were waiting?
1818       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1819       if (threadIsSuspended) {
1820         //
1821         // The semaphore has been incremented, but while we were waiting
1822         // another thread suspended us. We don't want to continue running
1823         // while suspended because that would surprise the thread that
1824         // suspended us.
1825         //
1826 
1827         local_sem_post();
1828 
1829         thread->java_suspend_self();
1830       }
1831     } while (threadIsSuspended);
1832   }
1833 }
1834 
1835 int os::signal_wait() {
1836   return check_pending_signals();
1837 }
1838 
1839 ////////////////////////////////////////////////////////////////////////////////
1840 // Virtual Memory
1841 
1842 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1843 
1844 #define VMEM_MAPPED  1
1845 #define VMEM_SHMATED 2
1846 
1847 struct vmembk_t {
1848   int type;         // 1 - mmap, 2 - shmat
1849   char* addr;
1850   size_t size;      // Real size, may be larger than usersize.
1851   size_t pagesize;  // page size of area
1852   vmembk_t* next;
1853 
1854   bool contains_addr(char* p) const {
1855     return p >= addr && p < (addr + size);
1856   }
1857 
1858   bool contains_range(char* p, size_t s) const {
1859     return contains_addr(p) && contains_addr(p + s - 1);
1860   }
1861 
1862   void print_on(outputStream* os) const {
1863     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1864       " bytes, %d %s pages), %s",
1865       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1866       (type == VMEM_SHMATED ? "shmat" : "mmap")
1867     );
1868   }
1869 
1870   // Check that range is a sub range of memory block (or equal to memory block);
1871   // also check that range is fully page aligned to the page size if the block.
1872   void assert_is_valid_subrange(char* p, size_t s) const {
1873     if (!contains_range(p, s)) {
1874       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1875               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1876               p, p + s, addr, addr + size);
1877       guarantee0(false);
1878     }
1879     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1880       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1881               " aligned to pagesize (%lu)", p, p + s, (unsigned long) pagesize);
1882       guarantee0(false);
1883     }
1884   }
1885 };
1886 
1887 static struct {
1888   vmembk_t* first;
1889   MiscUtils::CritSect cs;
1890 } vmem;
1891 
1892 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1893   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1894   assert0(p);
1895   if (p) {
1896     MiscUtils::AutoCritSect lck(&vmem.cs);
1897     p->addr = addr; p->size = size;
1898     p->pagesize = pagesize;
1899     p->type = type;
1900     p->next = vmem.first;
1901     vmem.first = p;
1902   }
1903 }
1904 
1905 static vmembk_t* vmembk_find(char* addr) {
1906   MiscUtils::AutoCritSect lck(&vmem.cs);
1907   for (vmembk_t* p = vmem.first; p; p = p->next) {
1908     if (p->addr <= addr && (p->addr + p->size) > addr) {
1909       return p;
1910     }
1911   }
1912   return NULL;
1913 }
1914 
1915 static void vmembk_remove(vmembk_t* p0) {
1916   MiscUtils::AutoCritSect lck(&vmem.cs);
1917   assert0(p0);
1918   assert0(vmem.first); // List should not be empty.
1919   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1920     if (*pp == p0) {
1921       *pp = p0->next;
1922       ::free(p0);
1923       return;
1924     }
1925   }
1926   assert0(false); // Not found?
1927 }
1928 
1929 static void vmembk_print_on(outputStream* os) {
1930   MiscUtils::AutoCritSect lck(&vmem.cs);
1931   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1932     vmi->print_on(os);
1933     os->cr();
1934   }
1935 }
1936 
1937 // Reserve and attach a section of System V memory.
1938 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1939 // address. Failing that, it will attach the memory anywhere.
1940 // If <requested_addr> is NULL, function will attach the memory anywhere.
1941 //
1942 // <alignment_hint> is being ignored by this function. It is very probable however that the
1943 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1944 // Should this be not enogh, we can put more work into it.
1945 static char* reserve_shmated_memory (
1946   size_t bytes,
1947   char* requested_addr,
1948   size_t alignment_hint) {
1949 
1950   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1951     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1952     bytes, requested_addr, alignment_hint);
1953 
1954   // Either give me wish address or wish alignment but not both.
1955   assert0(!(requested_addr != NULL && alignment_hint != 0));
1956 
1957   // We must prevent anyone from attaching too close to the
1958   // BRK because that may cause malloc OOM.
1959   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1960     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1961       "Will attach anywhere.", requested_addr);
1962     // Act like the OS refused to attach there.
1963     requested_addr = NULL;
1964   }
1965 
1966   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1967   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1968   if (os::Aix::on_pase_V5R4_or_older()) {
1969     ShouldNotReachHere();
1970   }
1971 
1972   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1973   const size_t size = align_up(bytes, 64*K);
1974 
1975   // Reserve the shared segment.
1976   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1977   if (shmid == -1) {
1978     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1979     return NULL;
1980   }
1981 
1982   // Important note:
1983   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1984   // We must right after attaching it remove it from the system. System V shm segments are global and
1985   // survive the process.
1986   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
1987 
1988   struct shmid_ds shmbuf;
1989   memset(&shmbuf, 0, sizeof(shmbuf));
1990   shmbuf.shm_pagesize = 64*K;
1991   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
1992     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
1993                size / (64*K), errno);
1994     // I want to know if this ever happens.
1995     assert(false, "failed to set page size for shmat");
1996   }
1997 
1998   // Now attach the shared segment.
1999   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2000   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2001   // were not a segment boundary.
2002   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2003   const int errno_shmat = errno;
2004 
2005   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2006   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2007     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2008     assert(false, "failed to remove shared memory segment!");
2009   }
2010 
2011   // Handle shmat error. If we failed to attach, just return.
2012   if (addr == (char*)-1) {
2013     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
2014     return NULL;
2015   }
2016 
2017   // Just for info: query the real page size. In case setting the page size did not
2018   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2019   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2020   if (real_pagesize != shmbuf.shm_pagesize) {
2021     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2022   }
2023 
2024   if (addr) {
2025     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2026       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2027   } else {
2028     if (requested_addr != NULL) {
2029       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2030     } else {
2031       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2032     }
2033   }
2034 
2035   // book-keeping
2036   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2037   assert0(is_aligned_to(addr, os::vm_page_size()));
2038 
2039   return addr;
2040 }
2041 
2042 static bool release_shmated_memory(char* addr, size_t size) {
2043 
2044   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2045     addr, addr + size - 1);
2046 
2047   bool rc = false;
2048 
2049   // TODO: is there a way to verify shm size without doing bookkeeping?
2050   if (::shmdt(addr) != 0) {
2051     trcVerbose("error (%d).", errno);
2052   } else {
2053     trcVerbose("ok.");
2054     rc = true;
2055   }
2056   return rc;
2057 }
2058 
2059 static bool uncommit_shmated_memory(char* addr, size_t size) {
2060   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2061     addr, addr + size - 1);
2062 
2063   const bool rc = my_disclaim64(addr, size);
2064 
2065   if (!rc) {
2066     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2067     return false;
2068   }
2069   return true;
2070 }
2071 
2072 ////////////////////////////////  mmap-based routines /////////////////////////////////
2073 
2074 // Reserve memory via mmap.
2075 // If <requested_addr> is given, an attempt is made to attach at the given address.
2076 // Failing that, memory is allocated at any address.
2077 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2078 // allocate at an address aligned with the given alignment. Failing that, memory
2079 // is aligned anywhere.
2080 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2081   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2082     "alignment_hint " UINTX_FORMAT "...",
2083     bytes, requested_addr, alignment_hint);
2084 
2085   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2086   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2087     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2088     return NULL;
2089   }
2090 
2091   // We must prevent anyone from attaching too close to the
2092   // BRK because that may cause malloc OOM.
2093   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2094     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2095       "Will attach anywhere.", requested_addr);
2096     // Act like the OS refused to attach there.
2097     requested_addr = NULL;
2098   }
2099 
2100   // Specify one or the other but not both.
2101   assert0(!(requested_addr != NULL && alignment_hint > 0));
2102 
2103   // In 64K mode, we claim the global page size (os::vm_page_size())
2104   // is 64K. This is one of the few points where that illusion may
2105   // break, because mmap() will always return memory aligned to 4K. So
2106   // we must ensure we only ever return memory aligned to 64k.
2107   if (alignment_hint) {
2108     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2109   } else {
2110     alignment_hint = os::vm_page_size();
2111   }
2112 
2113   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2114   const size_t size = align_up(bytes, os::vm_page_size());
2115 
2116   // alignment: Allocate memory large enough to include an aligned range of the right size and
2117   // cut off the leading and trailing waste pages.
2118   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2119   const size_t extra_size = size + alignment_hint;
2120 
2121   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2122   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2123   int flags = MAP_ANONYMOUS | MAP_SHARED;
2124 
2125   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2126   // it means if wishaddress is given but MAP_FIXED is not set.
2127   //
2128   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2129   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2130   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2131   // get clobbered.
2132   if (requested_addr != NULL) {
2133     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2134       flags |= MAP_FIXED;
2135     }
2136   }
2137 
2138   char* addr = (char*)::mmap(requested_addr, extra_size,
2139       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2140 
2141   if (addr == MAP_FAILED) {
2142     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2143     return NULL;
2144   }
2145 
2146   // Handle alignment.
