1 /*
   2  * Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2019, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/codeBuffer.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "gc/shared/cardTableBarrierSet.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/accessDecorators.hpp"
  38 #include "oops/compressedOops.inline.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #ifdef COMPILER2
  41 #include "opto/compile.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/matcher.hpp"
  44 #endif
  45 #include "prims/methodHandles.hpp"
  46 #include "registerSaver_s390.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/icache.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/os.hpp"
  52 #include "runtime/safepoint.hpp"
  53 #include "runtime/safepointMechanism.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/macros.hpp"
  58 
  59 #include <ucontext.h>
  60 
  61 #define BLOCK_COMMENT(str) block_comment(str)
  62 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 // Move 32-bit register if destination and source are different.
  65 void MacroAssembler::lr_if_needed(Register rd, Register rs) {
  66   if (rs != rd) { z_lr(rd, rs); }
  67 }
  68 
  69 // Move register if destination and source are different.
  70 void MacroAssembler::lgr_if_needed(Register rd, Register rs) {
  71   if (rs != rd) { z_lgr(rd, rs); }
  72 }
  73 
  74 // Zero-extend 32-bit register into 64-bit register if destination and source are different.
  75 void MacroAssembler::llgfr_if_needed(Register rd, Register rs) {
  76   if (rs != rd) { z_llgfr(rd, rs); }
  77 }
  78 
  79 // Move float register if destination and source are different.
  80 void MacroAssembler::ldr_if_needed(FloatRegister rd, FloatRegister rs) {
  81   if (rs != rd) { z_ldr(rd, rs); }
  82 }
  83 
  84 // Move integer register if destination and source are different.
  85 // It is assumed that shorter-than-int types are already
  86 // appropriately sign-extended.
  87 void MacroAssembler::move_reg_if_needed(Register dst, BasicType dst_type, Register src,
  88                                         BasicType src_type) {
  89   assert((dst_type != T_FLOAT) && (dst_type != T_DOUBLE), "use move_freg for float types");
  90   assert((src_type != T_FLOAT) && (src_type != T_DOUBLE), "use move_freg for float types");
  91 
  92   if (dst_type == src_type) {
  93     lgr_if_needed(dst, src); // Just move all 64 bits.
  94     return;
  95   }
  96 
  97   switch (dst_type) {
  98     // Do not support these types for now.
  99     //  case T_BOOLEAN:
 100     case T_BYTE:  // signed byte
 101       switch (src_type) {
 102         case T_INT:
 103           z_lgbr(dst, src);
 104           break;
 105         default:
 106           ShouldNotReachHere();
 107       }
 108       return;
 109 
 110     case T_CHAR:
 111     case T_SHORT:
 112       switch (src_type) {
 113         case T_INT:
 114           if (dst_type == T_CHAR) {
 115             z_llghr(dst, src);
 116           } else {
 117             z_lghr(dst, src);
 118           }
 119           break;
 120         default:
 121           ShouldNotReachHere();
 122       }
 123       return;
 124 
 125     case T_INT:
 126       switch (src_type) {
 127         case T_BOOLEAN:
 128         case T_BYTE:
 129         case T_CHAR:
 130         case T_SHORT:
 131         case T_INT:
 132         case T_LONG:
 133         case T_OBJECT:
 134         case T_ARRAY:
 135         case T_VOID:
 136         case T_ADDRESS:
 137           lr_if_needed(dst, src);
 138           // llgfr_if_needed(dst, src);  // zero-extend (in case we need to find a bug).
 139           return;
 140 
 141         default:
 142           assert(false, "non-integer src type");
 143           return;
 144       }
 145     case T_LONG:
 146       switch (src_type) {
 147         case T_BOOLEAN:
 148         case T_BYTE:
 149         case T_CHAR:
 150         case T_SHORT:
 151         case T_INT:
 152           z_lgfr(dst, src); // sign extension
 153           return;
 154 
 155         case T_LONG:
 156         case T_OBJECT:
 157         case T_ARRAY:
 158         case T_VOID:
 159         case T_ADDRESS:
 160           lgr_if_needed(dst, src);
 161           return;
 162 
 163         default:
 164           assert(false, "non-integer src type");
 165           return;
 166       }
 167       return;
 168     case T_OBJECT:
 169     case T_ARRAY:
 170     case T_VOID:
 171     case T_ADDRESS:
 172       switch (src_type) {
 173         // These types don't make sense to be converted to pointers:
 174         //      case T_BOOLEAN:
 175         //      case T_BYTE:
 176         //      case T_CHAR:
 177         //      case T_SHORT:
 178 
 179         case T_INT:
 180           z_llgfr(dst, src); // zero extension
 181           return;
 182 
 183         case T_LONG:
 184         case T_OBJECT:
 185         case T_ARRAY:
 186         case T_VOID:
 187         case T_ADDRESS:
 188           lgr_if_needed(dst, src);
 189           return;
 190 
 191         default:
 192           assert(false, "non-integer src type");
 193           return;
 194       }
 195       return;
 196     default:
 197       assert(false, "non-integer dst type");
 198       return;
 199   }
 200 }
 201 
 202 // Move float register if destination and source are different.
 203 void MacroAssembler::move_freg_if_needed(FloatRegister dst, BasicType dst_type,
 204                                          FloatRegister src, BasicType src_type) {
 205   assert((dst_type == T_FLOAT) || (dst_type == T_DOUBLE), "use move_reg for int types");
 206   assert((src_type == T_FLOAT) || (src_type == T_DOUBLE), "use move_reg for int types");
 207   if (dst_type == src_type) {
 208     ldr_if_needed(dst, src); // Just move all 64 bits.
 209   } else {
 210     switch (dst_type) {
 211       case T_FLOAT:
 212         assert(src_type == T_DOUBLE, "invalid float type combination");
 213         z_ledbr(dst, src);
 214         return;
 215       case T_DOUBLE:
 216         assert(src_type == T_FLOAT, "invalid float type combination");
 217         z_ldebr(dst, src);
 218         return;
 219       default:
 220         assert(false, "non-float dst type");
 221         return;
 222     }
 223   }
 224 }
 225 
 226 // Optimized emitter for reg to mem operations.
 227 // Uses modern instructions if running on modern hardware, classic instructions
 228 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 229 // Data register (reg) cannot be used as work register.
 230 //
 231 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 232 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 233 void MacroAssembler::freg2mem_opt(FloatRegister reg,
 234                                   int64_t       disp,
 235                                   Register      index,
 236                                   Register      base,
 237                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 238                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 239                                   Register      scratch) {
 240   index = (index == noreg) ? Z_R0 : index;
 241   if (Displacement::is_shortDisp(disp)) {
 242     (this->*classic)(reg, disp, index, base);
 243   } else {
 244     if (Displacement::is_validDisp(disp)) {
 245       (this->*modern)(reg, disp, index, base);
 246     } else {
 247       if (scratch != Z_R0 && scratch != Z_R1) {
 248         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 249       } else {
 250         if (scratch != Z_R0) {   // scratch == Z_R1
 251           if ((scratch == index) || (index == base)) {
 252             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 253           } else {
 254             add2reg(scratch, disp, base);
 255             (this->*classic)(reg, 0, index, scratch);
 256             if (base == scratch) {
 257               add2reg(base, -disp);  // Restore base.
 258             }
 259           }
 260         } else {   // scratch == Z_R0
 261           z_lgr(scratch, base);
 262           add2reg(base, disp);
 263           (this->*classic)(reg, 0, index, base);
 264           z_lgr(base, scratch);      // Restore base.
 265         }
 266       }
 267     }
 268   }
 269 }
 270 
 271 void MacroAssembler::freg2mem_opt(FloatRegister reg, const Address &a, bool is_double) {
 272   if (is_double) {
 273     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stdy), CLASSIC_FFUN(z_std));
 274   } else {
 275     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stey), CLASSIC_FFUN(z_ste));
 276   }
 277 }
 278 
 279 // Optimized emitter for mem to reg operations.
 280 // Uses modern instructions if running on modern hardware, classic instructions
 281 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 282 // data register (reg) cannot be used as work register.
 283 //
 284 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 285 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 286 void MacroAssembler::mem2freg_opt(FloatRegister reg,
 287                                   int64_t       disp,
 288                                   Register      index,
 289                                   Register      base,
 290                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 291                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 292                                   Register      scratch) {
 293   index = (index == noreg) ? Z_R0 : index;
 294   if (Displacement::is_shortDisp(disp)) {
 295     (this->*classic)(reg, disp, index, base);
 296   } else {
 297     if (Displacement::is_validDisp(disp)) {
 298       (this->*modern)(reg, disp, index, base);
 299     } else {
 300       if (scratch != Z_R0 && scratch != Z_R1) {
 301         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 302       } else {
 303         if (scratch != Z_R0) {   // scratch == Z_R1
 304           if ((scratch == index) || (index == base)) {
 305             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 306           } else {
 307             add2reg(scratch, disp, base);
 308             (this->*classic)(reg, 0, index, scratch);
 309             if (base == scratch) {
 310               add2reg(base, -disp);  // Restore base.
 311             }
 312           }
 313         } else {   // scratch == Z_R0
 314           z_lgr(scratch, base);
 315           add2reg(base, disp);
 316           (this->*classic)(reg, 0, index, base);
 317           z_lgr(base, scratch);      // Restore base.
 318         }
 319       }
 320     }
 321   }
 322 }
 323 
 324 void MacroAssembler::mem2freg_opt(FloatRegister reg, const Address &a, bool is_double) {
 325   if (is_double) {
 326     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ldy), CLASSIC_FFUN(z_ld));
 327   } else {
 328     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ley), CLASSIC_FFUN(z_le));
 329   }
 330 }
 331 
 332 // Optimized emitter for reg to mem operations.
 333 // Uses modern instructions if running on modern hardware, classic instructions
 334 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 335 // Data register (reg) cannot be used as work register.
 336 //
 337 // Don't rely on register locking, instead pass a scratch register
 338 // (Z_R0 by default)
 339 // CAUTION! passing registers >= Z_R2 may produce bad results on old CPUs!
 340 void MacroAssembler::reg2mem_opt(Register reg,
 341                                  int64_t  disp,
 342                                  Register index,
 343                                  Register base,
 344                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 345                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register),
 346                                  Register scratch) {
 347   index = (index == noreg) ? Z_R0 : index;
 348   if (Displacement::is_shortDisp(disp)) {
 349     (this->*classic)(reg, disp, index, base);
 350   } else {
 351     if (Displacement::is_validDisp(disp)) {
 352       (this->*modern)(reg, disp, index, base);
 353     } else {
 354       if (scratch != Z_R0 && scratch != Z_R1) {
 355         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 356       } else {
 357         if (scratch != Z_R0) {   // scratch == Z_R1
 358           if ((scratch == index) || (index == base)) {
 359             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 360           } else {
 361             add2reg(scratch, disp, base);
 362             (this->*classic)(reg, 0, index, scratch);
 363             if (base == scratch) {
 364               add2reg(base, -disp);  // Restore base.
 365             }
 366           }
 367         } else {   // scratch == Z_R0
 368           if ((scratch == reg) || (scratch == base) || (reg == base)) {
 369             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 370           } else {
 371             z_lgr(scratch, base);
 372             add2reg(base, disp);
 373             (this->*classic)(reg, 0, index, base);
 374             z_lgr(base, scratch);    // Restore base.
 375           }
 376         }
 377       }
 378     }
 379   }
 380 }
 381 
 382 int MacroAssembler::reg2mem_opt(Register reg, const Address &a, bool is_double) {
 383   int store_offset = offset();
 384   if (is_double) {
 385     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_stg), CLASSIC_IFUN(z_stg));
 386   } else {
 387     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_sty), CLASSIC_IFUN(z_st));
 388   }
 389   return store_offset;
 390 }
 391 
 392 // Optimized emitter for mem to reg operations.
 393 // Uses modern instructions if running on modern hardware, classic instructions
 394 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 395 // Data register (reg) will be used as work register where possible.
 396 void MacroAssembler::mem2reg_opt(Register reg,
 397                                  int64_t  disp,
 398                                  Register index,
 399                                  Register base,
 400                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 401                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register)) {
 402   index = (index == noreg) ? Z_R0 : index;
 403   if (Displacement::is_shortDisp(disp)) {
 404     (this->*classic)(reg, disp, index, base);
 405   } else {
 406     if (Displacement::is_validDisp(disp)) {
 407       (this->*modern)(reg, disp, index, base);
 408     } else {
 409       if ((reg == index) && (reg == base)) {
 410         z_sllg(reg, reg, 1);
 411         add2reg(reg, disp);
 412         (this->*classic)(reg, 0, noreg, reg);
 413       } else if ((reg == index) && (reg != Z_R0)) {
 414         add2reg(reg, disp);
 415         (this->*classic)(reg, 0, reg, base);
 416       } else if (reg == base) {
 417         add2reg(reg, disp);
 418         (this->*classic)(reg, 0, index, reg);
 419       } else if (reg != Z_R0) {
 420         add2reg(reg, disp, base);
 421         (this->*classic)(reg, 0, index, reg);
 422       } else { // reg == Z_R0 && reg != base here
 423         add2reg(base, disp);
 424         (this->*classic)(reg, 0, index, base);
 425         add2reg(base, -disp);
 426       }
 427     }
 428   }
 429 }
 430 
 431 void MacroAssembler::mem2reg_opt(Register reg, const Address &a, bool is_double) {
 432   if (is_double) {
 433     z_lg(reg, a);
 434   } else {
 435     mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_ly), CLASSIC_IFUN(z_l));
 436   }
 437 }
 438 
 439 void MacroAssembler::mem2reg_signed_opt(Register reg, const Address &a) {
 440   mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_lgf), CLASSIC_IFUN(z_lgf));
 441 }
 442 
 443 void MacroAssembler::and_imm(Register r, long mask,
 444                              Register tmp /* = Z_R0 */,
 445                              bool wide    /* = false */) {
 446   assert(wide || Immediate::is_simm32(mask), "mask value too large");
 447 
 448   if (!wide) {
 449     z_nilf(r, mask);
 450     return;
 451   }
 452 
 453   assert(r != tmp, " need a different temporary register !");
 454   load_const_optimized(tmp, mask);
 455   z_ngr(r, tmp);
 456 }
 457 
 458 // Calculate the 1's complement.
 459 // Note: The condition code is neither preserved nor correctly set by this code!!!
 460 // Note: (wide == false) does not protect the high order half of the target register
 461 //       from alteration. It only serves as optimization hint for 32-bit results.
 462 void MacroAssembler::not_(Register r1, Register r2, bool wide) {
 463 
 464   if ((r2 == noreg) || (r2 == r1)) { // Calc 1's complement in place.
 465     z_xilf(r1, -1);
 466     if (wide) {
 467       z_xihf(r1, -1);
 468     }
 469   } else { // Distinct src and dst registers.
 470     load_const_optimized(r1, -1);
 471     z_xgr(r1, r2);
 472   }
 473 }
 474 
 475 unsigned long MacroAssembler::create_mask(int lBitPos, int rBitPos) {
 476   assert(lBitPos >=  0,      "zero is  leftmost bit position");
 477   assert(rBitPos <= 63,      "63   is rightmost bit position");
 478   assert(lBitPos <= rBitPos, "inverted selection interval");
 479   return (lBitPos == 0 ? (unsigned long)(-1L) : ((1UL<<(63-lBitPos+1))-1)) & (~((1UL<<(63-rBitPos))-1));
 480 }
 481 
 482 // Helper function for the "Rotate_then_<logicalOP>" emitters.
 483 // Rotate src, then mask register contents such that only bits in range survive.
 484 // For oneBits == false, all bits not in range are set to 0. Useful for deleting all bits outside range.
 485 // For oneBits == true,  all bits not in range are set to 1. Useful for preserving all bits outside range.
 486 // The caller must ensure that the selected range only contains bits with defined value.
 487 void MacroAssembler::rotate_then_mask(Register dst, Register src, int lBitPos, int rBitPos,
 488                                       int nRotate, bool src32bit, bool dst32bit, bool oneBits) {
 489   assert(!(dst32bit && lBitPos < 32), "selection interval out of range for int destination");
 490   bool sll4rll = (nRotate >= 0) && (nRotate <= (63-rBitPos)); // Substitute SLL(G) for RLL(G).
 491   bool srl4rll = (nRotate <  0) && (-nRotate <= lBitPos);     // Substitute SRL(G) for RLL(G).
 492   //  Pre-determine which parts of dst will be zero after shift/rotate.
 493   bool llZero  =  sll4rll && (nRotate >= 16);
 494   bool lhZero  = (sll4rll && (nRotate >= 32)) || (srl4rll && (nRotate <= -48));
 495   bool lfZero  = llZero && lhZero;
 496   bool hlZero  = (sll4rll && (nRotate >= 48)) || (srl4rll && (nRotate <= -32));
 497   bool hhZero  =                                 (srl4rll && (nRotate <= -16));
 498   bool hfZero  = hlZero && hhZero;
 499 
 500   // rotate then mask src operand.
 501   // if oneBits == true,  all bits outside selected range are 1s.
 502   // if oneBits == false, all bits outside selected range are 0s.
 503   if (src32bit) {   // There might be garbage in the upper 32 bits which will get masked away.
 504     if (dst32bit) {
 505       z_rll(dst, src, nRotate);   // Copy and rotate, upper half of reg remains undisturbed.
 506     } else {
 507       if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 508       else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 509       else              { z_rllg(dst, src,  nRotate); }
 510     }
 511   } else {
 512     if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 513     else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 514     else              { z_rllg(dst, src,  nRotate); }
 515   }
 516 
 517   unsigned long  range_mask    = create_mask(lBitPos, rBitPos);
 518   unsigned int   range_mask_h  = (unsigned int)(range_mask >> 32);
 519   unsigned int   range_mask_l  = (unsigned int)range_mask;
 520   unsigned short range_mask_hh = (unsigned short)(range_mask >> 48);
 521   unsigned short range_mask_hl = (unsigned short)(range_mask >> 32);
 522   unsigned short range_mask_lh = (unsigned short)(range_mask >> 16);
 523   unsigned short range_mask_ll = (unsigned short)range_mask;
 524   // Works for z9 and newer H/W.
 525   if (oneBits) {
 526     if ((~range_mask_l) != 0)                { z_oilf(dst, ~range_mask_l); } // All bits outside range become 1s.
 527     if (((~range_mask_h) != 0) && !dst32bit) { z_oihf(dst, ~range_mask_h); }
 528   } else {
 529     // All bits outside range become 0s
 530     if (((~range_mask_l) != 0) &&              !lfZero) {
 531       z_nilf(dst, range_mask_l);
 532     }
 533     if (((~range_mask_h) != 0) && !dst32bit && !hfZero) {
 534       z_nihf(dst, range_mask_h);
 535     }
 536   }
 537 }
 538 
 539 // Rotate src, then insert selected range from rotated src into dst.
 540 // Clear dst before, if requested.
 541 void MacroAssembler::rotate_then_insert(Register dst, Register src, int lBitPos, int rBitPos,
 542                                         int nRotate, bool clear_dst) {
 543   // This version does not depend on src being zero-extended int2long.
 544   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 545   z_risbg(dst, src, lBitPos, rBitPos, nRotate, clear_dst); // Rotate, then insert selected, clear the rest.
 546 }
 547 
 548 // Rotate src, then and selected range from rotated src into dst.
 549 // Set condition code only if so requested. Otherwise it is unpredictable.
 550 // See performance note in macroAssembler_s390.hpp for important information.
 551 void MacroAssembler::rotate_then_and(Register dst, Register src, int lBitPos, int rBitPos,
 552                                      int nRotate, bool test_only) {
 553   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 554   // This version does not depend on src being zero-extended int2long.
 555   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 556   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 557 }
 558 
 559 // Rotate src, then or selected range from rotated src into dst.
 560 // Set condition code only if so requested. Otherwise it is unpredictable.
 561 // See performance note in macroAssembler_s390.hpp for important information.
 562 void MacroAssembler::rotate_then_or(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 563                                     int nRotate, bool test_only) {
 564   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 565   // This version does not depend on src being zero-extended int2long.
 566   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 567   z_rosbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 568 }
 569 
 570 // Rotate src, then xor selected range from rotated src into dst.
 571 // Set condition code only if so requested. Otherwise it is unpredictable.
 572 // See performance note in macroAssembler_s390.hpp for important information.
 573 void MacroAssembler::rotate_then_xor(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 574                                      int nRotate, bool test_only) {
 575   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 576     // This version does not depend on src being zero-extended int2long.
 577   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 578   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 579 }
 580 
 581 void MacroAssembler::add64(Register r1, RegisterOrConstant inc) {
 582   if (inc.is_register()) {
 583     z_agr(r1, inc.as_register());
 584   } else { // constant
 585     intptr_t imm = inc.as_constant();
 586     add2reg(r1, imm);
 587   }
 588 }
 589 // Helper function to multiply the 64bit contents of a register by a 16bit constant.
 590 // The optimization tries to avoid the mghi instruction, since it uses the FPU for
 591 // calculation and is thus rather slow.
 592 //
 593 // There is no handling for special cases, e.g. cval==0 or cval==1.
 594 //
 595 // Returns len of generated code block.
 596 unsigned int MacroAssembler::mul_reg64_const16(Register rval, Register work, int cval) {
 597   int block_start = offset();
 598 
 599   bool sign_flip = cval < 0;
 600   cval = sign_flip ? -cval : cval;
 601 
 602   BLOCK_COMMENT("Reg64*Con16 {");
 603 
 604   int bit1 = cval & -cval;
 605   if (bit1 == cval) {
 606     z_sllg(rval, rval, exact_log2(bit1));
 607     if (sign_flip) { z_lcgr(rval, rval); }
 608   } else {
 609     int bit2 = (cval-bit1) & -(cval-bit1);
 610     if ((bit1+bit2) == cval) {
 611       z_sllg(work, rval, exact_log2(bit1));
 612       z_sllg(rval, rval, exact_log2(bit2));
 613       z_agr(rval, work);
 614       if (sign_flip) { z_lcgr(rval, rval); }
 615     } else {
 616       if (sign_flip) { z_mghi(rval, -cval); }
 617       else           { z_mghi(rval,  cval); }
 618     }
 619   }
 620   BLOCK_COMMENT("} Reg64*Con16");
 621 
 622   int block_end = offset();
 623   return block_end - block_start;
 624 }
 625 
 626 // Generic operation r1 := r2 + imm.
 627 //
 628 // Should produce the best code for each supported CPU version.
 629 // r2 == noreg yields r1 := r1 + imm
 630 // imm == 0 emits either no instruction or r1 := r2 !
 631 // NOTES: 1) Don't use this function where fixed sized
 632 //           instruction sequences are required!!!
 633 //        2) Don't use this function if condition code
 634 //           setting is required!
 635 //        3) Despite being declared as int64_t, the parameter imm
 636 //           must be a simm_32 value (= signed 32-bit integer).
 637 void MacroAssembler::add2reg(Register r1, int64_t imm, Register r2) {
 638   assert(Immediate::is_simm32(imm), "probably an implicit conversion went wrong");
 639 
 640   if (r2 == noreg) { r2 = r1; }
 641 
 642   // Handle special case imm == 0.
 643   if (imm == 0) {
 644     lgr_if_needed(r1, r2);
 645     // Nothing else to do.
 646     return;
 647   }
 648 
 649   if (!PreferLAoverADD || (r2 == Z_R0)) {
 650     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 651 
 652     // Can we encode imm in 16 bits signed?
 653     if (Immediate::is_simm16(imm)) {
 654       if (r1 == r2) {
 655         z_aghi(r1, imm);
 656         return;
 657       }
 658       if (distinctOpnds) {
 659         z_aghik(r1, r2, imm);
 660         return;
 661       }
 662       z_lgr(r1, r2);
 663       z_aghi(r1, imm);
 664       return;
 665     }
 666   } else {
 667     // Can we encode imm in 12 bits unsigned?
 668     if (Displacement::is_shortDisp(imm)) {
 669       z_la(r1, imm, r2);
 670       return;
 671     }
 672     // Can we encode imm in 20 bits signed?
 673     if (Displacement::is_validDisp(imm)) {
 674       // Always use LAY instruction, so we don't need the tmp register.
 675       z_lay(r1, imm, r2);
 676       return;
 677     }
 678 
 679   }
 680 
 681   // Can handle it (all possible values) with long immediates.
 682   lgr_if_needed(r1, r2);
 683   z_agfi(r1, imm);
 684 }
 685 
 686 // Generic operation r := b + x + d
 687 //
 688 // Addition of several operands with address generation semantics - sort of:
 689 //  - no restriction on the registers. Any register will do for any operand.
 690 //  - x == noreg: operand will be disregarded.
 691 //  - b == noreg: will use (contents of) result reg as operand (r := r + d).
 692 //  - x == Z_R0:  just disregard
 693 //  - b == Z_R0:  use as operand. This is not address generation semantics!!!
 694 //
 695 // The same restrictions as on add2reg() are valid!!!
 696 void MacroAssembler::add2reg_with_index(Register r, int64_t d, Register x, Register b) {
 697   assert(Immediate::is_simm32(d), "probably an implicit conversion went wrong");
 698 
 699   if (x == noreg) { x = Z_R0; }
 700   if (b == noreg) { b = r; }
 701 
 702   // Handle special case x == R0.
 703   if (x == Z_R0) {
 704     // Can simply add the immediate value to the base register.
 705     add2reg(r, d, b);
 706     return;
 707   }
 708 
 709   if (!PreferLAoverADD || (b == Z_R0)) {
 710     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 711     // Handle special case d == 0.
 712     if (d == 0) {
 713       if (b == x)        { z_sllg(r, b, 1); return; }
 714       if (r == x)        { z_agr(r, b);     return; }
 715       if (r == b)        { z_agr(r, x);     return; }
 716       if (distinctOpnds) { z_agrk(r, x, b); return; }
 717       z_lgr(r, b);
 718       z_agr(r, x);
 719     } else {
 720       if (x == b)             { z_sllg(r, x, 1); }
 721       else if (r == x)        { z_agr(r, b); }
 722       else if (r == b)        { z_agr(r, x); }
 723       else if (distinctOpnds) { z_agrk(r, x, b); }
 724       else {
 725         z_lgr(r, b);
 726         z_agr(r, x);
 727       }
 728       add2reg(r, d);
 729     }
 730   } else {
 731     // Can we encode imm in 12 bits unsigned?
 732     if (Displacement::is_shortDisp(d)) {
 733       z_la(r, d, x, b);
 734       return;
 735     }
 736     // Can we encode imm in 20 bits signed?
 737     if (Displacement::is_validDisp(d)) {
 738       z_lay(r, d, x, b);
 739       return;
 740     }
 741     z_la(r, 0, x, b);
 742     add2reg(r, d);
 743   }
 744 }
 745 
 746 // Generic emitter (32bit) for direct memory increment.
 747 // For optimal code, do not specify Z_R0 as temp register.
 748 void MacroAssembler::add2mem_32(const Address &a, int64_t imm, Register tmp) {
 749   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 750     z_asi(a, imm);
 751   } else {
 752     z_lgf(tmp, a);
 753     add2reg(tmp, imm);
 754     z_st(tmp, a);
 755   }
 756 }
 757 
 758 void MacroAssembler::add2mem_64(const Address &a, int64_t imm, Register tmp) {
 759   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 760     z_agsi(a, imm);
 761   } else {
 762     z_lg(tmp, a);
 763     add2reg(tmp, imm);
 764     z_stg(tmp, a);
 765   }
 766 }
 767 
 768 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
 769   switch (size_in_bytes) {
 770     case  8: z_lg(dst, src); break;
 771     case  4: is_signed ? z_lgf(dst, src) : z_llgf(dst, src); break;
 772     case  2: is_signed ? z_lgh(dst, src) : z_llgh(dst, src); break;
 773     case  1: is_signed ? z_lgb(dst, src) : z_llgc(dst, src); break;
 774     default: ShouldNotReachHere();
 775   }
 776 }
 777 
 778 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
 779   switch (size_in_bytes) {
 780     case  8: z_stg(src, dst); break;
 781     case  4: z_st(src, dst); break;
 782     case  2: z_sth(src, dst); break;
 783     case  1: z_stc(src, dst); break;
 784     default: ShouldNotReachHere();
 785   }
 786 }
 787 
 788 // Split a si20 offset (20bit, signed) into an ui12 offset (12bit, unsigned) and
 789 // a high-order summand in register tmp.
 790 //
 791 // return value: <  0: No split required, si20 actually has property uimm12.
 792 //               >= 0: Split performed. Use return value as uimm12 displacement and
 793 //                     tmp as index register.
 794 int MacroAssembler::split_largeoffset(int64_t si20_offset, Register tmp, bool fixed_codelen, bool accumulate) {
 795   assert(Immediate::is_simm20(si20_offset), "sanity");
 796   int lg_off = (int)si20_offset &  0x0fff; // Punch out low-order 12 bits, always positive.
 797   int ll_off = (int)si20_offset & ~0x0fff; // Force low-order 12 bits to zero.
 798   assert((Displacement::is_shortDisp(si20_offset) && (ll_off == 0)) ||
 799          !Displacement::is_shortDisp(si20_offset), "unexpected offset values");
 800   assert((lg_off+ll_off) == si20_offset, "offset splitup error");
 801 
 802   Register work = accumulate? Z_R0 : tmp;
 803 
 804   if (fixed_codelen) {          // Len of code = 10 = 4 + 6.
 805     z_lghi(work, ll_off>>12);   // Implicit sign extension.
 806     z_slag(work, work, 12);
 807   } else {                      // Len of code = 0..10.
 808     if (ll_off == 0) { return -1; }
 809     // ll_off has 8 significant bits (at most) plus sign.
 810     if ((ll_off & 0x0000f000) == 0) {    // Non-zero bits only in upper halfbyte.
 811       z_llilh(work, ll_off >> 16);
 812       if (ll_off < 0) {                  // Sign-extension required.
 813         z_lgfr(work, work);
 814       }
 815     } else {
 816       if ((ll_off & 0x000f0000) == 0) {  // Non-zero bits only in lower halfbyte.
 817         z_llill(work, ll_off);
 818       } else {                           // Non-zero bits in both halfbytes.
 819         z_lghi(work, ll_off>>12);        // Implicit sign extension.
 820         z_slag(work, work, 12);
 821       }
 822     }
 823   }
 824   if (accumulate) { z_algr(tmp, work); } // len of code += 4
 825   return lg_off;
 826 }
 827 
 828 void MacroAssembler::load_float_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 829   if (Displacement::is_validDisp(si20)) {
 830     z_ley(t, si20, a);
 831   } else {
 832     // Fixed_codelen = true is a simple way to ensure that the size of load_float_largeoffset
 833     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 834     // pool loads).
 835     bool accumulate    = true;
 836     bool fixed_codelen = true;
 837     Register work;
 838 
 839     if (fixed_codelen) {
 840       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 841     } else {
 842       accumulate = (a == tmp);
 843     }
 844     work = tmp;
 845 
 846     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 847     if (disp12 < 0) {
 848       z_le(t, si20, work);
 849     } else {
 850       if (accumulate) {
 851         z_le(t, disp12, work);
 852       } else {
 853         z_le(t, disp12, work, a);
 854       }
 855     }
 856   }
 857 }
 858 
 859 void MacroAssembler::load_double_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 860   if (Displacement::is_validDisp(si20)) {
 861     z_ldy(t, si20, a);
 862   } else {
 863     // Fixed_codelen = true is a simple way to ensure that the size of load_double_largeoffset
 864     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 865     // pool loads).
 866     bool accumulate    = true;
 867     bool fixed_codelen = true;
 868     Register work;
 869 
 870     if (fixed_codelen) {
 871       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 872     } else {
 873       accumulate = (a == tmp);
 874     }
 875     work = tmp;
 876 
 877     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 878     if (disp12 < 0) {
 879       z_ld(t, si20, work);
 880     } else {
 881       if (accumulate) {
 882         z_ld(t, disp12, work);
 883       } else {
 884         z_ld(t, disp12, work, a);
 885       }
 886     }
 887   }
 888 }
 889 
 890 // PCrelative TOC access.
 891 // Returns distance (in bytes) from current position to start of consts section.
 892 // Returns 0 (zero) if no consts section exists or if it has size zero.
 893 long MacroAssembler::toc_distance() {
 894   CodeSection* cs = code()->consts();
 895   return (long)((cs != NULL) ? cs->start()-pc() : 0);
 896 }
 897 
 898 // Implementation on x86/sparc assumes that constant and instruction section are
 899 // adjacent, but this doesn't hold. Two special situations may occur, that we must
 900 // be able to handle:
 901 //   1. const section may be located apart from the inst section.
 902 //   2. const section may be empty
 903 // In both cases, we use the const section's start address to compute the "TOC",
 904 // this seems to occur only temporarily; in the final step we always seem to end up
 905 // with the pc-relatice variant.
 906 //
 907 // PC-relative offset could be +/-2**32 -> use long for disp
 908 // Furthermore: makes no sense to have special code for
 909 // adjacent const and inst sections.
 910 void MacroAssembler::load_toc(Register Rtoc) {
 911   // Simply use distance from start of const section (should be patched in the end).
 912   long disp = toc_distance();
 913 
 914   RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
 915   relocate(rspec);
 916   z_larl(Rtoc, RelAddr::pcrel_off32(disp));  // Offset is in halfwords.
 917 }
 918 
 919 // PCrelative TOC access.
 920 // Load from anywhere pcrelative (with relocation of load instr)
 921 void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
 922   address          pc             = this->pc();
 923   ptrdiff_t        total_distance = dataLocation - pc;
 924   RelocationHolder rspec          = internal_word_Relocation::spec(dataLocation);
 925 
 926   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 927   assert(total_distance != 0, "sanity");
 928 
 929   // Some extra safety net.
 930   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 931     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 932   }
 933 
 934   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 935   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 936 }
 937 
 938 
 939 // PCrelative TOC access.
 940 // Load from anywhere pcrelative (with relocation of load instr)
 941 // loaded addr has to be relocated when added to constant pool.
 942 void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
 943   address          pc             = this->pc();
 944   ptrdiff_t        total_distance = addrLocation - pc;
 945   RelocationHolder rspec          = internal_word_Relocation::spec(addrLocation);
 946 
 947   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 948 
 949   // Some extra safety net.
 950   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 951     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
 952   }
 953 
 954   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 955   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 956 }
 957 
 958 // Generic operation: load a value from memory and test.
 959 // CondCode indicates the sign (<0, ==0, >0) of the loaded value.
 960 void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
 961   z_lb(dst, a);
 962   z_ltr(dst, dst);
 963 }
 964 
 965 void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
 966   int64_t disp = a.disp20();
 967   if (Displacement::is_shortDisp(disp)) {
 968     z_lh(dst, a);
 969   } else if (Displacement::is_longDisp(disp)) {
 970     z_lhy(dst, a);
 971   } else {
 972     guarantee(false, "displacement out of range");
 973   }
 974   z_ltr(dst, dst);
 975 }
 976 
 977 void MacroAssembler::load_and_test_int(Register dst, const Address &a) {
 978   z_lt(dst, a);
 979 }
 980 
 981 void MacroAssembler::load_and_test_int2long(Register dst, const Address &a) {
 982   z_ltgf(dst, a);
 983 }
 984 
 985 void MacroAssembler::load_and_test_long(Register dst, const Address &a) {
 986   z_ltg(dst, a);
 987 }
 988 
 989 // Test a bit in memory.
