1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && is_evex_instruction) {
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x6E: // movd
 774     case 0x7E: // movd
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776       debug_only(has_disp32 = true);
 777       break;
 778 
 779     case 0xAD: // shrd r, a, %cl
 780     case 0xAF: // imul r, a
 781     case 0xBE: // movsbl r, a (movsxb)
 782     case 0xBF: // movswl r, a (movsxw)
 783     case 0xB6: // movzbl r, a (movzxb)
 784     case 0xB7: // movzwl r, a (movzxw)
 785     case REP16(0x40): // cmovl cc, r, a
 786     case 0xB0: // cmpxchgb
 787     case 0xB1: // cmpxchg
 788     case 0xC1: // xaddl
 789     case 0xC7: // cmpxchg8
 790     case REP16(0x90): // setcc a
 791       debug_only(has_disp32 = true);
 792       // fall out of the switch to decode the address
 793       break;
 794 
 795     case 0xC4: // pinsrw r, a, #8
 796       debug_only(has_disp32 = true);
 797     case 0xC5: // pextrw r, r, #8
 798       tail_size = 1;  // the imm8
 799       break;
 800 
 801     case 0xAC: // shrd r, a, #8
 802       debug_only(has_disp32 = true);
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case REP16(0x80): // jcc rdisp32
 807       if (which == end_pc_operand)  return ip + 4;
 808       assert(which == call32_operand, "jcc has no disp32 or imm");
 809       return ip;
 810     default:
 811       ShouldNotReachHere();
 812     }
 813     break;
 814 
 815   case 0x81: // addl a, #32; addl r, #32
 816     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 817     // on 32bit in the case of cmpl, the imm might be an oop
 818     tail_size = 4;
 819     debug_only(has_disp32 = true); // has both kinds of operands!
 820     break;
 821 
 822   case 0x83: // addl a, #8; addl r, #8
 823     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     tail_size = 1;
 826     break;
 827 
 828   case 0x9B:
 829     switch (0xFF & *ip++) {
 830     case 0xD9: // fnstcw a
 831       debug_only(has_disp32 = true);
 832       break;
 833     default:
 834       ShouldNotReachHere();
 835     }
 836     break;
 837 
 838   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 839   case REP4(0x10): // adc...
 840   case REP4(0x20): // and...
 841   case REP4(0x30): // xor...
 842   case REP4(0x08): // or...
 843   case REP4(0x18): // sbb...
 844   case REP4(0x28): // sub...
 845   case 0xF7: // mull a
 846   case 0x8D: // lea r, a
 847   case 0x87: // xchg r, a
 848   case REP4(0x38): // cmp...
 849   case 0x85: // test r, a
 850     debug_only(has_disp32 = true); // has both kinds of operands!
 851     break;
 852 
 853   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 854   case 0xC6: // movb a, #8
 855   case 0x80: // cmpb a, #8
 856   case 0x6B: // imul r, a, #8
 857     debug_only(has_disp32 = true); // has both kinds of operands!
 858     tail_size = 1; // the imm8
 859     break;
 860 
 861   case 0xC4: // VEX_3bytes
 862   case 0xC5: // VEX_2bytes
 863     assert((UseAVX > 0), "shouldn't have VEX prefix");
 864     assert(ip == inst+1, "no prefixes allowed");
 865     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 866     // but they have prefix 0x0F and processed when 0x0F processed above.
 867     //
 868     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 869     // instructions (these instructions are not supported in 64-bit mode).
 870     // To distinguish them bits [7:6] are set in the VEX second byte since
 871     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 872     // those VEX bits REX and vvvv bits are inverted.
 873     //
 874     // Fortunately C2 doesn't generate these instructions so we don't need
 875     // to check for them in product version.
 876 
 877     // Check second byte
 878     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 879 
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       ip++; // third byte
 883       is_64bit = ((VEX_W & *ip) == VEX_W);
 884     }
 885     ip++; // opcode
 886     // To find the end of instruction (which == end_pc_operand).
 887     switch (0xFF & *ip) {
 888     case 0x61: // pcmpestri r, r/a, #8
 889     case 0x70: // pshufd r, r/a, #8
 890     case 0x73: // psrldq r, #8
 891       tail_size = 1;  // the imm8
 892       break;
 893     default:
 894       break;
 895     }
 896     ip++; // skip opcode
 897     debug_only(has_disp32 = true); // has both kinds of operands!
 898     break;
 899 
 900   case 0x62: // EVEX_4bytes
 901     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 902     assert(ip == inst+1, "no prefixes allowed");
 903     // no EVEX collisions, all instructions that have 0x62 opcodes
 904     // have EVEX versions and are subopcodes of 0x66
 905     ip++; // skip P0 and exmaine W in P1
 906     is_64bit = ((VEX_W & *ip) == VEX_W);
 907     ip++; // move to P2
 908     ip++; // skip P2, move to opcode
 909     // To find the end of instruction (which == end_pc_operand).
 910     switch (0xFF & *ip) {
 911     case 0x61: // pcmpestri r, r/a, #8
 912     case 0x70: // pshufd r, r/a, #8
 913     case 0x73: // psrldq r, #8
 914       tail_size = 1;  // the imm8
 915       break;
 916     default:
 917       break;
 918     }
 919     ip++; // skip opcode
 920     debug_only(has_disp32 = true); // has both kinds of operands!