2147   char* const addr_aligned = align_up(addr, alignment_hint);
2148   const size_t waste_pre = addr_aligned - addr;
2149   char* const addr_aligned_end = addr_aligned + size;
2150   const size_t waste_post = extra_size - waste_pre - size;
2151   if (waste_pre > 0) {
2152     ::munmap(addr, waste_pre);
2153   }
2154   if (waste_post > 0) {
2155     ::munmap(addr_aligned_end, waste_post);
2156   }
2157   addr = addr_aligned;
2158 
2159   if (addr) {
2160     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2161       addr, addr + bytes, bytes);
2162   } else {
2163     if (requested_addr != NULL) {
2164       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2165     } else {
2166       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2167     }
2168   }
2169 
2170   // bookkeeping
2171   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2172 
2173   // Test alignment, see above.
2174   assert0(is_aligned_to(addr, os::vm_page_size()));
2175 
2176   return addr;
2177 }
2178 
2179 static bool release_mmaped_memory(char* addr, size_t size) {
2180   assert0(is_aligned_to(addr, os::vm_page_size()));
2181   assert0(is_aligned_to(size, os::vm_page_size()));
2182 
2183   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2184     addr, addr + size - 1);
2185   bool rc = false;
2186 
2187   if (::munmap(addr, size) != 0) {
2188     trcVerbose("failed (%d)\n", errno);
2189     rc = false;
2190   } else {
2191     trcVerbose("ok.");
2192     rc = true;
2193   }
2194 
2195   return rc;
2196 }
2197 
2198 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2199 
2200   assert0(is_aligned_to(addr, os::vm_page_size()));
2201   assert0(is_aligned_to(size, os::vm_page_size()));
2202 
2203   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2204     addr, addr + size - 1);
2205   bool rc = false;
2206 
2207   // Uncommit mmap memory with msync MS_INVALIDATE.
2208   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2209     trcVerbose("failed (%d)\n", errno);
2210     rc = false;
2211   } else {
2212     trcVerbose("ok.");
2213     rc = true;
2214   }
2215 
2216   return rc;
2217 }
2218 
2219 int os::vm_page_size() {
2220   // Seems redundant as all get out.
2221   assert(os::Aix::page_size() != -1, "must call os::init");
2222   return os::Aix::page_size();
2223 }
2224 
2225 // Aix allocates memory by pages.
2226 int os::vm_allocation_granularity() {
2227   assert(os::Aix::page_size() != -1, "must call os::init");
2228   return os::Aix::page_size();
2229 }
2230 
2231 #ifdef PRODUCT
2232 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2233                                     int err) {
2234   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2235           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2236           os::errno_name(err), err);
2237 }
2238 #endif
2239 
2240 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2241                                   const char* mesg) {
2242   assert(mesg != NULL, "mesg must be specified");
2243   if (!pd_commit_memory(addr, size, exec)) {
2244     // Add extra info in product mode for vm_exit_out_of_memory():
2245     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2246     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2247   }
2248 }
2249 
2250 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2251 
2252   assert(is_aligned_to(addr, os::vm_page_size()),
2253     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2254     p2i(addr), os::vm_page_size());
2255   assert(is_aligned_to(size, os::vm_page_size()),
2256     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2257     size, os::vm_page_size());
2258 
2259   vmembk_t* const vmi = vmembk_find(addr);
2260   guarantee0(vmi);
2261   vmi->assert_is_valid_subrange(addr, size);
2262 
2263   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2264 
2265   if (UseExplicitCommit) {
2266     // AIX commits memory on touch. So, touch all pages to be committed.
2267     for (char* p = addr; p < (addr + size); p += 4*K) {
2268       *p = '\0';
2269     }
2270   }
2271 
2272   return true;
2273 }
2274 
2275 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2276   return pd_commit_memory(addr, size, exec);
2277 }
2278 
2279 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2280                                   size_t alignment_hint, bool exec,
2281                                   const char* mesg) {
2282   // Alignment_hint is ignored on this OS.
2283   pd_commit_memory_or_exit(addr, size, exec, mesg);
2284 }
2285 
2286 bool os::pd_uncommit_memory(char* addr, size_t size) {
2287   assert(is_aligned_to(addr, os::vm_page_size()),
2288     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2289     p2i(addr), os::vm_page_size());
2290   assert(is_aligned_to(size, os::vm_page_size()),
2291     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2292     size, os::vm_page_size());
2293 
2294   // Dynamically do different things for mmap/shmat.
2295   const vmembk_t* const vmi = vmembk_find(addr);
2296   guarantee0(vmi);
2297   vmi->assert_is_valid_subrange(addr, size);
2298 
2299   if (vmi->type == VMEM_SHMATED) {
2300     return uncommit_shmated_memory(addr, size);
2301   } else {
2302     return uncommit_mmaped_memory(addr, size);
2303   }
2304 }
2305 
2306 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2307   // Do not call this; no need to commit stack pages on AIX.
2308   ShouldNotReachHere();
2309   return true;
2310 }
2311 
2312 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2313   // Do not call this; no need to commit stack pages on AIX.
2314   ShouldNotReachHere();
2315   return true;
2316 }
2317 
2318 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2319 }
2320 
2321 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2322 }
2323 
2324 void os::numa_make_global(char *addr, size_t bytes) {
2325 }
2326 
2327 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2328 }
2329 
2330 bool os::numa_topology_changed() {
2331   return false;
2332 }
2333 
2334 size_t os::numa_get_groups_num() {
2335   return 1;
2336 }
2337 
2338 int os::numa_get_group_id() {
2339   return 0;
2340 }
2341 
2342 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2343   if (size > 0) {
2344     ids[0] = 0;
2345     return 1;
2346   }
2347   return 0;
2348 }
2349 
2350 bool os::get_page_info(char *start, page_info* info) {
2351   return false;
2352 }
2353 
2354 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2355   return end;
2356 }
2357 
2358 // Reserves and attaches a shared memory segment.
2359 // Will assert if a wish address is given and could not be obtained.
2360 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2361 
2362   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2363   // thereby clobbering old mappings at that place. That is probably
2364   // not intended, never used and almost certainly an error were it
2365   // ever be used this way (to try attaching at a specified address
2366   // without clobbering old mappings an alternate API exists,
2367   // os::attempt_reserve_memory_at()).
2368   // Instead of mimicking the dangerous coding of the other platforms, here I
2369   // just ignore the request address (release) or assert(debug).
2370   assert0(requested_addr == NULL);
2371 
2372   // Always round to os::vm_page_size(), which may be larger than 4K.
2373   bytes = align_up(bytes, os::vm_page_size());
2374   const size_t alignment_hint0 =
2375     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2376 
2377   // In 4K mode always use mmap.
2378   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2379   if (os::vm_page_size() == 4*K) {
2380     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2381   } else {
2382     if (bytes >= Use64KPagesThreshold) {
2383       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2384     } else {
2385       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2386     }
2387   }
2388 }
2389 
2390 bool os::pd_release_memory(char* addr, size_t size) {
2391 
2392   // Dynamically do different things for mmap/shmat.
2393   vmembk_t* const vmi = vmembk_find(addr);
2394   guarantee0(vmi);
2395 
2396   // Always round to os::vm_page_size(), which may be larger than 4K.
2397   size = align_up(size, os::vm_page_size());
2398   addr = align_up(addr, os::vm_page_size());
2399 
2400   bool rc = false;
2401   bool remove_bookkeeping = false;
2402   if (vmi->type == VMEM_SHMATED) {
2403     // For shmatted memory, we do:
2404     // - If user wants to release the whole range, release the memory (shmdt).
2405     // - If user only wants to release a partial range, uncommit (disclaim) that
2406     //   range. That way, at least, we do not use memory anymore (bust still page
2407     //   table space).
2408     vmi->assert_is_valid_subrange(addr, size);
2409     if (addr == vmi->addr && size == vmi->size) {
2410       rc = release_shmated_memory(addr, size);
2411       remove_bookkeeping = true;
2412     } else {
2413       rc = uncommit_shmated_memory(addr, size);
2414     }
2415   } else {
2416     // User may unmap partial regions but region has to be fully contained.
2417 #ifdef ASSERT
2418     vmi->assert_is_valid_subrange(addr, size);
2419 #endif
2420     rc = release_mmaped_memory(addr, size);
2421     remove_bookkeeping = true;
2422   }
2423 
2424   // update bookkeeping
2425   if (rc && remove_bookkeeping) {
2426     vmembk_remove(vmi);
2427   }
2428 
2429   return rc;
2430 }
2431 
2432 static bool checked_mprotect(char* addr, size_t size, int prot) {
2433 
2434   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2435   // not tell me if protection failed when trying to protect an un-protectable range.
2436   //
2437   // This means if the memory was allocated using shmget/shmat, protection wont work
2438   // but mprotect will still return 0:
2439   //
2440   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2441 
2442   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2443 
2444   if (!rc) {
2445     const char* const s_errno = os::errno_name(errno);
2446     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2447     return false;
2448   }
2449 
2450   // mprotect success check
2451   //
2452   // Mprotect said it changed the protection but can I believe it?
2453   //
2454   // To be sure I need to check the protection afterwards. Try to
2455   // read from protected memory and check whether that causes a segfault.
2456   //
2457   if (!os::Aix::xpg_sus_mode()) {
2458 
2459     if (CanUseSafeFetch32()) {
2460 
2461       const bool read_protected =
2462         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2463          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2464 
2465       if (prot & PROT_READ) {
2466         rc = !read_protected;
2467       } else {
2468         rc = read_protected;
2469       }
2470 
2471       if (!rc) {
2472         if (os::Aix::on_pase()) {
2473           // There is an issue on older PASE systems where mprotect() will return success but the
2474           // memory will not be protected.
2475           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2476           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2477           // a stack. It is an OS error.