 990 void MacroAssembler::testbit(const Address &a, unsigned int bit) {
 991   assert(a.index() == noreg, "no index reg allowed in testbit");
 992   if (bit <= 7) {
 993     z_tm(a.disp() + 3, a.base(), 1 << bit);
 994   } else if (bit <= 15) {
 995     z_tm(a.disp() + 2, a.base(), 1 << (bit - 8));
 996   } else if (bit <= 23) {
 997     z_tm(a.disp() + 1, a.base(), 1 << (bit - 16));
 998   } else if (bit <= 31) {
 999     z_tm(a.disp() + 0, a.base(), 1 << (bit - 24));
1000   } else {
1001     ShouldNotReachHere();
1002   }
1003 }
1004 
1005 // Test a bit in a register. Result is reflected in CC.
1006 void MacroAssembler::testbit(Register r, unsigned int bitPos) {
1007   if (bitPos < 16) {
1008     z_tmll(r, 1U<<bitPos);
1009   } else if (bitPos < 32) {
1010     z_tmlh(r, 1U<<(bitPos-16));
1011   } else if (bitPos < 48) {
1012     z_tmhl(r, 1U<<(bitPos-32));
1013   } else if (bitPos < 64) {
1014     z_tmhh(r, 1U<<(bitPos-48));
1015   } else {
1016     ShouldNotReachHere();
1017   }
1018 }
1019 
1020 void MacroAssembler::prefetch_read(Address a) {
1021   z_pfd(1, a.disp20(), a.indexOrR0(), a.base());
1022 }
1023 void MacroAssembler::prefetch_update(Address a) {
1024   z_pfd(2, a.disp20(), a.indexOrR0(), a.base());
1025 }
1026 
1027 // Clear a register, i.e. load const zero into reg.
1028 // Return len (in bytes) of generated instruction(s).
1029 // whole_reg: Clear 64 bits if true, 32 bits otherwise.
1030 // set_cc:    Use instruction that sets the condition code, if true.
1031 int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
1032   unsigned int start_off = offset();
1033   if (whole_reg) {
1034     set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
1035   } else {  // Only 32bit register.
1036     set_cc ? z_xr(r, r) : z_lhi(r, 0);
1037   }
1038   return offset() - start_off;
1039 }
1040 
1041 #ifdef ASSERT
1042 int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
1043   switch (pattern_len) {
1044     case 1:
1045       pattern = (pattern & 0x000000ff)  | ((pattern & 0x000000ff)<<8);
1046     case 2:
1047       pattern = (pattern & 0x0000ffff)  | ((pattern & 0x0000ffff)<<16);
1048     case 4:
1049       pattern = (pattern & 0xffffffffL) | ((pattern & 0xffffffffL)<<32);
1050     case 8:
1051       return load_const_optimized_rtn_len(r, pattern, true);
1052       break;
1053     default:
1054       guarantee(false, "preset_reg: bad len");
1055   }
1056   return 0;
1057 }
1058 #endif
1059 
1060 // addr: Address descriptor of memory to clear index register will not be used !
1061 // size: Number of bytes to clear.
1062 //    !!! DO NOT USE THEM FOR ATOMIC MEMORY CLEARING !!!
1063 //    !!! Use store_const() instead                  !!!
1064 void MacroAssembler::clear_mem(const Address& addr, unsigned size) {
1065   guarantee(size <= 256, "MacroAssembler::clear_mem: size too large");
1066 
1067   if (size == 1) {
1068     z_mvi(addr, 0);
1069     return;
1070   }
1071 
1072   switch (size) {
1073     case 2: z_mvhhi(addr, 0);
1074       return;
1075     case 4: z_mvhi(addr, 0);
1076       return;
1077     case 8: z_mvghi(addr, 0);
1078       return;
1079     default: ; // Fallthru to xc.
1080   }
1081 
1082   z_xc(addr, size, addr);
1083 }
1084 
1085 void MacroAssembler::align(int modulus) {
1086   while (offset() % modulus != 0) z_nop();
1087 }
1088 
1089 // Special version for non-relocateable code if required alignment
1090 // is larger than CodeEntryAlignment.
1091 void MacroAssembler::align_address(int modulus) {
1092   while ((uintptr_t)pc() % modulus != 0) z_nop();
1093 }
1094 
1095 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1096                                          Register temp_reg,
1097                                          int64_t extra_slot_offset) {
1098   // On Z, we can have index and disp in an Address. So don't call argument_offset,
1099   // which issues an unnecessary add instruction.
1100   int stackElementSize = Interpreter::stackElementSize;
1101   int64_t offset = extra_slot_offset * stackElementSize;
1102   const Register argbase = Z_esp;
1103   if (arg_slot.is_constant()) {
1104     offset += arg_slot.as_constant() * stackElementSize;
1105     return Address(argbase, offset);
1106   }
1107   // else
1108   assert(temp_reg != noreg, "must specify");
1109   assert(temp_reg != Z_ARG1, "base and index are conflicting");
1110   z_sllg(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); // tempreg = arg_slot << 3
1111   return Address(argbase, temp_reg, offset);
1112 }
1113 
1114 
1115 //===================================================================
1116 //===   START   C O N S T A N T S   I N   C O D E   S T R E A M   ===
1117 //===================================================================
1118 //===            P A T CH A B L E   C O N S T A N T S             ===
1119 //===================================================================
1120 
1121 
1122 //---------------------------------------------------
1123 //  Load (patchable) constant into register
1124 //---------------------------------------------------
1125 
1126 
1127 // Load absolute address (and try to optimize).
1128 //   Note: This method is usable only for position-fixed code,
1129 //         referring to a position-fixed target location.
1130 //         If not so, relocations and patching must be used.
1131 void MacroAssembler::load_absolute_address(Register d, address addr) {
1132   assert(addr != NULL, "should not happen");
1133   BLOCK_COMMENT("load_absolute_address:");
1134   if (addr == NULL) {
1135     z_larl(d, pc()); // Dummy emit for size calc.
1136     return;
1137   }
1138 
1139   if (RelAddr::is_in_range_of_RelAddr32(addr, pc())) {
1140     z_larl(d, addr);
1141     return;
1142   }
1143 
1144   load_const_optimized(d, (long)addr);
1145 }
1146 
1147 // Load a 64bit constant.
1148 // Patchable code sequence, but not atomically patchable.
1149 // Make sure to keep code size constant -> no value-dependent optimizations.
1150 // Do not kill condition code.
1151 void MacroAssembler::load_const(Register t, long x) {
1152   // Note: Right shift is only cleanly defined for unsigned types
1153   //       or for signed types with nonnegative values.
1154   Assembler::z_iihf(t, (long)((unsigned long)x >> 32));
1155   Assembler::z_iilf(t, (long)((unsigned long)x & 0xffffffffUL));
1156 }
1157 
1158 // Load a 32bit constant into a 64bit register, sign-extend or zero-extend.
1159 // Patchable code sequence, but not atomically patchable.
1160 // Make sure to keep code size constant -> no value-dependent optimizations.
1161 // Do not kill condition code.
1162 void MacroAssembler::load_const_32to64(Register t, int64_t x, bool sign_extend) {
1163   if (sign_extend) { Assembler::z_lgfi(t, x); }
1164   else             { Assembler::z_llilf(t, x); }
1165 }
1166 
1167 // Load narrow oop constant, no decompression.
1168 void MacroAssembler::load_narrow_oop(Register t, narrowOop a) {
1169   assert(UseCompressedOops, "must be on to call this method");
1170   load_const_32to64(t, a, false /*sign_extend*/);
1171 }
1172 
1173 // Load narrow klass constant, compression required.
1174 void MacroAssembler::load_narrow_klass(Register t, Klass* k) {
1175   assert(UseCompressedClassPointers, "must be on to call this method");
1176   narrowKlass encoded_k = CompressedKlassPointers::encode(k);
1177   load_const_32to64(t, encoded_k, false /*sign_extend*/);
1178 }
1179 
1180 //------------------------------------------------------
1181 //  Compare (patchable) constant with register.
1182 //------------------------------------------------------
1183 
1184 // Compare narrow oop in reg with narrow oop constant, no decompression.
1185 void MacroAssembler::compare_immediate_narrow_oop(Register oop1, narrowOop oop2) {
1186   assert(UseCompressedOops, "must be on to call this method");
1187 
1188   Assembler::z_clfi(oop1, oop2);
1189 }
1190 
1191 // Compare narrow oop in reg with narrow oop constant, no decompression.
1192 void MacroAssembler::compare_immediate_narrow_klass(Register klass1, Klass* klass2) {
1193   assert(UseCompressedClassPointers, "must be on to call this method");
1194   narrowKlass encoded_k = CompressedKlassPointers::encode(klass2);
1195 
1196   Assembler::z_clfi(klass1, encoded_k);
1197 }
1198 
1199 //----------------------------------------------------------
1200 //  Check which kind of load_constant we have here.
1201 //----------------------------------------------------------
1202 
1203 // Detection of CPU version dependent load_const sequence.
1204 // The detection is valid only for code sequences generated by load_const,
1205 // not load_const_optimized.
1206 bool MacroAssembler::is_load_const(address a) {
1207   unsigned long inst1, inst2;
1208   unsigned int  len1,  len2;
1209 
1210   len1 = get_instruction(a, &inst1);
1211   len2 = get_instruction(a + len1, &inst2);
1212 
1213   return is_z_iihf(inst1) && is_z_iilf(inst2);
1214 }
1215 
1216 // Detection of CPU version dependent load_const_32to64 sequence.
1217 // Mostly used for narrow oops and narrow Klass pointers.
1218 // The detection is valid only for code sequences generated by load_const_32to64.
1219 bool MacroAssembler::is_load_const_32to64(address pos) {
1220   unsigned long inst1, inst2;
1221   unsigned int len1;
1222 
1223   len1 = get_instruction(pos, &inst1);
1224   return is_z_llilf(inst1);
1225 }
1226 
1227 // Detection of compare_immediate_narrow sequence.
1228 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1229 bool MacroAssembler::is_compare_immediate32(address pos) {
1230   return is_equal(pos, CLFI_ZOPC, RIL_MASK);
1231 }
1232 
1233 // Detection of compare_immediate_narrow sequence.
1234 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1235 bool MacroAssembler::is_compare_immediate_narrow_oop(address pos) {
1236   return is_compare_immediate32(pos);
1237   }
1238 
1239 // Detection of compare_immediate_narrow sequence.
1240 // The detection is valid only for code sequences generated by compare_immediate_narrow_klass.
1241 bool MacroAssembler::is_compare_immediate_narrow_klass(address pos) {
1242   return is_compare_immediate32(pos);
1243 }
1244 
1245 //-----------------------------------
1246 //  patch the load_constant
1247 //-----------------------------------
1248 
1249 // CPU-version dependend patching of load_const.
1250 void MacroAssembler::patch_const(address a, long x) {
1251   assert(is_load_const(a), "not a load of a constant");
1252   // Note: Right shift is only cleanly defined for unsigned types
1253   //       or for signed types with nonnegative values.
1254   set_imm32((address)a, (long)((unsigned long)x >> 32));
1255   set_imm32((address)(a + 6), (long)((unsigned long)x & 0xffffffffUL));
1256 }
1257 
1258 // Patching the value of CPU version dependent load_const_32to64 sequence.
1259 // The passed ptr MUST be in compressed format!
1260 int MacroAssembler::patch_load_const_32to64(address pos, int64_t np) {
1261   assert(is_load_const_32to64(pos), "not a load of a narrow ptr (oop or klass)");
1262 
1263   set_imm32(pos, np);
1264   return 6;
1265 }
1266 
1267 // Patching the value of CPU version dependent compare_immediate_narrow sequence.
1268 // The passed ptr MUST be in compressed format!
1269 int MacroAssembler::patch_compare_immediate_32(address pos, int64_t np) {
1270   assert(is_compare_immediate32(pos), "not a compressed ptr compare");
1271 
1272   set_imm32(pos, np);
1273   return 6;
1274 }
1275 
1276 // Patching the immediate value of CPU version dependent load_narrow_oop sequence.
1277 // The passed ptr must NOT be in compressed format!
1278 int MacroAssembler::patch_load_narrow_oop(address pos, oop o) {
1279   assert(UseCompressedOops, "Can only patch compressed oops");
1280 
1281   narrowOop no = CompressedOops::encode(o);
1282   return patch_load_const_32to64(pos, no);
1283 }
1284 
1285 // Patching the immediate value of CPU version dependent load_narrow_klass sequence.
1286 // The passed ptr must NOT be in compressed format!
1287 int MacroAssembler::patch_load_narrow_klass(address pos, Klass* k) {
1288   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1289 
1290   narrowKlass nk = CompressedKlassPointers::encode(k);
1291   return patch_load_const_32to64(pos, nk);
1292 }
1293 
1294 // Patching the immediate value of CPU version dependent compare_immediate_narrow_oop sequence.
1295 // The passed ptr must NOT be in compressed format!
1296 int MacroAssembler::patch_compare_immediate_narrow_oop(address pos, oop o) {
1297   assert(UseCompressedOops, "Can only patch compressed oops");
1298 
1299   narrowOop no = CompressedOops::encode(o);
1300   return patch_compare_immediate_32(pos, no);
1301 }
1302 
1303 // Patching the immediate value of CPU version dependent compare_immediate_narrow_klass sequence.
1304 // The passed ptr must NOT be in compressed format!
1305 int MacroAssembler::patch_compare_immediate_narrow_klass(address pos, Klass* k) {
1306   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1307 
1308   narrowKlass nk = CompressedKlassPointers::encode(k);
1309   return patch_compare_immediate_32(pos, nk);
1310 }
1311 
1312 //------------------------------------------------------------------------
1313 //  Extract the constant from a load_constant instruction stream.
1314 //------------------------------------------------------------------------
1315 
1316 // Get constant from a load_const sequence.
1317 long MacroAssembler::get_const(address a) {
1318   assert(is_load_const(a), "not a load of a constant");
1319   unsigned long x;
1320   x =  (((unsigned long) (get_imm32(a,0) & 0xffffffff)) << 32);
1321   x |= (((unsigned long) (get_imm32(a,1) & 0xffffffff)));
1322   return (long) x;
1323 }
1324 
1325 //--------------------------------------
1326 //  Store a constant in memory.
1327 //--------------------------------------
1328 
1329 // General emitter to move a constant to memory.
1330 // The store is atomic.
1331 //  o Address must be given in RS format (no index register)
1332 //  o Displacement should be 12bit unsigned for efficiency. 20bit signed also supported.
1333 //  o Constant can be 1, 2, 4, or 8 bytes, signed or unsigned.
1334 //  o Memory slot can be 1, 2, 4, or 8 bytes, signed or unsigned.
1335 //  o Memory slot must be at least as wide as constant, will assert otherwise.
1336 //  o Signed constants will sign-extend, unsigned constants will zero-extend to slot width.
1337 int MacroAssembler::store_const(const Address &dest, long imm,
1338                                 unsigned int lm, unsigned int lc,
1339                                 Register scratch) {
1340   int64_t  disp = dest.disp();
1341   Register base = dest.base();
1342   assert(!dest.has_index(), "not supported");
1343   assert((lm==1)||(lm==2)||(lm==4)||(lm==8), "memory   length not supported");
1344   assert((lc==1)||(lc==2)||(lc==4)||(lc==8), "constant length not supported");
1345   assert(lm>=lc, "memory slot too small");
1346   assert(lc==8 || Immediate::is_simm(imm, lc*8), "const out of range");
1347   assert(Displacement::is_validDisp(disp), "displacement out of range");
1348 
1349   bool is_shortDisp = Displacement::is_shortDisp(disp);
1350   int store_offset = -1;
1351 
1352   // For target len == 1 it's easy.
1353   if (lm == 1) {
1354     store_offset = offset();
1355     if (is_shortDisp) {
1356       z_mvi(disp, base, imm);
1357       return store_offset;
1358     } else {
1359       z_mviy(disp, base, imm);
1360       return store_offset;
1361     }
1362   }
1363 
1364   // All the "good stuff" takes an unsigned displacement.
1365   if (is_shortDisp) {
1366     // NOTE: Cannot use clear_mem for imm==0, because it is not atomic.
1367 
1368     store_offset = offset();
1369     switch (lm) {
1370       case 2:  // Lc == 1 handled correctly here, even for unsigned. Instruction does no widening.
1371         z_mvhhi(disp, base, imm);
1372         return store_offset;
1373       case 4:
1374         if (Immediate::is_simm16(imm)) {
1375           z_mvhi(disp, base, imm);
1376           return store_offset;
1377         }
1378         break;
1379       case 8:
1380         if (Immediate::is_simm16(imm)) {
1381           z_mvghi(disp, base, imm);
1382           return store_offset;
1383         }
1384         break;
1385       default:
1386         ShouldNotReachHere();
1387         break;
1388     }
1389   }
1390 
1391   //  Can't optimize, so load value and store it.
1392   guarantee(scratch != noreg, " need a scratch register here !");
1393   if (imm != 0) {
1394     load_const_optimized(scratch, imm);  // Preserves CC anyway.
1395   } else {
1396     // Leave CC alone!!
1397     (void) clear_reg(scratch, true, false); // Indicate unused result.
1398   }
1399 
1400   store_offset = offset();
1401   if (is_shortDisp) {
1402     switch (lm) {
1403       case 2:
1404         z_sth(scratch, disp, Z_R0, base);
1405         return store_offset;
1406       case 4:
1407         z_st(scratch, disp, Z_R0, base);
1408         return store_offset;
1409       case 8:
1410         z_stg(scratch, disp, Z_R0, base);
1411         return store_offset;
1412       default:
1413         ShouldNotReachHere();
1414         break;
1415     }
1416   } else {
1417     switch (lm) {
1418       case 2:
1419         z_sthy(scratch, disp, Z_R0, base);
1420         return store_offset;
1421       case 4:
1422         z_sty(scratch, disp, Z_R0, base);
1423         return store_offset;
1424       case 8:
1425         z_stg(scratch, disp, Z_R0, base);
1426         return store_offset;
1427       default:
1428         ShouldNotReachHere();
1429         break;
1430     }
1431   }
1432   return -1; // should not reach here
1433 }
1434 
1435 //===================================================================
1436 //===       N O T   P A T CH A B L E   C O N S T A N T S          ===
1437 //===================================================================
1438 
1439 // Load constant x into register t with a fast instrcution sequence
1440 // depending on the bits in x. Preserves CC under all circumstances.
1441 int MacroAssembler::load_const_optimized_rtn_len(Register t, long x, bool emit) {
1442   if (x == 0) {
1443     int len;
1444     if (emit) {
1445       len = clear_reg(t, true, false);
1446     } else {
1447       len = 4;
1448     }
1449     return len;
1450   }
1451 
1452   if (Immediate::is_simm16(x)) {
1453     if (emit) { z_lghi(t, x); }
1454     return 4;
1455   }
1456 
1457   // 64 bit value: | part1 | part2 | part3 | part4 |
1458   // At least one part is not zero!
1459   // Note: Right shift is only cleanly defined for unsigned types
1460   //       or for signed types with nonnegative values.
1461   int part1 = (int)((unsigned long)x >> 48) & 0x0000ffff;
1462   int part2 = (int)((unsigned long)x >> 32) & 0x0000ffff;
1463   int part3 = (int)((unsigned long)x >> 16) & 0x0000ffff;
1464   int part4 = (int)x & 0x0000ffff;
1465   int part12 = (int)((unsigned long)x >> 32);
1466   int part34 = (int)x;
1467 
1468   // Lower word only (unsigned).
1469   if (part12 == 0) {
1470     if (part3 == 0) {
1471       if (emit) z_llill(t, part4);
1472       return 4;
1473     }
1474     if (part4 == 0) {
1475       if (emit) z_llilh(t, part3);
1476       return 4;
1477     }
1478     if (emit) z_llilf(t, part34);
1479     return 6;
1480   }
1481 
1482   // Upper word only.
1483   if (part34 == 0) {
1484     if (part1 == 0) {
1485       if (emit) z_llihl(t, part2);
1486       return 4;
1487     }
1488     if (part2 == 0) {
1489       if (emit) z_llihh(t, part1);
1490       return 4;
1491     }
1492     if (emit) z_llihf(t, part12);
1493     return 6;
1494   }
1495 
1496   // Lower word only (signed).
1497   if ((part1 == 0x0000ffff) && (part2 == 0x0000ffff) && ((part3 & 0x00008000) != 0)) {
1498     if (emit) z_lgfi(t, part34);
1499     return 6;
1500   }
1501 
1502   int len = 0;
1503 
1504   if ((part1 == 0) || (part2 == 0)) {
1505     if (part1 == 0) {
1506       if (emit) z_llihl(t, part2);
1507       len += 4;
1508     } else {
1509       if (emit) z_llihh(t, part1);
1510       len += 4;
1511     }
1512   } else {
1513     if (emit) z_llihf(t, part12);
1514     len += 6;
1515   }
1516 
1517   if ((part3 == 0) || (part4 == 0)) {
1518     if (part3 == 0) {
1519       if (emit) z_iill(t, part4);
1520       len += 4;
1521     } else {
1522       if (emit) z_iilh(t, part3);
1523       len += 4;
1524     }
1525   } else {
1526     if (emit) z_iilf(t, part34);
1527     len += 6;
1528   }
1529   return len;
1530 }
1531 
1532 //=====================================================================
1533 //===     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1534 //=====================================================================
1535 
1536 // Note: In the worst case, one of the scratch registers is destroyed!!!
1537 void MacroAssembler::compare32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1538   // Right operand is constant.
1539   if (x2.is_constant()) {
1540     jlong value = x2.as_constant();
1541     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/true);
1542     return;
1543   }
1544 
1545   // Right operand is in register.
1546   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/true);
1547 }
1548 
1549 // Note: In the worst case, one of the scratch registers is destroyed!!!
1550 void MacroAssembler::compareU32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1551   // Right operand is constant.
1552   if (x2.is_constant()) {
1553     jlong value = x2.as_constant();
1554     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/false);
1555     return;
1556   }
1557 
1558   // Right operand is in register.
1559   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/false);
1560 }
1561 
1562 // Note: In the worst case, one of the scratch registers is destroyed!!!
1563 void MacroAssembler::compare64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1564   // Right operand is constant.
1565   if (x2.is_constant()) {
1566     jlong value = x2.as_constant();
1567     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/true);
1568     return;
1569   }
1570 
1571   // Right operand is in register.
1572   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/true);
1573 }
1574 
1575 void MacroAssembler::compareU64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1576   // Right operand is constant.
1577   if (x2.is_constant()) {
1578     jlong value = x2.as_constant();
1579     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/false);
1580     return;
1581   }
1582 
1583   // Right operand is in register.
1584   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/false);
1585 }
1586 
1587 // Generate an optimal branch to the branch target.
1588 // Optimal means that a relative branch (brc or brcl) is used if the
1589 // branch distance is short enough. Loading the target address into a
1590 // register and branching via reg is used as fallback only.
1591 //
1592 // Used registers:
1593 //   Z_R1 - work reg. Holds branch target address.
1594 //          Used in fallback case only.
1595 //
1596 // This version of branch_optimized is good for cases where the target address is known
1597 // and constant, i.e. is never changed (no relocation, no patching).
1598 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, address branch_addr) {
1599   address branch_origin = pc();
1600 
1601   if (RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1602     z_brc(cond, branch_addr);
1603   } else if (RelAddr::is_in_range_of_RelAddr32(branch_addr, branch_origin)) {
1604     z_brcl(cond, branch_addr);
1605   } else {
1606     load_const_optimized(Z_R1, branch_addr);  // CC must not get killed by load_const_optimized.
1607     z_bcr(cond, Z_R1);
1608   }
1609 }
1610 
1611 // This version of branch_optimized is good for cases where the target address
1612 // is potentially not yet known at the time the code is emitted.
1613 //
1614 // One very common case is a branch to an unbound label which is handled here.
1615 // The caller might know (or hope) that the branch distance is short enough
1616 // to be encoded in a 16bit relative address. In this case he will pass a
1617 // NearLabel branch_target.
1618 // Care must be taken with unbound labels. Each call to target(label) creates
1619 // an entry in the patch queue for that label to patch all references of the label
1620 // once it gets bound. Those recorded patch locations must be patchable. Otherwise,
1621 // an assertion fires at patch time.
1622 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, Label& branch_target) {
1623   if (branch_target.is_bound()) {
1624     address branch_addr = target(branch_target);
1625     branch_optimized(cond, branch_addr);
1626   } else if (branch_target.is_near()) {
1627     z_brc(cond, branch_target);  // Caller assures that the target will be in range for z_brc.
1628   } else {
1629     z_brcl(cond, branch_target); // Let's hope target is in range. Otherwise, we will abort at patch time.
1630   }
1631 }
1632 
1633 // Generate an optimal compare and branch to the branch target.
1634 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1635 // branch distance is short enough. Loading the target address into a
1636 // register and branching via reg is used as fallback only.
1637 //
1638 // Input:
1639 //   r1 - left compare operand
1640 //   r2 - right compare operand
1641 void MacroAssembler::compare_and_branch_optimized(Register r1,
1642                                                   Register r2,
1643                                                   Assembler::branch_condition cond,
1644                                                   address  branch_addr,
1645                                                   bool     len64,
1646                                                   bool     has_sign) {
1647   unsigned int casenum = (len64?2:0)+(has_sign?0:1);
1648 
1649   address branch_origin = pc();
1650   if (VM_Version::has_CompareBranch() && RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1651     switch (casenum) {
1652       case 0: z_crj( r1, r2, cond, branch_addr); break;
1653       case 1: z_clrj (r1, r2, cond, branch_addr); break;
1654       case 2: z_cgrj(r1, r2, cond, branch_addr); break;
1655       case 3: z_clgrj(r1, r2, cond, branch_addr); break;
1656       default: ShouldNotReachHere(); break;
1657     }
1658   } else {
1659     switch (casenum) {
1660       case 0: z_cr( r1, r2); break;
1661       case 1: z_clr(r1, r2); break;
1662       case 2: z_cgr(r1, r2); break;
1663       case 3: z_clgr(r1, r2); break;
1664       default: ShouldNotReachHere(); break;
1665     }
1666     branch_optimized(cond, branch_addr);
1667   }
1668 }
1669 
1670 // Generate an optimal compare and branch to the branch target.
1671 // Optimal means that a relative branch (clgij, brc or brcl) is used if the
1672 // branch distance is short enough. Loading the target address into a
1673 // register and branching via reg is used as fallback only.
1674 //
1675 // Input:
1676 //   r1 - left compare operand (in register)
1677 //   x2 - right compare operand (immediate)
1678 void MacroAssembler::compare_and_branch_optimized(Register r1,
1679                                                   jlong    x2,
1680                                                   Assembler::branch_condition cond,
1681                                                   Label&   branch_target,
1682                                                   bool     len64,
1683                                                   bool     has_sign) {
1684   address      branch_origin = pc();
1685   bool         x2_imm8       = (has_sign && Immediate::is_simm8(x2)) || (!has_sign && Immediate::is_uimm8(x2));
1686   bool         is_RelAddr16  = branch_target.is_near() ||
1687                                (branch_target.is_bound() &&
1688                                 RelAddr::is_in_range_of_RelAddr16(target(branch_target), branch_origin));
1689   unsigned int casenum       = (len64?2:0)+(has_sign?0:1);
1690 
1691   if (VM_Version::has_CompareBranch() && is_RelAddr16 && x2_imm8) {
1692     switch (casenum) {
1693       case 0: z_cij( r1, x2, cond, branch_target); break;
1694       case 1: z_clij(r1, x2, cond, branch_target); break;
1695       case 2: z_cgij(r1, x2, cond, branch_target); break;
1696       case 3: z_clgij(r1, x2, cond, branch_target); break;
1697       default: ShouldNotReachHere(); break;
1698     }
1699     return;
1700   }
1701 
1702   if (x2 == 0) {
1703     switch (casenum) {
1704       case 0: z_ltr(r1, r1); break;
1705       case 1: z_ltr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1706       case 2: z_ltgr(r1, r1); break;
1707       case 3: z_ltgr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1708       default: ShouldNotReachHere(); break;
1709     }
1710   } else {
1711     if ((has_sign && Immediate::is_simm16(x2)) || (!has_sign && Immediate::is_uimm(x2, 15))) {
1712       switch (casenum) {
1713         case 0: z_chi(r1, x2); break;
1714         case 1: z_chi(r1, x2); break; // positive immediate < 2**15
1715         case 2: z_cghi(r1, x2); break;
1716         case 3: z_cghi(r1, x2); break; // positive immediate < 2**15
1717         default: break;
1718       }
1719     } else if ( (has_sign && Immediate::is_simm32(x2)) || (!has_sign && Immediate::is_uimm32(x2)) ) {
1720       switch (casenum) {
1721         case 0: z_cfi( r1, x2); break;
1722         case 1: z_clfi(r1, x2); break;
1723         case 2: z_cgfi(r1, x2); break;
1724         case 3: z_clgfi(r1, x2); break;
1725         default: ShouldNotReachHere(); break;
1726       }
1727     } else {
1728       // No instruction with immediate operand possible, so load into register.
1729       Register scratch = (r1 != Z_R0) ? Z_R0 : Z_R1;
1730       load_const_optimized(scratch, x2);
1731       switch (casenum) {
1732         case 0: z_cr( r1, scratch); break;
1733         case 1: z_clr(r1, scratch); break;
1734         case 2: z_cgr(r1, scratch); break;
1735         case 3: z_clgr(r1, scratch); break;
1736         default: ShouldNotReachHere(); break;
1737       }
1738     }
1739   }
1740   branch_optimized(cond, branch_target);
1741 }
1742 
1743 // Generate an optimal compare and branch to the branch target.
1744 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1745 // branch distance is short enough. Loading the target address into a
1746 // register and branching via reg is used as fallback only.
1747 //
1748 // Input:
1749 //   r1 - left compare operand
1750 //   r2 - right compare operand
1751 void MacroAssembler::compare_and_branch_optimized(Register r1,
1752                                                   Register r2,
1753                                                   Assembler::branch_condition cond,
1754                                                   Label&   branch_target,
1755                                                   bool     len64,
1756                                                   bool     has_sign) {
1757   unsigned int casenum = (len64 ? 2 : 0) + (has_sign ? 0 : 1);
1758 
1759   if (branch_target.is_bound()) {
1760     address branch_addr = target(branch_target);
1761     compare_and_branch_optimized(r1, r2, cond, branch_addr, len64, has_sign);
1762   } else {
1763     if (VM_Version::has_CompareBranch() && branch_target.is_near()) {
1764       switch (casenum) {
1765         case 0: z_crj(  r1, r2, cond, branch_target); break;
1766         case 1: z_clrj( r1, r2, cond, branch_target); break;
1767         case 2: z_cgrj( r1, r2, cond, branch_target); break;
1768         case 3: z_clgrj(r1, r2, cond, branch_target); break;
1769         default: ShouldNotReachHere(); break;
1770       }
1771     } else {
1772       switch (casenum) {
1773         case 0: z_cr( r1, r2); break;
1774         case 1: z_clr(r1, r2); break;
1775         case 2: z_cgr(r1, r2); break;
1776         case 3: z_clgr(r1, r2); break;
1777         default: ShouldNotReachHere(); break;
1778       }
1779       branch_optimized(cond, branch_target);
1780     }
1781   }
1782 }
1783 
1784 //===========================================================================
1785 //===   END     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1786 //===========================================================================
1787 
1788 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1789   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1790   int index = oop_recorder()->allocate_metadata_index(obj);
1791   RelocationHolder rspec = metadata_Relocation::spec(index);
1792   return AddressLiteral((address)obj, rspec);
1793 }
1794 
1795 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1796   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1797   int index = oop_recorder()->find_index(obj);
1798   RelocationHolder rspec = metadata_Relocation::spec(index);
1799   return AddressLiteral((address)obj, rspec);
1800 }
1801 
1802 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1803   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1804   int oop_index = oop_recorder()->allocate_oop_index(obj);
1805   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1806 }
1807 
1808 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1809   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1810   int oop_index = oop_recorder()->find_index(obj);
1811   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1812 }
1813 
1814 // NOTE: destroys r
1815 void MacroAssembler::c2bool(Register r, Register t) {
1816   z_lcr(t, r);   // t = -r
1817   z_or(r, t);    // r = -r OR r
1818   z_srl(r, 31);  // Yields 0 if r was 0, 1 otherwise.
1819 }
1820 
1821 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
1822                                                       Register tmp,
1823                                                       int offset) {
1824   intptr_t value = *delayed_value_addr;
1825   if (value != 0) {
1826     return RegisterOrConstant(value + offset);
1827   }
1828 
1829   BLOCK_COMMENT("delayed_value {");
1830   // Load indirectly to solve generation ordering problem.
1831   load_absolute_address(tmp, (address) delayed_value_addr); // tmp = a;
1832   z_lg(tmp, 0, tmp);                   // tmp = *tmp;
1833 
1834 #ifdef ASSERT
1835   NearLabel L;
1836   compare64_and_branch(tmp, (intptr_t)0L, Assembler::bcondNotEqual, L);
1837   z_illtrap();
1838   bind(L);
1839 #endif
1840 
1841   if (offset != 0) {
1842     z_agfi(tmp, offset);               // tmp = tmp + offset;
1843   }
1844 
1845   BLOCK_COMMENT("} delayed_value");
1846   return RegisterOrConstant(tmp);
1847 }
1848 
1849 // Patch instruction `inst' at offset `inst_pos' to refer to `dest_pos'
1850 // and return the resulting instruction.
1851 // Dest_pos and inst_pos are 32 bit only. These parms can only designate
1852 // relative positions.
1853 // Use correct argument types. Do not pre-calculate distance.
1854 unsigned long MacroAssembler::patched_branch(address dest_pos, unsigned long inst, address inst_pos) {
1855   int c = 0;
1856   unsigned long patched_inst = 0;
1857   if (is_call_pcrelative_short(inst) ||
1858       is_branch_pcrelative_short(inst) ||
1859       is_branchoncount_pcrelative_short(inst) ||
1860       is_branchonindex32_pcrelative_short(inst)) {
1861     c = 1;
1862     int m = fmask(15, 0);    // simm16(-1, 16, 32);
1863     int v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 32);
1864     patched_inst = (inst & ~m) | v;
1865   } else if (is_compareandbranch_pcrelative_short(inst)) {
1866     c = 2;
1867     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1868     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1869     patched_inst = (inst & ~m) | v;
1870   } else if (is_branchonindex64_pcrelative_short(inst)) {
1871     c = 3;
1872     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1873     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1874     patched_inst = (inst & ~m) | v;
1875   } else if (is_call_pcrelative_long(inst) || is_branch_pcrelative_long(inst)) {
1876     c = 4;
1877     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1878     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1879     patched_inst = (inst & ~m) | v;
1880   } else if (is_pcrelative_long(inst)) { // These are the non-branch pc-relative instructions.
1881     c = 5;
1882     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1883     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1884     patched_inst = (inst & ~m) | v;
1885   } else {
1886     print_dbg_msg(tty, inst, "not a relative branch", 0);
1887     dump_code_range(tty, inst_pos, 32, "not a pcrelative branch");
1888     ShouldNotReachHere();
1889   }
1890 
1891   long new_off = get_pcrel_offset(patched_inst);
1892   if (new_off != (dest_pos-inst_pos)) {
1893     tty->print_cr("case %d: dest_pos = %p, inst_pos = %p, disp = %ld(%12.12lx)", c, dest_pos, inst_pos, new_off, new_off);
1894     print_dbg_msg(tty, inst,         "<- original instruction: branch patching error", 0);
1895     print_dbg_msg(tty, patched_inst, "<- patched  instruction: branch patching error", 0);
1896 #ifdef LUCY_DBG
1897     VM_Version::z_SIGSEGV();
1898 #endif
1899     ShouldNotReachHere();
1900   }
1901   return patched_inst;
1902 }
1903 
1904 // Only called when binding labels (share/vm/asm/assembler.cpp)
1905 // Pass arguments as intended. Do not pre-calculate distance.