 921     break;
 922 
 923   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 924   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 925   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 926   case 0xDD: // fld_d a; fst_d a; fstp_d a
 927   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 928   case 0xDF: // fild_d a; fistp_d a
 929   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 930   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 931   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 932     debug_only(has_disp32 = true);
 933     break;
 934 
 935   case 0xE8: // call rdisp32
 936   case 0xE9: // jmp  rdisp32
 937     if (which == end_pc_operand)  return ip + 4;
 938     assert(which == call32_operand, "call has no disp32 or imm");
 939     return ip;
 940 
 941   case 0xF0:                    // Lock
 942     assert(os::is_MP(), "only on MP");
 943     goto again_after_prefix;
 944 
 945   case 0xF3:                    // For SSE
 946   case 0xF2:                    // For SSE2
 947     switch (0xFF & *ip++) {
 948     case REX:
 949     case REX_B:
 950     case REX_X:
 951     case REX_XB:
 952     case REX_R:
 953     case REX_RB:
 954     case REX_RX:
 955     case REX_RXB:
 956     case REX_W:
 957     case REX_WB:
 958     case REX_WX:
 959     case REX_WXB:
 960     case REX_WR:
 961     case REX_WRB:
 962     case REX_WRX:
 963     case REX_WRXB:
 964       NOT_LP64(assert(false, "found 64bit prefix"));
 965       ip++;
 966     default:
 967       ip++;
 968     }
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   default:
 973     ShouldNotReachHere();
 974 
 975 #undef REP8
 976 #undef REP16
 977   }
 978 
 979   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 980 #ifdef _LP64
 981   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 982 #else
 983   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 984   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 985 #endif // LP64
 986   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 987 
 988   // parse the output of emit_operand
 989   int op2 = 0xFF & *ip++;
 990   int base = op2 & 0x07;
 991   int op3 = -1;
 992   const int b100 = 4;
 993   const int b101 = 5;
 994   if (base == b100 && (op2 >> 6) != 3) {
 995     op3 = 0xFF & *ip++;
 996     base = op3 & 0x07;   // refetch the base
 997   }
 998   // now ip points at the disp (if any)
 999 
1000   switch (op2 >> 6) {
1001   case 0:
1002     // [00 reg  100][ss index base]
1003     // [00 reg  100][00   100  esp]
1004     // [00 reg base]
1005     // [00 reg  100][ss index  101][disp32]
1006     // [00 reg  101]               [disp32]
1007 
1008     if (base == b101) {
1009       if (which == disp32_operand)
1010         return ip;              // caller wants the disp32
1011       ip += 4;                  // skip the disp32
1012     }
1013     break;
1014 
1015   case 1:
1016     // [01 reg  100][ss index base][disp8]
1017     // [01 reg  100][00   100  esp][disp8]
1018     // [01 reg base]               [disp8]
1019     ip += 1;                    // skip the disp8
1020     break;
1021 
1022   case 2:
1023     // [10 reg  100][ss index base][disp32]
1024     // [10 reg  100][00   100  esp][disp32]
1025     // [10 reg base]               [disp32]
1026     if (which == disp32_operand)
1027       return ip;                // caller wants the disp32
1028     ip += 4;                    // skip the disp32
1029     break;
1030 
1031   case 3:
1032     // [11 reg base]  (not a memory addressing mode)
1033     break;
1034   }
1035 
1036   if (which == end_pc_operand) {
1037     return ip + tail_size;
1038   }
1039 
1040 #ifdef _LP64
1041   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1042 #else
1043   assert(which == imm_operand, "instruction has only an imm field");
1044 #endif // LP64
1045   return ip;
1046 }
1047 
1048 address Assembler::locate_next_instruction(address inst) {
1049   // Secretly share code with locate_operand:
1050   return locate_operand(inst, end_pc_operand);
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1056   address inst = inst_mark();
1057   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1058   address opnd;
1059 
1060   Relocation* r = rspec.reloc();
1061   if (r->type() == relocInfo::none) {
1062     return;
1063   } else if (r->is_call() || format == call32_operand) {
1064     // assert(format == imm32_operand, "cannot specify a nonzero format");
1065     opnd = locate_operand(inst, call32_operand);
1066   } else if (r->is_data()) {
1067     assert(format == imm_operand || format == disp32_operand
1068            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1069     opnd = locate_operand(inst, (WhichOperand)format);
1070   } else {
1071     assert(format == imm_operand, "cannot specify a format");
1072     return;
1073   }
1074   assert(opnd == pc(), "must put operand where relocs can find it");
1075 }
1076 #endif // ASSERT
1077 
1078 void Assembler::emit_operand32(Register reg, Address adr) {
1079   assert(reg->encoding() < 8, "no extended registers");
1080   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1081   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1082                adr._rspec);
1083 }
1084 
1085 void Assembler::emit_operand(Register reg, Address adr,
1086                              int rip_relative_correction) {
1087   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1088                adr._rspec,
1089                rip_relative_correction);
1090 }
1091 
1092 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1093   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1094                adr._rspec);
1095 }
1096 
1097 // MMX operations
1098 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1101 }
1102 
1103 // work around gcc (3.2.1-7a) bug
1104 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1105   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1106   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1107 }
1108 
1109 
1110 void Assembler::emit_farith(int b1, int b2, int i) {
1111   assert(isByte(b1) && isByte(b2), "wrong opcode");
1112   assert(0 <= i &&  i < 8, "illegal stack offset");
1113   emit_int8(b1);
1114   emit_int8(b2 + i);
1115 }
1116 
1117 
1118 // Now the Assembler instructions (identical for 32/64 bits)
1119 
1120 void Assembler::adcl(Address dst, int32_t imm32) {
1121   InstructionMark im(this);
1122   prefix(dst);
1123   emit_arith_operand(0x81, rdx, dst, imm32);
1124 }
1125 
1126 void Assembler::adcl(Address dst, Register src) {
1127   InstructionMark im(this);
1128   prefix(dst, src);
1129   emit_int8(0x11);
1130   emit_operand(src, dst);
1131 }
1132 
1133 void Assembler::adcl(Register dst, int32_t imm32) {
1134   prefix(dst);
1135   emit_arith(0x81, 0xD0, dst, imm32);
1136 }
1137 
1138 void Assembler::adcl(Register dst, Address src) {
1139   InstructionMark im(this);
1140   prefix(src, dst);
1141   emit_int8(0x13);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::adcl(Register dst, Register src) {
1146   (void) prefix_and_encode(dst->encoding(), src->encoding());
1147   emit_arith(0x13, 0xC0, dst, src);
1148 }
1149 
1150 void Assembler::addl(Address dst, int32_t imm32) {
1151   InstructionMark im(this);
1152   prefix(dst);
1153   emit_arith_operand(0x81, rax, dst, imm32);
1154 }
1155 
1156 void Assembler::addl(Address dst, Register src) {
1157   InstructionMark im(this);
1158   prefix(dst, src);
1159   emit_int8(0x01);
1160   emit_operand(src, dst);
1161 }
1162 
1163 void Assembler::addl(Register dst, int32_t imm32) {
1164   prefix(dst);
1165   emit_arith(0x81, 0xC0, dst, imm32);
1166 }
1167 
1168 void Assembler::addl(Register dst, Address src) {
1169   InstructionMark im(this);
1170   prefix(src, dst);
1171   emit_int8(0x03);
1172   emit_operand(dst, src);
1173 }
1174 
1175 void Assembler::addl(Register dst, Register src) {
1176   (void) prefix_and_encode(dst->encoding(), src->encoding());
1177   emit_arith(0x03, 0xC0, dst, src);
1178 }
1179 
1180 void Assembler::addr_nop_4() {
1181   assert(UseAddressNop, "no CPU support");
1182   // 4 bytes: NOP DWORD PTR [EAX+0]
1183   emit_int8(0x0F);
1184   emit_int8(0x1F);
1185   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1186   emit_int8(0);    // 8-bits offset (1 byte)
1187 }