2478           //
2479           // A valid strategy is just to try again. This usually works. :-/
2480 
2481           ::usleep(1000);
2482           if (::mprotect(addr, size, prot) == 0) {
2483             const bool read_protected_2 =
2484               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2485               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2486             rc = true;
2487           }
2488         }
2489       }
2490     }
2491   }
2492 
2493   assert(rc == true, "mprotect failed.");
2494 
2495   return rc;
2496 }
2497 
2498 // Set protections specified
2499 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2500   unsigned int p = 0;
2501   switch (prot) {
2502   case MEM_PROT_NONE: p = PROT_NONE; break;
2503   case MEM_PROT_READ: p = PROT_READ; break;
2504   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2505   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2506   default:
2507     ShouldNotReachHere();
2508   }
2509   // is_committed is unused.
2510   return checked_mprotect(addr, size, p);
2511 }
2512 
2513 bool os::guard_memory(char* addr, size_t size) {
2514   return checked_mprotect(addr, size, PROT_NONE);
2515 }
2516 
2517 bool os::unguard_memory(char* addr, size_t size) {
2518   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2519 }
2520 
2521 // Large page support
2522 
2523 static size_t _large_page_size = 0;
2524 
2525 // Enable large page support if OS allows that.
2526 void os::large_page_init() {
2527   return; // Nothing to do. See query_multipage_support and friends.
2528 }
2529 
2530 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2531   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2532   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2533   // so this is not needed.
2534   assert(false, "should not be called on AIX");
2535   return NULL;
2536 }
2537 
2538 bool os::release_memory_special(char* base, size_t bytes) {
2539   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2540   Unimplemented();
2541   return false;
2542 }
2543 
2544 size_t os::large_page_size() {
2545   return _large_page_size;
2546 }
2547 
2548 bool os::can_commit_large_page_memory() {
2549   // Does not matter, we do not support huge pages.
2550   return false;
2551 }
2552 
2553 bool os::can_execute_large_page_memory() {
2554   // Does not matter, we do not support huge pages.
2555   return false;
2556 }
2557 
2558 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2559   assert(file_desc >= 0, "file_desc is not valid");
2560   char* result = NULL;
2561 
2562   // Always round to os::vm_page_size(), which may be larger than 4K.
2563   bytes = align_up(bytes, os::vm_page_size());
2564   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2565 
2566   if (result != NULL) {
2567     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2568       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2569     }
2570   }
2571   return result;
2572 }
2573 
2574 // Reserve memory at an arbitrary address, only if that area is
2575 // available (and not reserved for something else).
2576 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2577   char* addr = NULL;
2578 
2579   // Always round to os::vm_page_size(), which may be larger than 4K.
2580   bytes = align_up(bytes, os::vm_page_size());
2581 
2582   // In 4K mode always use mmap.
2583   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2584   if (os::vm_page_size() == 4*K) {
2585     return reserve_mmaped_memory(bytes, requested_addr, 0);
2586   } else {
2587     if (bytes >= Use64KPagesThreshold) {
2588       return reserve_shmated_memory(bytes, requested_addr, 0);
2589     } else {
2590       return reserve_mmaped_memory(bytes, requested_addr, 0);
2591     }
2592   }
2593 
2594   return addr;
2595 }
2596 
2597 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2598   return ::read(fd, buf, nBytes);
2599 }
2600 
2601 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2602   return ::pread(fd, buf, nBytes, offset);
2603 }
2604 
2605 void os::naked_short_sleep(jlong ms) {
2606   struct timespec req;
2607 
2608   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2609   req.tv_sec = 0;
2610   if (ms > 0) {
2611     req.tv_nsec = (ms % 1000) * 1000000;
2612   }
2613   else {
2614     req.tv_nsec = 1;
2615   }
2616 
2617   nanosleep(&req, NULL);
2618 
2619   return;
2620 }
2621 
2622 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2623 void os::infinite_sleep() {
2624   while (true) {    // sleep forever ...
2625     ::sleep(100);   // ... 100 seconds at a time
2626   }
2627 }
2628 
2629 // Used to convert frequent JVM_Yield() to nops
2630 bool os::dont_yield() {
2631   return DontYieldALot;
2632 }
2633 
2634 void os::naked_yield() {
2635   sched_yield();
2636 }
2637 
2638 ////////////////////////////////////////////////////////////////////////////////
2639 // thread priority support
2640 
2641 // From AIX manpage to pthread_setschedparam
2642 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2643 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2644 //
2645 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2646 // range from 40 to 80, where 40 is the least favored priority and 80
2647 // is the most favored."
2648 //
2649 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2650 // scheduling there; however, this still leaves iSeries.)
2651 //
2652 // We use the same values for AIX and PASE.
2653 int os::java_to_os_priority[CriticalPriority + 1] = {
2654   54,             // 0 Entry should never be used
2655 
2656   55,             // 1 MinPriority
2657   55,             // 2
2658   56,             // 3
2659 
2660   56,             // 4
2661   57,             // 5 NormPriority
2662   57,             // 6
2663 
2664   58,             // 7
2665   58,             // 8
2666   59,             // 9 NearMaxPriority
2667 
2668   60,             // 10 MaxPriority
2669 
2670   60              // 11 CriticalPriority
2671 };
2672 
2673 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2674   if (!UseThreadPriorities) return OS_OK;
2675   pthread_t thr = thread->osthread()->pthread_id();
2676   int policy = SCHED_OTHER;
2677   struct sched_param param;
2678   param.sched_priority = newpri;
2679   int ret = pthread_setschedparam(thr, policy, &param);
2680 
2681   if (ret != 0) {
2682     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2683         (int)thr, newpri, ret, os::errno_name(ret));
2684   }
2685   return (ret == 0) ? OS_OK : OS_ERR;
2686 }
2687 
2688 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2689   if (!UseThreadPriorities) {
2690     *priority_ptr = java_to_os_priority[NormPriority];
2691     return OS_OK;
2692   }
2693   pthread_t thr = thread->osthread()->pthread_id();
2694   int policy = SCHED_OTHER;
2695   struct sched_param param;
2696   int ret = pthread_getschedparam(thr, &policy, &param);
2697   *priority_ptr = param.sched_priority;
2698 
2699   return (ret == 0) ? OS_OK : OS_ERR;
2700 }
2701 
2702 ////////////////////////////////////////////////////////////////////////////////
2703 // suspend/resume support
2704 
2705 //  The low-level signal-based suspend/resume support is a remnant from the
2706 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2707 //  within hotspot. Currently used by JFR's OSThreadSampler
2708 //
2709 //  The remaining code is greatly simplified from the more general suspension
2710 //  code that used to be used.
2711 //
2712 //  The protocol is quite simple:
2713 //  - suspend:
2714 //      - sends a signal to the target thread
2715 //      - polls the suspend state of the osthread using a yield loop
2716 //      - target thread signal handler (SR_handler) sets suspend state
2717 //        and blocks in sigsuspend until continued
2718 //  - resume:
2719 //      - sets target osthread state to continue
2720 //      - sends signal to end the sigsuspend loop in the SR_handler
2721 //
2722 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2723 //  but is checked for NULL in SR_handler as a thread termination indicator.
2724 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2725 //
2726 //  Note that resume_clear_context() and suspend_save_context() are needed
2727 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2728 //  which in part is used by:
2729 //    - Forte Analyzer: AsyncGetCallTrace()
2730 //    - StackBanging: get_frame_at_stack_banging_point()
2731 
2732 static void resume_clear_context(OSThread *osthread) {
2733   osthread->set_ucontext(NULL);
2734   osthread->set_siginfo(NULL);
2735 }
2736 
2737 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2738   osthread->set_ucontext(context);
2739   osthread->set_siginfo(siginfo);
2740 }
2741 
2742 //
2743 // Handler function invoked when a thread's execution is suspended or
2744 // resumed. We have to be careful that only async-safe functions are
2745 // called here (Note: most pthread functions are not async safe and
2746 // should be avoided.)
2747 //
2748 // Note: sigwait() is a more natural fit than sigsuspend() from an
2749 // interface point of view, but sigwait() prevents the signal hander
2750 // from being run. libpthread would get very confused by not having
2751 // its signal handlers run and prevents sigwait()'s use with the
2752 // mutex granting granting signal.
2753 //
2754 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2755 //
2756 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2757   // Save and restore errno to avoid confusing native code with EINTR
2758   // after sigsuspend.
2759   int old_errno = errno;
2760 
2761   Thread* thread = Thread::current_or_null_safe();
2762   assert(thread != NULL, "Missing current thread in SR_handler");
2763 
2764   // On some systems we have seen signal delivery get "stuck" until the signal
2765   // mask is changed as part of thread termination. Check that the current thread
2766   // has not already terminated (via SR_lock()) - else the following assertion
2767   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2768   // destructor has completed.