1906 void MacroAssembler::pd_patch_instruction(address branch, address target, const char* file, int line) {
1907   unsigned long stub_inst;
1908   int           inst_len = get_instruction(branch, &stub_inst);
1909 
1910   set_instruction(branch, patched_branch(target, stub_inst, branch), inst_len);
1911 }
1912 
1913 
1914 // Extract relative address (aka offset).
1915 // inv_simm16 works for 4-byte instructions only.
1916 // compare and branch instructions are 6-byte and have a 16bit offset "in the middle".
1917 long MacroAssembler::get_pcrel_offset(unsigned long inst) {
1918 
1919   if (MacroAssembler::is_pcrelative_short(inst)) {
1920     if (((inst&0xFFFFffff00000000UL) == 0) && ((inst&0x00000000FFFF0000UL) != 0)) {
1921       return RelAddr::inv_pcrel_off16(inv_simm16(inst));
1922     } else {
1923       return RelAddr::inv_pcrel_off16(inv_simm16_48(inst));
1924     }
1925   }
1926 
1927   if (MacroAssembler::is_pcrelative_long(inst)) {
1928     return RelAddr::inv_pcrel_off32(inv_simm32(inst));
1929   }
1930 
1931   print_dbg_msg(tty, inst, "not a pcrelative instruction", 6);
1932 #ifdef LUCY_DBG
1933   VM_Version::z_SIGSEGV();
1934 #else
1935   ShouldNotReachHere();
1936 #endif
1937   return -1;
1938 }
1939 
1940 long MacroAssembler::get_pcrel_offset(address pc) {
1941   unsigned long inst;
1942   unsigned int  len = get_instruction(pc, &inst);
1943 
1944 #ifdef ASSERT
1945   long offset;
1946   if (MacroAssembler::is_pcrelative_short(inst) || MacroAssembler::is_pcrelative_long(inst)) {
1947     offset = get_pcrel_offset(inst);
1948   } else {
1949     offset = -1;
1950   }
1951 
1952   if (offset == -1) {
1953     dump_code_range(tty, pc, 32, "not a pcrelative instruction");
1954 #ifdef LUCY_DBG
1955     VM_Version::z_SIGSEGV();
1956 #else
1957     ShouldNotReachHere();
1958 #endif
1959   }
1960   return offset;
1961 #else
1962   return get_pcrel_offset(inst);
1963 #endif // ASSERT
1964 }
1965 
1966 // Get target address from pc-relative instructions.
1967 address MacroAssembler::get_target_addr_pcrel(address pc) {
1968   assert(is_pcrelative_long(pc), "not a pcrelative instruction");
1969   return pc + get_pcrel_offset(pc);
1970 }
1971 
1972 // Patch pc relative load address.
1973 void MacroAssembler::patch_target_addr_pcrel(address pc, address con) {
1974   unsigned long inst;
1975   // Offset is +/- 2**32 -> use long.
1976   ptrdiff_t distance = con - pc;
1977 
1978   get_instruction(pc, &inst);
1979 
1980   if (is_pcrelative_short(inst)) {
1981     *(short *)(pc+2) = RelAddr::pcrel_off16(con, pc);  // Instructions are at least 2-byte aligned, no test required.
1982 
1983     // Some extra safety net.
1984     if (!RelAddr::is_in_range_of_RelAddr16(distance)) {
1985       print_dbg_msg(tty, inst, "distance out of range (16bit)", 4);
1986       dump_code_range(tty, pc, 32, "distance out of range (16bit)");
1987       guarantee(RelAddr::is_in_range_of_RelAddr16(distance), "too far away (more than +/- 2**16");
1988     }
1989     return;
1990   }
1991 
1992   if (is_pcrelative_long(inst)) {
1993     *(int *)(pc+2)   = RelAddr::pcrel_off32(con, pc);
1994 
1995     // Some Extra safety net.
1996     if (!RelAddr::is_in_range_of_RelAddr32(distance)) {
1997       print_dbg_msg(tty, inst, "distance out of range (32bit)", 6);
1998       dump_code_range(tty, pc, 32, "distance out of range (32bit)");
1999       guarantee(RelAddr::is_in_range_of_RelAddr32(distance), "too far away (more than +/- 2**32");
2000     }
2001     return;
2002   }
2003 
2004   guarantee(false, "not a pcrelative instruction to patch!");
2005 }
2006 
2007 // "Current PC" here means the address just behind the basr instruction.
2008 address MacroAssembler::get_PC(Register result) {
2009   z_basr(result, Z_R0); // Don't branch, just save next instruction address in result.
2010   return pc();
2011 }
2012 
2013 // Get current PC + offset.
2014 // Offset given in bytes, must be even!
2015 // "Current PC" here means the address of the larl instruction plus the given offset.
2016 address MacroAssembler::get_PC(Register result, int64_t offset) {
2017   address here = pc();
2018   z_larl(result, offset/2); // Save target instruction address in result.
2019   return here + offset;
2020 }
2021 
2022 void MacroAssembler::instr_size(Register size, Register pc) {
2023   // Extract 2 most significant bits of current instruction.
2024   z_llgc(size, Address(pc));
2025   z_srl(size, 6);
2026   // Compute (x+3)&6 which translates 0->2, 1->4, 2->4, 3->6.
2027   z_ahi(size, 3);
2028   z_nill(size, 6);
2029 }
2030 
2031 // Resize_frame with SP(new) = SP(old) - [offset].
2032 void MacroAssembler::resize_frame_sub(Register offset, Register fp, bool load_fp)
2033 {
2034   assert_different_registers(offset, fp, Z_SP);
2035   if (load_fp) { z_lg(fp, _z_abi(callers_sp), Z_SP); }
2036 
2037   z_sgr(Z_SP, offset);
2038   z_stg(fp, _z_abi(callers_sp), Z_SP);
2039 }
2040 
2041 // Resize_frame with SP(new) = [newSP] + offset.
2042 //   This emitter is useful if we already have calculated a pointer
2043 //   into the to-be-allocated stack space, e.g. with special alignment properties,
2044 //   but need some additional space, e.g. for spilling.
2045 //   newSP    is the pre-calculated pointer. It must not be modified.
2046 //   fp       holds, or is filled with, the frame pointer.
2047 //   offset   is the additional increment which is added to addr to form the new SP.
2048 //            Note: specify a negative value to reserve more space!
2049 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2050 //                    It does not guarantee that fp contains the frame pointer at the end.
2051 void MacroAssembler::resize_frame_abs_with_offset(Register newSP, Register fp, int offset, bool load_fp) {
2052   assert_different_registers(newSP, fp, Z_SP);
2053 
2054   if (load_fp) {
2055     z_lg(fp, _z_abi(callers_sp), Z_SP);
2056   }
2057 
2058   add2reg(Z_SP, offset, newSP);
2059   z_stg(fp, _z_abi(callers_sp), Z_SP);
2060 }
2061 
2062 // Resize_frame with SP(new) = [newSP].
2063 //   load_fp == true  only indicates that fp is not pre-filled with the frame pointer.
2064 //                    It does not guarantee that fp contains the frame pointer at the end.
2065 void MacroAssembler::resize_frame_absolute(Register newSP, Register fp, bool load_fp) {
2066   assert_different_registers(newSP, fp, Z_SP);
2067 
2068   if (load_fp) {
2069     z_lg(fp, _z_abi(callers_sp), Z_SP); // need to use load/store.
2070   }
2071 
2072   z_lgr(Z_SP, newSP);
2073   if (newSP != Z_R0) { // make sure we generate correct code, no matter what register newSP uses.
2074     z_stg(fp, _z_abi(callers_sp), newSP);
2075   } else {
2076     z_stg(fp, _z_abi(callers_sp), Z_SP);
2077   }
2078 }
2079 
2080 // Resize_frame with SP(new) = SP(old) + offset.
2081 void MacroAssembler::resize_frame(RegisterOrConstant offset, Register fp, bool load_fp) {
2082   assert_different_registers(fp, Z_SP);
2083 
2084   if (load_fp) {
2085     z_lg(fp, _z_abi(callers_sp), Z_SP);
2086   }
2087   add64(Z_SP, offset);
2088   z_stg(fp, _z_abi(callers_sp), Z_SP);
2089 }
2090 
2091 void MacroAssembler::push_frame(Register bytes, Register old_sp, bool copy_sp, bool bytes_with_inverted_sign) {
2092 #ifdef ASSERT
2093   assert_different_registers(bytes, old_sp, Z_SP);
2094   if (!copy_sp) {
2095     z_cgr(old_sp, Z_SP);
2096     asm_assert_eq("[old_sp]!=[Z_SP]", 0x211);
2097   }
2098 #endif
2099   if (copy_sp) { z_lgr(old_sp, Z_SP); }
2100   if (bytes_with_inverted_sign) {
2101     z_agr(Z_SP, bytes);
2102   } else {
2103     z_sgr(Z_SP, bytes); // Z_sgfr sufficient, but probably not faster.
2104   }
2105   z_stg(old_sp, _z_abi(callers_sp), Z_SP);
2106 }
2107 
2108 unsigned int MacroAssembler::push_frame(unsigned int bytes, Register scratch) {
2109   long offset = Assembler::align(bytes, frame::alignment_in_bytes);
2110   assert(offset > 0, "should push a frame with positive size, size = %ld.", offset);
2111   assert(Displacement::is_validDisp(-offset), "frame size out of range, size = %ld", offset);
2112 
2113   // We must not write outside the current stack bounds (given by Z_SP).
2114   // Thus, we have to first update Z_SP and then store the previous SP as stack linkage.
2115   // We rely on Z_R0 by default to be available as scratch.
2116   z_lgr(scratch, Z_SP);
2117   add2reg(Z_SP, -offset);
2118   z_stg(scratch, _z_abi(callers_sp), Z_SP);
2119 #ifdef ASSERT
2120   // Just make sure nobody uses the value in the default scratch register.
2121   // When another register is used, the caller might rely on it containing the frame pointer.
2122   if (scratch == Z_R0) {
2123     z_iihf(scratch, 0xbaadbabe);
2124     z_iilf(scratch, 0xdeadbeef);
2125   }
2126 #endif
2127   return offset;
2128 }
2129 
2130 // Push a frame of size `bytes' plus abi160 on top.
2131 unsigned int MacroAssembler::push_frame_abi160(unsigned int bytes) {
2132   BLOCK_COMMENT("push_frame_abi160 {");
2133   unsigned int res = push_frame(bytes + frame::z_abi_160_size);
2134   BLOCK_COMMENT("} push_frame_abi160");
2135   return res;
2136 }
2137 
2138 // Pop current C frame.
2139 void MacroAssembler::pop_frame() {
2140   BLOCK_COMMENT("pop_frame:");
2141   Assembler::z_lg(Z_SP, _z_abi(callers_sp), Z_SP);
2142 }
2143 
2144 // Pop current C frame and restore return PC register (Z_R14).
2145 void MacroAssembler::pop_frame_restore_retPC(int frame_size_in_bytes) {
2146   BLOCK_COMMENT("pop_frame_restore_retPC:");
2147   int retPC_offset = _z_abi16(return_pc) + frame_size_in_bytes;
2148   // If possible, pop frame by add instead of load (a penny saved is a penny got :-).
2149   if (Displacement::is_validDisp(retPC_offset)) {
2150     z_lg(Z_R14, retPC_offset, Z_SP);
2151     add2reg(Z_SP, frame_size_in_bytes);
2152   } else {
2153     add2reg(Z_SP, frame_size_in_bytes);
2154     restore_return_pc();
2155   }
2156 }
2157 
2158 void MacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
2159   if (allow_relocation) {
2160     call_c(entry_point);
2161   } else {
2162     call_c_static(entry_point);
2163   }
2164 }
2165 
2166 void MacroAssembler::call_VM_leaf_base(address entry_point) {
2167   bool allow_relocation = true;
2168   call_VM_leaf_base(entry_point, allow_relocation);
2169 }
2170 
2171 void MacroAssembler::call_VM_base(Register oop_result,
2172                                   Register last_java_sp,
2173                                   address  entry_point,
2174                                   bool     allow_relocation,
2175                                   bool     check_exceptions) { // Defaults to true.
2176   // Allow_relocation indicates, if true, that the generated code shall
2177   // be fit for code relocation or referenced data relocation. In other
2178   // words: all addresses must be considered variable. PC-relative addressing
2179   // is not possible then.
2180   // On the other hand, if (allow_relocation == false), addresses and offsets
2181   // may be considered stable, enabling us to take advantage of some PC-relative
2182   // addressing tweaks. These might improve performance and reduce code size.
2183 
2184   // Determine last_java_sp register.
2185   if (!last_java_sp->is_valid()) {
2186     last_java_sp = Z_SP;  // Load Z_SP as SP.
2187   }
2188 
2189   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, Z_R1, allow_relocation);
2190 
2191   // ARG1 must hold thread address.
2192   z_lgr(Z_ARG1, Z_thread);
2193 
2194   address return_pc = NULL;
2195   if (allow_relocation) {
2196     return_pc = call_c(entry_point);
2197   } else {
2198     return_pc = call_c_static(entry_point);
2199   }
2200 
2201   reset_last_Java_frame(allow_relocation);
2202 
2203   // C++ interp handles this in the interpreter.
2204   check_and_handle_popframe(Z_thread);
2205   check_and_handle_earlyret(Z_thread);
2206 
2207   // Check for pending exceptions.
2208   if (check_exceptions) {
2209     // Check for pending exceptions (java_thread is set upon return).
2210     load_and_test_long(Z_R0_scratch, Address(Z_thread, Thread::pending_exception_offset()));
2211 
2212     // This used to conditionally jump to forward_exception however it is
2213     // possible if we relocate that the branch will not reach. So we must jump
2214     // around so we can always reach.
2215 
2216     Label ok;
2217     z_bre(ok); // Bcondequal is the same as bcondZero.
2218     call_stub(StubRoutines::forward_exception_entry());
2219     bind(ok);
2220   }
2221 
2222   // Get oop result if there is one and reset the value in the thread.
2223   if (oop_result->is_valid()) {
2224     get_vm_result(oop_result);
2225   }
2226 
2227   _last_calls_return_pc = return_pc;  // Wipe out other (error handling) calls.
2228 }
2229 
2230 void MacroAssembler::call_VM_base(Register oop_result,
2231                                   Register last_java_sp,
2232                                   address  entry_point,
2233                                   bool     check_exceptions) { // Defaults to true.
2234   bool allow_relocation = true;
2235   call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions);
2236 }
2237 
2238 // VM calls without explicit last_java_sp.
2239 
2240 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2241   // Call takes possible detour via InterpreterMacroAssembler.
2242   call_VM_base(oop_result, noreg, entry_point, true, check_exceptions);
2243 }
2244 
2245 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2246   // Z_ARG1 is reserved for the thread.
2247   lgr_if_needed(Z_ARG2, arg_1);
2248   call_VM(oop_result, entry_point, check_exceptions);
2249 }
2250 
2251 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2252   // Z_ARG1 is reserved for the thread.
2253   lgr_if_needed(Z_ARG2, arg_1);
2254   assert(arg_2 != Z_ARG2, "smashed argument");
2255   lgr_if_needed(Z_ARG3, arg_2);
2256   call_VM(oop_result, entry_point, check_exceptions);
2257 }
2258 
2259 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2260                              Register arg_3, bool check_exceptions) {
2261   // Z_ARG1 is reserved for the thread.
2262   lgr_if_needed(Z_ARG2, arg_1);
2263   assert(arg_2 != Z_ARG2, "smashed argument");
2264   lgr_if_needed(Z_ARG3, arg_2);
2265   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2266   lgr_if_needed(Z_ARG4, arg_3);
2267   call_VM(oop_result, entry_point, check_exceptions);
2268 }
2269 
2270 // VM static calls without explicit last_java_sp.
2271 
2272 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, bool check_exceptions) {
2273   // Call takes possible detour via InterpreterMacroAssembler.
2274   call_VM_base(oop_result, noreg, entry_point, false, check_exceptions);
2275 }
2276 
2277 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2278                                     Register arg_3, bool check_exceptions) {
2279   // Z_ARG1 is reserved for the thread.
2280   lgr_if_needed(Z_ARG2, arg_1);
2281   assert(arg_2 != Z_ARG2, "smashed argument");
2282   lgr_if_needed(Z_ARG3, arg_2);
2283   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2284   lgr_if_needed(Z_ARG4, arg_3);
2285   call_VM_static(oop_result, entry_point, check_exceptions);
2286 }
2287 
2288 // VM calls with explicit last_java_sp.
2289 
2290 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) {
2291   // Call takes possible detour via InterpreterMacroAssembler.
2292   call_VM_base(oop_result, last_java_sp, entry_point, true, check_exceptions);
2293 }
2294 
2295 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
2296    // Z_ARG1 is reserved for the thread.
2297    lgr_if_needed(Z_ARG2, arg_1);
2298    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2299 }
2300 
2301 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2302                              Register arg_2, bool check_exceptions) {
2303    // Z_ARG1 is reserved for the thread.
2304    lgr_if_needed(Z_ARG2, arg_1);
2305    assert(arg_2 != Z_ARG2, "smashed argument");
2306    lgr_if_needed(Z_ARG3, arg_2);
2307    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2311                              Register arg_2, Register arg_3, bool check_exceptions) {
2312   // Z_ARG1 is reserved for the thread.
2313   lgr_if_needed(Z_ARG2, arg_1);
2314   assert(arg_2 != Z_ARG2, "smashed argument");
2315   lgr_if_needed(Z_ARG3, arg_2);
2316   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2317   lgr_if_needed(Z_ARG4, arg_3);
2318   call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2319 }
2320 
2321 // VM leaf calls.
2322 
2323 void MacroAssembler::call_VM_leaf(address entry_point) {
2324   // Call takes possible detour via InterpreterMacroAssembler.
2325   call_VM_leaf_base(entry_point, true);
2326 }
2327 
2328 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
2329   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2330   call_VM_leaf(entry_point);
2331 }
2332 
2333 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
2334   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2335   assert(arg_2 != Z_ARG1, "smashed argument");
2336   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2337   call_VM_leaf(entry_point);
2338 }
2339 
2340 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2341   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2342   assert(arg_2 != Z_ARG1, "smashed argument");
2343   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2344   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2345   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2346   call_VM_leaf(entry_point);
2347 }
2348 
2349 // Static VM leaf calls.
2350 // Really static VM leaf calls are never patched.
2351 
2352 void MacroAssembler::call_VM_leaf_static(address entry_point) {
2353   // Call takes possible detour via InterpreterMacroAssembler.
2354   call_VM_leaf_base(entry_point, false);
2355 }
2356 
2357 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1) {
2358   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2359   call_VM_leaf_static(entry_point);
2360 }
2361 
2362 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2) {
2363   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2364   assert(arg_2 != Z_ARG1, "smashed argument");
2365   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2366   call_VM_leaf_static(entry_point);
2367 }
2368 
2369 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2370   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2371   assert(arg_2 != Z_ARG1, "smashed argument");
2372   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2373   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2374   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2375   call_VM_leaf_static(entry_point);
2376 }
2377 
2378 // Don't use detour via call_c(reg).
2379 address MacroAssembler::call_c(address function_entry) {
2380   load_const(Z_R1, function_entry);
2381   return call(Z_R1);
2382 }
2383 
2384 // Variant for really static (non-relocatable) calls which are never patched.
2385 address MacroAssembler::call_c_static(address function_entry) {
2386   load_absolute_address(Z_R1, function_entry);
2387 #if 0 // def ASSERT
2388   // Verify that call site did not move.
2389   load_const_optimized(Z_R0, function_entry);
2390   z_cgr(Z_R1, Z_R0);
2391   z_brc(bcondEqual, 3);
2392   z_illtrap(0xba);
2393 #endif
2394   return call(Z_R1);
2395 }
2396 
2397 address MacroAssembler::call_c_opt(address function_entry) {
2398   bool success = call_far_patchable(function_entry, -2 /* emit relocation + constant */);
2399   _last_calls_return_pc = success ? pc() : NULL;
2400   return _last_calls_return_pc;
2401 }
2402 
2403 // Identify a call_far_patchable instruction: LARL + LG + BASR
2404 //
2405 //    nop                   ; optionally, if required for alignment
2406 //    lgrl rx,A(TOC entry)  ; PC-relative access into constant pool
2407 //    basr Z_R14,rx         ; end of this instruction must be aligned to a word boundary
2408 //
2409 // Code pattern will eventually get patched into variant2 (see below for detection code).
2410 //
2411 bool MacroAssembler::is_call_far_patchable_variant0_at(address instruction_addr) {
2412   address iaddr = instruction_addr;
2413 
2414   // Check for the actual load instruction.
2415   if (!is_load_const_from_toc(iaddr)) { return false; }
2416   iaddr += load_const_from_toc_size();
2417 
2418   // Check for the call (BASR) instruction, finally.
2419   assert(iaddr-instruction_addr+call_byregister_size() == call_far_patchable_size(), "size mismatch");
2420   return is_call_byregister(iaddr);
2421 }
2422 
2423 // Identify a call_far_patchable instruction: BRASL
2424 //
2425 // Code pattern to suits atomic patching:
2426 //    nop                       ; Optionally, if required for alignment.
2427 //    nop    ...                ; Multiple filler nops to compensate for size difference (variant0 is longer).
2428 //    nop                       ; For code pattern detection: Prepend each BRASL with a nop.
2429 //    brasl  Z_R14,<reladdr>    ; End of code must be 4-byte aligned !
2430 bool MacroAssembler::is_call_far_patchable_variant2_at(address instruction_addr) {
2431   const address call_addr = (address)((intptr_t)instruction_addr + call_far_patchable_size() - call_far_pcrelative_size());
2432 
2433   // Check for correct number of leading nops.
2434   address iaddr;
2435   for (iaddr = instruction_addr; iaddr < call_addr; iaddr += nop_size()) {
2436     if (!is_z_nop(iaddr)) { return false; }
2437   }
2438   assert(iaddr == call_addr, "sanity");
2439 
2440   // --> Check for call instruction.
2441   if (is_call_far_pcrelative(call_addr)) {
2442     assert(call_addr-instruction_addr+call_far_pcrelative_size() == call_far_patchable_size(), "size mismatch");
2443     return true;
2444   }
2445 
2446   return false;
2447 }
2448 
2449 // Emit a NOT mt-safely patchable 64 bit absolute call.
2450 // If toc_offset == -2, then the destination of the call (= target) is emitted
2451 //                      to the constant pool and a runtime_call relocation is added
2452 //                      to the code buffer.
2453 // If toc_offset != -2, target must already be in the constant pool at
2454 //                      _ctableStart+toc_offset (a caller can retrieve toc_offset
2455 //                      from the runtime_call relocation).
2456 // Special handling of emitting to scratch buffer when there is no constant pool.
2457 // Slightly changed code pattern. We emit an additional nop if we would
2458 // not end emitting at a word aligned address. This is to ensure
2459 // an atomically patchable displacement in brasl instructions.
2460 //
2461 // A call_far_patchable comes in different flavors:
2462 //  - LARL(CP) / LG(CP) / BR (address in constant pool, access via CP register)
2463 //  - LGRL(CP) / BR          (address in constant pool, pc-relative accesss)
2464 //  - BRASL                  (relative address of call target coded in instruction)
2465 // All flavors occupy the same amount of space. Length differences are compensated
2466 // by leading nops, such that the instruction sequence always ends at the same
2467 // byte offset. This is required to keep the return offset constant.
2468 // Furthermore, the return address (the end of the instruction sequence) is forced
2469 // to be on a 4-byte boundary. This is required for atomic patching, should we ever
2470 // need to patch the call target of the BRASL flavor.
2471 // RETURN value: false, if no constant pool entry could be allocated, true otherwise.
2472 bool MacroAssembler::call_far_patchable(address target, int64_t tocOffset) {
2473   // Get current pc and ensure word alignment for end of instr sequence.
2474   const address start_pc = pc();
2475   const intptr_t       start_off = offset();
2476   assert(!call_far_patchable_requires_alignment_nop(start_pc), "call_far_patchable requires aligned address");
2477   const ptrdiff_t      dist      = (ptrdiff_t)(target - (start_pc + 2)); // Prepend each BRASL with a nop.
2478   const bool emit_target_to_pool = (tocOffset == -2) && !code_section()->scratch_emit();
2479   const bool emit_relative_call  = !emit_target_to_pool &&
2480                                    RelAddr::is_in_range_of_RelAddr32(dist) &&
2481                                    ReoptimizeCallSequences &&
2482                                    !code_section()->scratch_emit();
2483 
2484   if (emit_relative_call) {
2485     // Add padding to get the same size as below.
2486     const unsigned int padding = call_far_patchable_size() - call_far_pcrelative_size();
2487     unsigned int current_padding;
2488     for (current_padding = 0; current_padding < padding; current_padding += nop_size()) { z_nop(); }
2489     assert(current_padding == padding, "sanity");
2490 
2491     // relative call: len = 2(nop) + 6 (brasl)
2492     // CodeBlob resize cannot occur in this case because
2493     // this call is emitted into pre-existing space.
2494     z_nop(); // Prepend each BRASL with a nop.
2495     z_brasl(Z_R14, target);
2496   } else {
2497     // absolute call: Get address from TOC.
2498     // len = (load TOC){6|0} + (load from TOC){6} + (basr){2} = {14|8}
2499     if (emit_target_to_pool) {
2500       // When emitting the call for the first time, we do not need to use
2501       // the pc-relative version. It will be patched anyway, when the code
2502       // buffer is copied.
2503       // Relocation is not needed when !ReoptimizeCallSequences.
2504       relocInfo::relocType rt = ReoptimizeCallSequences ? relocInfo::runtime_call_w_cp_type : relocInfo::none;
2505       AddressLiteral dest(target, rt);
2506       // Store_oop_in_toc() adds dest to the constant table. As side effect, this kills
2507       // inst_mark(). Reset if possible.
2508       bool reset_mark = (inst_mark() == pc());
2509       tocOffset = store_oop_in_toc(dest);
2510       if (reset_mark) { set_inst_mark(); }
2511       if (tocOffset == -1) {
2512         return false; // Couldn't create constant pool entry.
2513       }
2514     }
2515     assert(offset() == start_off, "emit no code before this point!");
2516 
2517     address tocPos = pc() + tocOffset;
2518     if (emit_target_to_pool) {
2519       tocPos = code()->consts()->start() + tocOffset;
2520     }
2521     load_long_pcrelative(Z_R14, tocPos);
2522     z_basr(Z_R14, Z_R14);
2523   }
2524 
2525 #ifdef ASSERT
2526   // Assert that we can identify the emitted call.
2527   assert(is_call_far_patchable_at(addr_at(start_off)), "can't identify emitted call");
2528   assert(offset() == start_off+call_far_patchable_size(), "wrong size");
2529 
2530   if (emit_target_to_pool) {
2531     assert(get_dest_of_call_far_patchable_at(addr_at(start_off), code()->consts()->start()) == target,
2532            "wrong encoding of dest address");
2533   }
2534 #endif
2535   return true; // success
2536 }
2537 
2538 // Identify a call_far_patchable instruction.
2539 // For more detailed information see header comment of call_far_patchable.
2540 bool MacroAssembler::is_call_far_patchable_at(address instruction_addr) {
2541   return is_call_far_patchable_variant2_at(instruction_addr)  || // short version: BRASL
2542          is_call_far_patchable_variant0_at(instruction_addr);    // long version LARL + LG + BASR
2543 }
2544 
2545 // Does the call_far_patchable instruction use a pc-relative encoding
2546 // of the call destination?
2547 bool MacroAssembler::is_call_far_patchable_pcrelative_at(address instruction_addr) {
2548   // Variant 2 is pc-relative.
2549   return is_call_far_patchable_variant2_at(instruction_addr);
2550 }
2551 
2552 bool MacroAssembler::is_call_far_pcrelative(address instruction_addr) {
2553   // Prepend each BRASL with a nop.
2554   return is_z_nop(instruction_addr) && is_z_brasl(instruction_addr + nop_size());  // Match at position after one nop required.
2555 }
2556 
2557 // Set destination address of a call_far_patchable instruction.
2558 void MacroAssembler::set_dest_of_call_far_patchable_at(address instruction_addr, address dest, int64_t tocOffset) {
2559   ResourceMark rm;
2560 
2561   // Now that CP entry is verified, patch call to a pc-relative call (if circumstances permit).
2562   int code_size = MacroAssembler::call_far_patchable_size();
2563   CodeBuffer buf(instruction_addr, code_size);
2564   MacroAssembler masm(&buf);
2565   masm.call_far_patchable(dest, tocOffset);
2566   ICache::invalidate_range(instruction_addr, code_size); // Empty on z.
2567 }
2568 
2569 // Get dest address of a call_far_patchable instruction.
2570 address MacroAssembler::get_dest_of_call_far_patchable_at(address instruction_addr, address ctable) {
2571   // Dynamic TOC: absolute address in constant pool.
2572   // Check variant2 first, it is more frequent.
2573 
2574   // Relative address encoded in call instruction.
2575   if (is_call_far_patchable_variant2_at(instruction_addr)) {
2576     return MacroAssembler::get_target_addr_pcrel(instruction_addr + nop_size()); // Prepend each BRASL with a nop.
2577 
2578   // Absolute address in constant pool.
2579   } else if (is_call_far_patchable_variant0_at(instruction_addr)) {
2580     address iaddr = instruction_addr;
2581 
2582     long    tocOffset = get_load_const_from_toc_offset(iaddr);
2583     address tocLoc    = iaddr + tocOffset;
2584     return *(address *)(tocLoc);
2585   } else {
2586     fprintf(stderr, "MacroAssembler::get_dest_of_call_far_patchable_at has a problem at %p:\n", instruction_addr);
2587     fprintf(stderr, "not a call_far_patchable: %16.16lx %16.16lx, len = %d\n",
2588             *(unsigned long*)instruction_addr,
2589             *(unsigned long*)(instruction_addr+8),
2590             call_far_patchable_size());
2591     Disassembler::decode(instruction_addr, instruction_addr+call_far_patchable_size());
2592     ShouldNotReachHere();
2593     return NULL;
2594   }
2595 }
2596 
2597 void MacroAssembler::align_call_far_patchable(address pc) {
2598   if (call_far_patchable_requires_alignment_nop(pc)) { z_nop(); }
2599 }
2600 
2601 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2602 }
2603 
2604 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2605 }
2606 
2607 // Read from the polling page.
2608 // Use TM or TMY instruction, depending on read offset.
2609 //   offset = 0: Use TM, safepoint polling.
2610 //   offset < 0: Use TMY, profiling safepoint polling.
2611 void MacroAssembler::load_from_polling_page(Register polling_page_address, int64_t offset) {
2612   if (Immediate::is_uimm12(offset)) {
2613     z_tm(offset, polling_page_address, mask_safepoint);
2614   } else {
2615     z_tmy(offset, polling_page_address, mask_profiling);
2616   }
2617 }
2618 
2619 // Check whether z_instruction is a read access to the polling page
2620 // which was emitted by load_from_polling_page(..).
2621 bool MacroAssembler::is_load_from_polling_page(address instr_loc) {
2622   unsigned long z_instruction;
2623   unsigned int  ilen = get_instruction(instr_loc, &z_instruction);
2624 
2625   if (ilen == 2) { return false; } // It's none of the allowed instructions.
2626 
2627   if (ilen == 4) {
2628     if (!is_z_tm(z_instruction)) { return false; } // It's len=4, but not a z_tm. fail.
2629 
2630     int ms = inv_mask(z_instruction,8,32);  // mask
2631     int ra = inv_reg(z_instruction,16,32);  // base register
2632     int ds = inv_uimm12(z_instruction);     // displacement
2633 
2634     if (!(ds == 0 && ra != 0 && ms == mask_safepoint)) {
2635       return false; // It's not a z_tm(0, ra, mask_safepoint). Fail.
2636     }
2637 
2638   } else { /* if (ilen == 6) */
2639 
2640     assert(!is_z_lg(z_instruction), "old form (LG) polling page access. Please fix and use TM(Y).");
2641 
2642     if (!is_z_tmy(z_instruction)) { return false; } // It's len=6, but not a z_tmy. fail.
2643 
2644     int ms = inv_mask(z_instruction,8,48);  // mask
2645     int ra = inv_reg(z_instruction,16,48);  // base register
2646     int ds = inv_simm20(z_instruction);     // displacement
2647   }
2648 
2649   return true;
2650 }
2651 
2652 // Extract poll address from instruction and ucontext.
2653 address MacroAssembler::get_poll_address(address instr_loc, void* ucontext) {
2654   assert(ucontext != NULL, "must have ucontext");
2655   ucontext_t* uc = (ucontext_t*) ucontext;
2656   unsigned long z_instruction;
2657   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2658 
2659   if (ilen == 4 && is_z_tm(z_instruction)) {
2660     int ra = inv_reg(z_instruction, 16, 32);  // base register
2661     int ds = inv_uimm12(z_instruction);       // displacement
2662     address addr = (address)uc->uc_mcontext.gregs[ra];
2663     return addr + ds;
2664   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2665     int ra = inv_reg(z_instruction, 16, 48);  // base register
2666     int ds = inv_simm20(z_instruction);       // displacement
2667     address addr = (address)uc->uc_mcontext.gregs[ra];
2668     return addr + ds;
2669   }
2670 
2671   ShouldNotReachHere();
2672   return NULL;
2673 }
2674 
2675 // Extract poll register from instruction.
2676 uint MacroAssembler::get_poll_register(address instr_loc) {
2677   unsigned long z_instruction;
2678   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2679 
2680   if (ilen == 4 && is_z_tm(z_instruction)) {
2681     return (uint)inv_reg(z_instruction, 16, 32);  // base register
2682   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2683     return (uint)inv_reg(z_instruction, 16, 48);  // base register
2684   }
2685 
2686   ShouldNotReachHere();
2687   return 0;
2688 }
2689 
2690 void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
2691   if (SafepointMechanism::uses_thread_local_poll()) {
2692     const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
2693     // Armed page has poll_bit set.
2694     z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
2695     z_brnaz(slow_path);
2696   } else {
2697     load_const_optimized(temp_reg, SafepointSynchronize::address_of_state());
2698     z_cli(/*SafepointSynchronize::sz_state()*/4-1, temp_reg, SafepointSynchronize::_not_synchronized);
2699     z_brne(slow_path);
2700   }
2701 }
2702 
2703 // Don't rely on register locking, always use Z_R1 as scratch register instead.
2704 void MacroAssembler::bang_stack_with_offset(int offset) {
2705   // Stack grows down, caller passes positive offset.
2706   assert(offset > 0, "must bang with positive offset");
2707   if (Displacement::is_validDisp(-offset)) {
2708     z_tmy(-offset, Z_SP, mask_stackbang);
2709   } else {
2710     add2reg(Z_R1, -offset, Z_SP);    // Do not destroy Z_SP!!!
2711     z_tm(0, Z_R1, mask_stackbang);  // Just banging.