1188 
1189 void Assembler::addr_nop_5() {
1190   assert(UseAddressNop, "no CPU support");
1191   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1192   emit_int8(0x0F);
1193   emit_int8(0x1F);
1194   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1195   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1196   emit_int8(0);    // 8-bits offset (1 byte)
1197 }
1198 
1199 void Assembler::addr_nop_7() {
1200   assert(UseAddressNop, "no CPU support");
1201   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1202   emit_int8(0x0F);
1203   emit_int8(0x1F);
1204   emit_int8((unsigned char)0x80);
1205                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1206   emit_int32(0);   // 32-bits offset (4 bytes)
1207 }
1208 
1209 void Assembler::addr_nop_8() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8((unsigned char)0x84);
1215                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1216   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1217   emit_int32(0);   // 32-bits offset (4 bytes)
1218 }
1219 
1220 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1222   if (VM_Version::supports_evex()) {
1223     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1224   } else {
1225     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1226   }
1227 }
1228 
1229 void Assembler::addsd(XMMRegister dst, Address src) {
1230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1231   if (VM_Version::supports_evex()) {
1232     tuple_type = EVEX_T1S;
1233     input_size_in_bits = EVEX_64bit;
1234     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1235   } else {
1236     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1237   }
1238 }
1239 
1240 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1242   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1243 }
1244 
1245 void Assembler::addss(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1247   if (VM_Version::supports_evex()) {
1248     tuple_type = EVEX_T1S;
1249     input_size_in_bits = EVEX_32bit;
1250   }
1251   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1252 }
1253 
1254 void Assembler::aesdec(XMMRegister dst, Address src) {
1255   assert(VM_Version::supports_aes(), "");
1256   InstructionMark im(this);
1257   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1258               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1259   emit_int8((unsigned char)0xDE);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1264   assert(VM_Version::supports_aes(), "");
1265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1266                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1267   emit_int8((unsigned char)0xDE);
1268   emit_int8(0xC0 | encode);
1269 }
1270 
1271 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1272   assert(VM_Version::supports_aes(), "");
1273   InstructionMark im(this);
1274   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1275               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1276   emit_int8((unsigned char)0xDF);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1281   assert(VM_Version::supports_aes(), "");
1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1283                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1284   emit_int8((unsigned char)0xDF);
1285   emit_int8((unsigned char)(0xC0 | encode));
1286 }
1287 
1288 void Assembler::aesenc(XMMRegister dst, Address src) {
1289   assert(VM_Version::supports_aes(), "");
1290   InstructionMark im(this);
1291   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1292               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1293   emit_int8((unsigned char)0xDC);
1294   emit_operand(dst, src);
1295 }
1296 
1297 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1298   assert(VM_Version::supports_aes(), "");
1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1300                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1301   emit_int8((unsigned char)0xDC);
1302   emit_int8(0xC0 | encode);
1303 }
1304 
1305 void Assembler::aesenclast(XMMRegister dst, Address src) {
1306   assert(VM_Version::supports_aes(), "");
1307   InstructionMark im(this);
1308   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1309               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1310   emit_int8((unsigned char)0xDD);
1311   emit_operand(dst, src);
1312 }
1313 
1314 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1315   assert(VM_Version::supports_aes(), "");
1316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1317                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1318   emit_int8((unsigned char)0xDD);
1319   emit_int8((unsigned char)(0xC0 | encode));
1320 }
1321 
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode(dst, src1, src2, false);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38(dst, src1, src2, false);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode(rbx, dst, src, false);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38(rbx, dst, src, false);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode(rdx, dst, src, false);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38(rdx, dst, src, false);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode(rcx, dst, src, false);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38(rcx, dst, src, false);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     tuple_type = EVEX_T1S;
1573     input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     tuple_type = EVEX_T1S;
1592     input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1611 }
1612 
1613 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1616 }
1617 
1618 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1620   if (VM_Version::supports_evex()) {
1621     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1622   } else {
1623     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1624   }
1625 }
1626 
1627 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   if (VM_Version::supports_evex()) {
1630     tuple_type = EVEX_T1F;
1631     input_size_in_bits = EVEX_64bit;
1632     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1633   } else {
1634     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1635   }
1636 }
1637 
1638 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1640   int encode = 0;
1641   if (VM_Version::supports_evex()) {
1642     encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
1643   } else {
1644     encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
1645   }
1646   emit_int8(0x2A);
1647   emit_int8((unsigned char)(0xC0 | encode));
1648 }
1649 
1650 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   if (VM_Version::supports_evex()) {
1653     tuple_type = EVEX_T1S;
1654     input_size_in_bits = EVEX_32bit;
1655     emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
1656   } else {
1657     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1658   }
1659 }
1660 
1661 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
1664   emit_int8(0x2A);
1665   emit_int8((unsigned char)(0xC0 | encode));
1666 }
1667 
1668 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1669   if (VM_Version::supports_evex()) {
1670     tuple_type = EVEX_T1S;
1671     input_size_in_bits = EVEX_32bit;
1672   }
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
1675 }
1676 
1677 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1679   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1680 }
1681 
1682 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1683   if (VM_Version::supports_evex()) {
1684     tuple_type = EVEX_T1S;
1685     input_size_in_bits = EVEX_32bit;
1686   }
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 
1692 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1694   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
1695   emit_int8(0x2C);
1696   emit_int8((unsigned char)(0xC0 | encode));
1697 }
1698 
1699 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1701   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
1702   emit_int8(0x2C);
1703   emit_int8((unsigned char)(0xC0 | encode));
1704 }
1705 
1706 void Assembler::decl(Address dst) {
1707   // Don't use it directly. Use MacroAssembler::decrement() instead.