2769 
2770   if (thread->SR_lock() == NULL) {
2771     return;
2772   }
2773 
2774   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2775 
2776   OSThread* osthread = thread->osthread();
2777 
2778   os::SuspendResume::State current = osthread->sr.state();
2779   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2780     suspend_save_context(osthread, siginfo, context);
2781 
2782     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2783     os::SuspendResume::State state = osthread->sr.suspended();
2784     if (state == os::SuspendResume::SR_SUSPENDED) {
2785       sigset_t suspend_set;  // signals for sigsuspend()
2786 
2787       // get current set of blocked signals and unblock resume signal
2788       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2789       sigdelset(&suspend_set, SR_signum);
2790 
2791       // wait here until we are resumed
2792       while (1) {
2793         sigsuspend(&suspend_set);
2794 
2795         os::SuspendResume::State result = osthread->sr.running();
2796         if (result == os::SuspendResume::SR_RUNNING) {
2797           break;
2798         }
2799       }
2800 
2801     } else if (state == os::SuspendResume::SR_RUNNING) {
2802       // request was cancelled, continue
2803     } else {
2804       ShouldNotReachHere();
2805     }
2806 
2807     resume_clear_context(osthread);
2808   } else if (current == os::SuspendResume::SR_RUNNING) {
2809     // request was cancelled, continue
2810   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2811     // ignore
2812   } else {
2813     ShouldNotReachHere();
2814   }
2815 
2816   errno = old_errno;
2817 }
2818 
2819 static int SR_initialize() {
2820   struct sigaction act;
2821   char *s;
2822   // Get signal number to use for suspend/resume
2823   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2824     int sig = ::strtol(s, 0, 10);
2825     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2826         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2827       SR_signum = sig;
2828     } else {
2829       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2830               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2831     }
2832   }
2833 
2834   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2835         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2836 
2837   sigemptyset(&SR_sigset);
2838   sigaddset(&SR_sigset, SR_signum);
2839 
2840   // Set up signal handler for suspend/resume.
2841   act.sa_flags = SA_RESTART|SA_SIGINFO;
2842   act.sa_handler = (void (*)(int)) SR_handler;
2843 
2844   // SR_signum is blocked by default.
2845   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2846 
2847   if (sigaction(SR_signum, &act, 0) == -1) {
2848     return -1;
2849   }
2850 
2851   // Save signal flag
2852   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2853   return 0;
2854 }
2855 
2856 static int SR_finalize() {
2857   return 0;
2858 }
2859 
2860 static int sr_notify(OSThread* osthread) {
2861   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2862   assert_status(status == 0, status, "pthread_kill");
2863   return status;
2864 }
2865 
2866 // "Randomly" selected value for how long we want to spin
2867 // before bailing out on suspending a thread, also how often
2868 // we send a signal to a thread we want to resume
2869 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2870 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2871 
2872 // returns true on success and false on error - really an error is fatal
2873 // but this seems the normal response to library errors
2874 static bool do_suspend(OSThread* osthread) {
2875   assert(osthread->sr.is_running(), "thread should be running");
2876   // mark as suspended and send signal
2877 
2878   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2879     // failed to switch, state wasn't running?
2880     ShouldNotReachHere();
2881     return false;
2882   }
2883 
2884   if (sr_notify(osthread) != 0) {
2885     // try to cancel, switch to running
2886 
2887     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2888     if (result == os::SuspendResume::SR_RUNNING) {
2889       // cancelled
2890       return false;
2891     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2892       // somehow managed to suspend
2893       return true;
2894     } else {
2895       ShouldNotReachHere();
2896       return false;
2897     }
2898   }
2899 
2900   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2901 
2902   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2903     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2904       os::naked_yield();
2905     }
2906 
2907     // timeout, try to cancel the request
2908     if (n >= RANDOMLY_LARGE_INTEGER) {
2909       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2910       if (cancelled == os::SuspendResume::SR_RUNNING) {
2911         return false;
2912       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2913         return true;
2914       } else {
2915         ShouldNotReachHere();
2916         return false;
2917       }
2918     }
2919   }
2920 
2921   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2922   return true;
2923 }
2924 
2925 static void do_resume(OSThread* osthread) {
2926   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2927 
2928   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2929     // failed to switch to WAKEUP_REQUEST
2930     ShouldNotReachHere();
2931     return;
2932   }
2933 
2934   while (!osthread->sr.is_running()) {
2935     if (sr_notify(osthread) == 0) {
2936       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2937         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2938           os::naked_yield();
2939         }
2940       }
2941     } else {
2942       ShouldNotReachHere();
2943     }
2944   }
2945 
2946   guarantee(osthread->sr.is_running(), "Must be running!");
2947 }
2948 
2949 ///////////////////////////////////////////////////////////////////////////////////
2950 // signal handling (except suspend/resume)
2951 
2952 // This routine may be used by user applications as a "hook" to catch signals.
2953 // The user-defined signal handler must pass unrecognized signals to this
2954 // routine, and if it returns true (non-zero), then the signal handler must
2955 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2956 // routine will never retun false (zero), but instead will execute a VM panic
2957 // routine kill the process.
2958 //
2959 // If this routine returns false, it is OK to call it again. This allows
2960 // the user-defined signal handler to perform checks either before or after
2961 // the VM performs its own checks. Naturally, the user code would be making
2962 // a serious error if it tried to handle an exception (such as a null check
2963 // or breakpoint) that the VM was generating for its own correct operation.
2964 //
2965 // This routine may recognize any of the following kinds of signals:
2966 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2967 // It should be consulted by handlers for any of those signals.
2968 //
2969 // The caller of this routine must pass in the three arguments supplied
2970 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2971 // field of the structure passed to sigaction(). This routine assumes that
2972 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2973 //
2974 // Note that the VM will print warnings if it detects conflicting signal
2975 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2976 //
2977 extern "C" JNIEXPORT int
2978 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2979 
2980 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2981 // to be the thing to call; documentation is not terribly clear about whether
2982 // pthread_sigmask also works, and if it does, whether it does the same.
2983 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2984   const int rc = ::pthread_sigmask(how, set, oset);
2985   // return value semantics differ slightly for error case:
2986   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2987   // (so, pthread_sigmask is more theadsafe for error handling)
2988   // But success is always 0.
2989   return rc == 0 ? true : false;
2990 }
2991 
2992 // Function to unblock all signals which are, according
2993 // to POSIX, typical program error signals. If they happen while being blocked,
2994 // they typically will bring down the process immediately.
2995 bool unblock_program_error_signals() {
2996   sigset_t set;
2997   ::sigemptyset(&set);
2998   ::sigaddset(&set, SIGILL);
2999   ::sigaddset(&set, SIGBUS);
3000   ::sigaddset(&set, SIGFPE);
3001   ::sigaddset(&set, SIGSEGV);
3002   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
3003 }
3004 
3005 // Renamed from 'signalHandler' to avoid collision with other shared libs.
3006 static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
3007   assert(info != NULL && uc != NULL, "it must be old kernel");
3008 
3009   // Never leave program error signals blocked;
3010   // on all our platforms they would bring down the process immediately when
3011   // getting raised while being blocked.
3012   unblock_program_error_signals();
3013 
3014   int orig_errno = errno;  // Preserve errno value over signal handler.
3015   JVM_handle_aix_signal(sig, info, uc, true);
3016   errno = orig_errno;
3017 }
3018 
3019 // This boolean allows users to forward their own non-matching signals
3020 // to JVM_handle_aix_signal, harmlessly.
3021 bool os::Aix::signal_handlers_are_installed = false;
3022 
3023 // For signal-chaining
3024 struct sigaction sigact[NSIG];
3025 sigset_t sigs;
3026 bool os::Aix::libjsig_is_loaded = false;
3027 typedef struct sigaction *(*get_signal_t)(int);
3028 get_signal_t os::Aix::get_signal_action = NULL;
3029 
3030 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3031   struct sigaction *actp = NULL;
3032 
3033   if (libjsig_is_loaded) {
3034     // Retrieve the old signal handler from libjsig
3035     actp = (*get_signal_action)(sig);
3036   }
3037   if (actp == NULL) {
3038     // Retrieve the preinstalled signal handler from jvm
3039     actp = get_preinstalled_handler(sig);
3040   }
3041 
3042   return actp;
3043 }
3044 
3045 static bool call_chained_handler(struct sigaction *actp, int sig,
3046                                  siginfo_t *siginfo, void *context) {
3047   // Call the old signal handler
3048   if (actp->sa_handler == SIG_DFL) {
3049     // It's more reasonable to let jvm treat it as an unexpected exception
3050     // instead of taking the default action.
3051     return false;
3052   } else if (actp->sa_handler != SIG_IGN) {
3053     if ((actp->sa_flags & SA_NODEFER) == 0) {
3054       // automaticlly block the signal
3055       sigaddset(&(actp->sa_mask), sig);
3056     }
3057 
3058     sa_handler_t hand = NULL;
3059     sa_sigaction_t sa = NULL;
3060     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3061     // retrieve the chained handler
3062     if (siginfo_flag_set) {
3063       sa = actp->sa_sigaction;
3064     } else {
3065       hand = actp->sa_handler;
3066     }
3067 
3068     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3069       actp->sa_handler = SIG_DFL;
3070     }
3071 
3072     // try to honor the signal mask
3073     sigset_t oset;
3074     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3075 
3076     // call into the chained handler
3077     if (siginfo_flag_set) {
3078       (*sa)(sig, siginfo, context);
3079     } else {
3080       (*hand)(sig);
3081     }
3082 
3083     // restore the signal mask
3084     pthread_sigmask(SIG_SETMASK, &oset, 0);
3085   }
3086   // Tell jvm's signal handler the signal is taken care of.
3087   return true;
3088 }
3089 
3090 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3091   bool chained = false;
3092   // signal-chaining
3093   if (UseSignalChaining) {
3094     struct sigaction *actp = get_chained_signal_action(sig);
3095     if (actp != NULL) {
3096       chained = call_chained_handler(actp, sig, siginfo, context);
3097     }
3098   }
3099   return chained;
3100 }
3101 
3102 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3103   if (sigismember(&sigs, sig)) {
3104     return &sigact[sig];
3105   }
3106   return NULL;
3107 }
3108 
3109 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3110   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3111   sigact[sig] = oldAct;
3112   sigaddset(&sigs, sig);
3113 }
3114 
3115 // for diagnostic
3116 int sigflags[NSIG];
3117 
3118 int os::Aix::get_our_sigflags(int sig) {
3119   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3120   return sigflags[sig];
3121 }
3122 
3123 void os::Aix::set_our_sigflags(int sig, int flags) {
3124   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3125   if (sig > 0 && sig < NSIG) {
3126     sigflags[sig] = flags;
3127   }
3128 }
3129 
3130 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3131   // Check for overwrite.