2712   }
2713 }
2714 
2715 void MacroAssembler::reserved_stack_check(Register return_pc) {
2716   // Test if reserved zone needs to be enabled.
2717   Label no_reserved_zone_enabling;
2718   assert(return_pc == Z_R14, "Return pc must be in R14 before z_br() to StackOverflow stub.");
2719   BLOCK_COMMENT("reserved_stack_check {");
2720 
2721   z_clg(Z_SP, Address(Z_thread, JavaThread::reserved_stack_activation_offset()));
2722   z_brl(no_reserved_zone_enabling);
2723 
2724   // Enable reserved zone again, throw stack overflow exception.
2725   save_return_pc();
2726   push_frame_abi160(0);
2727   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
2728   pop_frame();
2729   restore_return_pc();
2730 
2731   load_const_optimized(Z_R1, StubRoutines::throw_delayed_StackOverflowError_entry());
2732   // Don't use call() or z_basr(), they will invalidate Z_R14 which contains the return pc.
2733   z_br(Z_R1);
2734 
2735   should_not_reach_here();
2736 
2737   bind(no_reserved_zone_enabling);
2738   BLOCK_COMMENT("} reserved_stack_check");
2739 }
2740 
2741 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
2742 void MacroAssembler::tlab_allocate(Register obj,
2743                                    Register var_size_in_bytes,
2744                                    int con_size_in_bytes,
2745                                    Register t1,
2746                                    Label& slow_case) {
2747   assert_different_registers(obj, var_size_in_bytes, t1);
2748   Register end = t1;
2749   Register thread = Z_thread;
2750 
2751   z_lg(obj, Address(thread, JavaThread::tlab_top_offset()));
2752   if (var_size_in_bytes == noreg) {
2753     z_lay(end, Address(obj, con_size_in_bytes));
2754   } else {
2755     z_lay(end, Address(obj, var_size_in_bytes));
2756   }
2757   z_cg(end, Address(thread, JavaThread::tlab_end_offset()));
2758   branch_optimized(bcondHigh, slow_case);
2759 
2760   // Update the tlab top pointer.
2761   z_stg(end, Address(thread, JavaThread::tlab_top_offset()));
2762 
2763   // Recover var_size_in_bytes if necessary.
2764   if (var_size_in_bytes == end) {
2765     z_sgr(var_size_in_bytes, obj);
2766   }
2767 }
2768 
2769 // Emitter for interface method lookup.
2770 //   input: recv_klass, intf_klass, itable_index
2771 //   output: method_result
2772 //   kills: itable_index, temp1_reg, Z_R0, Z_R1
2773 // TODO: Temp2_reg is unused. we may use this emitter also in the itable stubs.
2774 // If the register is still not needed then, remove it.
2775 void MacroAssembler::lookup_interface_method(Register           recv_klass,
2776                                              Register           intf_klass,
2777                                              RegisterOrConstant itable_index,
2778                                              Register           method_result,
2779                                              Register           temp1_reg,
2780                                              Label&             no_such_interface,
2781                                              bool               return_method) {
2782 
2783   const Register vtable_len = temp1_reg;    // Used to compute itable_entry_addr.
2784   const Register itable_entry_addr = Z_R1_scratch;
2785   const Register itable_interface = Z_R0_scratch;
2786 
2787   BLOCK_COMMENT("lookup_interface_method {");
2788 
2789   // Load start of itable entries into itable_entry_addr.
2790   z_llgf(vtable_len, Address(recv_klass, Klass::vtable_length_offset()));
2791   z_sllg(vtable_len, vtable_len, exact_log2(vtableEntry::size_in_bytes()));
2792 
2793   // Loop over all itable entries until desired interfaceOop(Rinterface) found.
2794   const int vtable_base_offset = in_bytes(Klass::vtable_start_offset());
2795 
2796   add2reg_with_index(itable_entry_addr,
2797                      vtable_base_offset + itableOffsetEntry::interface_offset_in_bytes(),
2798                      recv_klass, vtable_len);
2799 
2800   const int itable_offset_search_inc = itableOffsetEntry::size() * wordSize;
2801   Label     search;
2802 
2803   bind(search);
2804 
2805   // Handle IncompatibleClassChangeError.
2806   // If the entry is NULL then we've reached the end of the table
2807   // without finding the expected interface, so throw an exception.
2808   load_and_test_long(itable_interface, Address(itable_entry_addr));
2809   z_bre(no_such_interface);
2810 
2811   add2reg(itable_entry_addr, itable_offset_search_inc);
2812   z_cgr(itable_interface, intf_klass);
2813   z_brne(search);
2814 
2815   // Entry found and itable_entry_addr points to it, get offset of vtable for interface.
2816   if (return_method) {
2817     const int vtable_offset_offset = (itableOffsetEntry::offset_offset_in_bytes() -
2818                                       itableOffsetEntry::interface_offset_in_bytes()) -
2819                                      itable_offset_search_inc;
2820 
2821     // Compute itableMethodEntry and get method and entry point
2822     // we use addressing with index and displacement, since the formula
2823     // for computing the entry's offset has a fixed and a dynamic part,
2824     // the latter depending on the matched interface entry and on the case,
2825     // that the itable index has been passed as a register, not a constant value.
2826     int method_offset = itableMethodEntry::method_offset_in_bytes();
2827                              // Fixed part (displacement), common operand.
2828     Register itable_offset = method_result;  // Dynamic part (index register).
2829 
2830     if (itable_index.is_register()) {
2831        // Compute the method's offset in that register, for the formula, see the
2832        // else-clause below.
2833        z_sllg(itable_offset, itable_index.as_register(), exact_log2(itableMethodEntry::size() * wordSize));
2834        z_agf(itable_offset, vtable_offset_offset, itable_entry_addr);
2835     } else {
2836       // Displacement increases.
2837       method_offset += itableMethodEntry::size() * wordSize * itable_index.as_constant();
2838 
2839       // Load index from itable.
2840       z_llgf(itable_offset, vtable_offset_offset, itable_entry_addr);
2841     }
2842 
2843     // Finally load the method's oop.
2844     z_lg(method_result, method_offset, itable_offset, recv_klass);
2845   }
2846   BLOCK_COMMENT("} lookup_interface_method");
2847 }
2848 
2849 // Lookup for virtual method invocation.
2850 void MacroAssembler::lookup_virtual_method(Register           recv_klass,
2851                                            RegisterOrConstant vtable_index,
2852                                            Register           method_result) {
2853   assert_different_registers(recv_klass, vtable_index.register_or_noreg());
2854   assert(vtableEntry::size() * wordSize == wordSize,
2855          "else adjust the scaling in the code below");
2856 
2857   BLOCK_COMMENT("lookup_virtual_method {");
2858 
2859   const int base = in_bytes(Klass::vtable_start_offset());
2860 
2861   if (vtable_index.is_constant()) {
2862     // Load with base + disp.
2863     Address vtable_entry_addr(recv_klass,
2864                               vtable_index.as_constant() * wordSize +
2865                               base +
2866                               vtableEntry::method_offset_in_bytes());
2867 
2868     z_lg(method_result, vtable_entry_addr);
2869   } else {
2870     // Shift index properly and load with base + index + disp.
2871     Register vindex = vtable_index.as_register();
2872     Address  vtable_entry_addr(recv_klass, vindex,
2873                                base + vtableEntry::method_offset_in_bytes());
2874 
2875     z_sllg(vindex, vindex, exact_log2(wordSize));
2876     z_lg(method_result, vtable_entry_addr);
2877   }
2878   BLOCK_COMMENT("} lookup_virtual_method");
2879 }
2880 
2881 // Factor out code to call ic_miss_handler.
2882 // Generate code to call the inline cache miss handler.
2883 //
2884 // In most cases, this code will be generated out-of-line.
2885 // The method parameters are intended to provide some variability.
2886 //   ICM          - Label which has to be bound to the start of useful code (past any traps).
2887 //   trapMarker   - Marking byte for the generated illtrap instructions (if any).
2888 //                  Any value except 0x00 is supported.
2889 //                  = 0x00 - do not generate illtrap instructions.
2890 //                         use nops to fill ununsed space.
2891 //   requiredSize - required size of the generated code. If the actually
2892 //                  generated code is smaller, use padding instructions to fill up.
2893 //                  = 0 - no size requirement, no padding.
2894 //   scratch      - scratch register to hold branch target address.
2895 //
2896 //  The method returns the code offset of the bound label.
2897 unsigned int MacroAssembler::call_ic_miss_handler(Label& ICM, int trapMarker, int requiredSize, Register scratch) {
2898   intptr_t startOffset = offset();
2899 
2900   // Prevent entry at content_begin().
2901   if (trapMarker != 0) {
2902     z_illtrap(trapMarker);
2903   }
2904 
2905   // Load address of inline cache miss code into scratch register
2906   // and branch to cache miss handler.
2907   BLOCK_COMMENT("IC miss handler {");
2908   BIND(ICM);
2909   unsigned int   labelOffset = offset();
2910   AddressLiteral icmiss(SharedRuntime::get_ic_miss_stub());
2911 
2912   load_const_optimized(scratch, icmiss);
2913   z_br(scratch);
2914 
2915   // Fill unused space.
2916   if (requiredSize > 0) {
2917     while ((offset() - startOffset) < requiredSize) {
2918       if (trapMarker == 0) {
2919         z_nop();
2920       } else {
2921         z_illtrap(trapMarker);
2922       }
2923     }
2924   }
2925   BLOCK_COMMENT("} IC miss handler");
2926   return labelOffset;
2927 }
2928 
2929 void MacroAssembler::nmethod_UEP(Label& ic_miss) {
2930   Register ic_reg       = Z_inline_cache;
2931   int      klass_offset = oopDesc::klass_offset_in_bytes();
2932   if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
2933     if (VM_Version::has_CompareBranch()) {
2934       z_cgij(Z_ARG1, 0, Assembler::bcondEqual, ic_miss);
2935     } else {
2936       z_ltgr(Z_ARG1, Z_ARG1);
2937       z_bre(ic_miss);
2938     }
2939   }
2940   // Compare cached class against klass from receiver.
2941   compare_klass_ptr(ic_reg, klass_offset, Z_ARG1, false);
2942   z_brne(ic_miss);
2943 }
2944 
2945 void MacroAssembler::check_klass_subtype_fast_path(Register   sub_klass,
2946                                                    Register   super_klass,
2947                                                    Register   temp1_reg,
2948                                                    Label*     L_success,
2949                                                    Label*     L_failure,
2950                                                    Label*     L_slow_path,
2951                                                    RegisterOrConstant super_check_offset) {
2952 
2953   const int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
2954   const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2955 
2956   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
2957   bool need_slow_path = (must_load_sco ||
2958                          super_check_offset.constant_or_zero() == sc_offset);
2959 
2960   // Input registers must not overlap.
2961   assert_different_registers(sub_klass, super_klass, temp1_reg);
2962   if (super_check_offset.is_register()) {
2963     assert_different_registers(sub_klass, super_klass,
2964                                super_check_offset.as_register());
2965   } else if (must_load_sco) {
2966     assert(temp1_reg != noreg, "supply either a temp or a register offset");
2967   }
2968 
2969   const Register Rsuper_check_offset = temp1_reg;
2970 
2971   NearLabel L_fallthrough;
2972   int label_nulls = 0;
2973   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2974   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2975   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2976   assert(label_nulls <= 1 ||
2977          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2978          "at most one NULL in the batch, usually");
2979 
2980   BLOCK_COMMENT("check_klass_subtype_fast_path {");
2981   // If the pointers are equal, we are done (e.g., String[] elements).
2982   // This self-check enables sharing of secondary supertype arrays among
2983   // non-primary types such as array-of-interface. Otherwise, each such
2984   // type would need its own customized SSA.
2985   // We move this check to the front of the fast path because many
2986   // type checks are in fact trivially successful in this manner,
2987   // so we get a nicely predicted branch right at the start of the check.
2988   compare64_and_branch(sub_klass, super_klass, bcondEqual, *L_success);
2989 
2990   // Check the supertype display, which is uint.
2991   if (must_load_sco) {
2992     z_llgf(Rsuper_check_offset, sco_offset, super_klass);
2993     super_check_offset = RegisterOrConstant(Rsuper_check_offset);
2994   }
2995   Address super_check_addr(sub_klass, super_check_offset, 0);
2996   z_cg(super_klass, super_check_addr); // compare w/ displayed supertype
2997 
2998   // This check has worked decisively for primary supers.
2999   // Secondary supers are sought in the super_cache ('super_cache_addr').
3000   // (Secondary supers are interfaces and very deeply nested subtypes.)
3001   // This works in the same check above because of a tricky aliasing
3002   // between the super_cache and the primary super display elements.
3003   // (The 'super_check_addr' can address either, as the case requires.)
3004   // Note that the cache is updated below if it does not help us find
3005   // what we need immediately.
3006   // So if it was a primary super, we can just fail immediately.
3007   // Otherwise, it's the slow path for us (no success at this point).
3008 
3009   // Hacked jmp, which may only be used just before L_fallthrough.
3010 #define final_jmp(label)                                                \
3011   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3012   else                            { branch_optimized(Assembler::bcondAlways, label); } /*omit semicolon*/
3013 
3014   if (super_check_offset.is_register()) {
3015     branch_optimized(Assembler::bcondEqual, *L_success);
3016     z_cfi(super_check_offset.as_register(), sc_offset);
3017     if (L_failure == &L_fallthrough) {
3018       branch_optimized(Assembler::bcondEqual, *L_slow_path);
3019     } else {
3020       branch_optimized(Assembler::bcondNotEqual, *L_failure);
3021       final_jmp(*L_slow_path);
3022     }
3023   } else if (super_check_offset.as_constant() == sc_offset) {
3024     // Need a slow path; fast failure is impossible.
3025     if (L_slow_path == &L_fallthrough) {
3026       branch_optimized(Assembler::bcondEqual, *L_success);
3027     } else {
3028       branch_optimized(Assembler::bcondNotEqual, *L_slow_path);
3029       final_jmp(*L_success);
3030     }
3031   } else {
3032     // No slow path; it's a fast decision.
3033     if (L_failure == &L_fallthrough) {
3034       branch_optimized(Assembler::bcondEqual, *L_success);
3035     } else {
3036       branch_optimized(Assembler::bcondNotEqual, *L_failure);
3037       final_jmp(*L_success);
3038     }
3039   }
3040 
3041   bind(L_fallthrough);
3042 #undef local_brc
3043 #undef final_jmp
3044   BLOCK_COMMENT("} check_klass_subtype_fast_path");
3045   // fallthru (to slow path)
3046 }
3047 
3048 void MacroAssembler::check_klass_subtype_slow_path(Register Rsubklass,
3049                                                    Register Rsuperklass,
3050                                                    Register Rarray_ptr,  // tmp
3051                                                    Register Rlength,     // tmp
3052                                                    Label* L_success,
3053                                                    Label* L_failure) {
3054   // Input registers must not overlap.
3055   // Also check for R1 which is explicitely used here.
3056   assert_different_registers(Z_R1, Rsubklass, Rsuperklass, Rarray_ptr, Rlength);
3057   NearLabel L_fallthrough;
3058   int label_nulls = 0;
3059   if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
3060   if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
3061   assert(label_nulls <= 1, "at most one NULL in the batch");
3062 
3063   const int ss_offset = in_bytes(Klass::secondary_supers_offset());
3064   const int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3065 
3066   const int length_offset = Array<Klass*>::length_offset_in_bytes();
3067   const int base_offset   = Array<Klass*>::base_offset_in_bytes();
3068 
3069   // Hacked jmp, which may only be used just before L_fallthrough.
3070 #define final_jmp(label)                                                \
3071   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3072   else                            branch_optimized(Assembler::bcondAlways, label) /*omit semicolon*/
3073 
3074   NearLabel loop_iterate, loop_count, match;
3075 
3076   BLOCK_COMMENT("check_klass_subtype_slow_path {");
3077   z_lg(Rarray_ptr, ss_offset, Rsubklass);
3078 
3079   load_and_test_int(Rlength, Address(Rarray_ptr, length_offset));
3080   branch_optimized(Assembler::bcondZero, *L_failure);
3081 
3082   // Oops in table are NO MORE compressed.
3083   z_cg(Rsuperklass, base_offset, Rarray_ptr); // Check array element for match.
3084   z_bre(match);                               // Shortcut for array length = 1.
3085 
3086   // No match yet, so we must walk the array's elements.
3087   z_lngfr(Rlength, Rlength);
3088   z_sllg(Rlength, Rlength, LogBytesPerWord); // -#bytes of cache array
3089   z_llill(Z_R1, BytesPerWord);               // Set increment/end index.
3090   add2reg(Rlength, 2 * BytesPerWord);        // start index  = -(n-2)*BytesPerWord
3091   z_slgr(Rarray_ptr, Rlength);               // start addr: +=  (n-2)*BytesPerWord
3092   z_bru(loop_count);
3093 
3094   BIND(loop_iterate);
3095   z_cg(Rsuperklass, base_offset, Rlength, Rarray_ptr); // Check array element for match.
3096   z_bre(match);
3097   BIND(loop_count);
3098   z_brxlg(Rlength, Z_R1, loop_iterate);
3099 
3100   // Rsuperklass not found among secondary super classes -> failure.
3101   branch_optimized(Assembler::bcondAlways, *L_failure);
3102 
3103   // Got a hit. Return success (zero result). Set cache.
3104   // Cache load doesn't happen here. For speed it is directly emitted by the compiler.
3105 
3106   BIND(match);
3107 
3108   z_stg(Rsuperklass, sc_offset, Rsubklass); // Save result to cache.
3109 
3110   final_jmp(*L_success);
3111 
3112   // Exit to the surrounding code.
3113   BIND(L_fallthrough);
3114 #undef local_brc
3115 #undef final_jmp
3116   BLOCK_COMMENT("} check_klass_subtype_slow_path");
3117 }
3118 
3119 // Emitter for combining fast and slow path.
3120 void MacroAssembler::check_klass_subtype(Register sub_klass,
3121                                          Register super_klass,
3122                                          Register temp1_reg,
3123                                          Register temp2_reg,
3124                                          Label&   L_success) {
3125   NearLabel failure;
3126   BLOCK_COMMENT(err_msg("check_klass_subtype(%s subclass of %s) {", sub_klass->name(), super_klass->name()));
3127   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg,
3128                                 &L_success, &failure, NULL);
3129   check_klass_subtype_slow_path(sub_klass, super_klass,
3130                                 temp1_reg, temp2_reg, &L_success, NULL);
3131   BIND(failure);
3132   BLOCK_COMMENT("} check_klass_subtype");
3133 }
3134 
3135 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
3136   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
3137 
3138   Label L_fallthrough;
3139   if (L_fast_path == NULL) {
3140     L_fast_path = &L_fallthrough;
3141   } else if (L_slow_path == NULL) {
3142     L_slow_path = &L_fallthrough;
3143   }
3144 
3145   // Fast path check: class is fully initialized
3146   z_cli(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3147   z_bre(*L_fast_path);
3148 
3149   // Fast path check: current thread is initializer thread
3150   z_cg(thread, Address(klass, InstanceKlass::init_thread_offset()));
3151   if (L_slow_path == &L_fallthrough) {
3152     z_bre(*L_fast_path);
3153   } else if (L_fast_path == &L_fallthrough) {
3154     z_brne(*L_slow_path);
3155   } else {
3156     Unimplemented();
3157   }
3158 
3159   bind(L_fallthrough);
3160 }
3161 
3162 // Increment a counter at counter_address when the eq condition code is
3163 // set. Kills registers tmp1_reg and tmp2_reg and preserves the condition code.
3164 void MacroAssembler::increment_counter_eq(address counter_address, Register tmp1_reg, Register tmp2_reg) {
3165   Label l;
3166   z_brne(l);
3167   load_const(tmp1_reg, counter_address);
3168   add2mem_32(Address(tmp1_reg), 1, tmp2_reg);
3169   z_cr(tmp1_reg, tmp1_reg); // Set cc to eq.
3170   bind(l);
3171 }
3172 
3173 // Semantics are dependent on the slow_case label:
3174 //   If the slow_case label is not NULL, failure to biased-lock the object
3175 //   transfers control to the location of the slow_case label. If the
3176 //   object could be biased-locked, control is transferred to the done label.
3177 //   The condition code is unpredictable.
3178 //
3179 //   If the slow_case label is NULL, failure to biased-lock the object results
3180 //   in a transfer of control to the done label with a condition code of not_equal.
3181 //   If the biased-lock could be successfully obtained, control is transfered to
3182 //   the done label with a condition code of equal.
3183 //   It is mandatory to react on the condition code At the done label.
3184 //
3185 void MacroAssembler::biased_locking_enter(Register  obj_reg,
3186                                           Register  mark_reg,
3187                                           Register  temp_reg,
3188                                           Register  temp2_reg,    // May be Z_RO!
3189                                           Label    &done,
3190                                           Label    *slow_case) {
3191   assert(UseBiasedLocking, "why call this otherwise?");
3192   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
3193 
3194   Label cas_label; // Try, if implemented, CAS locking. Fall thru to slow path otherwise.
3195 
3196   BLOCK_COMMENT("biased_locking_enter {");
3197 
3198   // Biased locking
3199   // See whether the lock is currently biased toward our thread and
3200   // whether the epoch is still valid.
3201   // Note that the runtime guarantees sufficient alignment of JavaThread
3202   // pointers to allow age to be placed into low bits.
3203   assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits,
3204          "biased locking makes assumptions about bit layout");
3205   z_lr(temp_reg, mark_reg);
3206   z_nilf(temp_reg, markWord::biased_lock_mask_in_place);
3207   z_chi(temp_reg, markWord::biased_lock_pattern);
3208   z_brne(cas_label);  // Try cas if object is not biased, i.e. cannot be biased locked.
3209 
3210   load_prototype_header(temp_reg, obj_reg);
3211   load_const_optimized(temp2_reg, ~((int) markWord::age_mask_in_place));
3212 
3213   z_ogr(temp_reg, Z_thread);
3214   z_xgr(temp_reg, mark_reg);
3215   z_ngr(temp_reg, temp2_reg);
3216   if (PrintBiasedLockingStatistics) {
3217     increment_counter_eq((address) BiasedLocking::biased_lock_entry_count_addr(), mark_reg, temp2_reg);
3218     // Restore mark_reg.
3219     z_lg(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
3220   }
3221   branch_optimized(Assembler::bcondEqual, done);  // Biased lock obtained, return success.
3222 
3223   Label try_revoke_bias;
3224   Label try_rebias;
3225   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3226 
3227   //----------------------------------------------------------------------------
3228   // At this point we know that the header has the bias pattern and
3229   // that we are not the bias owner in the current epoch. We need to
3230   // figure out more details about the state of the header in order to
3231   // know what operations can be legally performed on the object's
3232   // header.
3233 
3234   // If the low three bits in the xor result aren't clear, that means
3235   // the prototype header is no longer biased and we have to revoke
3236   // the bias on this object.
3237   z_tmll(temp_reg, markWord::biased_lock_mask_in_place);
3238   z_brnaz(try_revoke_bias);
3239 
3240   // Biasing is still enabled for this data type. See whether the
3241   // epoch of the current bias is still valid, meaning that the epoch
3242   // bits of the mark word are equal to the epoch bits of the
3243   // prototype header. (Note that the prototype header's epoch bits
3244   // only change at a safepoint.) If not, attempt to rebias the object
3245   // toward the current thread. Note that we must be absolutely sure
3246   // that the current epoch is invalid in order to do this because
3247   // otherwise the manipulations it performs on the mark word are
3248   // illegal.
3249   z_tmll(temp_reg, markWord::epoch_mask_in_place);
3250   z_brnaz(try_rebias);
3251 
3252   //----------------------------------------------------------------------------
3253   // The epoch of the current bias is still valid but we know nothing
3254   // about the owner; it might be set or it might be clear. Try to
3255   // acquire the bias of the object using an atomic operation. If this
3256   // fails we will go in to the runtime to revoke the object's bias.
3257   // Note that we first construct the presumed unbiased header so we
3258   // don't accidentally blow away another thread's valid bias.
3259   z_nilf(mark_reg, markWord::biased_lock_mask_in_place | markWord::age_mask_in_place |
3260          markWord::epoch_mask_in_place);
3261   z_lgr(temp_reg, Z_thread);
3262   z_llgfr(mark_reg, mark_reg);
3263   z_ogr(temp_reg, mark_reg);
3264 
3265   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3266 
3267   z_csg(mark_reg, temp_reg, 0, obj_reg);
3268 
3269   // If the biasing toward our thread failed, this means that
3270   // another thread succeeded in biasing it toward itself and we
3271   // need to revoke that bias. The revocation will occur in the
3272   // interpreter runtime in the slow case.
3273 
3274   if (PrintBiasedLockingStatistics) {
3275     increment_counter_eq((address) BiasedLocking::anonymously_biased_lock_entry_count_addr(),
3276                          temp_reg, temp2_reg);
3277   }
3278   if (slow_case != NULL) {
3279     branch_optimized(Assembler::bcondNotEqual, *slow_case); // Biased lock not obtained, need to go the long way.
3280   }
3281   branch_optimized(Assembler::bcondAlways, done);           // Biased lock status given in condition code.
3282 
3283   //----------------------------------------------------------------------------
3284   bind(try_rebias);
3285   // At this point we know the epoch has expired, meaning that the
3286   // current "bias owner", if any, is actually invalid. Under these
3287   // circumstances _only_, we are allowed to use the current header's
3288   // value as the comparison value when doing the cas to acquire the
3289   // bias in the current epoch. In other words, we allow transfer of
3290   // the bias from one thread to another directly in this situation.
3291 
3292   z_nilf(mark_reg, markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place);
3293   load_prototype_header(temp_reg, obj_reg);
3294   z_llgfr(mark_reg, mark_reg);
3295 
3296   z_ogr(temp_reg, Z_thread);
3297 
3298   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3299 
3300   z_csg(mark_reg, temp_reg, 0, obj_reg);
3301 
3302   // If the biasing toward our thread failed, this means that
3303   // another thread succeeded in biasing it toward itself and we
3304   // need to revoke that bias. The revocation will occur in the
3305   // interpreter runtime in the slow case.
3306 
3307   if (PrintBiasedLockingStatistics) {
3308     increment_counter_eq((address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg, temp2_reg);
3309   }
3310   if (slow_case != NULL) {
3311     branch_optimized(Assembler::bcondNotEqual, *slow_case);  // Biased lock not obtained, need to go the long way.
3312   }
3313   z_bru(done);           // Biased lock status given in condition code.
3314 
3315   //----------------------------------------------------------------------------
3316   bind(try_revoke_bias);
3317   // The prototype mark in the klass doesn't have the bias bit set any
3318   // more, indicating that objects of this data type are not supposed
3319   // to be biased any more. We are going to try to reset the mark of
3320   // this object to the prototype value and fall through to the
3321   // CAS-based locking scheme. Note that if our CAS fails, it means
3322   // that another thread raced us for the privilege of revoking the
3323   // bias of this particular object, so it's okay to continue in the
3324   // normal locking code.
3325   load_prototype_header(temp_reg, obj_reg);
3326 
3327   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3328 
3329   z_csg(mark_reg, temp_reg, 0, obj_reg);
3330 
3331   // Fall through to the normal CAS-based lock, because no matter what
3332   // the result of the above CAS, some thread must have succeeded in
3333   // removing the bias bit from the object's header.
3334   if (PrintBiasedLockingStatistics) {
3335     // z_cgr(mark_reg, temp2_reg);
3336     increment_counter_eq((address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg, temp2_reg);
3337   }
3338 
3339   bind(cas_label);
3340   BLOCK_COMMENT("} biased_locking_enter");
3341 }
3342 
3343 void MacroAssembler::biased_locking_exit(Register mark_addr, Register temp_reg, Label& done) {
3344   // Check for biased locking unlock case, which is a no-op
3345   // Note: we do not have to check the thread ID for two reasons.
3346   // First, the interpreter checks for IllegalMonitorStateException at
3347   // a higher level. Second, if the bias was revoked while we held the
3348   // lock, the object could not be rebiased toward another thread, so
3349   // the bias bit would be clear.
3350   BLOCK_COMMENT("biased_locking_exit {");
3351 
3352   z_lg(temp_reg, 0, mark_addr);
3353   z_nilf(temp_reg, markWord::biased_lock_mask_in_place);
3354 
3355   z_chi(temp_reg, markWord::biased_lock_pattern);
3356   z_bre(done);
3357   BLOCK_COMMENT("} biased_locking_exit");
3358 }
3359 
3360 void MacroAssembler::compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
3361   Register displacedHeader = temp1;
3362   Register currentHeader = temp1;
3363   Register temp = temp2;
3364   NearLabel done, object_has_monitor;
3365 
3366   BLOCK_COMMENT("compiler_fast_lock_object {");
3367 
3368   // Load markWord from oop into mark.
3369   z_lg(displacedHeader, 0, oop);
3370 
3371   if (try_bias) {
3372     biased_locking_enter(oop, displacedHeader, temp, Z_R0, done);
3373   }
3374 
3375   // Handle existing monitor.
3376   // The object has an existing monitor iff (mark & monitor_value) != 0.
3377   guarantee(Immediate::is_uimm16(markWord::monitor_value), "must be half-word");
3378   z_lr(temp, displacedHeader);
3379   z_nill(temp, markWord::monitor_value);
3380   z_brne(object_has_monitor);
3381 
3382   // Set mark to markWord | markWord::unlocked_value.
3383   z_oill(displacedHeader, markWord::unlocked_value);
3384 
3385   // Load Compare Value application register.
3386 
3387   // Initialize the box (must happen before we update the object mark).
3388   z_stg(displacedHeader, BasicLock::displaced_header_offset_in_bytes(), box);
3389 
3390   // Memory Fence (in cmpxchgd)
3391   // Compare object markWord with mark and if equal exchange scratch1 with object markWord.
3392 
3393   // If the compare-and-swap succeeded, then we found an unlocked object and we
3394   // have now locked it.
3395   z_csg(displacedHeader, box, 0, oop);
3396   assert(currentHeader==displacedHeader, "must be same register"); // Identified two registers from z/Architecture.
3397   z_bre(done);
3398 
3399   // We did not see an unlocked object so try the fast recursive case.
3400 
3401   z_sgr(currentHeader, Z_SP);
3402   load_const_optimized(temp, (~(os::vm_page_size()-1) | markWord::lock_mask_in_place));
3403 
3404   z_ngr(currentHeader, temp);
3405   //   z_brne(done);
3406   //   z_release();
3407   z_stg(currentHeader/*==0 or not 0*/, BasicLock::displaced_header_offset_in_bytes(), box);
3408 
3409   z_bru(done);
3410 
3411   Register zero = temp;
3412   Register monitor_tagged = displacedHeader; // Tagged with markWord::monitor_value.
3413   bind(object_has_monitor);
3414   // The object's monitor m is unlocked iff m->owner == NULL,
3415   // otherwise m->owner may contain a thread or a stack address.
3416   //
3417   // Try to CAS m->owner from NULL to current thread.
3418   z_lghi(zero, 0);
3419   // If m->owner is null, then csg succeeds and sets m->owner=THREAD and CR=EQ.
3420   z_csg(zero, Z_thread, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), monitor_tagged);
3421   // Store a non-null value into the box.
3422   z_stg(box, BasicLock::displaced_header_offset_in_bytes(), box);
3423 #ifdef ASSERT
3424   z_brne(done);
3425   // We've acquired the monitor, check some invariants.
3426   // Invariant 1: _recursions should be 0.
3427   asm_assert_mem8_is_zero(OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions), monitor_tagged,
3428                           "monitor->_recursions should be 0", -1);
3429   z_ltgr(zero, zero); // Set CR=EQ.
3430 #endif
3431   bind(done);
3432 
3433   BLOCK_COMMENT("} compiler_fast_lock_object");
3434   // If locking was successful, CR should indicate 'EQ'.
3435   // The compiler or the native wrapper generates a branch to the runtime call
3436   // _complete_monitor_locking_Java.
3437 }
3438 
3439 void MacroAssembler::compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
3440   Register displacedHeader = temp1;
3441   Register currentHeader = temp2;
3442   Register temp = temp1;
3443   Register monitor = temp2;
3444 
3445   Label done, object_has_monitor;
3446 
3447   BLOCK_COMMENT("compiler_fast_unlock_object {");
3448 
3449   if (try_bias) {
3450     biased_locking_exit(oop, currentHeader, done);
3451   }
3452 
3453   // Find the lock address and load the displaced header from the stack.
3454   // if the displaced header is zero, we have a recursive unlock.
3455   load_and_test_long(displacedHeader, Address(box, BasicLock::displaced_header_offset_in_bytes()));
3456   z_bre(done);
3457 
3458   // Handle existing monitor.
3459   // The object has an existing monitor iff (mark & monitor_value) != 0.
3460   z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);
3461   guarantee(Immediate::is_uimm16(markWord::monitor_value), "must be half-word");
3462   z_nill(currentHeader, markWord::monitor_value);
3463   z_brne(object_has_monitor);
3464 
3465   // Check if it is still a light weight lock, this is true if we see
3466   // the stack address of the basicLock in the markWord of the object
3467   // copy box to currentHeader such that csg does not kill it.
3468   z_lgr(currentHeader, box);
3469   z_csg(currentHeader, displacedHeader, 0, oop);
3470   z_bru(done); // Csg sets CR as desired.
3471 
3472   // Handle existing monitor.
3473   bind(object_has_monitor);
3474   z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);    // CurrentHeader is tagged with monitor_value set.
3475   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
3476   z_brne(done);
3477   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3478   z_brne(done);
3479   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
3480   z_brne(done);
3481   load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
3482   z_brne(done);
3483   z_release();
3484   z_stg(temp/*=0*/, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), currentHeader);
3485 
3486   bind(done);
3487 
3488   BLOCK_COMMENT("} compiler_fast_unlock_object");
3489   // flag == EQ indicates success
3490   // flag == NE indicates failure
3491 }
3492 
3493 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
3494   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3495   bs->resolve_jobject(this, value, tmp1, tmp2);
3496 }
3497 
3498 // Last_Java_sp must comply to the rules in frame_s390.hpp.
3499 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation) {
3500   BLOCK_COMMENT("set_last_Java_frame {");
3501 
3502   // Always set last_Java_pc and flags first because once last_Java_sp
3503   // is visible has_last_Java_frame is true and users will look at the
3504   // rest of the fields. (Note: flags should always be zero before we
3505   // get here so doesn't need to be set.)
3506 
3507   // Verify that last_Java_pc was zeroed on return to Java.
3508   if (allow_relocation) {
3509     asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()),
3510                             Z_thread,
3511                             "last_Java_pc not zeroed before leaving Java",
3512                             0x200);
3513   } else {
3514     asm_assert_mem8_is_zero_static(in_bytes(JavaThread::last_Java_pc_offset()),
3515                                    Z_thread,
3516                                    "last_Java_pc not zeroed before leaving Java",
3517                                    0x200);
3518   }
3519 
3520   // When returning from calling out from Java mode the frame anchor's
3521   // last_Java_pc will always be set to NULL. It is set here so that
3522   // if we are doing a call to native (not VM) that we capture the
3523   // known pc and don't have to rely on the native call having a
3524   // standard frame linkage where we can find the pc.
3525   if (last_Java_pc!=noreg) {
3526     z_stg(last_Java_pc, Address(Z_thread, JavaThread::last_Java_pc_offset()));
3527   }
3528 
3529   // This membar release is not required on z/Architecture, since the sequence of stores
3530   // in maintained. Nevertheless, we leave it in to document the required ordering.
