1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class PhaseIdealLoop;
  41 class VectorSet;
  42 class Invariance;
  43 struct small_cache;
  44 
  45 //
  46 //                  I D E A L I Z E D   L O O P S
  47 //
  48 // Idealized loops are the set of loops I perform more interesting
  49 // transformations on, beyond simple hoisting.
  50 
  51 //------------------------------LoopNode---------------------------------------
  52 // Simple loop header.  Fall in path on left, loop-back path on right.
  53 class LoopNode : public RegionNode {
  54   // Size is bigger to hold the flags.  However, the flags do not change
  55   // the semantics so it does not appear in the hash & cmp functions.
  56   virtual uint size_of() const { return sizeof(*this); }
  57 protected:
  58   short _loop_flags;
  59   // Names for flag bitfields
  60   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  61          MainHasNoPreLoop=4,
  62          HasExactTripCount=8,
  63          InnerLoop=16,
  64          PartialPeelLoop=32,
  65          PartialPeelFailed=64,
  66          HasReductions=128,
  67          PassedSlpAnalysis=256 };
  68   char _unswitch_count;
  69   enum { _unswitch_max=3 };
  70 
  71 public:
  72   // Names for edge indices
  73   enum { Self=0, EntryControl, LoopBackControl };
  74 
  75   int is_inner_loop() const { return _loop_flags & InnerLoop; }
  76   void set_inner_loop() { _loop_flags |= InnerLoop; }
  77 
  78   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  79   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  80   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  81   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
  82   void mark_has_reductions() { _loop_flags |= HasReductions; }
  83   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
  84 
  85   int unswitch_max() { return _unswitch_max; }
  86   int unswitch_count() { return _unswitch_count; }
  87   void set_unswitch_count(int val) {
  88     assert (val <= unswitch_max(), "too many unswitches");
  89     _unswitch_count = val;
  90   }
  91 
  92   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
  93     init_class_id(Class_Loop);
  94     init_req(EntryControl, entry);
  95     init_req(LoopBackControl, backedge);
  96   }
  97 
  98   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  99   virtual int Opcode() const;
 100   bool can_be_counted_loop(PhaseTransform* phase) const {
 101     return req() == 3 && in(0) != NULL &&
 102       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 103       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 104   }
 105   bool is_valid_counted_loop() const;
 106 #ifndef PRODUCT
 107   virtual void dump_spec(outputStream *st) const;
 108 #endif
 109 };
 110 
 111 //------------------------------Counted Loops----------------------------------
 112 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 113 // path (and maybe some other exit paths).  The trip-counter exit is always
 114 // last in the loop.  The trip-counter have to stride by a constant;
 115 // the exit value is also loop invariant.
 116 
 117 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 118 // CountedLoopNode has the incoming loop control and the loop-back-control
 119 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 120 // CountedLoopEndNode has an incoming control (possibly not the
 121 // CountedLoopNode if there is control flow in the loop), the post-increment
 122 // trip-counter value, and the limit.  The trip-counter value is always of
 123 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 124 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 125 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 126 // CountedLoopEndNode also takes in the loop-invariant limit value.
 127 
 128 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 129 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 130 // via the old-trip-counter from the Op node.
 131 
 132 //------------------------------CountedLoopNode--------------------------------
 133 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 134 // inputs the incoming loop-start control and the loop-back control, so they
 135 // act like RegionNodes.  They also take in the initial trip counter, the
 136 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 137 // produce a loop-body control and the trip counter value.  Since
 138 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 139 
 140 class CountedLoopNode : public LoopNode {
 141   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 142   // the semantics so it does not appear in the hash & cmp functions.
 143   virtual uint size_of() const { return sizeof(*this); }
 144 
 145   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 146   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 147   node_idx_t _main_idx;
 148 
 149   // Known trip count calculated by compute_exact_trip_count()
 150   uint  _trip_count;
 151 
 152   // Expected trip count from profile data
 153   float _profile_trip_cnt;
 154 
 155   // Log2 of original loop bodies in unrolled loop
 156   int _unrolled_count_log2;
 157 
 158   // Node count prior to last unrolling - used to decide if
 159   // unroll,optimize,unroll,optimize,... is making progress
 160   int _node_count_before_unroll;
 161 
 162   // If slp analysis is performed we record the maximum
 163   // vector mapped unroll factor here
 164   int _slp_maximum_unroll_factor;
 165 
 166 public:
 167   CountedLoopNode( Node *entry, Node *backedge )
 168     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 169       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 170       _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
 171     init_class_id(Class_CountedLoop);
 172     // Initialize _trip_count to the largest possible value.
 173     // Will be reset (lower) if the loop's trip count is known.