1708   InstructionMark im(this);
1709   prefix(dst);
1710   emit_int8((unsigned char)0xFF);
1711   emit_operand(rcx, dst);
1712 }
1713 
1714 void Assembler::divsd(XMMRegister dst, Address src) {
1715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1716   if (VM_Version::supports_evex()) {
1717     tuple_type = EVEX_T1S;
1718     input_size_in_bits = EVEX_64bit;
1719     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1720   } else {
1721     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1722   }
1723 }
1724 
1725 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   if (VM_Version::supports_evex()) {
1728     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1729   } else {
1730     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1731   }
1732 }
1733 
1734 void Assembler::divss(XMMRegister dst, Address src) {
1735   if (VM_Version::supports_evex()) {
1736     tuple_type = EVEX_T1S;
1737     input_size_in_bits = EVEX_32bit;
1738   }
1739   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1740   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1741 }
1742 
1743 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1744   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1745   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1746 }
1747 
1748 void Assembler::emms() {
1749   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1750   emit_int8(0x0F);
1751   emit_int8(0x77);
1752 }
1753 
1754 void Assembler::hlt() {
1755   emit_int8((unsigned char)0xF4);
1756 }
1757 
1758 void Assembler::idivl(Register src) {
1759   int encode = prefix_and_encode(src->encoding());
1760   emit_int8((unsigned char)0xF7);
1761   emit_int8((unsigned char)(0xF8 | encode));
1762 }
1763 
1764 void Assembler::divl(Register src) { // Unsigned
1765   int encode = prefix_and_encode(src->encoding());
1766   emit_int8((unsigned char)0xF7);
1767   emit_int8((unsigned char)(0xF0 | encode));
1768 }
1769 
1770 void Assembler::imull(Register dst, Register src) {
1771   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1772   emit_int8(0x0F);
1773   emit_int8((unsigned char)0xAF);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 
1778 void Assembler::imull(Register dst, Register src, int value) {
1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1780   if (is8bit(value)) {
1781     emit_int8(0x6B);
1782     emit_int8((unsigned char)(0xC0 | encode));
1783     emit_int8(value & 0xFF);
1784   } else {
1785     emit_int8(0x69);
1786     emit_int8((unsigned char)(0xC0 | encode));
1787     emit_int32(value);
1788   }
1789 }
1790 
1791 void Assembler::imull(Register dst, Address src) {
1792   InstructionMark im(this);
1793   prefix(src, dst);
1794   emit_int8(0x0F);
1795   emit_int8((unsigned char) 0xAF);
1796   emit_operand(dst, src);
1797 }
1798 
1799 
1800 void Assembler::incl(Address dst) {
1801   // Don't use it directly. Use MacroAssembler::increment() instead.
1802   InstructionMark im(this);
1803   prefix(dst);
1804   emit_int8((unsigned char)0xFF);
1805   emit_operand(rax, dst);
1806 }
1807 
1808 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1809   InstructionMark im(this);
1810   assert((0 <= cc) && (cc < 16), "illegal cc");
1811   if (L.is_bound()) {
1812     address dst = target(L);
1813     assert(dst != NULL, "jcc most probably wrong");
1814 
1815     const int short_size = 2;
1816     const int long_size = 6;
1817     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1818     if (maybe_short && is8bit(offs - short_size)) {
1819       // 0111 tttn #8-bit disp
1820       emit_int8(0x70 | cc);
1821       emit_int8((offs - short_size) & 0xFF);
1822     } else {
1823       // 0000 1111 1000 tttn #32-bit disp
1824       assert(is_simm32(offs - long_size),
1825              "must be 32bit offset (call4)");
1826       emit_int8(0x0F);
1827       emit_int8((unsigned char)(0x80 | cc));
1828       emit_int32(offs - long_size);
1829     }
1830   } else {
1831     // Note: could eliminate cond. jumps to this jump if condition
1832     //       is the same however, seems to be rather unlikely case.
1833     // Note: use jccb() if label to be bound is very close to get
1834     //       an 8-bit displacement
1835     L.add_patch_at(code(), locator());
1836     emit_int8(0x0F);
1837     emit_int8((unsigned char)(0x80 | cc));
1838     emit_int32(0);
1839   }
1840 }
1841 
1842 void Assembler::jccb(Condition cc, Label& L) {
1843   if (L.is_bound()) {
1844     const int short_size = 2;
1845     address entry = target(L);
1846 #ifdef ASSERT
1847     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1848     intptr_t delta = short_branch_delta();
1849     if (delta != 0) {
1850       dist += (dist < 0 ? (-delta) :delta);
1851     }
1852     assert(is8bit(dist), "Dispacement too large for a short jmp");
1853 #endif
1854     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1855     // 0111 tttn #8-bit disp
1856     emit_int8(0x70 | cc);
1857     emit_int8((offs - short_size) & 0xFF);
1858   } else {
1859     InstructionMark im(this);
1860     L.add_patch_at(code(), locator());
1861     emit_int8(0x70 | cc);
1862     emit_int8(0);
1863   }
1864 }
1865 
1866 void Assembler::jmp(Address adr) {
1867   InstructionMark im(this);
1868   prefix(adr);
1869   emit_int8((unsigned char)0xFF);
1870   emit_operand(rsp, adr);
1871 }
1872 
1873 void Assembler::jmp(Label& L, bool maybe_short) {
1874   if (L.is_bound()) {
1875     address entry = target(L);
1876     assert(entry != NULL, "jmp most probably wrong");
1877     InstructionMark im(this);
1878     const int short_size = 2;
1879     const int long_size = 5;
1880     intptr_t offs = entry - pc();
1881     if (maybe_short && is8bit(offs - short_size)) {
1882       emit_int8((unsigned char)0xEB);
1883       emit_int8((offs - short_size) & 0xFF);
1884     } else {
1885       emit_int8((unsigned char)0xE9);
1886       emit_int32(offs - long_size);
1887     }
1888   } else {
1889     // By default, forward jumps are always 32-bit displacements, since
1890     // we can't yet know where the label will be bound.  If you're sure that
1891     // the forward jump will not run beyond 256 bytes, use jmpb to
1892     // force an 8-bit displacement.