3531   // The implementation of z_release() should be empty.
3532   // z_release();
3533 
3534   z_stg(last_Java_sp, Address(Z_thread, JavaThread::last_Java_sp_offset()));
3535   BLOCK_COMMENT("} set_last_Java_frame");
3536 }
3537 
3538 void MacroAssembler::reset_last_Java_frame(bool allow_relocation) {
3539   BLOCK_COMMENT("reset_last_Java_frame {");
3540 
3541   if (allow_relocation) {
3542     asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3543                                Z_thread,
3544                                "SP was not set, still zero",
3545                                0x202);
3546   } else {
3547     asm_assert_mem8_isnot_zero_static(in_bytes(JavaThread::last_Java_sp_offset()),
3548                                       Z_thread,
3549                                       "SP was not set, still zero",
3550                                       0x202);
3551   }
3552 
3553   // _last_Java_sp = 0
3554   // Clearing storage must be atomic here, so don't use clear_mem()!
3555   store_const(Address(Z_thread, JavaThread::last_Java_sp_offset()), 0);
3556 
3557   // _last_Java_pc = 0
3558   store_const(Address(Z_thread, JavaThread::last_Java_pc_offset()), 0);
3559 
3560   BLOCK_COMMENT("} reset_last_Java_frame");
3561   return;
3562 }
3563 
3564 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1, bool allow_relocation) {
3565   assert_different_registers(sp, tmp1);
3566 
3567   // We cannot trust that code generated by the C++ compiler saves R14
3568   // to z_abi_160.return_pc, because sometimes it spills R14 using stmg at
3569   // z_abi_160.gpr14 (e.g. InterpreterRuntime::_new()).
3570   // Therefore we load the PC into tmp1 and let set_last_Java_frame() save
3571   // it into the frame anchor.
3572   get_PC(tmp1);
3573   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1, allow_relocation);
3574 }
3575 
3576 void MacroAssembler::set_thread_state(JavaThreadState new_state) {
3577   z_release();
3578 
3579   assert(Immediate::is_uimm16(_thread_max_state), "enum value out of range for instruction");
3580   assert(sizeof(JavaThreadState) == sizeof(int), "enum value must have base type int");
3581   store_const(Address(Z_thread, JavaThread::thread_state_offset()), new_state, Z_R0, false);
3582 }
3583 
3584 void MacroAssembler::get_vm_result(Register oop_result) {
3585   verify_thread();
3586 
3587   z_lg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3588   clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(void*));
3589 
3590   verify_oop(oop_result);
3591 }
3592 
3593 void MacroAssembler::get_vm_result_2(Register result) {
3594   verify_thread();
3595 
3596   z_lg(result, Address(Z_thread, JavaThread::vm_result_2_offset()));
3597   clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(void*));
3598 }
3599 
3600 // We require that C code which does not return a value in vm_result will
3601 // leave it undisturbed.
3602 void MacroAssembler::set_vm_result(Register oop_result) {
3603   z_stg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3604 }
3605 
3606 // Explicit null checks (used for method handle code).
3607 void MacroAssembler::null_check(Register reg, Register tmp, int64_t offset) {
3608   if (!ImplicitNullChecks) {
3609     NearLabel ok;
3610 
3611     compare64_and_branch(reg, (intptr_t) 0, Assembler::bcondNotEqual, ok);
3612 
3613     // We just put the address into reg if it was 0 (tmp==Z_R0 is allowed so we can't use it for the address).
3614     address exception_entry = Interpreter::throw_NullPointerException_entry();
3615     load_absolute_address(reg, exception_entry);
3616     z_br(reg);
3617 
3618     bind(ok);
3619   } else {
3620     if (needs_explicit_null_check((intptr_t)offset)) {
3621       // Provoke OS NULL exception if reg = NULL by
3622       // accessing M[reg] w/o changing any registers.
3623       z_lg(tmp, 0, reg);
3624     }
3625     // else
3626       // Nothing to do, (later) access of M[reg + offset]
3627       // will provoke OS NULL exception if reg = NULL.
3628   }
3629 }
3630 
3631 //-------------------------------------
3632 //  Compressed Klass Pointers
3633 //-------------------------------------
3634 
3635 // Klass oop manipulations if compressed.
3636 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3637   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. (dst == src) also possible.
3638   address  base    = CompressedKlassPointers::base();
3639   int      shift   = CompressedKlassPointers::shift();
3640   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3641 
3642   BLOCK_COMMENT("cKlass encoder {");
3643 
3644 #ifdef ASSERT
3645   Label ok;
3646   z_tmll(current, KlassAlignmentInBytes-1); // Check alignment.
3647   z_brc(Assembler::bcondAllZero, ok);
3648   // The plain disassembler does not recognize illtrap. It instead displays
3649   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3650   // the proper beginning of the next instruction.
3651   z_illtrap(0xee);
3652   z_illtrap(0xee);
3653   bind(ok);
3654 #endif
3655 
3656   if (base != NULL) {
3657     unsigned int base_h = ((unsigned long)base)>>32;
3658     unsigned int base_l = (unsigned int)((unsigned long)base);
3659     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3660       lgr_if_needed(dst, current);
3661       z_aih(dst, -((int)base_h));     // Base has no set bits in lower half.
3662     } else if ((base_h == 0) && (base_l != 0)) {
3663       lgr_if_needed(dst, current);
3664       z_agfi(dst, -(int)base_l);
3665     } else {
3666       load_const(Z_R0, base);
3667       lgr_if_needed(dst, current);
3668       z_sgr(dst, Z_R0);
3669     }
3670     current = dst;
3671   }
3672   if (shift != 0) {
3673     assert (LogKlassAlignmentInBytes == shift, "decode alg wrong");
3674     z_srlg(dst, current, shift);
3675     current = dst;
3676   }
3677   lgr_if_needed(dst, current); // Move may be required (if neither base nor shift != 0).
3678 
3679   BLOCK_COMMENT("} cKlass encoder");
3680 }
3681 
3682 // This function calculates the size of the code generated by
3683 //   decode_klass_not_null(register dst, Register src)
3684 // when (Universe::heap() != NULL). Hence, if the instructions
3685 // it generates change, then this method needs to be updated.
3686 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3687   address  base    = CompressedKlassPointers::base();
3688   int shift_size   = CompressedKlassPointers::shift() == 0 ? 0 : 6; /* sllg */
3689   int addbase_size = 0;
3690   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3691 
3692   if (base != NULL) {
3693     unsigned int base_h = ((unsigned long)base)>>32;
3694     unsigned int base_l = (unsigned int)((unsigned long)base);
3695     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3696       addbase_size += 6; /* aih */
3697     } else if ((base_h == 0) && (base_l != 0)) {
3698       addbase_size += 6; /* algfi */
3699     } else {
3700       addbase_size += load_const_size();
3701       addbase_size += 4; /* algr */
3702     }
3703   }
3704 #ifdef ASSERT
3705   addbase_size += 10;
3706   addbase_size += 2; // Extra sigill.
3707 #endif
3708   return addbase_size + shift_size;
3709 }
3710 
3711 // !!! If the instructions that get generated here change
3712 //     then function instr_size_for_decode_klass_not_null()
3713 //     needs to get updated.
3714 // This variant of decode_klass_not_null() must generate predictable code!
3715 // The code must only depend on globally known parameters.
3716 void MacroAssembler::decode_klass_not_null(Register dst) {
3717   address  base    = CompressedKlassPointers::base();
3718   int      shift   = CompressedKlassPointers::shift();
3719   int      beg_off = offset();
3720   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3721 
3722   BLOCK_COMMENT("cKlass decoder (const size) {");
3723 
3724   if (shift != 0) { // Shift required?
3725     z_sllg(dst, dst, shift);
3726   }
3727   if (base != NULL) {
3728     unsigned int base_h = ((unsigned long)base)>>32;
3729     unsigned int base_l = (unsigned int)((unsigned long)base);
3730     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3731       z_aih(dst, base_h);     // Base has no set bits in lower half.
3732     } else if ((base_h == 0) && (base_l != 0)) {
3733       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3734     } else {
3735       load_const(Z_R0, base); // Base has set bits everywhere.
3736       z_algr(dst, Z_R0);
3737     }
3738   }
3739 
3740 #ifdef ASSERT
3741   Label ok;
3742   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3743   z_brc(Assembler::bcondAllZero, ok);
3744   // The plain disassembler does not recognize illtrap. It instead displays
3745   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3746   // the proper beginning of the next instruction.
3747   z_illtrap(0xd1);
3748   z_illtrap(0xd1);
3749   bind(ok);
3750 #endif
3751   assert(offset() == beg_off + instr_size_for_decode_klass_not_null(), "Code gen mismatch.");
3752 
3753   BLOCK_COMMENT("} cKlass decoder (const size)");
3754 }
3755 
3756 // This variant of decode_klass_not_null() is for cases where
3757 //  1) the size of the generated instructions may vary
3758 //  2) the result is (potentially) stored in a register different from the source.
3759 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3760   address base  = CompressedKlassPointers::base();
3761   int     shift = CompressedKlassPointers::shift();
3762   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3763 
3764   BLOCK_COMMENT("cKlass decoder {");
3765 
3766   if (src == noreg) src = dst;
3767 
3768   if (shift != 0) { // Shift or at least move required?
3769     z_sllg(dst, src, shift);
3770   } else {
3771     lgr_if_needed(dst, src);
3772   }
3773 
3774   if (base != NULL) {
3775     unsigned int base_h = ((unsigned long)base)>>32;
3776     unsigned int base_l = (unsigned int)((unsigned long)base);
3777     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3778       z_aih(dst, base_h);     // Base has not set bits in lower half.
3779     } else if ((base_h == 0) && (base_l != 0)) {
3780       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3781     } else {
3782       load_const_optimized(Z_R0, base); // Base has set bits everywhere.
3783       z_algr(dst, Z_R0);
3784     }
3785   }
3786 
3787 #ifdef ASSERT
3788   Label ok;
3789   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3790   z_brc(Assembler::bcondAllZero, ok);
3791   // The plain disassembler does not recognize illtrap. It instead displays
3792   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3793   // the proper beginning of the next instruction.
3794   z_illtrap(0xd2);
3795   z_illtrap(0xd2);
3796   bind(ok);
3797 #endif
3798   BLOCK_COMMENT("} cKlass decoder");
3799 }
3800 
3801 void MacroAssembler::load_klass(Register klass, Address mem) {
3802   if (UseCompressedClassPointers) {
3803     z_llgf(klass, mem);
3804     // Attention: no null check here!
3805     decode_klass_not_null(klass);
3806   } else {
3807     z_lg(klass, mem);
3808   }
3809 }
3810 
3811 void MacroAssembler::load_klass(Register klass, Register src_oop) {
3812   if (UseCompressedClassPointers) {
3813     z_llgf(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3814     // Attention: no null check here!
3815     decode_klass_not_null(klass);
3816   } else {
3817     z_lg(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3818   }
3819 }
3820 
3821 void MacroAssembler::load_prototype_header(Register Rheader, Register Rsrc_oop) {
3822   assert_different_registers(Rheader, Rsrc_oop);
3823   load_klass(Rheader, Rsrc_oop);
3824   z_lg(Rheader, Address(Rheader, Klass::prototype_header_offset()));
3825 }
3826 
3827 void MacroAssembler::store_klass(Register klass, Register dst_oop, Register ck) {
3828   if (UseCompressedClassPointers) {
3829     assert_different_registers(dst_oop, klass, Z_R0);
3830     if (ck == noreg) ck = klass;
3831     encode_klass_not_null(ck, klass);
3832     z_st(ck, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3833   } else {
3834     z_stg(klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
3835   }
3836 }
3837 
3838 void MacroAssembler::store_klass_gap(Register s, Register d) {
3839   if (UseCompressedClassPointers) {
3840     assert(s != d, "not enough registers");
3841     // Support s = noreg.
3842     if (s != noreg) {
3843       z_st(s, Address(d, oopDesc::klass_gap_offset_in_bytes()));
3844     } else {
3845       z_mvhi(Address(d, oopDesc::klass_gap_offset_in_bytes()), 0);
3846     }
3847   }
3848 }
3849 
3850 // Compare klass ptr in memory against klass ptr in register.
3851 //
3852 // Rop1            - klass in register, always uncompressed.
3853 // disp            - Offset of klass in memory, compressed/uncompressed, depending on runtime flag.
3854 // Rbase           - Base address of cKlass in memory.
3855 // maybeNULL       - True if Rop1 possibly is a NULL.
3856 void MacroAssembler::compare_klass_ptr(Register Rop1, int64_t disp, Register Rbase, bool maybeNULL) {
3857 
3858   BLOCK_COMMENT("compare klass ptr {");
3859 
3860   if (UseCompressedClassPointers) {
3861     const int shift = CompressedKlassPointers::shift();
3862     address   base  = CompressedKlassPointers::base();
3863 
3864     assert((shift == 0) || (shift == LogKlassAlignmentInBytes), "cKlass encoder detected bad shift");
3865     assert_different_registers(Rop1, Z_R0);
3866     assert_different_registers(Rop1, Rbase, Z_R1);
3867 
3868     // First encode register oop and then compare with cOop in memory.
3869     // This sequence saves an unnecessary cOop load and decode.
3870     if (base == NULL) {
3871       if (shift == 0) {
3872         z_cl(Rop1, disp, Rbase);     // Unscaled
3873       } else {
3874         z_srlg(Z_R0, Rop1, shift);   // ZeroBased
3875         z_cl(Z_R0, disp, Rbase);
3876       }
3877     } else {                         // HeapBased
3878 #ifdef ASSERT
3879       bool     used_R0 = true;
3880       bool     used_R1 = true;
3881 #endif
3882       Register current = Rop1;
3883       Label    done;
3884 
3885       if (maybeNULL) {       // NULL ptr must be preserved!
3886         z_ltgr(Z_R0, current);
3887         z_bre(done);
3888         current = Z_R0;
3889       }
3890 
3891       unsigned int base_h = ((unsigned long)base)>>32;
3892       unsigned int base_l = (unsigned int)((unsigned long)base);
3893       if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3894         lgr_if_needed(Z_R0, current);
3895         z_aih(Z_R0, -((int)base_h));     // Base has no set bits in lower half.
3896       } else if ((base_h == 0) && (base_l != 0)) {
3897         lgr_if_needed(Z_R0, current);
3898         z_agfi(Z_R0, -(int)base_l);
3899       } else {
3900         int pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
3901         add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1); // Subtract base by adding complement.
3902       }
3903 
3904       if (shift != 0) {
3905         z_srlg(Z_R0, Z_R0, shift);
3906       }
3907       bind(done);
3908       z_cl(Z_R0, disp, Rbase);
3909 #ifdef ASSERT
3910       if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
3911       if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
3912 #endif
3913     }
3914   } else {
3915     z_clg(Rop1, disp, Z_R0, Rbase);
3916   }
3917   BLOCK_COMMENT("} compare klass ptr");
3918 }
3919 
3920 //---------------------------
3921 //  Compressed oops
3922 //---------------------------
3923 
3924 void MacroAssembler::encode_heap_oop(Register oop) {
3925   oop_encoder(oop, oop, true /*maybe null*/);
3926 }
3927 
3928 void MacroAssembler::encode_heap_oop_not_null(Register oop) {
3929   oop_encoder(oop, oop, false /*not null*/);
3930 }
3931 
3932 // Called with something derived from the oop base. e.g. oop_base>>3.
3933 int MacroAssembler::get_oop_base_pow2_offset(uint64_t oop_base) {
3934   unsigned int oop_base_ll = ((unsigned int)(oop_base >>  0)) & 0xffff;
3935   unsigned int oop_base_lh = ((unsigned int)(oop_base >> 16)) & 0xffff;
3936   unsigned int oop_base_hl = ((unsigned int)(oop_base >> 32)) & 0xffff;
3937   unsigned int oop_base_hh = ((unsigned int)(oop_base >> 48)) & 0xffff;
3938   unsigned int n_notzero_parts = (oop_base_ll == 0 ? 0:1)
3939                                + (oop_base_lh == 0 ? 0:1)
3940                                + (oop_base_hl == 0 ? 0:1)
3941                                + (oop_base_hh == 0 ? 0:1);
3942 
3943   assert(oop_base != 0, "This is for HeapBased cOops only");
3944 
3945   if (n_notzero_parts != 1) { //  Check if oop_base is just a few pages shy of a power of 2.
3946     uint64_t pow2_offset = 0x10000 - oop_base_ll;
3947     if (pow2_offset < 0x8000) {  // This might not be necessary.
3948       uint64_t oop_base2 = oop_base + pow2_offset;
3949 
3950       oop_base_ll = ((unsigned int)(oop_base2 >>  0)) & 0xffff;
3951       oop_base_lh = ((unsigned int)(oop_base2 >> 16)) & 0xffff;
3952       oop_base_hl = ((unsigned int)(oop_base2 >> 32)) & 0xffff;
3953       oop_base_hh = ((unsigned int)(oop_base2 >> 48)) & 0xffff;
3954       n_notzero_parts = (oop_base_ll == 0 ? 0:1) +
3955                         (oop_base_lh == 0 ? 0:1) +
3956                         (oop_base_hl == 0 ? 0:1) +
3957                         (oop_base_hh == 0 ? 0:1);
3958       if (n_notzero_parts == 1) {
3959         assert(-(int64_t)pow2_offset != (int64_t)-1, "We use -1 to signal uninitialized base register");
3960         return -pow2_offset;
3961       }
3962     }
3963   }
3964   return 0;
3965 }
3966 
3967 // If base address is offset from a straight power of two by just a few pages,
3968 // return this offset to the caller for a possible later composite add.
3969 // TODO/FIX: will only work correctly for 4k pages.
3970 int MacroAssembler::get_oop_base(Register Rbase, uint64_t oop_base) {
3971   int pow2_offset = get_oop_base_pow2_offset(oop_base);
3972 
3973   load_const_optimized(Rbase, oop_base - pow2_offset); // Best job possible.
3974 
3975   return pow2_offset;
3976 }
3977 
3978 int MacroAssembler::get_oop_base_complement(Register Rbase, uint64_t oop_base) {
3979   int offset = get_oop_base(Rbase, oop_base);
3980   z_lcgr(Rbase, Rbase);
3981   return -offset;
3982 }
3983 
3984 // Compare compressed oop in memory against oop in register.
3985 // Rop1            - Oop in register.
3986 // disp            - Offset of cOop in memory.
3987 // Rbase           - Base address of cOop in memory.
3988 // maybeNULL       - True if Rop1 possibly is a NULL.
3989 // maybeNULLtarget - Branch target for Rop1 == NULL, if flow control shall NOT continue with compare instruction.
3990 void MacroAssembler::compare_heap_oop(Register Rop1, Address mem, bool maybeNULL) {
3991   Register Rbase  = mem.baseOrR0();
3992   Register Rindex = mem.indexOrR0();
3993   int64_t  disp   = mem.disp();
3994 
3995   const int shift = CompressedOops::shift();
3996   address   base  = CompressedOops::base();
3997 
3998   assert(UseCompressedOops, "must be on to call this method");
3999   assert(Universe::heap() != NULL, "java heap must be initialized to call this method");
4000   assert((shift == 0) || (shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4001   assert_different_registers(Rop1, Z_R0);
4002   assert_different_registers(Rop1, Rbase, Z_R1);
4003   assert_different_registers(Rop1, Rindex, Z_R1);
4004 
4005   BLOCK_COMMENT("compare heap oop {");
4006 
4007   // First encode register oop and then compare with cOop in memory.
4008   // This sequence saves an unnecessary cOop load and decode.
4009   if (base == NULL) {
4010     if (shift == 0) {
4011       z_cl(Rop1, disp, Rindex, Rbase);  // Unscaled
4012     } else {
4013       z_srlg(Z_R0, Rop1, shift);        // ZeroBased
4014       z_cl(Z_R0, disp, Rindex, Rbase);
4015     }
4016   } else {                              // HeapBased
4017 #ifdef ASSERT
4018     bool  used_R0 = true;
4019     bool  used_R1 = true;
4020 #endif
4021     Label done;
4022     int   pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
4023 
4024     if (maybeNULL) {       // NULL ptr must be preserved!
4025       z_ltgr(Z_R0, Rop1);
4026       z_bre(done);
4027     }
4028 
4029     add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1);
4030     z_srlg(Z_R0, Z_R0, shift);
4031 
4032     bind(done);
4033     z_cl(Z_R0, disp, Rindex, Rbase);
4034 #ifdef ASSERT
4035     if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
4036     if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
4037 #endif
4038   }
4039   BLOCK_COMMENT("} compare heap oop");
4040 }
4041 
4042 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
4043                                      const Address& addr, Register val,
4044                                      Register tmp1, Register tmp2, Register tmp3) {
4045   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
4046                          ON_UNKNOWN_OOP_REF)) == 0, "unsupported decorator");
4047   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4048   decorators = AccessInternal::decorator_fixup(decorators);
4049   bool as_raw = (decorators & AS_RAW) != 0;
4050   if (as_raw) {
4051     bs->BarrierSetAssembler::store_at(this, decorators, type,
4052                                       addr, val,
4053                                       tmp1, tmp2, tmp3);
4054   } else {
4055     bs->store_at(this, decorators, type,
4056                  addr, val,
4057                  tmp1, tmp2, tmp3);
4058   }
4059 }
4060 
4061 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
4062                                     const Address& addr, Register dst,
4063                                     Register tmp1, Register tmp2, Label *is_null) {
4064   assert((decorators & ~(AS_RAW | IN_HEAP | IN_NATIVE | IS_ARRAY | IS_NOT_NULL |
4065                          ON_PHANTOM_OOP_REF | ON_WEAK_OOP_REF)) == 0, "unsupported decorator");
4066   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4067   decorators = AccessInternal::decorator_fixup(decorators);
4068   bool as_raw = (decorators & AS_RAW) != 0;
4069   if (as_raw) {
4070     bs->BarrierSetAssembler::load_at(this, decorators, type,
4071                                      addr, dst,
4072                                      tmp1, tmp2, is_null);
4073   } else {
4074     bs->load_at(this, decorators, type,
4075                 addr, dst,
4076                 tmp1, tmp2, is_null);
4077   }
4078 }
4079 
4080 void MacroAssembler::load_heap_oop(Register dest, const Address &a,
4081                                    Register tmp1, Register tmp2,
4082                                    DecoratorSet decorators, Label *is_null) {
4083   access_load_at(T_OBJECT, IN_HEAP | decorators, a, dest, tmp1, tmp2, is_null);
4084 }
4085 
4086 void MacroAssembler::store_heap_oop(Register Roop, const Address &a,
4087                                     Register tmp1, Register tmp2, Register tmp3,
4088                                     DecoratorSet decorators) {
4089   access_store_at(T_OBJECT, IN_HEAP | decorators, a, Roop, tmp1, tmp2, tmp3);
4090 }
4091 
4092 //-------------------------------------------------
4093 // Encode compressed oop. Generally usable encoder.
4094 //-------------------------------------------------
4095 // Rsrc - contains regular oop on entry. It remains unchanged.
4096 // Rdst - contains compressed oop on exit.
4097 // Rdst and Rsrc may indicate same register, in which case Rsrc does not remain unchanged.
4098 //
4099 // Rdst must not indicate scratch register Z_R1 (Z_R1_scratch) for functionality.
4100 // Rdst should not indicate scratch register Z_R0 (Z_R0_scratch) for performance.
4101 //
4102 // only32bitValid is set, if later code only uses the lower 32 bits. In this
4103 // case we must not fix the upper 32 bits.
4104 void MacroAssembler::oop_encoder(Register Rdst, Register Rsrc, bool maybeNULL,
4105                                  Register Rbase, int pow2_offset, bool only32bitValid) {
4106 
4107   const address oop_base  = CompressedOops::base();
4108   const int     oop_shift = CompressedOops::shift();
4109   const bool    disjoint  = CompressedOops::base_disjoint();
4110 
4111   assert(UseCompressedOops, "must be on to call this method");
4112   assert(Universe::heap() != NULL, "java heap must be initialized to call this encoder");
4113   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4114 
4115   if (disjoint || (oop_base == NULL)) {
4116     BLOCK_COMMENT("cOop encoder zeroBase {");
4117     if (oop_shift == 0) {
4118       if (oop_base != NULL && !only32bitValid) {
4119         z_llgfr(Rdst, Rsrc); // Clear upper bits in case the register will be decoded again.
4120       } else {
4121         lgr_if_needed(Rdst, Rsrc);
4122       }
4123     } else {
4124       z_srlg(Rdst, Rsrc, oop_shift);
4125       if (oop_base != NULL && !only32bitValid) {
4126         z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4127       }
4128     }
4129     BLOCK_COMMENT("} cOop encoder zeroBase");
4130     return;
4131   }
4132 
4133   bool used_R0 = false;
4134   bool used_R1 = false;
4135 
4136   BLOCK_COMMENT("cOop encoder general {");
4137   assert_different_registers(Rdst, Z_R1);
4138   assert_different_registers(Rsrc, Rbase);
4139   if (maybeNULL) {
4140     Label done;
4141     // We reorder shifting and subtracting, so that we can compare
4142     // and shift in parallel:
4143     //
4144     // cycle 0:  potential LoadN, base = <const>
4145     // cycle 1:  base = !base     dst = src >> 3,    cmp cr = (src != 0)
4146     // cycle 2:  if (cr) br,      dst = dst + base + offset
4147 
4148     // Get oop_base components.
4149     if (pow2_offset == -1) {
4150       if (Rdst == Rbase) {
4151         if (Rdst == Z_R1 || Rsrc == Z_R1) {
4152           Rbase = Z_R0;
4153           used_R0 = true;
4154         } else {
4155           Rdst = Z_R1;
4156           used_R1 = true;
4157         }
4158       }
4159       if (Rbase == Z_R1) {
4160         used_R1 = true;
4161       }
4162       pow2_offset = get_oop_base_complement(Rbase, ((uint64_t)(intptr_t)oop_base) >> oop_shift);
4163     }
4164     assert_different_registers(Rdst, Rbase);
4165 
4166     // Check for NULL oop (must be left alone) and shift.
4167     if (oop_shift != 0) {  // Shift out alignment bits
4168       if (((intptr_t)oop_base&0xc000000000000000L) == 0L) { // We are sure: no single address will have the leftmost bit set.
4169         z_srag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4170       } else {
4171         z_srlg(Rdst, Rsrc, oop_shift);
4172         z_ltgr(Rsrc, Rsrc);  // This is the recommended way of testing for zero.
4173         // This probably is faster, as it does not write a register. No!
4174         // z_cghi(Rsrc, 0);
4175       }
4176     } else {
4177       z_ltgr(Rdst, Rsrc);   // Move NULL to result register.
4178     }
4179     z_bre(done);
4180 
4181     // Subtract oop_base components.
4182     if ((Rdst == Z_R0) || (Rbase == Z_R0)) {
4183       z_algr(Rdst, Rbase);
4184       if (pow2_offset != 0) { add2reg(Rdst, pow2_offset); }
4185     } else {
4186       add2reg_with_index(Rdst, pow2_offset, Rbase, Rdst);
4187     }
4188     if (!only32bitValid) {
4189       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4190     }
4191     bind(done);
4192 
4193   } else {  // not null
4194     // Get oop_base components.
4195     if (pow2_offset == -1) {
4196       pow2_offset = get_oop_base_complement(Rbase, (uint64_t)(intptr_t)oop_base);
4197     }
4198 
4199     // Subtract oop_base components and shift.
4200     if (Rdst == Z_R0 || Rsrc == Z_R0 || Rbase == Z_R0) {
4201       // Don't use lay instruction.
4202       if (Rdst == Rsrc) {
4203         z_algr(Rdst, Rbase);
4204       } else {
4205         lgr_if_needed(Rdst, Rbase);
4206         z_algr(Rdst, Rsrc);
4207       }
4208       if (pow2_offset != 0) add2reg(Rdst, pow2_offset);
4209     } else {
4210       add2reg_with_index(Rdst, pow2_offset, Rbase, Rsrc);
4211     }
4212     if (oop_shift != 0) {   // Shift out alignment bits.
4213       z_srlg(Rdst, Rdst, oop_shift);
4214     }
4215     if (!only32bitValid) {
4216       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4217     }
4218   }
4219 #ifdef ASSERT
4220   if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb01bUL, 2); }
4221   if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb02bUL, 2); }
4222 #endif
4223   BLOCK_COMMENT("} cOop encoder general");
4224 }
4225 
4226 //-------------------------------------------------
4227 // decode compressed oop. Generally usable decoder.
4228 //-------------------------------------------------
4229 // Rsrc - contains compressed oop on entry.
4230 // Rdst - contains regular oop on exit.
4231 // Rdst and Rsrc may indicate same register.
4232 // Rdst must not be the same register as Rbase, if Rbase was preloaded (before call).
4233 // Rdst can be the same register as Rbase. Then, either Z_R0 or Z_R1 must be available as scratch.
4234 // Rbase - register to use for the base
4235 // pow2_offset - offset of base to nice value. If -1, base must be loaded.
4236 // For performance, it is good to
4237 //  - avoid Z_R0 for any of the argument registers.
4238 //  - keep Rdst and Rsrc distinct from Rbase. Rdst == Rsrc is ok for performance.
4239 //  - avoid Z_R1 for Rdst if Rdst == Rbase.
4240 void MacroAssembler::oop_decoder(Register Rdst, Register Rsrc, bool maybeNULL, Register Rbase, int pow2_offset) {
4241 
4242   const address oop_base  = CompressedOops::base();
4243   const int     oop_shift = CompressedOops::shift();
4244   const bool    disjoint  = CompressedOops::base_disjoint();
4245 
4246   assert(UseCompressedOops, "must be on to call this method");
4247   assert(Universe::heap() != NULL, "java heap must be initialized to call this decoder");
4248   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes),
4249          "cOop encoder detected bad shift");
4250 
4251   // cOops are always loaded zero-extended from memory. No explicit zero-extension necessary.
4252 
4253   if (oop_base != NULL) {
4254     unsigned int oop_base_hl = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xffff;
4255     unsigned int oop_base_hh = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 48)) & 0xffff;
4256     unsigned int oop_base_hf = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xFFFFffff;
4257     if (disjoint && (oop_base_hl == 0 || oop_base_hh == 0)) {
4258       BLOCK_COMMENT("cOop decoder disjointBase {");
4259       // We do not need to load the base. Instead, we can install the upper bits
4260       // with an OR instead of an ADD.
4261       Label done;
4262 
4263       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4264       if (maybeNULL) {  // NULL ptr must be preserved!
4265         z_slag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4266         z_bre(done);
4267       } else {
4268         z_sllg(Rdst, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4269       }
4270       if ((oop_base_hl != 0) && (oop_base_hh != 0)) {
4271         z_oihf(Rdst, oop_base_hf);
4272       } else if (oop_base_hl != 0) {
4273         z_oihl(Rdst, oop_base_hl);
4274       } else {
4275         assert(oop_base_hh != 0, "not heapbased mode");
4276         z_oihh(Rdst, oop_base_hh);
4277       }
4278       bind(done);
4279       BLOCK_COMMENT("} cOop decoder disjointBase");
4280     } else {
4281       BLOCK_COMMENT("cOop decoder general {");
4282       // There are three decode steps:
4283       //   scale oop offset (shift left)
4284       //   get base (in reg) and pow2_offset (constant)
4285       //   add base, pow2_offset, and oop offset
4286       // The following register overlap situations may exist:
4287       // Rdst == Rsrc,  Rbase any other
4288       //   not a problem. Scaling in-place leaves Rbase undisturbed.
4289       //   Loading Rbase does not impact the scaled offset.
4290       // Rdst == Rbase, Rsrc  any other
4291       //   scaling would destroy a possibly preloaded Rbase. Loading Rbase
4292       //   would destroy the scaled offset.
4293       //   Remedy: use Rdst_tmp if Rbase has been preloaded.
4294       //           use Rbase_tmp if base has to be loaded.
4295       // Rsrc == Rbase, Rdst  any other
4296       //   Only possible without preloaded Rbase.
4297       //   Loading Rbase does not destroy compressed oop because it was scaled into Rdst before.
4298       // Rsrc == Rbase, Rdst == Rbase
4299       //   Only possible without preloaded Rbase.
4300       //   Loading Rbase would destroy compressed oop. Scaling in-place is ok.
4301       //   Remedy: use Rbase_tmp.
4302       //
4303       Label    done;
4304       Register Rdst_tmp       = Rdst;
4305       Register Rbase_tmp      = Rbase;
4306       bool     used_R0        = false;
4307       bool     used_R1        = false;
4308       bool     base_preloaded = pow2_offset >= 0;
4309       guarantee(!(base_preloaded && (Rsrc == Rbase)), "Register clash, check caller");
4310       assert(oop_shift != 0, "room for optimization");
4311 
4312       // Check if we need to use scratch registers.
4313       if (Rdst == Rbase) {
4314         assert(!(((Rdst == Z_R0) && (Rsrc == Z_R1)) || ((Rdst == Z_R1) && (Rsrc == Z_R0))), "need a scratch reg");
4315         if (Rdst != Rsrc) {
4316           if (base_preloaded) { Rdst_tmp  = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4317           else                { Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4318         } else {
4319           Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1;
4320         }
4321       }
4322       if (base_preloaded) lgr_if_needed(Rbase_tmp, Rbase);
4323 
4324       // Scale oop and check for NULL.
4325       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4326       if (maybeNULL) {  // NULL ptr must be preserved!
4327         z_slag(Rdst_tmp, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4328         z_bre(done);
4329       } else {
4330         z_sllg(Rdst_tmp, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4331       }
4332 
4333       // Get oop_base components.
4334       if (!base_preloaded) {
4335         pow2_offset = get_oop_base(Rbase_tmp, (uint64_t)(intptr_t)oop_base);
4336       }
4337 
4338       // Add up all components.
4339       if ((Rbase_tmp == Z_R0) || (Rdst_tmp == Z_R0)) {
4340         z_algr(Rdst_tmp, Rbase_tmp);
4341         if (pow2_offset != 0) { add2reg(Rdst_tmp, pow2_offset); }
4342       } else {
4343         add2reg_with_index(Rdst_tmp, pow2_offset, Rbase_tmp, Rdst_tmp);
4344       }
4345 
4346       bind(done);
4347       lgr_if_needed(Rdst, Rdst_tmp);
4348 #ifdef ASSERT
4349       if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb03bUL, 2); }
4350       if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb04bUL, 2); }
4351 #endif
4352       BLOCK_COMMENT("} cOop decoder general");
4353     }
4354   } else {
4355     BLOCK_COMMENT("cOop decoder zeroBase {");
4356     if (oop_shift == 0) {
4357       lgr_if_needed(Rdst, Rsrc);
4358     } else {
4359       z_sllg(Rdst, Rsrc, oop_shift);
4360     }
4361     BLOCK_COMMENT("} cOop decoder zeroBase");
4362   }
4363 }
4364 
4365 // ((OopHandle)result).resolve();
4366 void MacroAssembler::resolve_oop_handle(Register result) {
4367   // OopHandle::resolve is an indirection.
4368   z_lg(result, 0, result);
4369 }
4370 
4371 void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
4372   mem2reg_opt(mirror, Address(const_method, ConstMethod::constants_offset()));
4373   mem2reg_opt(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
4374   mem2reg_opt(mirror, Address(mirror, Klass::java_mirror_offset()));
4375   resolve_oop_handle(mirror);
4376 }
4377 
4378 void MacroAssembler::load_method_holder(Register holder, Register method) {
4379   mem2reg_opt(holder, Address(method, Method::const_offset()));
4380   mem2reg_opt(holder, Address(holder, ConstMethod::constants_offset()));
4381   mem2reg_opt(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes()));
4382 }
4383 
4384 //---------------------------------------------------------------
4385 //---  Operations on arrays.