 174   }
 175 
 176   virtual int Opcode() const;
 177   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 178 
 179   Node *init_control() const { return in(EntryControl); }
 180   Node *back_control() const { return in(LoopBackControl); }
 181   CountedLoopEndNode *loopexit() const;
 182   Node *init_trip() const;
 183   Node *stride() const;
 184   int   stride_con() const;
 185   bool  stride_is_con() const;
 186   Node *limit() const;
 187   Node *incr() const;
 188   Node *phi() const;
 189 
 190   // Match increment with optional truncation
 191   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 192 
 193   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 194   // can run short a few iterations and may start a few iterations in.
 195   // It will be RCE'd and unrolled and aligned.
 196 
 197   // A following 'post' loop will run any remaining iterations.  Used
 198   // during Range Check Elimination, the 'post' loop will do any final
 199   // iterations with full checks.  Also used by Loop Unrolling, where
 200   // the 'post' loop will do any epilog iterations needed.  Basically,
 201   // a 'post' loop can not profitably be further unrolled or RCE'd.
 202 
 203   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 204   // it may do under-flow checks for RCE and may do alignment iterations
 205   // so the following main loop 'knows' that it is striding down cache
 206   // lines.
 207 
 208   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 209   // Aligned, may be missing it's pre-loop.
 210   int is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 211   int is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 212   int is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 213   int is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 214   int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 215   int has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 216   int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 217   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 218 
 219   int main_idx() const { return _main_idx; }
 220 
 221 
 222   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 223   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 224   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 225   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 226 
 227   void set_trip_count(uint tc) { _trip_count = tc; }
 228   uint trip_count()            { return _trip_count; }
 229 
 230   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 231   void set_exact_trip_count(uint tc) {
 232     _trip_count = tc;
 233     _loop_flags |= HasExactTripCount;
 234   }
 235   void set_nonexact_trip_count() {
 236     _loop_flags &= ~HasExactTripCount;
 237   }
 238 
 239   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 240   float profile_trip_cnt()             { return _profile_trip_cnt; }
 241 
 242   void double_unrolled_count() { _unrolled_count_log2++; }
 243   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 244 
 245   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 246   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 247   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 248   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 249 
 250 #ifndef PRODUCT
 251   virtual void dump_spec(outputStream *st) const;
 252 #endif
 253 };
 254 
 255 //------------------------------CountedLoopEndNode-----------------------------
 256 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 257 // IfNodes.
 258 class CountedLoopEndNode : public IfNode {
 259 public:
 260   enum { TestControl, TestValue };
 261 
 262   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 263     : IfNode( control, test, prob, cnt) {
 264     init_class_id(Class_CountedLoopEnd);
 265   }
 266   virtual int Opcode() const;
 267 
 268   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 269   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 270   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 271   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 272   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 273   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 274   int stride_con() const;
 275   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 276   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 277   CountedLoopNode *loopnode() const {
 278     // The CountedLoopNode that goes with this CountedLoopEndNode may
 279     // have been optimized out by the IGVN so be cautious with the
 280     // pattern matching on the graph
 281     if (phi() == NULL) {
 282       return NULL;
 283     }
 284     Node *ln = phi()->in(0);
 285     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
 286       return (CountedLoopNode*)ln;
 287     }
 288     return NULL;
 289   }
 290 
 291 #ifndef PRODUCT
 292   virtual void dump_spec(outputStream *st) const;
 293 #endif
 294 };
 295 
 296 
 297 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 298   Node *bc = back_control();
 299   if( bc == NULL ) return NULL;
 300   Node *le = bc->in(0);
 301   if( le->Opcode() != Op_CountedLoopEnd )
 302     return NULL;
 303   return (CountedLoopEndNode*)le;
 304 }
 305 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 306 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 307 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 308 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 309 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 310 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 311 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 312 
 313 //------------------------------LoopLimitNode-----------------------------
 314 // Counted Loop limit node which represents exact final iterator value:
 315 // trip_count = (limit - init_trip + stride - 1)/stride
 316 // final_value= trip_count * stride + init_trip.
 317 // Use HW instructions to calculate it when it can overflow in integer.
 318 // Note, final_value should fit into integer since counted loop has
 319 // limit check: limit <= max_int-stride.
 320 class LoopLimitNode : public Node {
 321   enum { Init=1, Limit=2, Stride=3 };
 322  public:
 323   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 324     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 325     init_flags(Flag_is_macro);
 326     C->add_macro_node(this);
 327   }
 328   virtual int Opcode() const;
 329   virtual const Type *bottom_type() const { return TypeInt::INT; }
 330   virtual uint ideal_reg() const { return Op_RegI; }
 331   virtual const Type *Value( PhaseTransform *phase ) const;
 332   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 333   virtual Node *Identity( PhaseTransform *phase );
 334 };
 335 
 336 // -----------------------------IdealLoopTree----------------------------------
 337 class IdealLoopTree : public ResourceObj {
 338 public:
 339   IdealLoopTree *_parent;       // Parent in loop tree
 340   IdealLoopTree *_next;         // Next sibling in loop tree
 341   IdealLoopTree *_child;        // First child in loop tree
 342 
 343   // The head-tail backedge defines the loop.