1893     InstructionMark im(this);
1894     L.add_patch_at(code(), locator());
1895     emit_int8((unsigned char)0xE9);
1896     emit_int32(0);
1897   }
1898 }
1899 
1900 void Assembler::jmp(Register entry) {
1901   int encode = prefix_and_encode(entry->encoding());
1902   emit_int8((unsigned char)0xFF);
1903   emit_int8((unsigned char)(0xE0 | encode));
1904 }
1905 
1906 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1907   InstructionMark im(this);
1908   emit_int8((unsigned char)0xE9);
1909   assert(dest != NULL, "must have a target");
1910   intptr_t disp = dest - (pc() + sizeof(int32_t));
1911   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1912   emit_data(disp, rspec.reloc(), call32_operand);
1913 }
1914 
1915 void Assembler::jmpb(Label& L) {
1916   if (L.is_bound()) {
1917     const int short_size = 2;
1918     address entry = target(L);
1919     assert(entry != NULL, "jmp most probably wrong");
1920 #ifdef ASSERT
1921     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1922     intptr_t delta = short_branch_delta();
1923     if (delta != 0) {
1924       dist += (dist < 0 ? (-delta) :delta);
1925     }
1926     assert(is8bit(dist), "Dispacement too large for a short jmp");
1927 #endif
1928     intptr_t offs = entry - pc();
1929     emit_int8((unsigned char)0xEB);
1930     emit_int8((offs - short_size) & 0xFF);
1931   } else {
1932     InstructionMark im(this);
1933     L.add_patch_at(code(), locator());
1934     emit_int8((unsigned char)0xEB);
1935     emit_int8(0);
1936   }
1937 }
1938 
1939 void Assembler::ldmxcsr( Address src) {
1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1941   InstructionMark im(this);
1942   prefix(src);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char)0xAE);
1945   emit_operand(as_Register(2), src);
1946 }
1947 
1948 void Assembler::leal(Register dst, Address src) {
1949   InstructionMark im(this);
1950 #ifdef _LP64
1951   emit_int8(0x67); // addr32
1952   prefix(src, dst);
1953 #endif // LP64
1954   emit_int8((unsigned char)0x8D);
1955   emit_operand(dst, src);
1956 }
1957 
1958 void Assembler::lfence() {
1959   emit_int8(0x0F);
1960   emit_int8((unsigned char)0xAE);
1961   emit_int8((unsigned char)0xE8);
1962 }
1963 
1964 void Assembler::lock() {
1965   emit_int8((unsigned char)0xF0);
1966 }
1967 
1968 void Assembler::lzcntl(Register dst, Register src) {
1969   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1970   emit_int8((unsigned char)0xF3);
1971   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xBD);
1974   emit_int8((unsigned char)(0xC0 | encode));
1975 }
1976 
1977 // Emit mfence instruction
1978 void Assembler::mfence() {
1979   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xAE);
1982   emit_int8((unsigned char)0xF0);
1983 }
1984 
1985 void Assembler::mov(Register dst, Register src) {
1986   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1987 }
1988 
1989 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1991   if (VM_Version::supports_evex()) {
1992     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
1993   } else {
1994     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1995   }
1996 }
1997 
1998 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1999   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2000   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2001 }
2002 
2003 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2005   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
2006                                       false, AVX_128bit);
2007   emit_int8(0x16);
2008   emit_int8((unsigned char)(0xC0 | encode));
2009 }
2010 
2011 void Assembler::movb(Register dst, Address src) {
2012   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2013   InstructionMark im(this);
2014   prefix(src, dst, true);
2015   emit_int8((unsigned char)0x8A);
2016   emit_operand(dst, src);
2017 }
2018 
2019 void Assembler::kmovq(KRegister dst, KRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2021   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2022                                       true, VEX_OPCODE_0F, true);
2023   emit_int8((unsigned char)0x90);
2024   emit_int8((unsigned char)(0xC0 | encode));
2025 }
2026 
2027 void Assembler::kmovq(KRegister dst, Address src) {
2028   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2029   int dst_enc = dst->encoding();
2030   int nds_enc = 0;
2031   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2032              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2033   emit_int8((unsigned char)0x90);
2034   emit_operand((Register)dst, src);
2035 }
2036 
2037 void Assembler::kmovq(Address dst, KRegister src) {
2038   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2039   int src_enc = src->encoding();
2040   int nds_enc = 0;
2041   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2042              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2043   emit_int8((unsigned char)0x90);
2044   emit_operand((Register)src, dst);
2045 }
2046 
2047 void Assembler::kmovql(KRegister dst, Register src) {
2048   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2049   bool supports_bw = VM_Version::supports_avx512bw();
2050   VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2051   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
2052                                       VEX_OPCODE_0F, supports_bw);
2053   emit_int8((unsigned char)0x92);
2054   emit_int8((unsigned char)(0xC0 | encode));
2055 }
2056 
2057 void Assembler::kmovdl(KRegister dst, Register src) {
2058   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2059   VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2060   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
2061   emit_int8((unsigned char)0x92);
2062   emit_int8((unsigned char)(0xC0 | encode));
2063 }
2064 
2065 void Assembler::movb(Address dst, int imm8) {
2066   InstructionMark im(this);
2067    prefix(dst);
2068   emit_int8((unsigned char)0xC6);
2069   emit_operand(rax, dst, 1);
2070   emit_int8(imm8);
2071 }
2072 
2073 
2074 void Assembler::movb(Address dst, Register src) {
2075   assert(src->has_byte_register(), "must have byte register");
2076   InstructionMark im(this);
2077   prefix(dst, src, true);
2078   emit_int8((unsigned char)0x88);