4386 //---------------------------------------------------------------
4387 
4388 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4389 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4390 // work registers anyway.
4391 // Actually, only r0, r1, and r5 are killed.
4392 unsigned int MacroAssembler::Clear_Array(Register cnt_arg, Register base_pointer_arg, Register odd_tmp_reg) {
4393 
4394   int      block_start = offset();
4395   Register dst_len  = Z_R1;    // Holds dst len  for MVCLE.
4396   Register dst_addr = Z_R0;    // Holds dst addr for MVCLE.
4397 
4398   Label doXC, doMVCLE, done;
4399 
4400   BLOCK_COMMENT("Clear_Array {");
4401 
4402   // Check for zero len and convert to long.
4403   z_ltgfr(odd_tmp_reg, cnt_arg);
4404   z_bre(done);                    // Nothing to do if len == 0.
4405 
4406   // Prefetch data to be cleared.
4407   if (VM_Version::has_Prefetch()) {
4408     z_pfd(0x02,   0, Z_R0, base_pointer_arg);
4409     z_pfd(0x02, 256, Z_R0, base_pointer_arg);
4410   }
4411 
4412   z_sllg(dst_len, odd_tmp_reg, 3); // #bytes to clear.
4413   z_cghi(odd_tmp_reg, 32);         // Check for len <= 256 bytes (<=32 DW).
4414   z_brnh(doXC);                    // If so, use executed XC to clear.
4415 
4416   // MVCLE: initialize long arrays (general case).
4417   bind(doMVCLE);
4418   z_lgr(dst_addr, base_pointer_arg);
4419   // Pass 0 as source length to MVCLE: destination will be filled with padding byte 0.
4420   // The even register of the register pair is not killed.
4421   clear_reg(odd_tmp_reg, true, false);
4422   MacroAssembler::move_long_ext(dst_addr, as_Register(odd_tmp_reg->encoding()-1), 0);
4423   z_bru(done);
4424 
4425   // XC: initialize short arrays.
4426   Label XC_template; // Instr template, never exec directly!
4427     bind(XC_template);
4428     z_xc(0,0,base_pointer_arg,0,base_pointer_arg);
4429 
4430   bind(doXC);
4431     add2reg(dst_len, -1);               // Get #bytes-1 for EXECUTE.
4432     if (VM_Version::has_ExecuteExtensions()) {
4433       z_exrl(dst_len, XC_template);     // Execute XC with var. len.
4434     } else {
4435       z_larl(odd_tmp_reg, XC_template);
4436       z_ex(dst_len,0,Z_R0,odd_tmp_reg); // Execute XC with var. len.
4437     }
4438     // z_bru(done);      // fallthru
4439 
4440   bind(done);
4441 
4442   BLOCK_COMMENT("} Clear_Array");
4443 
4444   int block_end = offset();
4445   return block_end - block_start;
4446 }
4447 
4448 // Compiler ensures base is doubleword aligned and cnt is count of doublewords.
4449 // Emitter does not KILL any arguments nor work registers.
4450 // Emitter generates up to 16 XC instructions, depending on the array length.
4451 unsigned int MacroAssembler::Clear_Array_Const(long cnt, Register base) {
4452   int  block_start    = offset();
4453   int  off;
4454   int  lineSize_Bytes = AllocatePrefetchStepSize;
4455   int  lineSize_DW    = AllocatePrefetchStepSize>>LogBytesPerWord;
4456   bool doPrefetch     = VM_Version::has_Prefetch();
4457   int  XC_maxlen      = 256;
4458   int  numXCInstr     = cnt > 0 ? (cnt*BytesPerWord-1)/XC_maxlen+1 : 0;
4459 
4460   BLOCK_COMMENT("Clear_Array_Const {");
4461   assert(cnt*BytesPerWord <= 4096, "ClearArrayConst can handle 4k only");
4462 
4463   // Do less prefetching for very short arrays.
4464   if (numXCInstr > 0) {
4465     // Prefetch only some cache lines, then begin clearing.
4466     if (doPrefetch) {
4467       if (cnt*BytesPerWord <= lineSize_Bytes/4) {  // If less than 1/4 of a cache line to clear,
4468         z_pfd(0x02, 0, Z_R0, base);                // prefetch just the first cache line.
4469       } else {
4470         assert(XC_maxlen == lineSize_Bytes, "ClearArrayConst needs 256B cache lines");
4471         for (off = 0; (off < AllocatePrefetchLines) && (off <= numXCInstr); off ++) {
4472           z_pfd(0x02, off*lineSize_Bytes, Z_R0, base);
4473         }
4474       }
4475     }
4476 
4477     for (off=0; off<(numXCInstr-1); off++) {
4478       z_xc(off*XC_maxlen, XC_maxlen-1, base, off*XC_maxlen, base);
4479 
4480       // Prefetch some cache lines in advance.
4481       if (doPrefetch && (off <= numXCInstr-AllocatePrefetchLines)) {
4482         z_pfd(0x02, (off+AllocatePrefetchLines)*lineSize_Bytes, Z_R0, base);
4483       }
4484     }
4485     if (off*XC_maxlen < cnt*BytesPerWord) {
4486       z_xc(off*XC_maxlen, (cnt*BytesPerWord-off*XC_maxlen)-1, base, off*XC_maxlen, base);
4487     }
4488   }
4489   BLOCK_COMMENT("} Clear_Array_Const");
4490 
4491   int block_end = offset();
4492   return block_end - block_start;
4493 }
4494 
4495 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4496 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4497 // work registers anyway.
4498 // Actually, only r0, r1, (which are work registers) and odd_tmp_reg are killed.
4499 //
4500 // For very large arrays, exploit MVCLE H/W support.
4501 // MVCLE instruction automatically exploits H/W-optimized page mover.
4502 // - Bytes up to next page boundary are cleared with a series of XC to self.
4503 // - All full pages are cleared with the page mover H/W assist.
4504 // - Remaining bytes are again cleared by a series of XC to self.
4505 //
4506 unsigned int MacroAssembler::Clear_Array_Const_Big(long cnt, Register base_pointer_arg, Register odd_tmp_reg) {
4507 
4508   int      block_start = offset();
4509   Register dst_len  = Z_R1;      // Holds dst len  for MVCLE.
4510   Register dst_addr = Z_R0;      // Holds dst addr for MVCLE.
4511 
4512   BLOCK_COMMENT("Clear_Array_Const_Big {");
4513 
4514   // Get len to clear.
4515   load_const_optimized(dst_len, (long)cnt*8L);  // in Bytes = #DW*8
4516 
4517   // Prepare other args to MVCLE.
4518   z_lgr(dst_addr, base_pointer_arg);
4519   // Pass 0 as source length to MVCLE: destination will be filled with padding byte 0.
4520   // The even register of the register pair is not killed.
4521   (void) clear_reg(odd_tmp_reg, true, false);  // Src len of MVCLE is zero.
4522   MacroAssembler::move_long_ext(dst_addr, as_Register(odd_tmp_reg->encoding() - 1), 0);
4523   BLOCK_COMMENT("} Clear_Array_Const_Big");
4524 
4525   int block_end = offset();
4526   return block_end - block_start;
4527 }
4528 
4529 // Allocator.
4530 unsigned int MacroAssembler::CopyRawMemory_AlignedDisjoint(Register src_reg, Register dst_reg,
4531                                                            Register cnt_reg,
4532                                                            Register tmp1_reg, Register tmp2_reg) {
4533   // Tmp1 is oddReg.
4534   // Tmp2 is evenReg.
4535 
4536   int block_start = offset();
4537   Label doMVC, doMVCLE, done, MVC_template;
4538 
4539   BLOCK_COMMENT("CopyRawMemory_AlignedDisjoint {");
4540 
4541   // Check for zero len and convert to long.
4542   z_ltgfr(cnt_reg, cnt_reg);      // Remember casted value for doSTG case.
4543   z_bre(done);                    // Nothing to do if len == 0.
4544 
4545   z_sllg(Z_R1, cnt_reg, 3);       // Dst len in bytes. calc early to have the result ready.
4546 
4547   z_cghi(cnt_reg, 32);            // Check for len <= 256 bytes (<=32 DW).
4548   z_brnh(doMVC);                  // If so, use executed MVC to clear.
4549 
4550   bind(doMVCLE);                  // A lot of data (more than 256 bytes).
4551   // Prep dest reg pair.
4552   z_lgr(Z_R0, dst_reg);           // dst addr
4553   // Dst len already in Z_R1.
4554   // Prep src reg pair.
4555   z_lgr(tmp2_reg, src_reg);       // src addr
4556   z_lgr(tmp1_reg, Z_R1);          // Src len same as dst len.
4557 
4558   // Do the copy.
4559   move_long_ext(Z_R0, tmp2_reg, 0xb0); // Bypass cache.
4560   z_bru(done);                         // All done.
4561 
4562   bind(MVC_template);             // Just some data (not more than 256 bytes).
4563   z_mvc(0, 0, dst_reg, 0, src_reg);
4564 
4565   bind(doMVC);
4566 
4567   if (VM_Version::has_ExecuteExtensions()) {
4568     add2reg(Z_R1, -1);
4569   } else {
4570     add2reg(tmp1_reg, -1, Z_R1);
4571     z_larl(Z_R1, MVC_template);
4572   }
4573 
4574   if (VM_Version::has_Prefetch()) {
4575     z_pfd(1,  0,Z_R0,src_reg);
4576     z_pfd(2,  0,Z_R0,dst_reg);
4577     //    z_pfd(1,256,Z_R0,src_reg);    // Assume very short copy.
4578     //    z_pfd(2,256,Z_R0,dst_reg);
4579   }
4580 
4581   if (VM_Version::has_ExecuteExtensions()) {
4582     z_exrl(Z_R1, MVC_template);
4583   } else {
4584     z_ex(tmp1_reg, 0, Z_R0, Z_R1);
4585   }
4586 
4587   bind(done);
4588 
4589   BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
4590 
4591   int block_end = offset();
4592   return block_end - block_start;
4593 }
4594 
4595 //------------------------------------------------------
4596 //   Special String Intrinsics. Implementation
4597 //------------------------------------------------------
4598 
4599 // Intrinsics for CompactStrings
4600 
4601 // Compress char[] to byte[].
4602 //   Restores: src, dst
4603 //   Uses:     cnt
4604 //   Kills:    tmp, Z_R0, Z_R1.
4605 //   Early clobber: result.
4606 // Note:
4607 //   cnt is signed int. Do not rely on high word!
4608 //       counts # characters, not bytes.
4609 // The result is the number of characters copied before the first incompatible character was found.
4610 // If precise is true, the processing stops exactly at this point. Otherwise, the result may be off
4611 // by a few bytes. The result always indicates the number of copied characters.
4612 // When used as a character index, the returned value points to the first incompatible character.
4613 //
4614 // Note: Does not behave exactly like package private StringUTF16 compress java implementation in case of failure:
4615 // - Different number of characters may have been written to dead array (if precise is false).
4616 // - Returns a number <cnt instead of 0. (Result gets compared with cnt.)
4617 unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register cnt,
4618                                              Register tmp,    bool precise) {
4619   assert_different_registers(Z_R0, Z_R1, result, src, dst, cnt, tmp);
4620 
4621   if (precise) {
4622     BLOCK_COMMENT("encode_iso_array {");
4623   } else {
4624     BLOCK_COMMENT("string_compress {");
4625   }
4626   int  block_start = offset();
4627 
4628   Register       Rsrc  = src;
4629   Register       Rdst  = dst;
4630   Register       Rix   = tmp;
4631   Register       Rcnt  = cnt;
4632   Register       Rmask = result;  // holds incompatibility check mask until result value is stored.
4633   Label          ScalarShortcut, AllDone;
4634 
4635   z_iilf(Rmask, 0xFF00FF00);
4636   z_iihf(Rmask, 0xFF00FF00);
4637 
4638 #if 0  // Sacrifice shortcuts for code compactness
4639   {
4640     //---<  shortcuts for short strings (very frequent)   >---
4641     //   Strings with 4 and 8 characters were fond to occur very frequently.
4642     //   Therefore, we handle them right away with minimal overhead.
4643     Label     skipShortcut, skip4Shortcut, skip8Shortcut;
4644     Register  Rout = Z_R0;
4645     z_chi(Rcnt, 4);
4646     z_brne(skip4Shortcut);                 // 4 characters are very frequent
4647       z_lg(Z_R0, 0, Rsrc);                 // Treat exactly 4 characters specially.
4648       if (VM_Version::has_DistinctOpnds()) {
4649         Rout = Z_R0;
4650         z_ngrk(Rix, Z_R0, Rmask);
4651       } else {
4652         Rout = Rix;
4653         z_lgr(Rix, Z_R0);
4654         z_ngr(Z_R0, Rmask);
4655       }
4656       z_brnz(skipShortcut);
4657       z_stcmh(Rout, 5, 0, Rdst);
4658       z_stcm(Rout,  5, 2, Rdst);
4659       z_lgfr(result, Rcnt);
4660       z_bru(AllDone);
4661     bind(skip4Shortcut);
4662 
4663     z_chi(Rcnt, 8);
4664     z_brne(skip8Shortcut);                 // There's more to do...
4665       z_lmg(Z_R0, Z_R1, 0, Rsrc);          // Treat exactly 8 characters specially.
4666       if (VM_Version::has_DistinctOpnds()) {
4667         Rout = Z_R0;
4668         z_ogrk(Rix, Z_R0, Z_R1);
4669         z_ngr(Rix, Rmask);
4670       } else {
4671         Rout = Rix;
4672         z_lgr(Rix, Z_R0);
4673         z_ogr(Z_R0, Z_R1);
4674         z_ngr(Z_R0, Rmask);
4675       }
4676       z_brnz(skipShortcut);
4677       z_stcmh(Rout, 5, 0, Rdst);
4678       z_stcm(Rout,  5, 2, Rdst);
4679       z_stcmh(Z_R1, 5, 4, Rdst);
4680       z_stcm(Z_R1,  5, 6, Rdst);
4681       z_lgfr(result, Rcnt);
4682       z_bru(AllDone);
4683 
4684     bind(skip8Shortcut);
4685     clear_reg(Z_R0, true, false);          // #characters already processed (none). Precond for scalar loop.
4686     z_brl(ScalarShortcut);                 // Just a few characters
4687 
4688     bind(skipShortcut);
4689   }
4690 #endif
4691   clear_reg(Z_R0);                         // make sure register is properly initialized.
4692 
4693   if (VM_Version::has_VectorFacility()) {
4694     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
4695                                            // Otherwise just do nothing in vector mode.
4696                                            // Must be multiple of 2*(vector register length in chars (8 HW = 128 bits)).
4697     const int  log_min_vcnt = exact_log2(min_vcnt);
4698     Label      VectorLoop, VectorDone, VectorBreak;
4699 
4700     VectorRegister Vtmp1      = Z_V16;
4701     VectorRegister Vtmp2      = Z_V17;
4702     VectorRegister Vmask      = Z_V18;
4703     VectorRegister Vzero      = Z_V19;
4704     VectorRegister Vsrc_first = Z_V20;
4705     VectorRegister Vsrc_last  = Z_V23;
4706 
4707     assert((Vsrc_last->encoding() - Vsrc_first->encoding() + 1) == min_vcnt/8, "logic error");
4708     assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
4709     z_srak(Rix, Rcnt, log_min_vcnt);       // # vector loop iterations
4710     z_brz(VectorDone);                     // not enough data for vector loop
4711 
4712     z_vzero(Vzero);                        // all zeroes
4713     z_vgmh(Vmask, 0, 7);                   // generate 0xff00 mask for all 2-byte elements
4714     z_sllg(Z_R0, Rix, log_min_vcnt);       // remember #chars that will be processed by vector loop
4715 
4716     bind(VectorLoop);
4717       z_vlm(Vsrc_first, Vsrc_last, 0, Rsrc);
4718       add2reg(Rsrc, min_vcnt*2);
4719 
4720       //---<  check for incompatible character  >---
4721       z_vo(Vtmp1, Z_V20, Z_V21);
4722       z_vo(Vtmp2, Z_V22, Z_V23);
4723       z_vo(Vtmp1, Vtmp1, Vtmp2);
4724       z_vn(Vtmp1, Vtmp1, Vmask);
4725       z_vceqhs(Vtmp1, Vtmp1, Vzero);       // high half of all chars must be zero for successful compress.
4726       z_bvnt(VectorBreak);                 // break vector loop if not all vector elements compare eq -> incompatible character found.
4727                                            // re-process data from current iteration in break handler.
4728 
4729       //---<  pack & store characters  >---
4730       z_vpkh(Vtmp1, Z_V20, Z_V21);         // pack (src1, src2) -> tmp1
4731       z_vpkh(Vtmp2, Z_V22, Z_V23);         // pack (src3, src4) -> tmp2
4732       z_vstm(Vtmp1, Vtmp2, 0, Rdst);       // store packed string
4733       add2reg(Rdst, min_vcnt);
4734 
4735       z_brct(Rix, VectorLoop);
4736 
4737     z_bru(VectorDone);
4738 
4739     bind(VectorBreak);
4740       add2reg(Rsrc, -min_vcnt*2);          // Fix Rsrc. Rsrc was already updated, but Rdst and Rix are not.
4741       z_sll(Rix, log_min_vcnt);            // # chars processed so far in VectorLoop, excl. current iteration.
4742       z_sr(Z_R0, Rix);                     // correct # chars processed in total.
4743 
4744     bind(VectorDone);
4745   }
4746 
4747   {
4748     const int  min_cnt     =  8;           // Minimum #characters required to use unrolled loop.
4749                                            // Otherwise just do nothing in unrolled loop.
4750                                            // Must be multiple of 8.
4751     const int  log_min_cnt = exact_log2(min_cnt);
4752     Label      UnrolledLoop, UnrolledDone, UnrolledBreak;
4753 
4754     if (VM_Version::has_DistinctOpnds()) {
4755       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to compress in unrolled loop
4756     } else {
4757       z_lr(Rix, Rcnt);
4758       z_sr(Rix, Z_R0);
4759     }
4760     z_sra(Rix, log_min_cnt);             // unrolled loop count
4761     z_brz(UnrolledDone);
4762 
4763     bind(UnrolledLoop);
4764       z_lmg(Z_R0, Z_R1, 0, Rsrc);
4765       if (precise) {
4766         z_ogr(Z_R1, Z_R0);                 // check all 8 chars for incompatibility
4767         z_ngr(Z_R1, Rmask);
4768         z_brnz(UnrolledBreak);
4769 
4770         z_lg(Z_R1, 8, Rsrc);               // reload destroyed register
4771         z_stcmh(Z_R0, 5, 0, Rdst);
4772         z_stcm(Z_R0,  5, 2, Rdst);
4773       } else {
4774         z_stcmh(Z_R0, 5, 0, Rdst);
4775         z_stcm(Z_R0,  5, 2, Rdst);
4776 
4777         z_ogr(Z_R0, Z_R1);
4778         z_ngr(Z_R0, Rmask);
4779         z_brnz(UnrolledBreak);
4780       }
4781       z_stcmh(Z_R1, 5, 4, Rdst);
4782       z_stcm(Z_R1,  5, 6, Rdst);
4783 
4784       add2reg(Rsrc, min_cnt*2);
4785       add2reg(Rdst, min_cnt);
4786       z_brct(Rix, UnrolledLoop);
4787 
4788     z_lgfr(Z_R0, Rcnt);                    // # chars processed in total after unrolled loop.
4789     z_nilf(Z_R0, ~(min_cnt-1));
4790     z_tmll(Rcnt, min_cnt-1);
4791     z_brnaz(ScalarShortcut);               // if all bits zero, there is nothing left to do for scalar loop.
4792                                            // Rix == 0 in all cases.
4793     z_sllg(Z_R1, Rcnt, 1);                 // # src bytes already processed. Only lower 32 bits are valid!
4794                                            //   Z_R1 contents must be treated as unsigned operand! For huge strings,
4795                                            //   (Rcnt >= 2**30), the value may spill into the sign bit by sllg.
4796     z_lgfr(result, Rcnt);                  // all characters processed.
4797     z_slgfr(Rdst, Rcnt);                   // restore ptr
4798     z_slgfr(Rsrc, Z_R1);                   // restore ptr, double the element count for Rsrc restore
4799     z_bru(AllDone);
4800 
4801     bind(UnrolledBreak);
4802     z_lgfr(Z_R0, Rcnt);                    // # chars processed in total after unrolled loop
4803     z_nilf(Z_R0, ~(min_cnt-1));
4804     z_sll(Rix, log_min_cnt);               // # chars not yet processed in UnrolledLoop (due to break), broken iteration not included.
4805     z_sr(Z_R0, Rix);                       // fix # chars processed OK so far.
4806     if (!precise) {
4807       z_lgfr(result, Z_R0);
4808       z_sllg(Z_R1, Z_R0, 1);               // # src bytes already processed. Only lower 32 bits are valid!
4809                                            //   Z_R1 contents must be treated as unsigned operand! For huge strings,
4810                                            //   (Rcnt >= 2**30), the value may spill into the sign bit by sllg.
4811       z_aghi(result, min_cnt/2);           // min_cnt/2 characters have already been written
4812                                            // but ptrs were not updated yet.
4813       z_slgfr(Rdst, Z_R0);                 // restore ptr
4814       z_slgfr(Rsrc, Z_R1);                 // restore ptr, double the element count for Rsrc restore
4815       z_bru(AllDone);
4816     }
4817     bind(UnrolledDone);
4818   }
4819 
4820   {
4821     Label     ScalarLoop, ScalarDone, ScalarBreak;
4822 
4823     bind(ScalarShortcut);
4824     z_ltgfr(result, Rcnt);
4825     z_brz(AllDone);
4826 
4827 #if 0  // Sacrifice shortcuts for code compactness
4828     {
4829       //---<  Special treatment for very short strings (one or two characters)  >---
4830       //   For these strings, we are sure that the above code was skipped.
4831       //   Thus, no registers were modified, register restore is not required.
4832       Label     ScalarDoit, Scalar2Char;
4833       z_chi(Rcnt, 2);
4834       z_brh(ScalarDoit);
4835       z_llh(Z_R1,  0, Z_R0, Rsrc);
4836       z_bre(Scalar2Char);
4837       z_tmll(Z_R1, 0xff00);
4838       z_lghi(result, 0);                   // cnt == 1, first char invalid, no chars successfully processed
4839       z_brnaz(AllDone);
4840       z_stc(Z_R1,  0, Z_R0, Rdst);
4841       z_lghi(result, 1);
4842       z_bru(AllDone);
4843 
4844       bind(Scalar2Char);
4845       z_llh(Z_R0,  2, Z_R0, Rsrc);
4846       z_tmll(Z_R1, 0xff00);
4847       z_lghi(result, 0);                   // cnt == 2, first char invalid, no chars successfully processed
4848       z_brnaz(AllDone);
4849       z_stc(Z_R1,  0, Z_R0, Rdst);
4850       z_tmll(Z_R0, 0xff00);
4851       z_lghi(result, 1);                   // cnt == 2, second char invalid, one char successfully processed
4852       z_brnaz(AllDone);
4853       z_stc(Z_R0,  1, Z_R0, Rdst);
4854       z_lghi(result, 2);
4855       z_bru(AllDone);
4856 
4857       bind(ScalarDoit);
4858     }
4859 #endif
4860 
4861     if (VM_Version::has_DistinctOpnds()) {
4862       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to compress in unrolled loop
4863     } else {
4864       z_lr(Rix, Rcnt);
4865       z_sr(Rix, Z_R0);
4866     }
4867     z_lgfr(result, Rcnt);                  // # processed characters (if all runs ok).
4868     z_brz(ScalarDone);                     // uses CC from Rix calculation
4869 
4870     bind(ScalarLoop);
4871       z_llh(Z_R1, 0, Z_R0, Rsrc);
4872       z_tmll(Z_R1, 0xff00);
4873       z_brnaz(ScalarBreak);
4874       z_stc(Z_R1, 0, Z_R0, Rdst);
4875       add2reg(Rsrc, 2);
4876       add2reg(Rdst, 1);
4877       z_brct(Rix, ScalarLoop);
4878 
4879     z_bru(ScalarDone);
4880 
4881     bind(ScalarBreak);
4882     z_sr(result, Rix);
4883 
4884     bind(ScalarDone);
4885     z_sgfr(Rdst, result);                  // restore ptr
4886     z_sgfr(Rsrc, result);                  // restore ptr, double the element count for Rsrc restore
4887     z_sgfr(Rsrc, result);
4888   }
4889   bind(AllDone);
4890 
4891   if (precise) {
4892     BLOCK_COMMENT("} encode_iso_array");
4893   } else {
4894     BLOCK_COMMENT("} string_compress");
4895   }
4896   return offset() - block_start;
4897 }
4898 
4899 // Inflate byte[] to char[].
4900 unsigned int MacroAssembler::string_inflate_trot(Register src, Register dst, Register cnt, Register tmp) {
4901   int block_start = offset();
4902 
4903   BLOCK_COMMENT("string_inflate {");
4904 
4905   Register stop_char = Z_R0;
4906   Register table     = Z_R1;
4907   Register src_addr  = tmp;
4908 
4909   assert_different_registers(Z_R0, Z_R1, tmp, src, dst, cnt);
4910   assert(dst->encoding()%2 == 0, "must be even reg");
4911   assert(cnt->encoding()%2 == 1, "must be odd reg");
4912   assert(cnt->encoding() - dst->encoding() == 1, "must be even/odd pair");
4913 
4914   StubRoutines::zarch::generate_load_trot_table_addr(this, table);  // kills Z_R0 (if ASSERT)
4915   clear_reg(stop_char);  // Stop character. Not used here, but initialized to have a defined value.
4916   lgr_if_needed(src_addr, src);
4917   z_llgfr(cnt, cnt);     // # src characters, must be a positive simm32.
4918 
4919   translate_ot(dst, src_addr, /* mask = */ 0x0001);
4920 
4921   BLOCK_COMMENT("} string_inflate");
4922 
4923   return offset() - block_start;
4924 }
4925 
4926 // Inflate byte[] to char[].
4927 //   Restores: src, dst
4928 //   Uses:     cnt
4929 //   Kills:    tmp, Z_R0, Z_R1.
4930 // Note:
4931 //   cnt is signed int. Do not rely on high word!
4932 //       counts # characters, not bytes.
4933 unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
4934   assert_different_registers(Z_R0, Z_R1, src, dst, cnt, tmp);
4935 
4936   BLOCK_COMMENT("string_inflate {");
4937   int block_start = offset();
4938 
4939   Register   Rcnt = cnt;   // # characters (src: bytes, dst: char (2-byte)), remaining after current loop.
4940   Register   Rix  = tmp;   // loop index
4941   Register   Rsrc = src;   // addr(src array)
4942   Register   Rdst = dst;   // addr(dst array)
4943   Label      ScalarShortcut, AllDone;
4944 
4945 #if 0  // Sacrifice shortcuts for code compactness
4946   {
4947     //---<  shortcuts for short strings (very frequent)   >---
4948     Label   skipShortcut, skip4Shortcut;
4949     z_ltr(Rcnt, Rcnt);                     // absolutely nothing to do for strings of len == 0.
4950     z_brz(AllDone);
4951     clear_reg(Z_R0);                       // make sure registers are properly initialized.
4952     clear_reg(Z_R1);
4953     z_chi(Rcnt, 4);
4954     z_brne(skip4Shortcut);                 // 4 characters are very frequent
4955       z_icm(Z_R0, 5,    0, Rsrc);          // Treat exactly 4 characters specially.
4956       z_icm(Z_R1, 5,    2, Rsrc);
4957       z_stm(Z_R0, Z_R1, 0, Rdst);
4958       z_bru(AllDone);
4959     bind(skip4Shortcut);
4960 
4961     z_chi(Rcnt, 8);
4962     z_brh(skipShortcut);                   // There's a lot to do...
4963     z_lgfr(Z_R0, Rcnt);                    // remaining #characters (<= 8). Precond for scalar loop.
4964                                            // This does not destroy the "register cleared" state of Z_R0.
4965     z_brl(ScalarShortcut);                 // Just a few characters
4966       z_icmh(Z_R0, 5, 0, Rsrc);            // Treat exactly 8 characters specially.
4967       z_icmh(Z_R1, 5, 4, Rsrc);
4968       z_icm(Z_R0,  5, 2, Rsrc);
4969       z_icm(Z_R1,  5, 6, Rsrc);
4970       z_stmg(Z_R0, Z_R1, 0, Rdst);
4971       z_bru(AllDone);
4972     bind(skipShortcut);
4973   }
4974 #endif
4975   clear_reg(Z_R0);                         // make sure register is properly initialized.
4976 
4977   if (VM_Version::has_VectorFacility()) {
4978     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
4979                                            // Otherwise just do nothing in vector mode.
4980                                            // Must be multiple of vector register length (16 bytes = 128 bits).
4981     const int  log_min_vcnt = exact_log2(min_vcnt);
4982     Label      VectorLoop, VectorDone;
4983 
4984     assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
4985     z_srak(Rix, Rcnt, log_min_vcnt);       // calculate # vector loop iterations
4986     z_brz(VectorDone);                     // skip if none
4987 
4988     z_sllg(Z_R0, Rix, log_min_vcnt);       // remember #chars that will be processed by vector loop
4989 
4990     bind(VectorLoop);
4991       z_vlm(Z_V20, Z_V21, 0, Rsrc);        // get next 32 characters (single-byte)
4992       add2reg(Rsrc, min_vcnt);
4993 
4994       z_vuplhb(Z_V22, Z_V20);              // V2 <- (expand) V0(high)
4995       z_vupllb(Z_V23, Z_V20);              // V3 <- (expand) V0(low)
4996       z_vuplhb(Z_V24, Z_V21);              // V4 <- (expand) V1(high)
4997       z_vupllb(Z_V25, Z_V21);              // V5 <- (expand) V1(low)
4998       z_vstm(Z_V22, Z_V25, 0, Rdst);       // store next 32 bytes
4999       add2reg(Rdst, min_vcnt*2);
5000 
5001       z_brct(Rix, VectorLoop);
5002 
5003     bind(VectorDone);
5004   }
5005 
5006   const int  min_cnt     =  8;             // Minimum #characters required to use unrolled scalar loop.
5007                                            // Otherwise just do nothing in unrolled scalar mode.
5008                                            // Must be multiple of 8.
5009   {
5010     const int  log_min_cnt = exact_log2(min_cnt);
5011     Label      UnrolledLoop, UnrolledDone;
5012 
5013 
5014     if (VM_Version::has_DistinctOpnds()) {
5015       z_srk(Rix, Rcnt, Z_R0);              // remaining # chars to process in unrolled loop
5016     } else {
5017       z_lr(Rix, Rcnt);
5018       z_sr(Rix, Z_R0);
5019     }
5020     z_sra(Rix, log_min_cnt);               // unrolled loop count
5021     z_brz(UnrolledDone);
5022 
5023     clear_reg(Z_R0);
5024     clear_reg(Z_R1);
5025 
5026     bind(UnrolledLoop);
5027       z_icmh(Z_R0, 5, 0, Rsrc);
5028       z_icmh(Z_R1, 5, 4, Rsrc);
5029       z_icm(Z_R0,  5, 2, Rsrc);
5030       z_icm(Z_R1,  5, 6, Rsrc);
5031       add2reg(Rsrc, min_cnt);
5032 
5033       z_stmg(Z_R0, Z_R1, 0, Rdst);
5034 
5035       add2reg(Rdst, min_cnt*2);
5036       z_brct(Rix, UnrolledLoop);
5037 
5038     bind(UnrolledDone);
5039     z_lgfr(Z_R0, Rcnt);                    // # chars left over after unrolled loop.
5040     z_nilf(Z_R0, min_cnt-1);
5041     z_brnz(ScalarShortcut);                // if zero, there is nothing left to do for scalar loop.
5042                                            // Rix == 0 in all cases.
5043     z_sgfr(Z_R0, Rcnt);                    // negative # characters the ptrs have been advanced previously.
5044     z_agr(Rdst, Z_R0);                     // restore ptr, double the element count for Rdst restore.
5045     z_agr(Rdst, Z_R0);
5046     z_agr(Rsrc, Z_R0);                     // restore ptr.
5047     z_bru(AllDone);
5048   }
5049 
5050   {
5051     bind(ScalarShortcut);
5052     // Z_R0 must contain remaining # characters as 64-bit signed int here.
5053     //      register contents is preserved over scalar processing (for register fixup).
5054 
5055 #if 0  // Sacrifice shortcuts for code compactness
5056     {
5057       Label      ScalarDefault;
5058       z_chi(Rcnt, 2);
5059       z_brh(ScalarDefault);
5060       z_llc(Z_R0,  0, Z_R0, Rsrc);     // 6 bytes
5061       z_sth(Z_R0,  0, Z_R0, Rdst);     // 4 bytes
5062       z_brl(AllDone);
5063       z_llc(Z_R0,  1, Z_R0, Rsrc);     // 6 bytes
5064       z_sth(Z_R0,  2, Z_R0, Rdst);     // 4 bytes
5065       z_bru(AllDone);
5066       bind(ScalarDefault);
5067     }
5068 #endif
5069 
5070     Label   CodeTable;
5071     // Some comments on Rix calculation:
5072     //  - Rcnt is small, therefore no bits shifted out of low word (sll(g) instructions).
5073     //  - high word of both Rix and Rcnt may contain garbage
5074     //  - the final lngfr takes care of that garbage, extending the sign to high word
5075     z_sllg(Rix, Z_R0, 2);                // calculate 10*Rix = (4*Rix + Rix)*2
5076     z_ar(Rix, Z_R0);
5077     z_larl(Z_R1, CodeTable);
5078     z_sll(Rix, 1);
5079     z_lngfr(Rix, Rix);      // ix range: [0..7], after inversion & mult: [-(7*12)..(0*12)].
5080     z_bc(Assembler::bcondAlways, 0, Rix, Z_R1);
5081 
5082     z_llc(Z_R1,  6, Z_R0, Rsrc);  // 6 bytes
5083     z_sth(Z_R1, 12, Z_R0, Rdst);  // 4 bytes
5084 
5085     z_llc(Z_R1,  5, Z_R0, Rsrc);
5086     z_sth(Z_R1, 10, Z_R0, Rdst);
5087 
5088     z_llc(Z_R1,  4, Z_R0, Rsrc);
5089     z_sth(Z_R1,  8, Z_R0, Rdst);
5090 
5091     z_llc(Z_R1,  3, Z_R0, Rsrc);
5092     z_sth(Z_R1,  6, Z_R0, Rdst);
5093 
5094     z_llc(Z_R1,  2, Z_R0, Rsrc);
5095     z_sth(Z_R1,  4, Z_R0, Rdst);
5096 
5097     z_llc(Z_R1,  1, Z_R0, Rsrc);
5098     z_sth(Z_R1,  2, Z_R0, Rdst);
5099 
5100     z_llc(Z_R1,  0, Z_R0, Rsrc);
5101     z_sth(Z_R1,  0, Z_R0, Rdst);
5102     bind(CodeTable);
5103 
5104     z_chi(Rcnt, 8);                        // no fixup for small strings. Rdst, Rsrc were not modified.