 344   // If tail is NULL then this loop has multiple backedges as part of the
 345   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 346   // them at the loop bottom and flow 1 real backedge into the loop.
 347   Node *_head;                  // Head of loop
 348   Node *_tail;                  // Tail of loop
 349   inline Node *tail();          // Handle lazy update of _tail field
 350   PhaseIdealLoop* _phase;
 351   int _local_loop_unroll_limit;
 352   int _local_loop_unroll_factor;
 353 
 354   Node_List _body;              // Loop body for inner loops
 355 
 356   uint8_t _nest;                // Nesting depth
 357   uint8_t _irreducible:1,       // True if irreducible
 358           _has_call:1,          // True if has call safepoint
 359           _has_sfpt:1,          // True if has non-call safepoint
 360           _rce_candidate:1;     // True if candidate for range check elimination
 361 
 362   Node_List* _safepts;          // List of safepoints in this loop
 363   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 364   bool  _allow_optimizations;   // Allow loop optimizations
 365 
 366   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 367     : _parent(0), _next(0), _child(0),
 368       _head(head), _tail(tail),
 369       _phase(phase),
 370       _safepts(NULL),
 371       _required_safept(NULL),
 372       _allow_optimizations(true),
 373       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 374       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 375   { }
 376 
 377   // Is 'l' a member of 'this'?
 378   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
 379 
 380   // Set loop nesting depth.  Accumulate has_call bits.
 381   int set_nest( uint depth );
 382 
 383   // Split out multiple fall-in edges from the loop header.  Move them to a
 384   // private RegionNode before the loop.  This becomes the loop landing pad.
 385   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 386 
 387   // Split out the outermost loop from this shared header.
 388   void split_outer_loop( PhaseIdealLoop *phase );
 389 
 390   // Merge all the backedges from the shared header into a private Region.
 391   // Feed that region as the one backedge to this loop.
 392   void merge_many_backedges( PhaseIdealLoop *phase );
 393 
 394   // Split shared headers and insert loop landing pads.
 395   // Insert a LoopNode to replace the RegionNode.
 396   // Returns TRUE if loop tree is structurally changed.
 397   bool beautify_loops( PhaseIdealLoop *phase );
 398 
 399   // Perform optimization to use the loop predicates for null checks and range checks.
 400   // Applies to any loop level (not just the innermost one)
 401   bool loop_predication( PhaseIdealLoop *phase);
 402 
 403   // Perform iteration-splitting on inner loops.  Split iterations to
 404   // avoid range checks or one-shot null checks.  Returns false if the
 405   // current round of loop opts should stop.
 406   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 407 
 408   // Driver for various flavors of iteration splitting.  Returns false
 409   // if the current round of loop opts should stop.
 410   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 411 
 412   // Given dominators, try to find loops with calls that must always be
 413   // executed (call dominates loop tail).  These loops do not need non-call
 414   // safepoints (ncsfpt).
 415   void check_safepts(VectorSet &visited, Node_List &stack);
 416 
 417   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 418   // encountered.
 419   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 420 
 421   // Convert to counted loops where possible
 422   void counted_loop( PhaseIdealLoop *phase );
 423 
 424   // Check for Node being a loop-breaking test
 425   Node *is_loop_exit(Node *iff) const;
 426 
 427   // Returns true if ctrl is executed on every complete iteration
 428   bool dominates_backedge(Node* ctrl);
 429 
 430   // Remove simplistic dead code from loop body
 431   void DCE_loop_body();
 432 
 433   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 434   // Replace with a 1-in-10 exit guess.
 435   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 436 
 437   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 438   // Useful for unrolling loops with NO array accesses.
 439   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 440 
 441   // Return TRUE or FALSE if the loop should be unswitched -- clone
 442   // loop with an invariant test
 443   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 444 
 445   // Micro-benchmark spamming.  Remove empty loops.
 446   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 447 
 448   // Convert one iteration loop into normal code.
 449   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 450 
 451   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 452   // make some loop-invariant test (usually a null-check) happen before the
 453   // loop.
 454   bool policy_peeling( PhaseIdealLoop *phase ) const;
 455 
 456   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 457   // known trip count in the counted loop node.
 458   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 459 
 460   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 461   // the loop is a CountedLoop and the body is small enough.