3132   struct sigaction oldAct;
3133   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3134 
3135   void* oldhand = oldAct.sa_sigaction
3136     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3137     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3138   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3139       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3140       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3141     if (AllowUserSignalHandlers || !set_installed) {
3142       // Do not overwrite; user takes responsibility to forward to us.
3143       return;
3144     } else if (UseSignalChaining) {
3145       // save the old handler in jvm
3146       save_preinstalled_handler(sig, oldAct);
3147       // libjsig also interposes the sigaction() call below and saves the
3148       // old sigaction on it own.
3149     } else {
3150       fatal("Encountered unexpected pre-existing sigaction handler "
3151             "%#lx for signal %d.", (long)oldhand, sig);
3152     }
3153   }
3154 
3155   struct sigaction sigAct;
3156   sigfillset(&(sigAct.sa_mask));
3157   if (!set_installed) {
3158     sigAct.sa_handler = SIG_DFL;
3159     sigAct.sa_flags = SA_RESTART;
3160   } else {
3161     sigAct.sa_sigaction = javaSignalHandler;
3162     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3163   }
3164   // Save flags, which are set by ours
3165   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3166   sigflags[sig] = sigAct.sa_flags;
3167 
3168   int ret = sigaction(sig, &sigAct, &oldAct);
3169   assert(ret == 0, "check");
3170 
3171   void* oldhand2 = oldAct.sa_sigaction
3172                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3173                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3174   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3175 }
3176 
3177 // install signal handlers for signals that HotSpot needs to
3178 // handle in order to support Java-level exception handling.
3179 void os::Aix::install_signal_handlers() {
3180   if (!signal_handlers_are_installed) {
3181     signal_handlers_are_installed = true;
3182 
3183     // signal-chaining
3184     typedef void (*signal_setting_t)();
3185     signal_setting_t begin_signal_setting = NULL;
3186     signal_setting_t end_signal_setting = NULL;
3187     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3188                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3189     if (begin_signal_setting != NULL) {
3190       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3191                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3192       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3193                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3194       libjsig_is_loaded = true;
3195       assert(UseSignalChaining, "should enable signal-chaining");
3196     }
3197     if (libjsig_is_loaded) {
3198       // Tell libjsig jvm is setting signal handlers.
3199       (*begin_signal_setting)();
3200     }
3201 
3202     ::sigemptyset(&sigs);
3203     set_signal_handler(SIGSEGV, true);
3204     set_signal_handler(SIGPIPE, true);
3205     set_signal_handler(SIGBUS, true);
3206     set_signal_handler(SIGILL, true);
3207     set_signal_handler(SIGFPE, true);
3208     set_signal_handler(SIGTRAP, true);
3209     set_signal_handler(SIGXFSZ, true);
3210 
3211     if (libjsig_is_loaded) {
3212       // Tell libjsig jvm finishes setting signal handlers.
3213       (*end_signal_setting)();
3214     }
3215 
3216     // We don't activate signal checker if libjsig is in place, we trust ourselves
3217     // and if UserSignalHandler is installed all bets are off.
3218     // Log that signal checking is off only if -verbose:jni is specified.
3219     if (CheckJNICalls) {
3220       if (libjsig_is_loaded) {
3221         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3222         check_signals = false;
3223       }
3224       if (AllowUserSignalHandlers) {
3225         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3226         check_signals = false;
3227       }
3228       // Need to initialize check_signal_done.
3229       ::sigemptyset(&check_signal_done);
3230     }
3231   }
3232 }
3233 
3234 static const char* get_signal_handler_name(address handler,
3235                                            char* buf, int buflen) {
3236   int offset;
3237   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3238   if (found) {
3239     // skip directory names
3240     const char *p1, *p2;
3241     p1 = buf;
3242     size_t len = strlen(os::file_separator());
3243     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3244     // The way os::dll_address_to_library_name is implemented on Aix
3245     // right now, it always returns -1 for the offset which is not
3246     // terribly informative.
3247     // Will fix that. For now, omit the offset.
3248     jio_snprintf(buf, buflen, "%s", p1);
3249   } else {
3250     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3251   }
3252   return buf;
3253 }
3254 
3255 static void print_signal_handler(outputStream* st, int sig,
3256                                  char* buf, size_t buflen) {
3257   struct sigaction sa;
3258   sigaction(sig, NULL, &sa);
3259 
3260   st->print("%s: ", os::exception_name(sig, buf, buflen));
3261 
3262   address handler = (sa.sa_flags & SA_SIGINFO)
3263     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3264     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3265 
3266   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3267     st->print("SIG_DFL");
3268   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3269     st->print("SIG_IGN");
3270   } else {
3271     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3272   }
3273 
3274   // Print readable mask.
3275   st->print(", sa_mask[0]=");
3276   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3277 
3278   address rh = VMError::get_resetted_sighandler(sig);
3279   // May be, handler was resetted by VMError?
3280   if (rh != NULL) {
3281     handler = rh;
3282     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3283   }
3284 
3285   // Print textual representation of sa_flags.
3286   st->print(", sa_flags=");
3287   os::Posix::print_sa_flags(st, sa.sa_flags);
3288 
3289   // Check: is it our handler?
3290   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3291       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3292     // It is our signal handler.
3293     // Check for flags, reset system-used one!
3294     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3295       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3296                 os::Aix::get_our_sigflags(sig));
3297     }
3298   }
3299   st->cr();
3300 }
3301 
3302 #define DO_SIGNAL_CHECK(sig) \
3303   if (!sigismember(&check_signal_done, sig)) \
3304     os::Aix::check_signal_handler(sig)
3305 
3306 // This method is a periodic task to check for misbehaving JNI applications
3307 // under CheckJNI, we can add any periodic checks here
3308 
3309 void os::run_periodic_checks() {
3310 
3311   if (check_signals == false) return;
3312 
3313   // SEGV and BUS if overridden could potentially prevent
3314   // generation of hs*.log in the event of a crash, debugging
3315   // such a case can be very challenging, so we absolutely
3316   // check the following for a good measure:
3317   DO_SIGNAL_CHECK(SIGSEGV);
3318   DO_SIGNAL_CHECK(SIGILL);
3319   DO_SIGNAL_CHECK(SIGFPE);
3320   DO_SIGNAL_CHECK(SIGBUS);
3321   DO_SIGNAL_CHECK(SIGPIPE);
3322   DO_SIGNAL_CHECK(SIGXFSZ);
3323   if (UseSIGTRAP) {
3324     DO_SIGNAL_CHECK(SIGTRAP);
3325   }
3326 
3327   // ReduceSignalUsage allows the user to override these handlers
3328   // see comments at the very top and jvm_md.h
3329   if (!ReduceSignalUsage) {
3330     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3331     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3332     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3333     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3334   }
3335 
3336   DO_SIGNAL_CHECK(SR_signum);
3337 }
3338 
3339 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3340 
3341 static os_sigaction_t os_sigaction = NULL;
3342 
3343 void os::Aix::check_signal_handler(int sig) {
3344   char buf[O_BUFLEN];
3345   address jvmHandler = NULL;
3346 
3347   struct sigaction act;
3348   if (os_sigaction == NULL) {
3349     // only trust the default sigaction, in case it has been interposed
3350     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3351     if (os_sigaction == NULL) return;
3352   }
3353 
3354   os_sigaction(sig, (struct sigaction*)NULL, &act);
3355 
3356   address thisHandler = (act.sa_flags & SA_SIGINFO)
3357     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3358     : CAST_FROM_FN_PTR(address, act.sa_handler);
3359 
3360   switch(sig) {
3361   case SIGSEGV:
3362   case SIGBUS:
3363   case SIGFPE:
3364   case SIGPIPE:
3365   case SIGILL:
3366   case SIGXFSZ:
3367     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3368     break;
3369 
3370   case SHUTDOWN1_SIGNAL:
3371   case SHUTDOWN2_SIGNAL:
3372   case SHUTDOWN3_SIGNAL:
3373   case BREAK_SIGNAL:
3374     jvmHandler = (address)user_handler();
3375     break;
3376 
3377   default:
3378     if (sig == SR_signum) {
3379       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3380     } else {
3381       return;
3382     }
3383     break;
3384   }
3385 
3386   if (thisHandler != jvmHandler) {
3387     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3388     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3389     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3390     // No need to check this sig any longer
3391     sigaddset(&check_signal_done, sig);
3392     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3393     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3394       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3395                     exception_name(sig, buf, O_BUFLEN));
3396     }
3397   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3398     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3399     tty->print("expected:");
3400     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3401     tty->cr();
3402     tty->print("  found:");
3403     os::Posix::print_sa_flags(tty, act.sa_flags);
3404     tty->cr();
3405     // No need to check this sig any longer
3406     sigaddset(&check_signal_done, sig);
3407   }
3408 
3409   // Dump all the signal
3410   if (sigismember(&check_signal_done, sig)) {
3411     print_signal_handlers(tty, buf, O_BUFLEN);
3412   }
3413 }
3414 
3415 // To install functions for atexit system call
3416 extern "C" {
3417   static void perfMemory_exit_helper() {
3418     perfMemory_exit();
3419   }
3420 }
3421 
3422 // This is called _before_ the most of global arguments have been parsed.