5105     z_brl(AllDone);
5106 
5107     z_sgfr(Z_R0, Rcnt);                    // # characters the ptrs have been advanced previously.
5108     z_agr(Rdst, Z_R0);                     // restore ptr, double the element count for Rdst restore.
5109     z_agr(Rdst, Z_R0);
5110     z_agr(Rsrc, Z_R0);                     // restore ptr.
5111   }
5112   bind(AllDone);
5113 
5114   BLOCK_COMMENT("} string_inflate");
5115   return offset() - block_start;
5116 }
5117 
5118 // Inflate byte[] to char[], length known at compile time.
5119 //   Restores: src, dst
5120 //   Kills:    tmp, Z_R0, Z_R1.
5121 // Note:
5122 //   len is signed int. Counts # characters, not bytes.
5123 unsigned int MacroAssembler::string_inflate_const(Register src, Register dst, Register tmp, int len) {
5124   assert_different_registers(Z_R0, Z_R1, src, dst, tmp);
5125 
5126   BLOCK_COMMENT("string_inflate_const {");
5127   int block_start = offset();
5128 
5129   Register   Rix  = tmp;   // loop index
5130   Register   Rsrc = src;   // addr(src array)
5131   Register   Rdst = dst;   // addr(dst array)
5132   Label      ScalarShortcut, AllDone;
5133   int        nprocessed = 0;
5134   int        src_off    = 0;  // compensate for saved (optimized away) ptr advancement.
5135   int        dst_off    = 0;  // compensate for saved (optimized away) ptr advancement.
5136   bool       restore_inputs = false;
5137   bool       workreg_clear  = false;
5138 
5139   if ((len >= 32) && VM_Version::has_VectorFacility()) {
5140     const int  min_vcnt     = 32;          // Minimum #characters required to use vector instructions.
5141                                            // Otherwise just do nothing in vector mode.
5142                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5143     const int  log_min_vcnt = exact_log2(min_vcnt);
5144     const int  iterations   = (len - nprocessed) >> log_min_vcnt;
5145     nprocessed             += iterations << log_min_vcnt;
5146     Label      VectorLoop;
5147 
5148     if (iterations == 1) {
5149       z_vlm(Z_V20, Z_V21, 0+src_off, Rsrc);  // get next 32 characters (single-byte)
5150       z_vuplhb(Z_V22, Z_V20);                // V2 <- (expand) V0(high)
5151       z_vupllb(Z_V23, Z_V20);                // V3 <- (expand) V0(low)
5152       z_vuplhb(Z_V24, Z_V21);                // V4 <- (expand) V1(high)
5153       z_vupllb(Z_V25, Z_V21);                // V5 <- (expand) V1(low)
5154       z_vstm(Z_V22, Z_V25, 0+dst_off, Rdst); // store next 32 bytes
5155 
5156       src_off += min_vcnt;
5157       dst_off += min_vcnt*2;
5158     } else {
5159       restore_inputs = true;
5160 
5161       z_lgfi(Rix, len>>log_min_vcnt);
5162       bind(VectorLoop);
5163         z_vlm(Z_V20, Z_V21, 0, Rsrc);        // get next 32 characters (single-byte)
5164         add2reg(Rsrc, min_vcnt);
5165 
5166         z_vuplhb(Z_V22, Z_V20);              // V2 <- (expand) V0(high)
5167         z_vupllb(Z_V23, Z_V20);              // V3 <- (expand) V0(low)
5168         z_vuplhb(Z_V24, Z_V21);              // V4 <- (expand) V1(high)
5169         z_vupllb(Z_V25, Z_V21);              // V5 <- (expand) V1(low)
5170         z_vstm(Z_V22, Z_V25, 0, Rdst);       // store next 32 bytes
5171         add2reg(Rdst, min_vcnt*2);
5172 
5173         z_brct(Rix, VectorLoop);
5174     }
5175   }
5176 
5177   if (((len-nprocessed) >= 16) && VM_Version::has_VectorFacility()) {
5178     const int  min_vcnt     = 16;          // Minimum #characters required to use vector instructions.
5179                                            // Otherwise just do nothing in vector mode.
5180                                            // Must be multiple of vector register length (16 bytes = 128 bits).
5181     const int  log_min_vcnt = exact_log2(min_vcnt);
5182     const int  iterations   = (len - nprocessed) >> log_min_vcnt;
5183     nprocessed             += iterations << log_min_vcnt;
5184     assert(iterations == 1, "must be!");
5185 
5186     z_vl(Z_V20, 0+src_off, Z_R0, Rsrc);    // get next 16 characters (single-byte)
5187     z_vuplhb(Z_V22, Z_V20);                // V2 <- (expand) V0(high)
5188     z_vupllb(Z_V23, Z_V20);                // V3 <- (expand) V0(low)
5189     z_vstm(Z_V22, Z_V23, 0+dst_off, Rdst); // store next 32 bytes
5190 
5191     src_off += min_vcnt;
5192     dst_off += min_vcnt*2;
5193   }
5194 
5195   if ((len-nprocessed) > 8) {
5196     const int  min_cnt     =  8;           // Minimum #characters required to use unrolled scalar loop.
5197                                            // Otherwise just do nothing in unrolled scalar mode.
5198                                            // Must be multiple of 8.
5199     const int  log_min_cnt = exact_log2(min_cnt);
5200     const int  iterations  = (len - nprocessed) >> log_min_cnt;
5201     nprocessed     += iterations << log_min_cnt;
5202 
5203     //---<  avoid loop overhead/ptr increment for small # iterations  >---
5204     if (iterations <= 2) {
5205       clear_reg(Z_R0);
5206       clear_reg(Z_R1);
5207       workreg_clear = true;
5208 
5209       z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5210       z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5211       z_icm(Z_R0,  5, 2+src_off, Rsrc);
5212       z_icm(Z_R1,  5, 6+src_off, Rsrc);
5213       z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5214 
5215       src_off += min_cnt;
5216       dst_off += min_cnt*2;
5217     }
5218 
5219     if (iterations == 2) {
5220       z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5221       z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5222       z_icm(Z_R0,  5, 2+src_off, Rsrc);
5223       z_icm(Z_R1,  5, 6+src_off, Rsrc);
5224       z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5225 
5226       src_off += min_cnt;
5227       dst_off += min_cnt*2;
5228     }
5229 
5230     if (iterations > 2) {
5231       Label      UnrolledLoop;
5232       restore_inputs  = true;
5233 
5234       clear_reg(Z_R0);
5235       clear_reg(Z_R1);
5236       workreg_clear = true;
5237 
5238       z_lgfi(Rix, iterations);
5239       bind(UnrolledLoop);
5240         z_icmh(Z_R0, 5, 0, Rsrc);
5241         z_icmh(Z_R1, 5, 4, Rsrc);
5242         z_icm(Z_R0,  5, 2, Rsrc);
5243         z_icm(Z_R1,  5, 6, Rsrc);
5244         add2reg(Rsrc, min_cnt);
5245 
5246         z_stmg(Z_R0, Z_R1, 0, Rdst);
5247         add2reg(Rdst, min_cnt*2);
5248 
5249         z_brct(Rix, UnrolledLoop);
5250     }
5251   }
5252 
5253   if ((len-nprocessed) > 0) {
5254     switch (len-nprocessed) {
5255       case 8:
5256         if (!workreg_clear) {
5257           clear_reg(Z_R0);
5258           clear_reg(Z_R1);
5259         }
5260         z_icmh(Z_R0, 5, 0+src_off, Rsrc);
5261         z_icmh(Z_R1, 5, 4+src_off, Rsrc);
5262         z_icm(Z_R0,  5, 2+src_off, Rsrc);
5263         z_icm(Z_R1,  5, 6+src_off, Rsrc);
5264         z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
5265         break;
5266       case 7:
5267         if (!workreg_clear) {
5268           clear_reg(Z_R0);
5269           clear_reg(Z_R1);
5270         }
5271         clear_reg(Rix);
5272         z_icm(Z_R0,  5, 0+src_off, Rsrc);
5273         z_icm(Z_R1,  5, 2+src_off, Rsrc);
5274         z_icm(Rix,   5, 4+src_off, Rsrc);
5275         z_stm(Z_R0,  Z_R1, 0+dst_off, Rdst);
5276         z_llc(Z_R0,  6+src_off, Z_R0, Rsrc);
5277         z_st(Rix,    8+dst_off, Z_R0, Rdst);
5278         z_sth(Z_R0, 12+dst_off, Z_R0, Rdst);
5279         break;
5280       case 6:
5281         if (!workreg_clear) {
5282           clear_reg(Z_R0);
5283           clear_reg(Z_R1);
5284         }
5285         clear_reg(Rix);
5286         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5287         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5288         z_icm(Rix,  5, 4+src_off, Rsrc);
5289         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5290         z_st(Rix,   8+dst_off, Z_R0, Rdst);
5291         break;
5292       case 5:
5293         if (!workreg_clear) {
5294           clear_reg(Z_R0);
5295           clear_reg(Z_R1);
5296         }
5297         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5298         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5299         z_llc(Rix,  4+src_off, Z_R0, Rsrc);
5300         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5301         z_sth(Rix,  8+dst_off, Z_R0, Rdst);
5302         break;
5303       case 4:
5304         if (!workreg_clear) {
5305           clear_reg(Z_R0);
5306           clear_reg(Z_R1);
5307         }
5308         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5309         z_icm(Z_R1, 5, 2+src_off, Rsrc);
5310         z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
5311         break;
5312       case 3:
5313         if (!workreg_clear) {
5314           clear_reg(Z_R0);
5315         }
5316         z_llc(Z_R1, 2+src_off, Z_R0, Rsrc);
5317         z_icm(Z_R0, 5, 0+src_off, Rsrc);
5318         z_sth(Z_R1, 4+dst_off, Z_R0, Rdst);
5319         z_st(Z_R0,  0+dst_off, Rdst);
5320         break;
5321       case 2:
5322         z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
5323         z_llc(Z_R1, 1+src_off, Z_R0, Rsrc);
5324         z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
5325         z_sth(Z_R1, 2+dst_off, Z_R0, Rdst);
5326         break;
5327       case 1:
5328         z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
5329         z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
5330         break;
5331       default:
5332         guarantee(false, "Impossible");
5333         break;
5334     }
5335     src_off   +=  len-nprocessed;
5336     dst_off   += (len-nprocessed)*2;
5337     nprocessed = len;
5338   }
5339 
5340   //---< restore modified input registers  >---
5341   if ((nprocessed > 0) && restore_inputs) {
5342     z_agfi(Rsrc, -(nprocessed-src_off));
5343     if (nprocessed < 1000000000) { // avoid int overflow
5344       z_agfi(Rdst, -(nprocessed*2-dst_off));
5345     } else {
5346       z_agfi(Rdst, -(nprocessed-dst_off));
5347       z_agfi(Rdst, -nprocessed);
5348     }
5349   }
5350 
5351   BLOCK_COMMENT("} string_inflate_const");
5352   return offset() - block_start;
5353 }
5354 
5355 // Kills src.
5356 unsigned int MacroAssembler::has_negatives(Register result, Register src, Register cnt,
5357                                            Register odd_reg, Register even_reg, Register tmp) {
5358   int block_start = offset();
5359   Label Lloop1, Lloop2, Lslow, Lnotfound, Ldone;
5360   const Register addr = src, mask = tmp;
5361 
5362   BLOCK_COMMENT("has_negatives {");
5363 
5364   z_llgfr(Z_R1, cnt);      // Number of bytes to read. (Must be a positive simm32.)
5365   z_llilf(mask, 0x80808080);
5366   z_lhi(result, 1);        // Assume true.
5367   // Last possible addr for fast loop.
5368   z_lay(odd_reg, -16, Z_R1, src);
5369   z_chi(cnt, 16);
5370   z_brl(Lslow);
5371 
5372   // ind1: index, even_reg: index increment, odd_reg: index limit
5373   z_iihf(mask, 0x80808080);
5374   z_lghi(even_reg, 16);
5375 
5376   bind(Lloop1); // 16 bytes per iteration.
5377   z_lg(Z_R0, Address(addr));
5378   z_lg(Z_R1, Address(addr, 8));
5379   z_ogr(Z_R0, Z_R1);
5380   z_ngr(Z_R0, mask);
5381   z_brne(Ldone);           // If found return 1.
5382   z_brxlg(addr, even_reg, Lloop1);
5383 
5384   bind(Lslow);
5385   z_aghi(odd_reg, 16-1);   // Last possible addr for slow loop.
5386   z_lghi(even_reg, 1);
5387   z_cgr(addr, odd_reg);
5388   z_brh(Lnotfound);
5389 
5390   bind(Lloop2); // 1 byte per iteration.
5391   z_cli(Address(addr), 0x80);
5392   z_brnl(Ldone);           // If found return 1.
5393   z_brxlg(addr, even_reg, Lloop2);
5394 
5395   bind(Lnotfound);
5396   z_lhi(result, 0);
5397 
5398   bind(Ldone);
5399 
5400   BLOCK_COMMENT("} has_negatives");
5401 
5402   return offset() - block_start;
5403 }
5404 
5405 #ifdef COMPILER2
5406 // kill: cnt1, cnt2, odd_reg, even_reg; early clobber: result
5407 unsigned int MacroAssembler::string_compare(Register str1, Register str2,
5408                                             Register cnt1, Register cnt2,
5409                                             Register odd_reg, Register even_reg, Register result, int ae) {
5410   int block_start = offset();
5411 
5412   assert_different_registers(str1, cnt1, cnt2, odd_reg, even_reg, result);
5413   assert_different_registers(str2, cnt1, cnt2, odd_reg, even_reg, result);
5414 
5415   // If strings are equal up to min length, return the length difference.
5416   const Register diff = result, // Pre-set result with length difference.
5417                  min  = cnt1,   // min number of bytes
5418                  tmp  = cnt2;
5419 
5420   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
5421   // we interchange str1 and str2 in the UL case and negate the result.
5422   // Like this, str1 is always latin1 encoded, except for the UU case.
5423   // In addition, we need 0 (or sign which is 0) extend when using 64 bit register.
5424   const bool used_as_LU = (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL);
5425 
5426   BLOCK_COMMENT("string_compare {");
5427 
5428   if (used_as_LU) {
5429     z_srl(cnt2, 1);
5430   }
5431 
5432   // See if the lengths are different, and calculate min in cnt1.
5433   // Save diff in case we need it for a tie-breaker.
5434 
5435   // diff = cnt1 - cnt2
5436   if (VM_Version::has_DistinctOpnds()) {
5437     z_srk(diff, cnt1, cnt2);
5438   } else {
5439     z_lr(diff, cnt1);
5440     z_sr(diff, cnt2);
5441   }
5442   if (str1 != str2) {
5443     if (VM_Version::has_LoadStoreConditional()) {
5444       z_locr(min, cnt2, Assembler::bcondHigh);
5445     } else {
5446       Label Lskip;
5447       z_brl(Lskip);    // min ok if cnt1 < cnt2
5448       z_lr(min, cnt2); // min = cnt2
5449       bind(Lskip);
5450     }
5451   }
5452 
5453   if (ae == StrIntrinsicNode::UU) {
5454     z_sra(diff, 1);
5455   }
5456   if (str1 != str2) {
5457     Label Ldone;
5458     if (used_as_LU) {
5459       // Loop which searches the first difference character by character.
5460       Label Lloop;
5461       const Register ind1 = Z_R1,
5462                      ind2 = min;
5463       int stride1 = 1, stride2 = 2; // See comment above.
5464 
5465       // ind1: index, even_reg: index increment, odd_reg: index limit
5466       z_llilf(ind1, (unsigned int)(-stride1));
5467       z_lhi(even_reg, stride1);
5468       add2reg(odd_reg, -stride1, min);
5469       clear_reg(ind2); // kills min
5470 
5471       bind(Lloop);
5472       z_brxh(ind1, even_reg, Ldone);
5473       z_llc(tmp, Address(str1, ind1));
5474       z_llh(Z_R0, Address(str2, ind2));
5475       z_ahi(ind2, stride2);
5476       z_sr(tmp, Z_R0);
5477       z_bre(Lloop);
5478 
5479       z_lr(result, tmp);
5480 
5481     } else {
5482       // Use clcle in fast loop (only for same encoding).
5483       z_lgr(Z_R0, str1);
5484       z_lgr(even_reg, str2);
5485       z_llgfr(Z_R1, min);
5486       z_llgfr(odd_reg, min);
5487 
5488       if (ae == StrIntrinsicNode::LL) {
5489         compare_long_ext(Z_R0, even_reg, 0);
5490       } else {
5491         compare_long_uni(Z_R0, even_reg, 0);
5492       }
5493       z_bre(Ldone);
5494       z_lgr(Z_R1, Z_R0);
5495       if (ae == StrIntrinsicNode::LL) {
5496         z_llc(Z_R0, Address(even_reg));
5497         z_llc(result, Address(Z_R1));
5498       } else {
5499         z_llh(Z_R0, Address(even_reg));
5500         z_llh(result, Address(Z_R1));
5501       }
5502       z_sr(result, Z_R0);
5503     }
5504 
5505     // Otherwise, return the difference between the first mismatched chars.
5506     bind(Ldone);
5507   }
5508 
5509   if (ae == StrIntrinsicNode::UL) {
5510     z_lcr(result, result); // Negate result (see note above).
5511   }
5512 
5513   BLOCK_COMMENT("} string_compare");
5514 
5515   return offset() - block_start;
5516 }
5517 #endif
5518 
5519 unsigned int MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2, Register limit,
5520                                           Register odd_reg, Register even_reg, Register result, bool is_byte) {
5521   int block_start = offset();
5522 
5523   BLOCK_COMMENT("array_equals {");
5524 
5525   assert_different_registers(ary1, limit, odd_reg, even_reg);
5526   assert_different_registers(ary2, limit, odd_reg, even_reg);
5527 
5528   Label Ldone, Ldone_true, Ldone_false, Lclcle, CLC_template;
5529   int base_offset = 0;
5530 
5531   if (ary1 != ary2) {
5532     if (is_array_equ) {
5533       base_offset = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
5534 
5535       // Return true if the same array.
5536       compareU64_and_branch(ary1, ary2, Assembler::bcondEqual, Ldone_true);
5537 
5538       // Return false if one of them is NULL.
5539       compareU64_and_branch(ary1, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
5540       compareU64_and_branch(ary2, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
5541 
5542       // Load the lengths of arrays.
5543       z_llgf(odd_reg, Address(ary1, arrayOopDesc::length_offset_in_bytes()));
5544 
5545       // Return false if the two arrays are not equal length.
5546       z_c(odd_reg, Address(ary2, arrayOopDesc::length_offset_in_bytes()));
5547       z_brne(Ldone_false);
5548 
5549       // string len in bytes (right operand)
5550       if (!is_byte) {
5551         z_chi(odd_reg, 128);
5552         z_sll(odd_reg, 1); // preserves flags
5553         z_brh(Lclcle);
5554       } else {
5555         compareU32_and_branch(odd_reg, (intptr_t)256, Assembler::bcondHigh, Lclcle);
5556       }
5557     } else {
5558       z_llgfr(odd_reg, limit); // Need to zero-extend prior to using the value.
5559       compareU32_and_branch(limit, (intptr_t)256, Assembler::bcondHigh, Lclcle);
5560     }
5561 
5562 
5563     // Use clc instruction for up to 256 bytes.
5564     {
5565       Register str1_reg = ary1,
5566           str2_reg = ary2;
5567       if (is_array_equ) {
5568         str1_reg = Z_R1;
5569         str2_reg = even_reg;
5570         add2reg(str1_reg, base_offset, ary1); // string addr (left operand)
5571         add2reg(str2_reg, base_offset, ary2); // string addr (right operand)
5572       }
5573       z_ahi(odd_reg, -1); // Clc uses decremented limit. Also compare result to 0.
5574       z_brl(Ldone_true);
5575       // Note: We could jump to the template if equal.
5576 
5577       assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
5578       z_exrl(odd_reg, CLC_template);
5579       z_bre(Ldone_true);
5580       // fall through
5581 
5582       bind(Ldone_false);
5583       clear_reg(result);
5584       z_bru(Ldone);
5585 
5586       bind(CLC_template);
5587       z_clc(0, 0, str1_reg, 0, str2_reg);
5588     }
5589 
5590     // Use clcle instruction.
5591     {
5592       bind(Lclcle);
5593       add2reg(even_reg, base_offset, ary2); // string addr (right operand)
5594       add2reg(Z_R0, base_offset, ary1);     // string addr (left operand)
5595 
5596       z_lgr(Z_R1, odd_reg); // string len in bytes (left operand)
5597       if (is_byte) {
5598         compare_long_ext(Z_R0, even_reg, 0);
5599       } else {
5600         compare_long_uni(Z_R0, even_reg, 0);
5601       }
5602       z_lghi(result, 0); // Preserve flags.
5603       z_brne(Ldone);
5604     }
5605   }
5606   // fall through
5607 
5608   bind(Ldone_true);
5609   z_lghi(result, 1); // All characters are equal.
5610   bind(Ldone);
5611 
5612   BLOCK_COMMENT("} array_equals");
5613 
5614   return offset() - block_start;
5615 }
5616 
5617 #ifdef COMPILER2
5618 // kill: haycnt, needlecnt, odd_reg, even_reg; early clobber: result
5619 unsigned int MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
5620                                             Register needle, Register needlecnt, int needlecntval,
5621                                             Register odd_reg, Register even_reg, int ae) {
5622   int block_start = offset();
5623 
5624   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
5625   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5626   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
5627   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
5628   Label L_needle1, L_Found, L_NotFound;
5629 
5630   BLOCK_COMMENT("string_indexof {");
5631 
5632   if (needle == haystack) {
5633     z_lhi(result, 0);
5634   } else {
5635 
5636   // Load first character of needle (R0 used by search_string instructions).
5637   if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); }
5638 
5639   // Compute last haystack addr to use if no match gets found.
5640   if (needlecnt != noreg) { // variable needlecnt
5641     z_ahi(needlecnt, -1); // Remaining characters after first one.
5642     z_sr(haycnt, needlecnt); // Compute index succeeding last element to compare.
5643     if (n_csize == 2) { z_sll(needlecnt, 1); } // In bytes.
5644   } else { // constant needlecnt
5645     assert((needlecntval & 0x7fff) == needlecntval, "must be positive simm16 immediate");
5646     // Compute index succeeding last element to compare.
5647     if (needlecntval != 1) { z_ahi(haycnt, 1 - needlecntval); }
5648   }
5649 
5650   z_llgfr(haycnt, haycnt); // Clear high half.
5651   z_lgr(result, haystack); // Final result will be computed from needle start pointer.
5652   if (h_csize == 2) { z_sll(haycnt, 1); } // Scale to number of bytes.
5653   z_agr(haycnt, haystack); // Point to address succeeding last element (haystack+scale*(haycnt-needlecnt+1)).
5654 
5655   if (h_csize != n_csize) {
5656     assert(ae == StrIntrinsicNode::UL, "Invalid encoding");
5657 
5658     if (needlecnt != noreg || needlecntval != 1) {
5659       if (needlecnt != noreg) {
5660         compare32_and_branch(needlecnt, (intptr_t)0, Assembler::bcondEqual, L_needle1);
5661       }
5662 
5663       // Main Loop: UL version (now we have at least 2 characters).
5664       Label L_OuterLoop, L_InnerLoop, L_Skip;
5665       bind(L_OuterLoop); // Search for 1st 2 characters.
5666       z_lgr(Z_R1, haycnt);
5667       MacroAssembler::search_string_uni(Z_R1, result);
5668       z_brc(Assembler::bcondNotFound, L_NotFound);
5669       z_lgr(result, Z_R1);
5670 
5671       z_lghi(Z_R1, n_csize);
5672       z_lghi(even_reg, h_csize);
5673       bind(L_InnerLoop);
5674       z_llgc(odd_reg, Address(needle, Z_R1));
5675       z_ch(odd_reg, Address(result, even_reg));
5676       z_brne(L_Skip);
5677       if (needlecnt != noreg) { z_cr(Z_R1, needlecnt); } else { z_chi(Z_R1, needlecntval - 1); }
5678       z_brnl(L_Found);
5679       z_aghi(Z_R1, n_csize);
5680       z_aghi(even_reg, h_csize);
5681       z_bru(L_InnerLoop);
5682 
5683       bind(L_Skip);
5684       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5685       z_bru(L_OuterLoop);
5686     }
5687 
5688   } else {
5689     const intptr_t needle_bytes = (n_csize == 2) ? ((needlecntval - 1) << 1) : (needlecntval - 1);
5690     Label L_clcle;
5691 
5692     if (needlecnt != noreg || (needlecntval != 1 && needle_bytes <= 256)) {
5693       if (needlecnt != noreg) {
5694         compare32_and_branch(needlecnt, 256, Assembler::bcondHigh, L_clcle);
5695         z_ahi(needlecnt, -1); // remaining bytes -1 (for CLC)
5696         z_brl(L_needle1);
5697       }
5698 
5699       // Main Loop: clc version (now we have at least 2 characters).
5700       Label L_OuterLoop, CLC_template;
5701       bind(L_OuterLoop); // Search for 1st 2 characters.
5702       z_lgr(Z_R1, haycnt);
5703       if (h_csize == 1) {
5704         MacroAssembler::search_string(Z_R1, result);
5705       } else {
5706         MacroAssembler::search_string_uni(Z_R1, result);
5707       }
5708       z_brc(Assembler::bcondNotFound, L_NotFound);
5709       z_lgr(result, Z_R1);
5710 
5711       if (needlecnt != noreg) {
5712         assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
5713         z_exrl(needlecnt, CLC_template);
5714       } else {
5715         z_clc(h_csize, needle_bytes -1, Z_R1, n_csize, needle);
5716       }
5717       z_bre(L_Found);
5718       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5719       z_bru(L_OuterLoop);
5720 
5721       if (needlecnt != noreg) {
5722         bind(CLC_template);
5723         z_clc(h_csize, 0, Z_R1, n_csize, needle);
5724       }
5725     }
5726 
5727     if (needlecnt != noreg || needle_bytes > 256) {
5728       bind(L_clcle);
5729 
5730       // Main Loop: clcle version (now we have at least 256 bytes).
5731       Label L_OuterLoop, CLC_template;
5732       bind(L_OuterLoop); // Search for 1st 2 characters.
5733       z_lgr(Z_R1, haycnt);
5734       if (h_csize == 1) {
5735         MacroAssembler::search_string(Z_R1, result);
5736       } else {
5737         MacroAssembler::search_string_uni(Z_R1, result);
5738       }
5739       z_brc(Assembler::bcondNotFound, L_NotFound);
5740 
5741       add2reg(Z_R0, n_csize, needle);
5742       add2reg(even_reg, h_csize, Z_R1);
5743       z_lgr(result, Z_R1);
5744       if (needlecnt != noreg) {
5745         z_llgfr(Z_R1, needlecnt); // needle len in bytes (left operand)
5746         z_llgfr(odd_reg, needlecnt);
5747       } else {
5748         load_const_optimized(Z_R1, needle_bytes);
5749         if (Immediate::is_simm16(needle_bytes)) { z_lghi(odd_reg, needle_bytes); } else { z_lgr(odd_reg, Z_R1); }
5750       }
5751       if (h_csize == 1) {
5752         compare_long_ext(Z_R0, even_reg, 0);
5753       } else {
5754         compare_long_uni(Z_R0, even_reg, 0);
5755       }
5756       z_bre(L_Found);
5757 
5758       if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); } // Reload.
5759       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5760       z_bru(L_OuterLoop);
5761     }
5762   }
5763 
5764   if (needlecnt != noreg || needlecntval == 1) {
5765     bind(L_needle1);
5766 
5767     // Single needle character version.
5768     if (h_csize == 1) {
5769       MacroAssembler::search_string(haycnt, result);
5770     } else {
5771       MacroAssembler::search_string_uni(haycnt, result);
5772     }
5773     z_lgr(result, haycnt);
5774     z_brc(Assembler::bcondFound, L_Found);
5775   }
5776 
5777   bind(L_NotFound);
5778   add2reg(result, -1, haystack); // Return -1.
5779 
5780   bind(L_Found); // Return index (or -1 in fallthrough case).
5781   z_sgr(result, haystack);
5782   if (h_csize == 2) { z_srag(result, result, exact_log2(sizeof(jchar))); }
5783   }
5784   BLOCK_COMMENT("} string_indexof");
5785 
5786   return offset() - block_start;
5787 }
5788 
5789 // early clobber: result
5790 unsigned int MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
5791                                                  Register needle, jchar needleChar, Register odd_reg, Register even_reg, bool is_byte) {
5792   int block_start = offset();
5793 
5794   BLOCK_COMMENT("string_indexof_char {");
5795 
5796   if (needle == haystack) {
5797     z_lhi(result, 0);
5798   } else {
5799 
5800   Label Ldone;
5801 
5802   z_llgfr(odd_reg, haycnt);  // Preset loop ctr/searchrange end.
5803   if (needle == noreg) {
5804     load_const_optimized(Z_R0, (unsigned long)needleChar);
5805   } else {
5806     if (is_byte) {
5807       z_llgcr(Z_R0, needle); // First (and only) needle char.
5808     } else {
5809       z_llghr(Z_R0, needle); // First (and only) needle char.
5810     }
5811   }
5812 
5813   if (!is_byte) {
5814     z_agr(odd_reg, odd_reg); // Calc #bytes to be processed with SRSTU.
5815   }
5816 
5817   z_lgr(even_reg, haystack); // haystack addr
5818   z_agr(odd_reg, haystack);  // First char after range end.
5819   z_lghi(result, -1);
5820 
5821   if (is_byte) {
5822     MacroAssembler::search_string(odd_reg, even_reg);
5823   } else {
5824     MacroAssembler::search_string_uni(odd_reg, even_reg);
5825   }
5826   z_brc(Assembler::bcondNotFound, Ldone);
5827   if (is_byte) {
5828     if (VM_Version::has_DistinctOpnds()) {
5829       z_sgrk(result, odd_reg, haystack);
5830     } else {
5831       z_sgr(odd_reg, haystack);
5832       z_lgr(result, odd_reg);
5833     }
5834   } else {
5835     z_slgr(odd_reg, haystack);
5836     z_srlg(result, odd_reg, exact_log2(sizeof(jchar)));
5837   }
5838 
5839   bind(Ldone);
5840   }
5841   BLOCK_COMMENT("} string_indexof_char");
5842 
5843   return offset() - block_start;
5844 }
5845 #endif
5846 
5847 //-------------------------------------------------
5848 //   Constants (scalar and oop) in constant pool
5849 //-------------------------------------------------
5850 
5851 // Add a non-relocated constant to the CP.
5852 int MacroAssembler::store_const_in_toc(AddressLiteral& val) {
5853   long    value  = val.value();
5854   address tocPos = long_constant(value);
5855 
5856   if (tocPos != NULL) {
5857     int tocOffset = (int)(tocPos - code()->consts()->start());
5858     return tocOffset;
5859   }
5860   // Address_constant returned NULL, so no constant entry has been created.
5861   // In that case, we return a "fatal" offset, just in case that subsequently
5862   // generated access code is executed.
5863   return -1;
5864 }
5865 
5866 // Returns the TOC offset where the address is stored.
5867 // Add a relocated constant to the CP.
5868 int MacroAssembler::store_oop_in_toc(AddressLiteral& oop) {
5869   // Use RelocationHolder::none for the constant pool entry.
5870   // Otherwise we will end up with a failing NativeCall::verify(x),
5871   // where x is the address of the constant pool entry.
5872   address tocPos = address_constant((address)oop.value(), RelocationHolder::none);
5873 
5874   if (tocPos != NULL) {
5875     int              tocOffset = (int)(tocPos - code()->consts()->start());
5876     RelocationHolder rsp = oop.rspec();
5877     Relocation      *rel = rsp.reloc();
5878 
5879     // Store toc_offset in relocation, used by call_far_patchable.
5880     if ((relocInfo::relocType)rel->type() == relocInfo::runtime_call_w_cp_type) {
5881       ((runtime_call_w_cp_Relocation *)(rel))->set_constant_pool_offset(tocOffset);
5882     }
5883     // Relocate at the load's pc.
5884     relocate(rsp);
5885 
5886     return tocOffset;
5887   }
5888   // Address_constant returned NULL, so no constant entry has been created
5889   // in that case, we return a "fatal" offset, just in case that subsequently
5890   // generated access code is executed.
5891   return -1;
5892 }
5893 
5894 bool MacroAssembler::load_const_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
5895   int     tocOffset = store_const_in_toc(a);
5896   if (tocOffset == -1) return false;
5897   address tocPos    = tocOffset + code()->consts()->start();
5898   assert((address)code()->consts()->start() != NULL, "Please add CP address");
5899   relocate(a.rspec());
5900   load_long_pcrelative(dst, tocPos);
5901   return true;
5902 }
5903 
5904 bool MacroAssembler::load_oop_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
5905   int     tocOffset = store_oop_in_toc(a);
5906   if (tocOffset == -1) return false;
5907   address tocPos    = tocOffset + code()->consts()->start();
5908   assert((address)code()->consts()->start() != NULL, "Please add CP address");
5909 
5910   load_addr_pcrelative(dst, tocPos);
5911   return true;
5912 }
5913 
5914 // If the instruction sequence at the given pc is a load_const_from_toc
5915 // sequence, return the value currently stored at the referenced position
5916 // in the TOC.
5917 intptr_t MacroAssembler::get_const_from_toc(address pc) {
5918 
5919   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
5920 
5921   long    offset  = get_load_const_from_toc_offset(pc);
5922   address dataLoc = NULL;
5923   if (is_load_const_from_toc_pcrelative(pc)) {
5924     dataLoc = pc + offset;
5925   } else {
5926     CodeBlob* cb = CodeCache::find_blob_unsafe(pc);   // Else we get assertion if nmethod is zombie.
5927     assert(cb && cb->is_nmethod(), "sanity");
5928     nmethod* nm = (nmethod*)cb;
5929     dataLoc = nm->ctable_begin() + offset;
5930   }
5931   return *(intptr_t *)dataLoc;
5932 }
5933 
5934 // If the instruction sequence at the given pc is a load_const_from_toc
5935 // sequence, copy the passed-in new_data value into the referenced
5936 // position in the TOC.
5937 void MacroAssembler::set_const_in_toc(address pc, unsigned long new_data, CodeBlob *cb) {
5938   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
5939 
5940   long    offset = MacroAssembler::get_load_const_from_toc_offset(pc);
5941   address dataLoc = NULL;
5942   if (is_load_const_from_toc_pcrelative(pc)) {
5943     dataLoc = pc+offset;
5944   } else {
5945     nmethod* nm = CodeCache::find_nmethod(pc);
5946     assert((cb == NULL) || (nm == (nmethod*)cb), "instruction address should be in CodeBlob");
5947     dataLoc = nm->ctable_begin() + offset;
5948   }
5949   if (*(unsigned long *)dataLoc != new_data) { // Prevent cache invalidation: update only if necessary.
5950     *(unsigned long *)dataLoc = new_data;
5951   }
5952 }
5953 
5954 // Dynamic TOC. Getter must only be called if "a" is a load_const_from_toc
5955 // site. Verify by calling is_load_const_from_toc() before!!
5956 // Offset is +/- 2**32 -> use long.