 462   bool policy_unroll(PhaseIdealLoop *phase);
 463 
 464   // Loop analyses to map to a maximal superword unrolling for vectorization.
 465   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 466 
 467   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 468   // Gather a list of IF tests that are dominated by iteration splitting;
 469   // also gather the end of the first split and the start of the 2nd split.
 470   bool policy_range_check( PhaseIdealLoop *phase ) const;
 471 
 472   // Return TRUE or FALSE if the loop should be cache-line aligned.
 473   // Gather the expression that does the alignment.  Note that only
 474   // one array base can be aligned in a loop (unless the VM guarantees
 475   // mutual alignment).  Note that if we vectorize short memory ops
 476   // into longer memory ops, we may want to increase alignment.
 477   bool policy_align( PhaseIdealLoop *phase ) const;
 478 
 479   // Return TRUE if "iff" is a range check.
 480   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 481 
 482   // Compute loop exact trip count if possible
 483   void compute_exact_trip_count( PhaseIdealLoop *phase );
 484 
 485   // Compute loop trip count from profile data
 486   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 487 
 488   // Reassociate invariant expressions.
 489   void reassociate_invariants(PhaseIdealLoop *phase);
 490   // Reassociate invariant add and subtract expressions.
 491   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 492   // Return nonzero index of invariant operand if invariant and variant
 493   // are combined with an Add or Sub. Helper for reassociate_invariants.
 494   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 495 
 496   // Return true if n is invariant
 497   bool is_invariant(Node* n) const;
 498 
 499   // Put loop body on igvn work list
 500   void record_for_igvn();
 501 
 502   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 503   bool is_inner()   { return is_loop() && _child == NULL; }
 504   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 505 
 506 #ifndef PRODUCT
 507   void dump_head( ) const;      // Dump loop head only
 508   void dump() const;            // Dump this loop recursively
 509   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 510 #endif
 511 
 512 };
 513 
 514 // -----------------------------PhaseIdealLoop---------------------------------
 515 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 516 // loop tree.  Drives the loop-based transformations on the ideal graph.
 517 class PhaseIdealLoop : public PhaseTransform {
 518   friend class IdealLoopTree;
 519   friend class SuperWord;
 520   // Pre-computed def-use info
 521   PhaseIterGVN &_igvn;
 522 
 523   // Head of loop tree
 524   IdealLoopTree *_ltree_root;
 525 
 526   // Array of pre-order numbers, plus post-visited bit.
 527   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 528   // ODD for post-visited.  Other bits are the pre-order number.
 529   uint *_preorders;
 530   uint _max_preorder;
 531 
 532   const PhaseIdealLoop* _verify_me;
 533   bool _verify_only;
 534 
 535   // Allocate _preorders[] array
 536   void allocate_preorders() {
 537     _max_preorder = C->unique()+8;
 538     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 539     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 540   }
 541 
 542   // Allocate _preorders[] array
 543   void reallocate_preorders() {
 544     if ( _max_preorder < C->unique() ) {
 545       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 546       _max_preorder = C->unique();
 547     }
 548     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 549   }
 550 
 551   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 552   // adds new nodes.
 553   void check_grow_preorders( ) {
 554     if ( _max_preorder < C->unique() ) {
 555       uint newsize = _max_preorder<<1;  // double size of array
 556       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 557       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 558       _max_preorder = newsize;
 559     }
 560   }
 561   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 562   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 563   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 564   void set_preorder_visited( Node *n, int pre_order ) {
 565     assert( !is_visited( n ), "already set" );
 566     _preorders[n->_idx] = (pre_order<<1);
 567   };
 568   // Return pre-order number.
 569   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 570 
 571   // Check for being post-visited.
 572   // Should be previsited already (checked with assert(is_visited(n))).
 573   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 574 
 575   // Mark as post visited
 576   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 577 
 578   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 579   // Returns true if "n" is a data node, false if it's a control node.
 580   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 581 
 582   // clear out dead code after build_loop_late
 583   Node_List _deadlist;
 584 
 585   // Support for faster execution of get_late_ctrl()/dom_lca()
 586   // when a node has many uses and dominator depth is deep.
 587   Node_Array _dom_lca_tags;
 588   void   init_dom_lca_tags();
 589   void   clear_dom_lca_tags();
 590 
 591   // Helper for debugging bad dominance relationships
 592   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 593 
 594   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 595 
 596   // Inline wrapper for frequent cases:
 597   // 1) only one use
 598   // 2) a use is the same as the current LCA passed as 'n1'
 599   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 600     assert( n->is_CFG(), "" );
 601     // Fast-path NULL lca
 602     if( lca != NULL && lca != n ) {
 603       assert( lca->is_CFG(), "" );
 604       // find LCA of all uses
 605       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 606     }
 607     return find_non_split_ctrl(n);
 608   }
 609   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 610 
 611   // Helper function for directing control inputs away from CFG split
 612   // points.