3423 void os::init(void) {
3424   // This is basic, we want to know if that ever changes.
3425   // (Shared memory boundary is supposed to be a 256M aligned.)
3426   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3427 
3428   // Record process break at startup.
3429   g_brk_at_startup = (address) ::sbrk(0);
3430   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3431 
3432   // First off, we need to know whether we run on AIX or PASE, and
3433   // the OS level we run on.
3434   os::Aix::initialize_os_info();
3435 
3436   // Scan environment (SPEC1170 behaviour, etc).
3437   os::Aix::scan_environment();
3438 
3439   // Probe multipage support.
3440   query_multipage_support();
3441 
3442   // Act like we only have one page size by eliminating corner cases which
3443   // we did not support very well anyway.
3444   // We have two input conditions:
3445   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3446   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3447   //    setting.
3448   //    Data segment page size is important for us because it defines the thread stack page
3449   //    size, which is needed for guard page handling, stack banging etc.
3450   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3451   //    and should be allocated with 64k pages.
3452   //
3453   // So, we do the following:
3454   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3455   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3456   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3457   // 64k          no              --- AIX 5.2 ? ---
3458   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3459 
3460   // We explicitly leave no option to change page size, because only upgrading would work,
3461   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3462 
3463   if (g_multipage_support.datapsize == 4*K) {
3464     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3465     if (g_multipage_support.can_use_64K_pages) {
3466       // .. but we are able to use 64K pages dynamically.
3467       // This would be typical for java launchers which are not linked
3468       // with datapsize=64K (like, any other launcher but our own).
3469       //
3470       // In this case it would be smart to allocate the java heap with 64K
3471       // to get the performance benefit, and to fake 64k pages for the
3472       // data segment (when dealing with thread stacks).
3473       //
3474       // However, leave a possibility to downgrade to 4K, using
3475       // -XX:-Use64KPages.
3476       if (Use64KPages) {
3477         trcVerbose("64K page mode (faked for data segment)");
3478         Aix::_page_size = 64*K;
3479       } else {
3480         trcVerbose("4K page mode (Use64KPages=off)");
3481         Aix::_page_size = 4*K;
3482       }
3483     } else {
3484       // .. and not able to allocate 64k pages dynamically. Here, just
3485       // fall back to 4K paged mode and use mmap for everything.
3486       trcVerbose("4K page mode");
3487       Aix::_page_size = 4*K;
3488       FLAG_SET_ERGO(bool, Use64KPages, false);
3489     }
3490   } else {
3491     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3492     // This normally means that we can allocate 64k pages dynamically.
3493     // (There is one special case where this may be false: EXTSHM=on.
3494     // but we decided to not support that mode).
3495     assert0(g_multipage_support.can_use_64K_pages);
3496     Aix::_page_size = 64*K;
3497     trcVerbose("64K page mode");
3498     FLAG_SET_ERGO(bool, Use64KPages, true);
3499   }
3500 
3501   // For now UseLargePages is just ignored.
3502   FLAG_SET_ERGO(bool, UseLargePages, false);
3503   _page_sizes[0] = 0;
3504 
3505   // debug trace
3506   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3507 
3508   // Next, we need to initialize libo4 and libperfstat libraries.
3509   if (os::Aix::on_pase()) {
3510     os::Aix::initialize_libo4();
3511   } else {
3512     os::Aix::initialize_libperfstat();
3513   }
3514 
3515   // Reset the perfstat information provided by ODM.
3516   if (os::Aix::on_aix()) {
3517     libperfstat::perfstat_reset();
3518   }
3519 
3520   // Now initialze basic system properties. Note that for some of the values we
3521   // need libperfstat etc.
3522   os::Aix::initialize_system_info();
3523 
3524   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3525 
3526   init_random(1234567);
3527 
3528   // _main_thread points to the thread that created/loaded the JVM.
3529   Aix::_main_thread = pthread_self();
3530 
3531   initial_time_count = os::elapsed_counter();
3532 
3533   os::Posix::init();
3534 }
3535 
3536 // This is called _after_ the global arguments have been parsed.
3537 jint os::init_2(void) {
3538 
3539   // This could be set after os::Posix::init() but all platforms
3540   // have to set it the same so we have to mirror Solaris.
3541   DEBUG_ONLY(os::set_mutex_init_done();)
3542 
3543   os::Posix::init_2();
3544 
3545   if (os::Aix::on_pase()) {
3546     trcVerbose("Running on PASE.");
3547   } else {
3548     trcVerbose("Running on AIX (not PASE).");
3549   }
3550 
3551   trcVerbose("processor count: %d", os::_processor_count);
3552   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3553 
3554   // Initially build up the loaded dll map.
3555   LoadedLibraries::reload();
3556   if (Verbose) {
3557     trcVerbose("Loaded Libraries: ");
3558     LoadedLibraries::print(tty);
3559   }
3560 
3561   // initialize suspend/resume support - must do this before signal_sets_init()
3562   if (SR_initialize() != 0) {
3563     perror("SR_initialize failed");
3564     return JNI_ERR;
3565   }
3566 
3567   Aix::signal_sets_init();
3568   Aix::install_signal_handlers();
3569   // Initialize data for jdk.internal.misc.Signal
3570   if (!ReduceSignalUsage) {
3571     jdk_misc_signal_init();
3572   }
3573 
3574   // Check and sets minimum stack sizes against command line options
3575   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3576     return JNI_ERR;
3577   }
3578 
3579   if (UseNUMA) {
3580     UseNUMA = false;
3581     warning("NUMA optimizations are not available on this OS.");
3582   }
3583 
3584   if (MaxFDLimit) {
3585     // Set the number of file descriptors to max. print out error
3586     // if getrlimit/setrlimit fails but continue regardless.
3587     struct rlimit nbr_files;
3588     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3589     if (status != 0) {
3590       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3591     } else {
3592       nbr_files.rlim_cur = nbr_files.rlim_max;
3593       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3594       if (status != 0) {
3595         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3596       }
3597     }
3598   }
3599 
3600   if (PerfAllowAtExitRegistration) {
3601     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3602     // At exit functions can be delayed until process exit time, which
3603     // can be problematic for embedded VM situations. Embedded VMs should
3604     // call DestroyJavaVM() to assure that VM resources are released.
3605 
3606     // Note: perfMemory_exit_helper atexit function may be removed in
3607     // the future if the appropriate cleanup code can be added to the
3608     // VM_Exit VMOperation's doit method.
3609     if (atexit(perfMemory_exit_helper) != 0) {
3610       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3611     }
3612   }
3613 
3614   return JNI_OK;
3615 }
3616 
3617 // Mark the polling page as unreadable
3618 void os::make_polling_page_unreadable(void) {
3619   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3620     fatal("Could not disable polling page");
3621   }
3622 };
3623 
3624 // Mark the polling page as readable
3625 void os::make_polling_page_readable(void) {
3626   // Changed according to os_linux.cpp.
3627   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3628     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3629   }
3630 };
3631 
3632 int os::active_processor_count() {
3633   // User has overridden the number of active processors
3634   if (ActiveProcessorCount > 0) {
3635     log_trace(os)("active_processor_count: "
3636                   "active processor count set by user : %d",
3637                   ActiveProcessorCount);
3638     return ActiveProcessorCount;
3639   }
3640 
3641   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3642   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3643   return online_cpus;
3644 }
3645 
3646 void os::set_native_thread_name(const char *name) {
3647   // Not yet implemented.
3648   return;
3649 }
3650 
3651 bool os::distribute_processes(uint length, uint* distribution) {
3652   // Not yet implemented.
3653   return false;
3654 }
3655 
3656 bool os::bind_to_processor(uint processor_id) {
3657   // Not yet implemented.
3658   return false;
3659 }
3660 
3661 void os::SuspendedThreadTask::internal_do_task() {
3662   if (do_suspend(_thread->osthread())) {
3663     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3664     do_task(context);
3665     do_resume(_thread->osthread());
3666   }
3667 }
3668 
3669 ////////////////////////////////////////////////////////////////////////////////
3670 // debug support
3671 
3672 bool os::find(address addr, outputStream* st) {
3673 
3674   st->print(PTR_FORMAT ": ", addr);
3675 
3676   loaded_module_t lm;
3677   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3678       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3679     st->print_cr("%s", lm.path);
3680     return true;
3681   }
3682 
3683   return false;
3684 }
3685 
3686 ////////////////////////////////////////////////////////////////////////////////
3687 // misc
3688 
3689 // This does not do anything on Aix. This is basically a hook for being
3690 // able to use structured exception handling (thread-local exception filters)
3691 // on, e.g., Win32.
3692 void
3693 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3694                          JavaCallArguments* args, Thread* thread) {
3695   f(value, method, args, thread);
3696 }
3697 
3698 void os::print_statistics() {
3699 }
3700 
3701 bool os::message_box(const char* title, const char* message) {
3702   int i;
3703   fdStream err(defaultStream::error_fd());
3704   for (i = 0; i < 78; i++) err.print_raw("=");
3705   err.cr();
3706   err.print_raw_cr(title);
3707   for (i = 0; i < 78; i++) err.print_raw("-");
3708   err.cr();
3709   err.print_raw_cr(message);
3710   for (i = 0; i < 78; i++) err.print_raw("=");
3711   err.cr();
3712 
3713   char buf[16];
3714   // Prevent process from exiting upon "read error" without consuming all CPU
3715   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3716 
3717   return buf[0] == 'y' || buf[0] == 'Y';
3718 }
3719 
3720 // Is a (classpath) directory empty?