5957 long MacroAssembler::get_load_const_from_toc_offset(address a) {
5958   assert(is_load_const_from_toc_pcrelative(a), "expected pc relative load");
5959   //  expected code sequence:
5960   //    z_lgrl(t, simm32);    len = 6
5961   unsigned long inst;
5962   unsigned int  len = get_instruction(a, &inst);
5963   return get_pcrel_offset(inst);
5964 }
5965 
5966 //**********************************************************************************
5967 //  inspection of generated instruction sequences for a particular pattern
5968 //**********************************************************************************
5969 
5970 bool MacroAssembler::is_load_const_from_toc_pcrelative(address a) {
5971 #ifdef ASSERT
5972   unsigned long inst;
5973   unsigned int  len = get_instruction(a+2, &inst);
5974   if ((len == 6) && is_load_pcrelative_long(a) && is_call_pcrelative_long(inst)) {
5975     const int range = 128;
5976     Assembler::dump_code_range(tty, a, range, "instr(a) == z_lgrl && instr(a+2) == z_brasl");
5977     VM_Version::z_SIGSEGV();
5978   }
5979 #endif
5980   // expected code sequence:
5981   //   z_lgrl(t, relAddr32);    len = 6
5982   //TODO: verify accessed data is in CP, if possible.
5983   return is_load_pcrelative_long(a);  // TODO: might be too general. Currently, only lgrl is used.
5984 }
5985 
5986 bool MacroAssembler::is_load_const_from_toc_call(address a) {
5987   return is_load_const_from_toc(a) && is_call_byregister(a + load_const_from_toc_size());
5988 }
5989 
5990 bool MacroAssembler::is_load_const_call(address a) {
5991   return is_load_const(a) && is_call_byregister(a + load_const_size());
5992 }
5993 
5994 //-------------------------------------------------
5995 //   Emitters for some really CICS instructions
5996 //-------------------------------------------------
5997 
5998 void MacroAssembler::move_long_ext(Register dst, Register src, unsigned int pad) {
5999   assert(dst->encoding()%2==0, "must be an even/odd register pair");
6000   assert(src->encoding()%2==0, "must be an even/odd register pair");
6001   assert(pad<256, "must be a padding BYTE");
6002 
6003   Label retry;
6004   bind(retry);
6005   Assembler::z_mvcle(dst, src, pad);
6006   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6007 }
6008 
6009 void MacroAssembler::compare_long_ext(Register left, Register right, unsigned int pad) {
6010   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
6011   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
6012   assert(pad<256, "must be a padding BYTE");
6013 
6014   Label retry;
6015   bind(retry);
6016   Assembler::z_clcle(left, right, pad, Z_R0);
6017   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6018 }
6019 
6020 void MacroAssembler::compare_long_uni(Register left, Register right, unsigned int pad) {
6021   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
6022   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
6023   assert(pad<=0xfff, "must be a padding HALFWORD");
6024   assert(VM_Version::has_ETF2(), "instruction must be available");
6025 
6026   Label retry;
6027   bind(retry);
6028   Assembler::z_clclu(left, right, pad, Z_R0);
6029   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6030 }
6031 
6032 void MacroAssembler::search_string(Register end, Register start) {
6033   assert(end->encoding() != 0, "end address must not be in R0");
6034   assert(start->encoding() != 0, "start address must not be in R0");
6035 
6036   Label retry;
6037   bind(retry);
6038   Assembler::z_srst(end, start);
6039   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6040 }
6041 
6042 void MacroAssembler::search_string_uni(Register end, Register start) {
6043   assert(end->encoding() != 0, "end address must not be in R0");
6044   assert(start->encoding() != 0, "start address must not be in R0");
6045   assert(VM_Version::has_ETF3(), "instruction must be available");
6046 
6047   Label retry;
6048   bind(retry);
6049   Assembler::z_srstu(end, start);
6050   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6051 }
6052 
6053 void MacroAssembler::kmac(Register srcBuff) {
6054   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6055   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6056 
6057   Label retry;
6058   bind(retry);
6059   Assembler::z_kmac(Z_R0, srcBuff);
6060   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6061 }
6062 
6063 void MacroAssembler::kimd(Register srcBuff) {
6064   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6065   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6066 
6067   Label retry;
6068   bind(retry);
6069   Assembler::z_kimd(Z_R0, srcBuff);
6070   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6071 }
6072 
6073 void MacroAssembler::klmd(Register srcBuff) {
6074   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6075   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
6076 
6077   Label retry;
6078   bind(retry);
6079   Assembler::z_klmd(Z_R0, srcBuff);
6080   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6081 }
6082 
6083 void MacroAssembler::km(Register dstBuff, Register srcBuff) {
6084   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
6085   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
6086   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6087   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
6088   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6089 
6090   Label retry;
6091   bind(retry);
6092   Assembler::z_km(dstBuff, srcBuff);
6093   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6094 }
6095 
6096 void MacroAssembler::kmc(Register dstBuff, Register srcBuff) {
6097   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
6098   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
6099   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
6100   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
6101   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6102 
6103   Label retry;
6104   bind(retry);
6105   Assembler::z_kmc(dstBuff, srcBuff);
6106   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6107 }
6108 
6109 void MacroAssembler::cksm(Register crcBuff, Register srcBuff) {
6110   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
6111 
6112   Label retry;
6113   bind(retry);
6114   Assembler::z_cksm(crcBuff, srcBuff);
6115   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6116 }
6117 
6118 void MacroAssembler::translate_oo(Register r1, Register r2, uint m3) {
6119   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6120   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6121 
6122   Label retry;
6123   bind(retry);
6124   Assembler::z_troo(r1, r2, m3);
6125   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6126 }
6127 
6128 void MacroAssembler::translate_ot(Register r1, Register r2, uint m3) {
6129   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6130   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6131 
6132   Label retry;
6133   bind(retry);
6134   Assembler::z_trot(r1, r2, m3);
6135   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6136 }
6137 
6138 void MacroAssembler::translate_to(Register r1, Register r2, uint m3) {
6139   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6140   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6141 
6142   Label retry;
6143   bind(retry);
6144   Assembler::z_trto(r1, r2, m3);
6145   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6146 }
6147 
6148 void MacroAssembler::translate_tt(Register r1, Register r2, uint m3) {
6149   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
6150   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
6151 
6152   Label retry;
6153   bind(retry);
6154   Assembler::z_trtt(r1, r2, m3);
6155   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
6156 }
6157 
6158 //---------------------------------------
6159 // Helpers for Intrinsic Emitters
6160 //---------------------------------------
6161 
6162 /**
6163  * uint32_t crc;
6164  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
6165  */
6166 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
6167   assert_different_registers(crc, table, tmp);
6168   assert_different_registers(val, table);
6169   if (crc == val) {      // Must rotate first to use the unmodified value.
6170     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
6171     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
6172   } else {
6173     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
6174     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
6175   }
6176   z_x(crc, Address(table, tmp, 0));
6177 }
6178 
6179 /**
6180  * uint32_t crc;
6181  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
6182  */
6183 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
6184   fold_byte_crc32(crc, crc, table, tmp);
6185 }
6186 
6187 /**
6188  * Emits code to update CRC-32 with a byte value according to constants in table.
6189  *
6190  * @param [in,out]crc Register containing the crc.
6191  * @param [in]val     Register containing the byte to fold into the CRC.
6192  * @param [in]table   Register containing the table of crc constants.
6193  *
6194  * uint32_t crc;
6195  * val = crc_table[(val ^ crc) & 0xFF];
6196  * crc = val ^ (crc >> 8);
6197  */
6198 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
6199   z_xr(val, crc);
6200   fold_byte_crc32(crc, val, table, val);
6201 }
6202 
6203 
6204 /**
6205  * @param crc   register containing existing CRC (32-bit)
6206  * @param buf   register pointing to input byte buffer (byte*)
6207  * @param len   register containing number of bytes
6208  * @param table register pointing to CRC table
6209  */
6210 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, Register data) {
6211   assert_different_registers(crc, buf, len, table, data);
6212 
6213   Label L_mainLoop, L_done;
6214   const int mainLoop_stepping = 1;
6215 
6216   // Process all bytes in a single-byte loop.
6217   z_ltr(len, len);
6218   z_brnh(L_done);
6219 
6220   bind(L_mainLoop);
6221     z_llgc(data, Address(buf, (intptr_t)0));// Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
6222     add2reg(buf, mainLoop_stepping);        // Advance buffer position.
6223     update_byte_crc32(crc, data, table);
6224     z_brct(len, L_mainLoop);                // Iterate.
6225 
6226   bind(L_done);
6227 }
6228 
6229 /**
6230  * Emits code to update CRC-32 with a 4-byte value according to constants in table.
6231  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c.
6232  *
6233  */
6234 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
6235                                         Register t0,  Register t1,  Register t2,    Register t3) {
6236   // This is what we implement (the DOBIG4 part):
6237   //
6238   // #define DOBIG4 c ^= *++buf4; \
6239   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
6240   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
6241   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
6242   // Pre-calculate (constant) column offsets, use columns 4..7 for big-endian.
6243   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
6244   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
6245   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
6246   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
6247 
6248   // XOR crc with next four bytes of buffer.
6249   lgr_if_needed(t0, crc);
6250   z_x(t0, Address(buf, bufDisp));
6251   if (bufInc != 0) {
6252     add2reg(buf, bufInc);
6253   }
6254 
6255   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
6256   rotate_then_insert(t3, t0, 56-2, 63-2, 2,    true);  // ((c >>  0) & 0xff) << 2
6257   rotate_then_insert(t2, t0, 56-2, 63-2, 2-8,  true);  // ((c >>  8) & 0xff) << 2
6258   rotate_then_insert(t1, t0, 56-2, 63-2, 2-16, true);  // ((c >> 16) & 0xff) << 2
6259   rotate_then_insert(t0, t0, 56-2, 63-2, 2-24, true);  // ((c >> 24) & 0xff) << 2
6260 
6261   // XOR indexed table values to calculate updated crc.
6262   z_ly(t2, Address(table, t2, (intptr_t)ix1));
6263   z_ly(t0, Address(table, t0, (intptr_t)ix3));
6264   z_xy(t2, Address(table, t3, (intptr_t)ix0));
6265   z_xy(t0, Address(table, t1, (intptr_t)ix2));
6266   z_xr(t0, t2);           // Now t0 contains the updated CRC value.
6267   lgr_if_needed(crc, t0);
6268 }
6269 
6270 /**
6271  * @param crc   register containing existing CRC (32-bit)
6272  * @param buf   register pointing to input byte buffer (byte*)
6273  * @param len   register containing number of bytes
6274  * @param table register pointing to CRC table
6275  *
6276  * uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
6277  */
6278 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
6279                                         Register t0,  Register t1,  Register t2,  Register t3,
6280                                         bool invertCRC) {
6281   assert_different_registers(crc, buf, len, table);
6282 
6283   Label L_mainLoop, L_tail;
6284   Register  data = t0;
6285   Register  ctr  = Z_R0;
6286   const int mainLoop_stepping = 4;
6287   const int log_stepping      = exact_log2(mainLoop_stepping);
6288 
6289   // Don't test for len <= 0 here. This pathological case should not occur anyway.
6290   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
6291   // The situation itself is detected and handled correctly by the conditional branches
6292   // following aghi(len, -stepping) and aghi(len, +stepping).
6293 
6294   if (invertCRC) {
6295     not_(crc, noreg, false);           // 1s complement of crc
6296   }
6297 
6298   // Check for short (<4 bytes) buffer.
6299   z_srag(ctr, len, log_stepping);
6300   z_brnh(L_tail);
6301 
6302   z_lrvr(crc, crc);          // Revert byte order because we are dealing with big-endian data.
6303   rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
6304 
6305   BIND(L_mainLoop);
6306     update_1word_crc32(crc, buf, table, 0, mainLoop_stepping, crc, t1, t2, t3);
6307     z_brct(ctr, L_mainLoop); // Iterate.
6308 
6309   z_lrvr(crc, crc);          // Revert byte order back to original.
6310 
6311   // Process last few (<8) bytes of buffer.
6312   BIND(L_tail);
6313   update_byteLoop_crc32(crc, buf, len, table, data);
6314 
6315   if (invertCRC) {
6316     not_(crc, noreg, false);           // 1s complement of crc
6317   }
6318 }
6319 
6320 /**
6321  * @param crc   register containing existing CRC (32-bit)
6322  * @param buf   register pointing to input byte buffer (byte*)
6323  * @param len   register containing number of bytes
6324  * @param table register pointing to CRC table
6325  */
6326 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
6327                                         Register t0,  Register t1,  Register t2,  Register t3,
6328                                         bool invertCRC) {
6329   assert_different_registers(crc, buf, len, table);
6330   Register data = t0;
6331 
6332   if (invertCRC) {
6333     not_(crc, noreg, false);           // 1s complement of crc
6334   }
6335 
6336   update_byteLoop_crc32(crc, buf, len, table, data);
6337 
6338   if (invertCRC) {
6339     not_(crc, noreg, false);           // 1s complement of crc
6340   }
6341 }
6342 
6343 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
6344                                              bool invertCRC) {
6345   assert_different_registers(crc, buf, len, table, tmp);
6346 
6347   if (invertCRC) {
6348     not_(crc, noreg, false);           // 1s complement of crc
6349   }
6350 
6351   z_llgc(tmp, Address(buf, (intptr_t)0));  // Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
6352   update_byte_crc32(crc, tmp, table);
6353 
6354   if (invertCRC) {
6355     not_(crc, noreg, false);           // 1s complement of crc
6356   }
6357 }
6358 
6359 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table,
6360                                                 bool invertCRC) {
6361   assert_different_registers(crc, val, table);
6362 
6363   if (invertCRC) {
6364     not_(crc, noreg, false);           // 1s complement of crc
6365   }
6366 
6367   update_byte_crc32(crc, val, table);
6368 
6369   if (invertCRC) {
6370     not_(crc, noreg, false);           // 1s complement of crc
6371   }
6372 }
6373 
6374 //
6375 // Code for BigInteger::multiplyToLen() intrinsic.
6376 //
6377 
6378 // dest_lo += src1 + src2
6379 // dest_hi += carry1 + carry2
6380 // Z_R7 is destroyed !
6381 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo,
6382                                      Register src1, Register src2) {
6383   clear_reg(Z_R7);
6384   z_algr(dest_lo, src1);
6385   z_alcgr(dest_hi, Z_R7);
6386   z_algr(dest_lo, src2);
6387   z_alcgr(dest_hi, Z_R7);
6388 }
6389 
6390 // Multiply 64 bit by 64 bit first loop.
6391 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
6392                                            Register x_xstart,
6393                                            Register y, Register y_idx,
6394                                            Register z,
6395                                            Register carry,
6396                                            Register product,
6397                                            Register idx, Register kdx) {
6398   // jlong carry, x[], y[], z[];
6399   // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
6400   //   huge_128 product = y[idx] * x[xstart] + carry;
6401   //   z[kdx] = (jlong)product;
6402   //   carry  = (jlong)(product >>> 64);
6403   // }
6404   // z[xstart] = carry;
6405 
6406   Label L_first_loop, L_first_loop_exit;
6407   Label L_one_x, L_one_y, L_multiply;
6408 
6409   z_aghi(xstart, -1);
6410   z_brl(L_one_x);   // Special case: length of x is 1.
6411 
6412   // Load next two integers of x.
6413   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6414   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
6415 
6416 
6417   bind(L_first_loop);
6418 
6419   z_aghi(idx, -1);
6420   z_brl(L_first_loop_exit);
6421   z_aghi(idx, -1);
6422   z_brl(L_one_y);
6423 
6424   // Load next two integers of y.
6425   z_sllg(Z_R1_scratch, idx, LogBytesPerInt);
6426   mem2reg_opt(y_idx, Address(y, Z_R1_scratch, 0));
6427 
6428 
6429   bind(L_multiply);
6430 
6431   Register multiplicand = product->successor();
6432   Register product_low = multiplicand;
6433 
6434   lgr_if_needed(multiplicand, x_xstart);
6435   z_mlgr(product, y_idx);     // multiplicand * y_idx -> product::multiplicand
6436   clear_reg(Z_R7);
6437   z_algr(product_low, carry); // Add carry to result.
6438   z_alcgr(product, Z_R7);     // Add carry of the last addition.
6439   add2reg(kdx, -2);
6440 
6441   // Store result.
6442   z_sllg(Z_R7, kdx, LogBytesPerInt);
6443   reg2mem_opt(product_low, Address(z, Z_R7, 0));
6444   lgr_if_needed(carry, product);
6445   z_bru(L_first_loop);
6446 
6447 
6448   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
6449 
6450   clear_reg(y_idx);
6451   mem2reg_opt(y_idx, Address(y, (intptr_t) 0), false);
6452   z_bru(L_multiply);
6453 
6454 
6455   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
6456 
6457   clear_reg(x_xstart);
6458   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
6459   z_bru(L_first_loop);
6460 
6461   bind(L_first_loop_exit);
6462 }
6463 
6464 // Multiply 64 bit by 64 bit and add 128 bit.
6465 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
6466                                             Register z,
6467                                             Register yz_idx, Register idx,
6468                                             Register carry, Register product,
6469                                             int offset) {
6470   // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
6471   // z[kdx] = (jlong)product;
6472 
6473   Register multiplicand = product->successor();
6474   Register product_low = multiplicand;
6475 
6476   z_sllg(Z_R7, idx, LogBytesPerInt);
6477   mem2reg_opt(yz_idx, Address(y, Z_R7, offset));
6478 
6479   lgr_if_needed(multiplicand, x_xstart);
6480   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
6481   mem2reg_opt(yz_idx, Address(z, Z_R7, offset));
6482 
6483   add2_with_carry(product, product_low, carry, yz_idx);
6484 
6485   z_sllg(Z_R7, idx, LogBytesPerInt);
6486   reg2mem_opt(product_low, Address(z, Z_R7, offset));
6487 
6488 }
6489 
6490 // Multiply 128 bit by 128 bit. Unrolled inner loop.
6491 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
6492                                              Register y, Register z,
6493                                              Register yz_idx, Register idx,
6494                                              Register jdx,
6495                                              Register carry, Register product,
6496                                              Register carry2) {
6497   // jlong carry, x[], y[], z[];
6498   // int kdx = ystart+1;
6499   // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
6500   //   huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
6501   //   z[kdx+idx+1] = (jlong)product;
6502   //   jlong carry2 = (jlong)(product >>> 64);
6503   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
6504   //   z[kdx+idx] = (jlong)product;
6505   //   carry = (jlong)(product >>> 64);
6506   // }
6507   // idx += 2;
6508   // if (idx > 0) {
6509   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
6510   //   z[kdx+idx] = (jlong)product;
6511   //   carry = (jlong)(product >>> 64);
6512   // }
6513 
6514   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
6515 
6516   // scale the index
6517   lgr_if_needed(jdx, idx);
6518   and_imm(jdx, 0xfffffffffffffffcL);
6519   rshift(jdx, 2);
6520 
6521 
6522   bind(L_third_loop);
6523 
6524   z_aghi(jdx, -1);
6525   z_brl(L_third_loop_exit);
6526   add2reg(idx, -4);
6527 
6528   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
6529   lgr_if_needed(carry2, product);
6530 
6531   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
6532   lgr_if_needed(carry, product);
6533   z_bru(L_third_loop);
6534 
6535 
6536   bind(L_third_loop_exit);  // Handle any left-over operand parts.
6537 
6538   and_imm(idx, 0x3);
6539   z_brz(L_post_third_loop_done);
6540 
6541   Label L_check_1;
6542 
6543   z_aghi(idx, -2);
6544   z_brl(L_check_1);
6545 
6546   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
6547   lgr_if_needed(carry, product);
6548 
6549 
6550   bind(L_check_1);
6551 
6552   add2reg(idx, 0x2);
6553   and_imm(idx, 0x1);
6554   z_aghi(idx, -1);
6555   z_brl(L_post_third_loop_done);
6556 
6557   Register   multiplicand = product->successor();
6558   Register   product_low = multiplicand;
6559 
6560   z_sllg(Z_R7, idx, LogBytesPerInt);
6561   clear_reg(yz_idx);
6562   mem2reg_opt(yz_idx, Address(y, Z_R7, 0), false);
6563   lgr_if_needed(multiplicand, x_xstart);
6564   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
6565   clear_reg(yz_idx);
6566   mem2reg_opt(yz_idx, Address(z, Z_R7, 0), false);
6567 
6568   add2_with_carry(product, product_low, yz_idx, carry);
6569 
6570   z_sllg(Z_R7, idx, LogBytesPerInt);
6571   reg2mem_opt(product_low, Address(z, Z_R7, 0), false);
6572   rshift(product_low, 32);
6573 
6574   lshift(product, 32);
6575   z_ogr(product_low, product);
6576   lgr_if_needed(carry, product_low);
6577 
6578   bind(L_post_third_loop_done);
6579 }
6580 
6581 void MacroAssembler::multiply_to_len(Register x, Register xlen,
6582                                      Register y, Register ylen,
6583                                      Register z,
6584                                      Register tmp1, Register tmp2,
6585                                      Register tmp3, Register tmp4,
6586                                      Register tmp5) {
6587   ShortBranchVerifier sbv(this);
6588 
6589   assert_different_registers(x, xlen, y, ylen, z,
6590                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R1_scratch, Z_R7);
6591   assert_different_registers(x, xlen, y, ylen, z,
6592                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R8);
6593 
6594   z_stmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
6595 
6596   // In openJdk, we store the argument as 32-bit value to slot.
6597   Address zlen(Z_SP, _z_abi(remaining_cargs));  // Int in long on big endian.
6598 
6599   const Register idx = tmp1;
6600   const Register kdx = tmp2;
6601   const Register xstart = tmp3;
6602 
6603   const Register y_idx = tmp4;
6604   const Register carry = tmp5;
6605   const Register product  = Z_R0_scratch;
6606   const Register x_xstart = Z_R8;
6607 
6608   // First Loop.
6609   //
6610   //   final static long LONG_MASK = 0xffffffffL;
6611   //   int xstart = xlen - 1;
6612   //   int ystart = ylen - 1;
6613   //   long carry = 0;
6614   //   for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
6615   //     long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
6616   //     z[kdx] = (int)product;
6617   //     carry = product >>> 32;
6618   //   }
6619   //   z[xstart] = (int)carry;
6620   //
6621 
6622   lgr_if_needed(idx, ylen);  // idx = ylen
6623   z_llgf(kdx, zlen);         // C2 does not respect int to long conversion for stub calls, thus load zero-extended.
6624   clear_reg(carry);          // carry = 0
6625 
6626   Label L_done;
6627 
6628   lgr_if_needed(xstart, xlen);
6629   z_aghi(xstart, -1);
6630   z_brl(L_done);
6631 
6632   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
6633 
6634   NearLabel L_second_loop;
6635   compare64_and_branch(kdx, RegisterOrConstant((intptr_t) 0), bcondEqual, L_second_loop);
6636 
6637   NearLabel L_carry;
6638   z_aghi(kdx, -1);
6639   z_brz(L_carry);
6640 
6641   // Store lower 32 bits of carry.
6642   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
6643   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6644   rshift(carry, 32);
6645   z_aghi(kdx, -1);
6646 
6647 
6648   bind(L_carry);
6649 
6650   // Store upper 32 bits of carry.
6651   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
6652   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6653 
6654   // Second and third (nested) loops.
6655   //
6656   // for (int i = xstart-1; i >= 0; i--) { // Second loop
6657   //   carry = 0;
6658   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
6659   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
6660   //                    (z[k] & LONG_MASK) + carry;
6661   //     z[k] = (int)product;
6662   //     carry = product >>> 32;
6663   //   }
6664   //   z[i] = (int)carry;
6665   // }
6666   //
6667   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
6668 
6669   const Register jdx = tmp1;
6670 
6671   bind(L_second_loop);
6672 
6673   clear_reg(carry);           // carry = 0;
6674   lgr_if_needed(jdx, ylen);   // j = ystart+1
6675 
6676   z_aghi(xstart, -1);         // i = xstart-1;
6677   z_brl(L_done);
6678 
6679   // Use free slots in the current stackframe instead of push/pop.
6680   Address zsave(Z_SP, _z_abi(carg_1));
6681   reg2mem_opt(z, zsave);
6682 
6683 
6684   Label L_last_x;
6685 
6686   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6687   load_address(z, Address(z, Z_R1_scratch, 4)); // z = z + k - j
6688   z_aghi(xstart, -1);                           // i = xstart-1;
6689   z_brl(L_last_x);
6690 
6691   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6692   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
6693 
6694 
6695   Label L_third_loop_prologue;
6696 
6697   bind(L_third_loop_prologue);
6698 
6699   Address xsave(Z_SP, _z_abi(carg_2));
6700   Address xlensave(Z_SP, _z_abi(carg_3));
6701   Address ylensave(Z_SP, _z_abi(carg_4));
6702 
6703   reg2mem_opt(x, xsave);
6704   reg2mem_opt(xstart, xlensave);
6705   reg2mem_opt(ylen, ylensave);
6706 
6707 
6708   multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
6709 
6710   mem2reg_opt(z, zsave);
6711   mem2reg_opt(x, xsave);
6712   mem2reg_opt(xlen, xlensave);   // This is the decrement of the loop counter!
6713   mem2reg_opt(ylen, ylensave);
6714 
6715   add2reg(tmp3, 1, xlen);
6716   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
6717   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6718   z_aghi(tmp3, -1);
6719   z_brl(L_done);
6720 
6721   rshift(carry, 32);
6722   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
6723   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6724   z_bru(L_second_loop);
6725 
6726   // Next infrequent code is moved outside loops.
6727   bind(L_last_x);
6728 
6729   clear_reg(x_xstart);
6730   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
6731   z_bru(L_third_loop_prologue);
6732 
6733   bind(L_done);
6734 
6735   z_lmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
6736 }
6737 
6738 #ifndef PRODUCT
6739 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false).
6740 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
6741   Label ok;
6742   if (check_equal) {
6743     z_bre(ok);
6744   } else {
6745     z_brne(ok);
6746   }
6747   stop(msg, id);
6748   bind(ok);
6749 }
6750 
6751 // Assert if CC indicates "low".
6752 void MacroAssembler::asm_assert_low(const char *msg, int id) {
6753   Label ok;
6754   z_brnl(ok);
6755   stop(msg, id);
6756   bind(ok);
6757 }
6758 
6759 // Assert if CC indicates "high".
6760 void MacroAssembler::asm_assert_high(const char *msg, int id) {
6761   Label ok;
6762   z_brnh(ok);
6763   stop(msg, id);
6764   bind(ok);
6765 }
6766 
6767 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false)
6768 // generate non-relocatable code.
6769 void MacroAssembler::asm_assert_static(bool check_equal, const char *msg, int id) {
6770   Label ok;
6771   if (check_equal) { z_bre(ok); }
6772   else             { z_brne(ok); }
6773   stop_static(msg, id);
6774   bind(ok);
6775 }
6776 
6777 void MacroAssembler::asm_assert_mems_zero(bool check_equal, bool allow_relocation, int size, int64_t mem_offset,
6778                                           Register mem_base, const char* msg, int id) {
6779   switch (size) {
6780     case 4:
6781       load_and_test_int(Z_R0, Address(mem_base, mem_offset));
6782       break;
6783     case 8:
6784       load_and_test_long(Z_R0,  Address(mem_base, mem_offset));
6785       break;
6786     default:
6787       ShouldNotReachHere();
6788   }
6789   if (allow_relocation) { asm_assert(check_equal, msg, id); }
6790   else                  { asm_assert_static(check_equal, msg, id); }
6791 }
6792 
6793 // Check the condition
6794 //   expected_size == FP - SP
6795 // after transformation:
6796 //   expected_size - FP + SP == 0
6797 // Destroys Register expected_size if no tmp register is passed.
6798 void MacroAssembler::asm_assert_frame_size(Register expected_size, Register tmp, const char* msg, int id) {
6799   if (tmp == noreg) {
6800     tmp = expected_size;
6801   } else {
6802     if (tmp != expected_size) {
6803       z_lgr(tmp, expected_size);
6804     }
6805     z_algr(tmp, Z_SP);
6806     z_slg(tmp, 0, Z_R0, Z_SP);
6807     asm_assert_eq(msg, id);
6808   }
6809 }
6810 #endif // !PRODUCT
6811 
6812 void MacroAssembler::verify_thread() {
6813   if (VerifyThread) {
6814     unimplemented("", 117);
6815   }
6816 }
6817 
6818 // Plausibility check for oops.
6819 void MacroAssembler::verify_oop(Register oop, const char* msg) {
6820   if (!VerifyOops) return;
6821 
6822   BLOCK_COMMENT("verify_oop {");
6823   Register tmp = Z_R0;
6824   unsigned int nbytes_save = 5*BytesPerWord;
6825   address entry = StubRoutines::verify_oop_subroutine_entry_address();
6826 
6827   save_return_pc();
6828   push_frame_abi160(nbytes_save);
6829   z_stmg(Z_R1, Z_R5, frame::z_abi_160_size, Z_SP);
6830 
6831   z_lgr(Z_ARG2, oop);
6832   load_const(Z_ARG1, (address) msg);
6833   load_const(Z_R1, entry);
6834   z_lg(Z_R1, 0, Z_R1);
6835   call_c(Z_R1);
6836 
6837   z_lmg(Z_R1, Z_R5, frame::z_abi_160_size, Z_SP);
6838   pop_frame();
6839   restore_return_pc();
6840 
6841   BLOCK_COMMENT("} verify_oop ");
6842 }
6843 
6844 const char* MacroAssembler::stop_types[] = {
6845   "stop",
6846   "untested",
6847   "unimplemented",
6848   "shouldnotreachhere"
6849 };
6850 
6851 static void stop_on_request(const char* tp, const char* msg) {
6852   tty->print("Z assembly code requires stop: (%s) %s\n", tp, msg);
6853   guarantee(false, "Z assembly code requires stop: %s", msg);
6854 }
6855 
6856 void MacroAssembler::stop(int type, const char* msg, int id) {
6857   BLOCK_COMMENT(err_msg("stop: %s {", msg));
6858 
6859   // Setup arguments.
6860   load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
6861   load_const(Z_ARG2, (void*) msg);
6862   get_PC(Z_R14);     // Following code pushes a frame without entering a new function. Use current pc as return address.
6863   save_return_pc();  // Saves return pc Z_R14.
6864   push_frame_abi160(0);
6865   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6866   // The plain disassembler does not recognize illtrap. It instead displays
6867   // a 32-bit value. Issueing two illtraps assures the disassembler finds
6868   // the proper beginning of the next instruction.
6869   z_illtrap(); // Illegal instruction.
6870   z_illtrap(); // Illegal instruction.
6871 
6872   BLOCK_COMMENT(" } stop");
6873 }
6874 
6875 // Special version of stop() for code size reduction.
6876 // Reuses the previously generated call sequence, if any.
6877 // Generates the call sequence on its own, if necessary.
6878 // Note: This code will work only in non-relocatable code!
6879 //       The relative address of the data elements (arg1, arg2) must not change.
6880 //       The reentry point must not move relative to it's users. This prerequisite
6881 //       should be given for "hand-written" code, if all chain calls are in the same code blob.
6882 //       Generated code must not undergo any transformation, e.g. ShortenBranches, to be safe.
6883 address MacroAssembler::stop_chain(address reentry, int type, const char* msg, int id, bool allow_relocation) {
6884   BLOCK_COMMENT(err_msg("stop_chain(%s,%s): %s {", reentry==NULL?"init":"cont", allow_relocation?"reloc ":"static", msg));
6885 
6886   // Setup arguments.
6887   if (allow_relocation) {
6888     // Relocatable version (for comparison purposes). Remove after some time.
6889     load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
6890     load_const(Z_ARG2, (void*) msg);
6891   } else {
6892     load_absolute_address(Z_ARG1, (address)stop_types[type%stop_end]);
6893     load_absolute_address(Z_ARG2, (address)msg);
6894   }
6895   if ((reentry != NULL) && RelAddr::is_in_range_of_RelAddr16(reentry, pc())) {
6896     BLOCK_COMMENT("branch to reentry point:");
6897     z_brc(bcondAlways, reentry);
6898   } else {
6899     BLOCK_COMMENT("reentry point:");
6900     reentry = pc();      // Re-entry point for subsequent stop calls.
6901     save_return_pc();    // Saves return pc Z_R14.
6902     push_frame_abi160(0);
6903     if (allow_relocation) {
6904       reentry = NULL;    // Prevent reentry if code relocation is allowed.
6905       call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6906     } else {
6907       call_VM_leaf_static(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6908     }
6909     z_illtrap(); // Illegal instruction as emergency stop, should the above call return.
6910   }
6911   BLOCK_COMMENT(" } stop_chain");
6912 
6913   return reentry;
6914 }
6915 
6916 // Special version of stop() for code size reduction.
6917 // Assumes constant relative addresses for data and runtime call.
6918 void MacroAssembler::stop_static(int type, const char* msg, int id) {
6919   stop_chain(NULL, type, msg, id, false);
6920 }
6921 
6922 void MacroAssembler::stop_subroutine() {
6923   unimplemented("stop_subroutine", 710);
6924 }
6925 
6926 // Prints msg to stdout from within generated code..
6927 void MacroAssembler::warn(const char* msg) {
6928   RegisterSaver::save_live_registers(this, RegisterSaver::all_registers, Z_R14);
6929   load_absolute_address(Z_R1, (address) warning);
6930   load_absolute_address(Z_ARG1, (address) msg);
6931   (void) call(Z_R1);
6932   RegisterSaver::restore_live_registers(this, RegisterSaver::all_registers);
6933 }
6934 
6935 #ifndef PRODUCT
6936 
6937 // Write pattern 0x0101010101010101 in region [low-before, high+after].
6938 void MacroAssembler::zap_from_to(Register low, Register high, Register val, Register addr, int before, int after) {
6939   if (!ZapEmptyStackFields) return;
6940   BLOCK_COMMENT("zap memory region {");
6941   load_const_optimized(val, 0x0101010101010101);
6942   int size = before + after;
6943   if (low == high && size < 5 && size > 0) {
6944     int offset = -before*BytesPerWord;
6945     for (int i = 0; i < size; ++i) {
6946       z_stg(val, Address(low, offset));
6947       offset +=(1*BytesPerWord);
6948     }
6949   } else {
6950     add2reg(addr, -before*BytesPerWord, low);
6951     if (after) {
6952 #ifdef ASSERT
6953       jlong check = after * BytesPerWord;
6954       assert(Immediate::is_simm32(check) && Immediate::is_simm32(-check), "value not encodable !");
6955 #endif
6956       add2reg(high, after * BytesPerWord);
6957     }
6958     NearLabel loop;
6959     bind(loop);
6960     z_stg(val, Address(addr));
6961     add2reg(addr, 8);
6962     compare64_and_branch(addr, high, bcondNotHigh, loop);
6963     if (after) {
6964       add2reg(high, -after * BytesPerWord);
6965     }
6966   }
6967   BLOCK_COMMENT("} zap memory region");
6968 }
6969 #endif // !PRODUCT
6970 
6971 SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value, Register _rscratch) {
6972   _masm = masm;
6973   _masm->load_absolute_address(_rscratch, (address)flag_addr);
6974   _masm->load_and_test_int(_rscratch, Address(_rscratch));
6975   if (value) {
6976     _masm->z_brne(_label); // Skip if true, i.e. != 0.
6977   } else {
6978     _masm->z_bre(_label);  // Skip if false, i.e. == 0.
6979   }
6980 }
6981 
6982 SkipIfEqual::~SkipIfEqual() {
6983   _masm->bind(_label);
6984 }