2079   emit_operand(src, dst);
2080 }
2081 
2082 void Assembler::movdl(XMMRegister dst, Register src) {
2083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2084   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
2085   emit_int8(0x6E);
2086   emit_int8((unsigned char)(0xC0 | encode));
2087 }
2088 
2089 void Assembler::movdl(Register dst, XMMRegister src) {
2090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2091   // swap src/dst to get correct prefix
2092   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
2093   emit_int8(0x7E);
2094   emit_int8((unsigned char)(0xC0 | encode));
2095 }
2096 
2097 void Assembler::movdl(XMMRegister dst, Address src) {
2098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2099   if (VM_Version::supports_evex()) {
2100     tuple_type = EVEX_T1S;
2101     input_size_in_bits = EVEX_32bit;
2102   }
2103   InstructionMark im(this);
2104   simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
2105   emit_int8(0x6E);
2106   emit_operand(dst, src);
2107 }
2108 
2109 void Assembler::movdl(Address dst, XMMRegister src) {
2110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2111   if (VM_Version::supports_evex()) {
2112     tuple_type = EVEX_T1S;
2113     input_size_in_bits = EVEX_32bit;
2114   }
2115   InstructionMark im(this);
2116   simd_prefix(dst, src, VEX_SIMD_66, true);
2117   emit_int8(0x7E);
2118   emit_operand(src, dst);
2119 }
2120 
2121 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2124 }
2125 
2126 void Assembler::movdqa(XMMRegister dst, Address src) {
2127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2128   if (VM_Version::supports_evex()) {
2129     tuple_type = EVEX_FVM;
2130   }
2131   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2132 }
2133 
2134 void Assembler::movdqu(XMMRegister dst, Address src) {
2135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2136   if (VM_Version::supports_evex()) {
2137     tuple_type = EVEX_FVM;
2138   }
2139   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2140 }
2141 
2142 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2144   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2145 }
2146 
2147 void Assembler::movdqu(Address dst, XMMRegister src) {
2148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2149   if (VM_Version::supports_evex()) {
2150     tuple_type = EVEX_FVM;
2151   }
2152   InstructionMark im(this);
2153   simd_prefix(dst, src, VEX_SIMD_F3, false);
2154   emit_int8(0x7F);
2155   emit_operand(src, dst);
2156 }
2157 
2158 // Move Unaligned 256bit Vector
2159 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2160   assert(UseAVX > 0, "");
2161   if (VM_Version::supports_evex()) {
2162     tuple_type = EVEX_FVM;
2163   }
2164   int vector_len = AVX_256bit;
2165   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2166   emit_int8(0x6F);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2171   assert(UseAVX > 0, "");
2172   if (VM_Version::supports_evex()) {
2173     tuple_type = EVEX_FVM;
2174   }
2175   InstructionMark im(this);
2176   int vector_len = AVX_256bit;
2177   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2178   emit_int8(0x6F);
2179   emit_operand(dst, src);
2180 }
2181 
2182 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2183   assert(UseAVX > 0, "");
2184   if (VM_Version::supports_evex()) {
2185     tuple_type = EVEX_FVM;
2186   }
2187   InstructionMark im(this);
2188   int vector_len = AVX_256bit;
2189   // swap src<->dst for encoding
2190   assert(src != xnoreg, "sanity");
2191   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2192   emit_int8(0x7F);
2193   emit_operand(src, dst);
2194 }
2195 
2196 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2197 void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2198   assert(UseAVX > 0, "");
2199   int src_enc = src->encoding();
2200   int dst_enc = dst->encoding();
2201   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2202                                      true, vector_len, false, false);
2203   emit_int8(0x6F);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
2208   assert(UseAVX > 0, "");
2209   InstructionMark im(this);
2210   if (VM_Version::supports_evex()) {
2211     tuple_type = EVEX_FVM;
2212     vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2213   } else {
2214     vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2215   }
2216   emit_int8(0x6F);
2217   emit_operand(dst, src);
2218 }
2219 
2220 void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
2221   assert(UseAVX > 0, "");
2222   InstructionMark im(this);
2223   assert(src != xnoreg, "sanity");
2224   if (VM_Version::supports_evex()) {
2225     tuple_type = EVEX_FVM;
2226     // swap src<->dst for encoding
2227     vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2228   } else {
2229     // swap src<->dst for encoding
2230     vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2231   }
2232   emit_int8(0x7F);
2233   emit_operand(src, dst);
2234 }
2235 
2236 // Uses zero extension on 64bit
2237 
2238 void Assembler::movl(Register dst, int32_t imm32) {
2239   int encode = prefix_and_encode(dst->encoding());
2240   emit_int8((unsigned char)(0xB8 | encode));
2241   emit_int32(imm32);
2242 }
2243 
2244 void Assembler::movl(Register dst, Register src) {
2245   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2246   emit_int8((unsigned char)0x8B);
2247   emit_int8((unsigned char)(0xC0 | encode));
2248 }
2249 
2250 void Assembler::movl(Register dst, Address src) {
2251   InstructionMark im(this);
2252   prefix(src, dst);
2253   emit_int8((unsigned char)0x8B);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movl(Address dst, int32_t imm32) {
2258   InstructionMark im(this);
2259   prefix(dst);
2260   emit_int8((unsigned char)0xC7);
2261   emit_operand(rax, dst, 4);
2262   emit_int32(imm32);
2263 }
2264 
2265 void Assembler::movl(Address dst, Register src) {
2266   InstructionMark im(this);
2267   prefix(dst, src);
2268   emit_int8((unsigned char)0x89);
2269   emit_operand(src, dst);
2270 }
2271 
2272 // New cpus require to use movsd and movss to avoid partial register stall
2273 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2274 // The selection is done in MacroAssembler::movdbl() and movflt().