3721 bool os::dir_is_empty(const char* path) {
3722   DIR *dir = NULL;
3723   struct dirent *ptr;
3724 
3725   dir = opendir(path);
3726   if (dir == NULL) return true;
3727 
3728   /* Scan the directory */
3729   bool result = true;
3730   while (result && (ptr = readdir(dir)) != NULL) {
3731     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3732       result = false;
3733     }
3734   }
3735   closedir(dir);
3736   return result;
3737 }
3738 
3739 // This code originates from JDK's sysOpen and open64_w
3740 // from src/solaris/hpi/src/system_md.c
3741 
3742 int os::open(const char *path, int oflag, int mode) {
3743 
3744   if (strlen(path) > MAX_PATH - 1) {
3745     errno = ENAMETOOLONG;
3746     return -1;
3747   }
3748   int fd;
3749 
3750   fd = ::open64(path, oflag, mode);
3751   if (fd == -1) return -1;
3752 
3753   // If the open succeeded, the file might still be a directory.
3754   {
3755     struct stat64 buf64;
3756     int ret = ::fstat64(fd, &buf64);
3757     int st_mode = buf64.st_mode;
3758 
3759     if (ret != -1) {
3760       if ((st_mode & S_IFMT) == S_IFDIR) {
3761         errno = EISDIR;
3762         ::close(fd);
3763         return -1;
3764       }
3765     } else {
3766       ::close(fd);
3767       return -1;
3768     }
3769   }
3770 
3771   // All file descriptors that are opened in the JVM and not
3772   // specifically destined for a subprocess should have the
3773   // close-on-exec flag set. If we don't set it, then careless 3rd
3774   // party native code might fork and exec without closing all
3775   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3776   // UNIXProcess.c), and this in turn might:
3777   //
3778   // - cause end-of-file to fail to be detected on some file
3779   //   descriptors, resulting in mysterious hangs, or
3780   //
3781   // - might cause an fopen in the subprocess to fail on a system
3782   //   suffering from bug 1085341.
3783   //
3784   // (Yes, the default setting of the close-on-exec flag is a Unix
3785   // design flaw.)
3786   //
3787   // See:
3788   // 1085341: 32-bit stdio routines should support file descriptors >255
3789   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3790   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3791 #ifdef FD_CLOEXEC
3792   {
3793     int flags = ::fcntl(fd, F_GETFD);
3794     if (flags != -1)
3795       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3796   }
3797 #endif
3798 
3799   return fd;
3800 }
3801 
3802 // create binary file, rewriting existing file if required
3803 int os::create_binary_file(const char* path, bool rewrite_existing) {
3804   int oflags = O_WRONLY | O_CREAT;
3805   if (!rewrite_existing) {
3806     oflags |= O_EXCL;
3807   }
3808   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3809 }
3810 
3811 // return current position of file pointer
3812 jlong os::current_file_offset(int fd) {
3813   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3814 }
3815 
3816 // move file pointer to the specified offset
3817 jlong os::seek_to_file_offset(int fd, jlong offset) {
3818   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3819 }
3820 
3821 // This code originates from JDK's sysAvailable
3822 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3823 
3824 int os::available(int fd, jlong *bytes) {
3825   jlong cur, end;
3826   int mode;
3827   struct stat64 buf64;
3828 
3829   if (::fstat64(fd, &buf64) >= 0) {
3830     mode = buf64.st_mode;
3831     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3832       int n;
3833       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3834         *bytes = n;
3835         return 1;
3836       }
3837     }
3838   }
3839   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3840     return 0;
3841   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3842     return 0;
3843   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3844     return 0;
3845   }
3846   *bytes = end - cur;
3847   return 1;
3848 }
3849 
3850 // Map a block of memory.
3851 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3852                         char *addr, size_t bytes, bool read_only,
3853                         bool allow_exec) {
3854   int prot;
3855   int flags = MAP_PRIVATE;
3856 
3857   if (read_only) {
3858     prot = PROT_READ;
3859     flags = MAP_SHARED;
3860   } else {
3861     prot = PROT_READ | PROT_WRITE;
3862     flags = MAP_PRIVATE;
3863   }
3864 
3865   if (allow_exec) {
3866     prot |= PROT_EXEC;
3867   }
3868 
3869   if (addr != NULL) {
3870     flags |= MAP_FIXED;
3871   }
3872 
3873   // Allow anonymous mappings if 'fd' is -1.
3874   if (fd == -1) {
3875     flags |= MAP_ANONYMOUS;
3876   }
3877 
3878   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3879                                      fd, file_offset);
3880   if (mapped_address == MAP_FAILED) {
3881     return NULL;
3882   }
3883   return mapped_address;
3884 }
3885 
3886 // Remap a block of memory.
3887 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3888                           char *addr, size_t bytes, bool read_only,
3889                           bool allow_exec) {
3890   // same as map_memory() on this OS
3891   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3892                         allow_exec);
3893 }
3894 
3895 // Unmap a block of memory.
3896 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3897   return munmap(addr, bytes) == 0;
3898 }
3899 
3900 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3901 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3902 // of a thread.
3903 //
3904 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3905 // the fast estimate available on the platform.
3906 
3907 jlong os::current_thread_cpu_time() {
3908   // return user + sys since the cost is the same
3909   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3910   assert(n >= 0, "negative CPU time");
3911   return n;
3912 }
3913 
3914 jlong os::thread_cpu_time(Thread* thread) {
3915   // consistent with what current_thread_cpu_time() returns
3916   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3917   assert(n >= 0, "negative CPU time");
3918   return n;
3919 }
3920 
3921 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3922   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3923   assert(n >= 0, "negative CPU time");
3924   return n;
3925 }
3926 
3927 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3928   bool error = false;
3929 
3930   jlong sys_time = 0;
3931   jlong user_time = 0;
3932 
3933   // Reimplemented using getthrds64().
3934   //
3935   // Works like this:
3936   // For the thread in question, get the kernel thread id. Then get the
3937   // kernel thread statistics using that id.
3938   //
3939   // This only works of course when no pthread scheduling is used,
3940   // i.e. there is a 1:1 relationship to kernel threads.
3941   // On AIX, see AIXTHREAD_SCOPE variable.
3942 
3943   pthread_t pthtid = thread->osthread()->pthread_id();
3944 
3945   // retrieve kernel thread id for the pthread:
3946   tid64_t tid = 0;
3947   struct __pthrdsinfo pinfo;
3948   // I just love those otherworldly IBM APIs which force me to hand down
3949   // dummy buffers for stuff I dont care for...
3950   char dummy[1];
3951   int dummy_size = sizeof(dummy);
3952   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3953                           dummy, &dummy_size) == 0) {
3954     tid = pinfo.__pi_tid;
3955   } else {
3956     tty->print_cr("pthread_getthrds_np failed.");
3957     error = true;
3958   }
3959 
3960   // retrieve kernel timing info for that kernel thread
3961   if (!error) {
3962     struct thrdentry64 thrdentry;
3963     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3964       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3965       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3966     } else {
3967       tty->print_cr("pthread_getthrds_np failed.");
3968       error = true;
3969     }
3970   }
3971 
3972   if (p_sys_time) {
3973     *p_sys_time = sys_time;
3974   }
3975 
3976   if (p_user_time) {
3977     *p_user_time = user_time;
3978   }
3979 
3980   if (error) {
3981     return false;
3982   }
3983 
3984   return true;
3985 }
3986 
3987 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3988   jlong sys_time;
3989   jlong user_time;
3990 
3991   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3992     return -1;
3993   }
3994 
3995   return user_sys_cpu_time ? sys_time + user_time : user_time;
3996 }
3997 
3998 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3999   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4000   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4001   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4002   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4003 }
4004 
4005 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4006   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4007   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4008   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4009   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4010 }
4011 
4012 bool os::is_thread_cpu_time_supported() {
4013   return true;
4014 }
4015 
4016 // System loadavg support. Returns -1 if load average cannot be obtained.
4017 // For now just return the system wide load average (no processor sets).
4018 int os::loadavg(double values[], int nelem) {
4019 
4020   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4021   guarantee(values, "argument error");
4022 
4023   if (os::Aix::on_pase()) {
4024 
4025     // AS/400 PASE: use libo4 porting library
4026     double v[3] = { 0.0, 0.0, 0.0 };
4027 
4028     if (libo4::get_load_avg(v, v + 1, v + 2)) {
4029       for (int i = 0; i < nelem; i ++) {
4030         values[i] = v[i];
4031       }
4032       return nelem;
4033     } else {
4034       return -1;
4035     }
4036 
4037   } else {
4038 
4039     // AIX: use libperfstat
4040     libperfstat::cpuinfo_t ci;
4041     if (libperfstat::get_cpuinfo(&ci)) {
4042       for (int i = 0; i < nelem; i++) {
4043         values[i] = ci.loadavg[i];
4044       }
4045     } else {
4046       return -1;
4047     }
4048     return nelem;
4049   }
4050 }
4051 
4052 void os::pause() {
4053   char filename[MAX_PATH];
4054   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4055     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4056   } else {
4057     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4058   }
4059 
4060   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4061   if (fd != -1) {
4062     struct stat buf;
4063     ::close(fd);
4064     while (::stat(filename, &buf) == 0) {
4065       (void)::poll(NULL, 0, 100);
4066     }
4067   } else {
4068     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4069   }
4070 }
4071 
4072 bool os::is_primordial_thread(void) {
4073   if (pthread_self() == (pthread_t)1) {
4074     return true;
4075   } else {
4076     return false;
4077   }
4078 }
4079 
4080 // OS recognitions (PASE/AIX, OS level) call this before calling any
4081 // one of Aix::on_pase(), Aix::os_version() static
4082 void os::Aix::initialize_os_info() {
4083 
4084   assert(_on_pase == -1 && _os_version == 0, "already called.");
4085 
4086   struct utsname uts;
4087   memset(&uts, 0, sizeof(uts));
4088   strcpy(uts.sysname, "?");
4089   if (::uname(&uts) == -1) {
4090     trcVerbose("uname failed (%d)", errno);
4091     guarantee(0, "Could not determine whether we run on AIX or PASE");
4092   } else {
4093     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4094                "node \"%s\" machine \"%s\"\n",
4095                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4096     const int major = atoi(uts.version);
4097     assert(major > 0, "invalid OS version");
4098     const int minor = atoi(uts.release);
4099     assert(minor > 0, "invalid OS release");
4100     _os_version = (major << 24) | (minor << 16);
4101     char ver_str[20] = {0};
4102     char *name_str = "unknown OS";
4103     if (strcmp(uts.sysname, "OS400") == 0) {
4104       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4105       _on_pase = 1;
4106       if (os_version_short() < 0x0504) {
4107         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4108         assert(false, "OS/400 release too old.");
4109       }
4110       name_str = "OS/400 (pase)";
4111       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4112     } else if (strcmp(uts.sysname, "AIX") == 0) {
4113       // We run on AIX. We do not support versions older than AIX 5.3.