 613   Node *find_non_split_ctrl( Node *ctrl ) const {
 614     if (ctrl != NULL) {
 615       if (ctrl->is_MultiBranch()) {
 616         ctrl = ctrl->in(0);
 617       }
 618       assert(ctrl->is_CFG(), "CFG");
 619     }
 620     return ctrl;
 621   }
 622 
 623   bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 624 
 625 public:
 626   bool has_node( Node* n ) const {
 627     guarantee(n != NULL, "No Node.");
 628     return _nodes[n->_idx] != NULL;
 629   }
 630   // check if transform created new nodes that need _ctrl recorded
 631   Node *get_late_ctrl( Node *n, Node *early );
 632   Node *get_early_ctrl( Node *n );
 633   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 634   void set_early_ctrl( Node *n );
 635   void set_subtree_ctrl( Node *root );
 636   void set_ctrl( Node *n, Node *ctrl ) {
 637     assert( !has_node(n) || has_ctrl(n), "" );
 638     assert( ctrl->in(0), "cannot set dead control node" );
 639     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 640     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 641   }
 642   // Set control and update loop membership
 643   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 644     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 645     IdealLoopTree* new_loop = get_loop(ctrl);
 646     if (old_loop != new_loop) {
 647       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 648       if (new_loop->_child == NULL) new_loop->_body.push(n);
 649     }
 650     set_ctrl(n, ctrl);
 651   }
 652   // Control nodes can be replaced or subsumed.  During this pass they
 653   // get their replacement Node in slot 1.  Instead of updating the block
 654   // location of all Nodes in the subsumed block, we lazily do it.  As we
 655   // pull such a subsumed block out of the array, we write back the final
 656   // correct block.
 657   Node *get_ctrl( Node *i ) {
 658     assert(has_node(i), "");
 659     Node *n = get_ctrl_no_update(i);
 660     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 661     assert(has_node(i) && has_ctrl(i), "");
 662     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 663     return n;
 664   }
 665   // true if CFG node d dominates CFG node n
 666   bool is_dominator(Node *d, Node *n);
 667   // return get_ctrl for a data node and self(n) for a CFG node
 668   Node* ctrl_or_self(Node* n) {
 669     if (has_ctrl(n))
 670       return get_ctrl(n);
 671     else {
 672       assert (n->is_CFG(), "must be a CFG node");
 673       return n;
 674     }
 675   }
 676 
 677 private:
 678   Node *get_ctrl_no_update( Node *i ) const {
 679     assert( has_ctrl(i), "" );
 680     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 681     if (!n->in(0)) {
 682       // Skip dead CFG nodes
 683       do {
 684         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 685       } while (!n->in(0));
 686       n = find_non_split_ctrl(n);
 687     }
 688     return n;
 689   }
 690 
 691   // Check for loop being set
 692   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 693   bool has_loop( Node *n ) const {
 694     assert(!has_node(n) || !has_ctrl(n), "");
 695     return has_node(n);
 696   }
 697   // Set loop
 698   void set_loop( Node *n, IdealLoopTree *loop ) {
 699     _nodes.map(n->_idx, (Node*)loop);
 700   }
 701   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 702   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 703   // from old_node to new_node to support the lazy update.  Reference
 704   // replaces loop reference, since that is not needed for dead node.
 705 public:
 706   void lazy_update( Node *old_node, Node *new_node ) {
 707     assert( old_node != new_node, "no cycles please" );
 708     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
 709     // Nodes always have DU info now, so re-use the side array slot
 710     // for this node to provide the forwarding pointer.
 711     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
 712   }
 713   void lazy_replace( Node *old_node, Node *new_node ) {
 714     _igvn.replace_node( old_node, new_node );
 715     lazy_update( old_node, new_node );
 716   }
 717   void lazy_replace_proj( Node *old_node, Node *new_node ) {
 718     assert( old_node->req() == 1, "use this for Projs" );
 719     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
 720     old_node->add_req( NULL );
 721     lazy_replace( old_node, new_node );
 722   }
 723 
 724 private:
 725 
 726   // Place 'n' in some loop nest, where 'n' is a CFG node
 727   void build_loop_tree();
 728   int build_loop_tree_impl( Node *n, int pre_order );
 729   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 730   // loop tree, not the root.