2275 void Assembler::movlpd(XMMRegister dst, Address src) {
2276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2277   if (VM_Version::supports_evex()) {
2278     tuple_type = EVEX_T1S;
2279     input_size_in_bits = EVEX_32bit;
2280   }
2281   emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
2282 }
2283 
2284 void Assembler::movq( MMXRegister dst, Address src ) {
2285   assert( VM_Version::supports_mmx(), "" );
2286   emit_int8(0x0F);
2287   emit_int8(0x6F);
2288   emit_operand(dst, src);
2289 }
2290 
2291 void Assembler::movq( Address dst, MMXRegister src ) {
2292   assert( VM_Version::supports_mmx(), "" );
2293   emit_int8(0x0F);
2294   emit_int8(0x7F);
2295   // workaround gcc (3.2.1-7a) bug
2296   // In that version of gcc with only an emit_operand(MMX, Address)
2297   // gcc will tail jump and try and reverse the parameters completely
2298   // obliterating dst in the process. By having a version available
2299   // that doesn't need to swap the args at the tail jump the bug is
2300   // avoided.
2301   emit_operand(dst, src);
2302 }
2303 
2304 void Assembler::movq(XMMRegister dst, Address src) {
2305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2306   InstructionMark im(this);
2307   if (VM_Version::supports_evex()) {
2308     tuple_type = EVEX_T1S;
2309     input_size_in_bits = EVEX_64bit;
2310     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
2311   } else {
2312     simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
2313   }
2314   emit_int8(0x7E);
2315   emit_operand(dst, src);
2316 }
2317 
2318 void Assembler::movq(Address dst, XMMRegister src) {
2319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2320   InstructionMark im(this);
2321   if (VM_Version::supports_evex()) {
2322     tuple_type = EVEX_T1S;
2323     input_size_in_bits = EVEX_64bit;
2324     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
2325                 VEX_OPCODE_0F, true, AVX_128bit);
2326   } else {
2327     simd_prefix(dst, src, VEX_SIMD_66, true);
2328   }
2329   emit_int8((unsigned char)0xD6);
2330   emit_operand(src, dst);
2331 }
2332 
2333 void Assembler::movsbl(Register dst, Address src) { // movsxb
2334   InstructionMark im(this);
2335   prefix(src, dst);
2336   emit_int8(0x0F);
2337   emit_int8((unsigned char)0xBE);
2338   emit_operand(dst, src);
2339 }
2340 
2341 void Assembler::movsbl(Register dst, Register src) { // movsxb
2342   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2343   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2344   emit_int8(0x0F);
2345   emit_int8((unsigned char)0xBE);
2346   emit_int8((unsigned char)(0xC0 | encode));
2347 }
2348 
2349 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2351   if (VM_Version::supports_evex()) {
2352     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
2353   } else {
2354     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2355   }
2356 }
2357 
2358 void Assembler::movsd(XMMRegister dst, Address src) {
2359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2360   if (VM_Version::supports_evex()) {
2361     tuple_type = EVEX_T1S;
2362     input_size_in_bits = EVEX_64bit;
2363     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
2364   } else {
2365     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2366   }
2367 }
2368 
2369 void Assembler::movsd(Address dst, XMMRegister src) {
2370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2371   InstructionMark im(this);
2372   if (VM_Version::supports_evex()) {
2373     tuple_type = EVEX_T1S;
2374     input_size_in_bits = EVEX_64bit;
2375     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2376   } else {
2377     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
2378   }
2379   emit_int8(0x11);
2380   emit_operand(src, dst);
2381 }
2382 
2383 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2384   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2385   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
2386 }
2387 
2388 void Assembler::movss(XMMRegister dst, Address src) {
2389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2390   if (VM_Version::supports_evex()) {
2391     tuple_type = EVEX_T1S;
2392     input_size_in_bits = EVEX_32bit;
2393   }
2394   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
2395 }
2396 
2397 void Assembler::movss(Address dst, XMMRegister src) {
2398   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2399   if (VM_Version::supports_evex()) {
2400     tuple_type = EVEX_T1S;
2401     input_size_in_bits = EVEX_32bit;
2402   }
2403   InstructionMark im(this);
2404   simd_prefix(dst, src, VEX_SIMD_F3, false);
2405   emit_int8(0x11);
2406   emit_operand(src, dst);
2407 }
2408 
2409 void Assembler::movswl(Register dst, Address src) { // movsxw
2410   InstructionMark im(this);
2411   prefix(src, dst);
2412   emit_int8(0x0F);
2413   emit_int8((unsigned char)0xBF);
2414   emit_operand(dst, src);
2415 }
2416 
2417 void Assembler::movswl(Register dst, Register src) { // movsxw
2418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2419   emit_int8(0x0F);
2420   emit_int8((unsigned char)0xBF);
2421   emit_int8((unsigned char)(0xC0 | encode));
2422 }
2423 
2424 void Assembler::movw(Address dst, int imm16) {
2425   InstructionMark im(this);
2426 
2427   emit_int8(0x66); // switch to 16-bit mode
2428   prefix(dst);
2429   emit_int8((unsigned char)0xC7);
2430   emit_operand(rax, dst, 2);
2431   emit_int16(imm16);
2432 }
2433 
2434 void Assembler::movw(Register dst, Address src) {
2435   InstructionMark im(this);
2436   emit_int8(0x66);
2437   prefix(src, dst);
2438   emit_int8((unsigned char)0x8B);
2439   emit_operand(dst, src);
2440 }
2441 
2442 void Assembler::movw(Address dst, Register src) {
2443   InstructionMark im(this);
2444   emit_int8(0x66);
2445   prefix(dst, src);
2446   emit_int8((unsigned char)0x89);
2447   emit_operand(src, dst);
2448 }
2449 
2450 void Assembler::movzbl(Register dst, Address src) { // movzxb
2451   InstructionMark im(this);
2452   prefix(src, dst);
2453   emit_int8(0x0F);
2454   emit_int8((unsigned char)0xB6);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::movzbl(Register dst, Register src) { // movzxb
2459   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2460   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2461   emit_int8(0x0F);
2462   emit_int8((unsigned char)0xB6);
2463   emit_int8(0xC0 | encode);
2464 }
2465 
2466 void Assembler::movzwl(Register dst, Address src) { // movzxw
2467   InstructionMark im(this);
2468   prefix(src, dst);
2469   emit_int8(0x0F);