4114       _on_pase = 0;
4115       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4116       odmWrapper::determine_os_kernel_version(&_os_version);
4117       if (os_version_short() < 0x0503) {
4118         trcVerbose("AIX release older than AIX 5.3 not supported.");
4119         assert(false, "AIX release too old.");
4120       }
4121       name_str = "AIX";
4122       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4123                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4124     } else {
4125       assert(false, name_str);
4126     }
4127     trcVerbose("We run on %s %s", name_str, ver_str);
4128   }
4129 
4130   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4131 } // end: os::Aix::initialize_os_info()
4132 
4133 // Scan environment for important settings which might effect the VM.
4134 // Trace out settings. Warn about invalid settings and/or correct them.
4135 //
4136 // Must run after os::Aix::initialue_os_info().
4137 void os::Aix::scan_environment() {
4138 
4139   char* p;
4140   int rc;
4141 
4142   // Warn explicity if EXTSHM=ON is used. That switch changes how
4143   // System V shared memory behaves. One effect is that page size of
4144   // shared memory cannot be change dynamically, effectivly preventing
4145   // large pages from working.
4146   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4147   // recommendation is (in OSS notes) to switch it off.
4148   p = ::getenv("EXTSHM");
4149   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4150   if (p && strcasecmp(p, "ON") == 0) {
4151     _extshm = 1;
4152     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4153     if (!AllowExtshm) {
4154       // We allow under certain conditions the user to continue. However, we want this
4155       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4156       // that the VM is not able to allocate 64k pages for the heap.
4157       // We do not want to run with reduced performance.
4158       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4159     }
4160   } else {
4161     _extshm = 0;
4162   }
4163 
4164   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4165   // Not tested, not supported.
4166   //
4167   // Note that it might be worth the trouble to test and to require it, if only to
4168   // get useful return codes for mprotect.
4169   //
4170   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4171   // exec() ? before loading the libjvm ? ....)
4172   p = ::getenv("XPG_SUS_ENV");
4173   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4174   if (p && strcmp(p, "ON") == 0) {
4175     _xpg_sus_mode = 1;
4176     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4177     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4178     // clobber address ranges. If we ever want to support that, we have to do some
4179     // testing first.
4180     guarantee(false, "XPG_SUS_ENV=ON not supported");
4181   } else {
4182     _xpg_sus_mode = 0;
4183   }
4184 
4185   if (os::Aix::on_pase()) {
4186     p = ::getenv("QIBM_MULTI_THREADED");
4187     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4188   }
4189 
4190   p = ::getenv("LDR_CNTRL");
4191   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4192   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4193     if (p && ::strstr(p, "TEXTPSIZE")) {
4194       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4195         "you may experience hangs or crashes on OS/400 V7R1.");
4196     }
4197   }
4198 
4199   p = ::getenv("AIXTHREAD_GUARDPAGES");
4200   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4201 
4202 } // end: os::Aix::scan_environment()
4203 
4204 // PASE: initialize the libo4 library (PASE porting library).
4205 void os::Aix::initialize_libo4() {
4206   guarantee(os::Aix::on_pase(), "OS/400 only.");
4207   if (!libo4::init()) {
4208     trcVerbose("libo4 initialization failed.");
4209     assert(false, "libo4 initialization failed");
4210   } else {
4211     trcVerbose("libo4 initialized.");
4212   }
4213 }
4214 
4215 // AIX: initialize the libperfstat library.
4216 void os::Aix::initialize_libperfstat() {
4217   assert(os::Aix::on_aix(), "AIX only");
4218   if (!libperfstat::init()) {
4219     trcVerbose("libperfstat initialization failed.");
4220     assert(false, "libperfstat initialization failed");
4221   } else {
4222     trcVerbose("libperfstat initialized.");
4223   }
4224 }
4225 
4226 /////////////////////////////////////////////////////////////////////////////
4227 // thread stack
4228 
4229 // Get the current stack base from the OS (actually, the pthread library).
4230 // Note: usually not page aligned.
4231 address os::current_stack_base() {
4232   AixMisc::stackbounds_t bounds;
4233   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4234   guarantee(rc, "Unable to retrieve stack bounds.");
4235   return bounds.base;
4236 }
4237 
4238 // Get the current stack size from the OS (actually, the pthread library).
4239 // Returned size is such that (base - size) is always aligned to page size.
4240 size_t os::current_stack_size() {
4241   AixMisc::stackbounds_t bounds;
4242   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4243   guarantee(rc, "Unable to retrieve stack bounds.");
4244   // Align the returned stack size such that the stack low address
4245   // is aligned to page size (Note: base is usually not and we do not care).
4246   // We need to do this because caller code will assume stack low address is
4247   // page aligned and will place guard pages without checking.
4248   address low = bounds.base - bounds.size;
4249   address low_aligned = (address)align_up(low, os::vm_page_size());
4250   size_t s = bounds.base - low_aligned;
4251   return s;
4252 }
4253 
4254 extern char** environ;
4255 
4256 // Run the specified command in a separate process. Return its exit value,
4257 // or -1 on failure (e.g. can't fork a new process).
4258 // Unlike system(), this function can be called from signal handler. It
4259 // doesn't block SIGINT et al.
4260 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
4261   char * argv[4] = {"sh", "-c", cmd, NULL};
4262 
4263   pid_t pid = fork();
4264 
4265   if (pid < 0) {
4266     // fork failed
4267     return -1;
4268 
4269   } else if (pid == 0) {
4270     // child process
4271 
4272     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4273     execve("/usr/bin/sh", argv, environ);
4274 
4275     // execve failed
4276     _exit(-1);
4277 
4278   } else {
4279     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4280     // care about the actual exit code, for now.
4281 
4282     int status;
4283 
4284     // Wait for the child process to exit. This returns immediately if
4285     // the child has already exited. */
4286     while (waitpid(pid, &status, 0) < 0) {
4287       switch (errno) {
4288         case ECHILD: return 0;
4289         case EINTR: break;
4290         default: return -1;
4291       }
4292     }
4293 
4294     if (WIFEXITED(status)) {
4295       // The child exited normally; get its exit code.
4296       return WEXITSTATUS(status);
4297     } else if (WIFSIGNALED(status)) {
4298       // The child exited because of a signal.
4299       // The best value to return is 0x80 + signal number,
4300       // because that is what all Unix shells do, and because
4301       // it allows callers to distinguish between process exit and
4302       // process death by signal.
4303       return 0x80 + WTERMSIG(status);
4304     } else {
4305       // Unknown exit code; pass it through.
4306       return status;
4307     }
4308   }
4309   return -1;
4310 }
4311 
4312 // Get the default path to the core file
4313 // Returns the length of the string
4314 int os::get_core_path(char* buffer, size_t bufferSize) {
4315   const char* p = get_current_directory(buffer, bufferSize);
4316 
4317   if (p == NULL) {
4318     assert(p != NULL, "failed to get current directory");
4319     return 0;
4320   }
4321 
4322   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4323                                                p, current_process_id());
4324 
4325   return strlen(buffer);
4326 }
4327 
4328 #ifndef PRODUCT
4329 void TestReserveMemorySpecial_test() {
4330   // No tests available for this platform
4331 }
4332 #endif
4333 
4334 bool os::start_debugging(char *buf, int buflen) {
4335   int len = (int)strlen(buf);
4336   char *p = &buf[len];
4337 
4338   jio_snprintf(p, buflen -len,
4339                  "\n\n"
4340                  "Do you want to debug the problem?\n\n"
4341                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4342                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4343                  "Otherwise, press RETURN to abort...",
4344                  os::current_process_id(),
4345                  os::current_thread_id(), thread_self());
4346 
4347   bool yes = os::message_box("Unexpected Error", buf);
4348 
4349   if (yes) {
4350     // yes, user asked VM to launch debugger
4351     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4352 
4353     os::fork_and_exec(buf);
4354     yes = false;
4355   }
4356   return yes;
4357 }
4358 
4359 static inline time_t get_mtime(const char* filename) {
4360   struct stat st;
4361   int ret = os::stat(filename, &st);
4362   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
4363   return st.st_mtime;
4364 }
4365 
4366 int os::compare_file_modified_times(const char* file1, const char* file2) {
4367   time_t t1 = get_mtime(file1);
4368   time_t t2 = get_mtime(file2);
4369   return t1 - t2;
4370 }