 731   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 732 
 733   // Place Data nodes in some loop nest
 734   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 735   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 736   void build_loop_late_post ( Node* n );
 737 
 738   // Array of immediate dominance info for each CFG node indexed by node idx
 739 private:
 740   uint _idom_size;
 741   Node **_idom;                 // Array of immediate dominators
 742   uint *_dom_depth;           // Used for fast LCA test
 743   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 744 
 745   Node* idom_no_update(Node* d) const {
 746     assert(d->_idx < _idom_size, "oob");
 747     Node* n = _idom[d->_idx];
 748     assert(n != NULL,"Bad immediate dominator info.");
 749     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 750       //n = n->in(1);
 751       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 752       assert(n != NULL,"Bad immediate dominator info.");
 753     }
 754     return n;
 755   }
 756   Node *idom(Node* d) const {
 757     uint didx = d->_idx;
 758     Node *n = idom_no_update(d);
 759     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 760     return n;
 761   }
 762   uint dom_depth(Node* d) const {
 763     guarantee(d != NULL, "Null dominator info.");
 764     guarantee(d->_idx < _idom_size, "");
 765     return _dom_depth[d->_idx];
 766   }
 767   void set_idom(Node* d, Node* n, uint dom_depth);
 768   // Locally compute IDOM using dom_lca call
 769   Node *compute_idom( Node *region ) const;
 770   // Recompute dom_depth
 771   void recompute_dom_depth();
 772 
 773   // Is safept not required by an outer loop?
 774   bool is_deleteable_safept(Node* sfpt);
 775 
 776   // Replace parallel induction variable (parallel to trip counter)
 777   void replace_parallel_iv(IdealLoopTree *loop);
 778 
 779   // Perform verification that the graph is valid.
 780   PhaseIdealLoop( PhaseIterGVN &igvn) :
 781     PhaseTransform(Ideal_Loop),
 782     _igvn(igvn),
 783     _dom_lca_tags(arena()), // Thread::resource_area
 784     _verify_me(NULL),
 785     _verify_only(true) {
 786     build_and_optimize(false, false);
 787   }
 788 
 789   // build the loop tree and perform any requested optimizations
 790   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
 791 
 792 public:
 793   // Dominators for the sea of nodes
 794   void Dominators();
 795   Node *dom_lca( Node *n1, Node *n2 ) const {
 796     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 797   }
 798   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 799 
 800   // Compute the Ideal Node to Loop mapping
 801   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
 802     PhaseTransform(Ideal_Loop),
 803     _igvn(igvn),
 804     _dom_lca_tags(arena()), // Thread::resource_area
 805     _verify_me(NULL),
 806     _verify_only(false) {
 807     build_and_optimize(do_split_ifs, skip_loop_opts);
 808   }
 809 
 810   // Verify that verify_me made the same decisions as a fresh run.
 811   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 812     PhaseTransform(Ideal_Loop),
 813     _igvn(igvn),
 814     _dom_lca_tags(arena()), // Thread::resource_area
 815     _verify_me(verify_me),
 816     _verify_only(false) {
 817     build_and_optimize(false, false);
 818   }
 819 
 820   // Build and verify the loop tree without modifying the graph.  This
 821   // is useful to verify that all inputs properly dominate their uses.
 822   static void verify(PhaseIterGVN& igvn) {
 823 #ifdef ASSERT
 824     PhaseIdealLoop v(igvn);
 825 #endif
 826   }
 827 
 828   // True if the method has at least 1 irreducible loop
 829   bool _has_irreducible_loops;
 830 
 831   // Per-Node transform
 832   virtual Node *transform( Node *a_node ) { return 0; }
 833 
 834   bool is_counted_loop( Node *x, IdealLoopTree *loop );
 835 
 836   Node* exact_limit( IdealLoopTree *loop );
 837 
 838   // Return a post-walked LoopNode
 839   IdealLoopTree *get_loop( Node *n ) const {
 840     // Dead nodes have no loop, so return the top level loop instead
 841     if (!has_node(n))  return _ltree_root;
 842     assert(!has_ctrl(n), "");
 843     return (IdealLoopTree*)_nodes[n->_idx];
 844   }
 845 
 846   // Is 'n' a (nested) member of 'loop'?
 847   int is_member( const IdealLoopTree *loop, Node *n ) const {
 848     return loop->is_member(get_loop(n)); }
 849 
 850   // This is the basic building block of the loop optimizations.  It clones an
 851   // entire loop body.  It makes an old_new loop body mapping; with this
 852   // mapping you can find the new-loop equivalent to an old-loop node.  All
 853   // new-loop nodes are exactly equal to their old-loop counterparts, all
 854   // edges are the same.  All exits from the old-loop now have a RegionNode
 855   // that merges the equivalent new-loop path.  This is true even for the
 856   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 857   // now come from (one or more) Phis that merge their new-loop equivalents.
 858   // Parameter side_by_side_idom:
 859   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 860   //      the clone loop to dominate the original.  Used in construction of
 861   //      pre-main-post loop sequence.
 862   //   When nonnull, the clone and original are side-by-side, both are
 863   //      dominated by the passed in side_by_side_idom node.  Used in
 864   //      construction of unswitched loops.
 865   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 866                    Node* side_by_side_idom = NULL);
 867 
 868   // If we got the effect of peeling, either by actually peeling or by
 869   // making a pre-loop which must execute at least once, we can remove
 870   // all loop-invariant dominated tests in the main body.
 871   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 872 
 873   // Generate code to do a loop peel for the given loop (and body).
 874   // old_new is a temp array.
 875   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 876 
 877   // Add pre and post loops around the given loop.  These loops are used
 878   // during RCE, unrolling and aligning loops.
 879   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 880   // If Node n lives in the back_ctrl block, we clone a private version of n
 881   // in preheader_ctrl block and return that, otherwise return n.
 882   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
 883 
 884   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 885   // unroll to do double iterations.  The next round of major loop transforms
 886   // will repeat till the doubled loop body does all remaining iterations in 1
 887   // pass.
 888   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 889 
 890   // Unroll the loop body one step - make each trip do 2 iterations.
 891   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 892 
 893   // Mark vector reduction candidates before loop unrolling
 894   void mark_reductions( IdealLoopTree *loop );
 895 
 896   // Return true if exp is a constant times an induction var
 897   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 898 
 899   // Return true if exp is a scaled induction var plus (or minus) constant
 900   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 901 
 902   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
 903   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
 904                                         Deoptimization::DeoptReason reason);
 905   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
 906 
 907   // Clone loop predicates to cloned loops (peeled, unswitched)
 908   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
 909                                    Deoptimization::DeoptReason reason,
 910                                    PhaseIdealLoop* loop_phase,
 911                                    PhaseIterGVN* igvn);
 912 
 913   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
 914                                          bool clone_limit_check,
 915                                          PhaseIdealLoop* loop_phase,
 916                                          PhaseIterGVN* igvn);
 917   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
 918 
 919   static Node* skip_loop_predicates(Node* entry);
 920 
 921   // Find a good location to insert a predicate
 922   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
 923   // Find a predicate
 924   static Node* find_predicate(Node* entry);
 925   // Construct a range check for a predicate if
 926   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
 927                          int scale, Node* offset,
 928                          Node* init, Node* limit, Node* stride,
 929                          Node* range, bool upper);
 930 
 931   // Implementation of the loop predication to promote checks outside the loop
 932   bool loop_predication_impl(IdealLoopTree *loop);
 933 
 934   // Helper function to collect predicate for eliminating the useless ones
 935   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
 936   void eliminate_useless_predicates();
 937 
 938   // Change the control input of expensive nodes to allow commoning by
 939   // IGVN when it is guaranteed to not result in a more frequent
 940   // execution of the expensive node. Return true if progress.
 941   bool process_expensive_nodes();
 942 
 943   // Check whether node has become unreachable
 944   bool is_node_unreachable(Node *n) const {
 945     return !has_node(n) || n->is_unreachable(_igvn);
 946   }
 947 
 948   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
 949   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
 950 
 951   // Create a slow version of the loop by cloning the loop
 952   // and inserting an if to select fast-slow versions.
 953   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
 954                                         Node_List &old_new);
 955 
 956   // Clone loop with an invariant test (that does not exit) and
 957   // insert a clone of the test that selects which version to
 958   // execute.
 959   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
 960 
 961   // Find candidate "if" for unswitching
 962   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
 963 
 964   // Range Check Elimination uses this function!
 965   // Constrain the main loop iterations so the affine function:
 966   //    low_limit <= scale_con * I + offset  <  upper_limit
 967   // always holds true.  That is, either increase the number of iterations in
 968   // the pre-loop or the post-loop until the condition holds true in the main
 969   // loop.  Scale_con, offset and limit are all loop invariant.
 970   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
 971   // Helper function for add_constraint().
 972   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
 973 
 974   // Partially peel loop up through last_peel node.
 975   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
 976 
 977   // Create a scheduled list of nodes control dependent on ctrl set.
 978   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
 979   // Has a use in the vector set
 980   bool has_use_in_set( Node* n, VectorSet& vset );
 981   // Has use internal to the vector set (ie. not in a phi at the loop head)
 982   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
 983   // clone "n" for uses that are outside of loop
 984   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
 985   // clone "n" for special uses that are in the not_peeled region
 986   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
 987                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
 988   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
 989   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
 990 #ifdef ASSERT
 991   // Validate the loop partition sets: peel and not_peel
 992   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
 993   // Ensure that uses outside of loop are of the right form
 994   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
 995                                  uint orig_exit_idx, uint clone_exit_idx);
 996   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
 997 #endif
 998 
 999   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1000   int stride_of_possible_iv( Node* iff );
1001   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1002   // Return the (unique) control output node that's in the loop (if it exists.)
1003   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1004   // Insert a signed compare loop exit cloned from an unsigned compare.
1005   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1006   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1007   // Utility to register node "n" with PhaseIdealLoop
1008   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1009   // Utility to create an if-projection
1010   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1011   // Force the iff control output to be the live_proj
1012   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1013   // Insert a region before an if projection
1014   RegionNode* insert_region_before_proj(ProjNode* proj);
1015   // Insert a new if before an if projection
1016   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1017 
1018   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1019   // "Nearly" because all Nodes have been cloned from the original in the loop,
1020   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1021   // through the Phi recursively, and return a Bool.
1022   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1023   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1024 
1025 
1026   // Rework addressing expressions to get the most loop-invariant stuff
1027   // moved out.  We'd like to do all associative operators, but it's especially
1028   // important (common) to do address expressions.
1029   Node *remix_address_expressions( Node *n );
1030 
1031   // Attempt to use a conditional move instead of a phi/branch
1032   Node *conditional_move( Node *n );
1033 
1034   // Reorganize offset computations to lower register pressure.
1035   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1036   // (which are then alive with the post-incremented trip counter
1037   // forcing an extra register move)
1038   void reorg_offsets( IdealLoopTree *loop );
1039 
1040   // Check for aggressive application of 'split-if' optimization,
1041   // using basic block level info.
1042   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1043   Node *split_if_with_blocks_pre ( Node *n );
1044   void  split_if_with_blocks_post( Node *n );
1045   Node *has_local_phi_input( Node *n );
1046   // Mark an IfNode as being dominated by a prior test,
1047   // without actually altering the CFG (and hence IDOM info).
1048   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1049 
1050   // Split Node 'n' through merge point
1051   Node *split_thru_region( Node *n, Node *region );
1052   // Split Node 'n' through merge point if there is enough win.
1053   Node *split_thru_phi( Node *n, Node *region, int policy );
1054   // Found an If getting its condition-code input from a Phi in the
1055   // same block.  Split thru the Region.
1056   void do_split_if( Node *iff );
1057 
1058   // Conversion of fill/copy patterns into intrisic versions
1059   bool do_intrinsify_fill();
1060   bool intrinsify_fill(IdealLoopTree* lpt);
1061   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1062                        Node*& shift, Node*& offset);
1063 
1064 private:
1065   // Return a type based on condition control flow
1066   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1067   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1068  // Helpers for filtered type
1069   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1070 
1071   // Helper functions
1072   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1073   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1074   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1075   bool split_up( Node *n, Node *blk1, Node *blk2 );
1076   void sink_use( Node *use, Node *post_loop );
1077   Node *place_near_use( Node *useblock ) const;
1078 
1079   bool _created_loop_node;
1080 public:
1081   void set_created_loop_node() { _created_loop_node = true; }
1082   bool created_loop_node()     { return _created_loop_node; }
1083   void register_new_node( Node *n, Node *blk );
1084 
1085 #ifdef ASSERT
1086   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1087 #endif
1088 
1089 #ifndef PRODUCT
1090   void dump( ) const;
1091   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1092   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1093   void verify() const;          // Major slow  :-)
1094   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1095   IdealLoopTree *get_loop_idx(Node* n) const {
1096     // Dead nodes have no loop, so return the top level loop instead
1097     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1098   }
1099   // Print some stats
1100   static void print_statistics();
1101   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1102   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1103 #endif
1104 };
1105 
1106 inline Node* IdealLoopTree::tail() {
1107 // Handle lazy update of _tail field
1108   Node *n = _tail;
1109   //while( !n->in(0) )  // Skip dead CFG nodes
1110     //n = n->in(1);
1111   if (n->in(0) == NULL)
1112     n = _phase->get_ctrl(n);
1113   _tail = n;
1114   return n;
1115 }
1116 
1117 
1118 // Iterate over the loop tree using a preorder, left-to-right traversal.
1119 //
1120 // Example that visits all counted loops from within PhaseIdealLoop
1121 //
1122 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1123 //   IdealLoopTree* lpt = iter.current();
1124 //   if (!lpt->is_counted()) continue;
1125 //   ...
1126 class LoopTreeIterator : public StackObj {
1127 private:
1128   IdealLoopTree* _root;
1129   IdealLoopTree* _curnt;
1130 
1131 public:
1132   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1133 
1134   bool done() { return _curnt == NULL; }       // Finished iterating?
1135 
1136   void next();                                 // Advance to next loop tree
1137 
1138   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1139 };
1140 
1141 #endif // SHARE_VM_OPTO_LOOPNODE_HPP