2470   emit_int8((unsigned char)0xB7);
2471   emit_operand(dst, src);
2472 }
2473 
2474 void Assembler::movzwl(Register dst, Register src) { // movzxw
2475   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2476   emit_int8(0x0F);
2477   emit_int8((unsigned char)0xB7);
2478   emit_int8(0xC0 | encode);
2479 }
2480 
2481 void Assembler::mull(Address src) {
2482   InstructionMark im(this);
2483   prefix(src);
2484   emit_int8((unsigned char)0xF7);
2485   emit_operand(rsp, src);
2486 }
2487 
2488 void Assembler::mull(Register src) {
2489   int encode = prefix_and_encode(src->encoding());
2490   emit_int8((unsigned char)0xF7);
2491   emit_int8((unsigned char)(0xE0 | encode));
2492 }
2493 
2494 void Assembler::mulsd(XMMRegister dst, Address src) {
2495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2496   if (VM_Version::supports_evex()) {
2497     tuple_type = EVEX_T1S;
2498     input_size_in_bits = EVEX_64bit;
2499     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2500   } else {
2501     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2502   }
2503 }
2504 
2505 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2507   if (VM_Version::supports_evex()) {
2508     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2509   } else {
2510     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2511   }
2512 }
2513 
2514 void Assembler::mulss(XMMRegister dst, Address src) {
2515   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2516   if (VM_Version::supports_evex()) {
2517     tuple_type = EVEX_T1S;
2518     input_size_in_bits = EVEX_32bit;
2519   }
2520   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2521 }
2522 
2523 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2524   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2525   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2526 }
2527 
2528 void Assembler::negl(Register dst) {
2529   int encode = prefix_and_encode(dst->encoding());
2530   emit_int8((unsigned char)0xF7);
2531   emit_int8((unsigned char)(0xD8 | encode));
2532 }
2533 
2534 void Assembler::nop(int i) {
2535 #ifdef ASSERT
2536   assert(i > 0, " ");
2537   // The fancy nops aren't currently recognized by debuggers making it a
2538   // pain to disassemble code while debugging. If asserts are on clearly
2539   // speed is not an issue so simply use the single byte traditional nop
2540   // to do alignment.
2541 
2542   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2543   return;
2544 
2545 #endif // ASSERT
2546 
2547   if (UseAddressNop && VM_Version::is_intel()) {
2548     //
2549     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2550     //  1: 0x90
2551     //  2: 0x66 0x90
2552     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2553     //  4: 0x0F 0x1F 0x40 0x00
2554     //  5: 0x0F 0x1F 0x44 0x00 0x00
2555     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2556     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2557     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2558     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2559     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2560     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2561 
2562     // The rest coding is Intel specific - don't use consecutive address nops
2563 
2564     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2565     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2566     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2567     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2568 
2569     while(i >= 15) {
2570       // For Intel don't generate consecutive addess nops (mix with regular nops)
2571       i -= 15;
2572       emit_int8(0x66);   // size prefix
2573       emit_int8(0x66);   // size prefix
2574       emit_int8(0x66);   // size prefix
2575       addr_nop_8();
2576       emit_int8(0x66);   // size prefix
2577       emit_int8(0x66);   // size prefix
2578       emit_int8(0x66);   // size prefix
2579       emit_int8((unsigned char)0x90);
2580                          // nop
2581     }
2582     switch (i) {
2583       case 14:
2584         emit_int8(0x66); // size prefix
2585       case 13:
2586         emit_int8(0x66); // size prefix
2587       case 12:
2588         addr_nop_8();
2589         emit_int8(0x66); // size prefix
2590         emit_int8(0x66); // size prefix
2591         emit_int8(0x66); // size prefix
2592         emit_int8((unsigned char)0x90);
2593                          // nop
2594         break;
2595       case 11:
2596         emit_int8(0x66); // size prefix
2597       case 10:
2598         emit_int8(0x66); // size prefix
2599       case 9:
2600         emit_int8(0x66); // size prefix
2601       case 8:
2602         addr_nop_8();
2603         break;
2604       case 7:
2605         addr_nop_7();
2606         break;
2607       case 6:
2608         emit_int8(0x66); // size prefix
2609       case 5:
2610         addr_nop_5();
2611         break;
2612       case 4:
2613         addr_nop_4();
2614         break;
2615       case 3:
2616         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2617         emit_int8(0x66); // size prefix
2618       case 2:
2619         emit_int8(0x66); // size prefix
2620       case 1:
2621         emit_int8((unsigned char)0x90);
2622                          // nop
2623         break;
2624       default:
2625         assert(i == 0, " ");
2626     }
2627     return;
2628   }
2629   if (UseAddressNop && VM_Version::is_amd()) {
2630     //
2631     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2632     //  1: 0x90
2633     //  2: 0x66 0x90
2634     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2635     //  4: 0x0F 0x1F 0x40 0x00
2636     //  5: 0x0F 0x1F 0x44 0x00 0x00
2637     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2638     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2639     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2640     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2641     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2642     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2643 
2644     // The rest coding is AMD specific - use consecutive address nops
2645 
2646     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2647     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2648     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2649     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2650     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2651     //     Size prefixes (0x66) are added for larger sizes
2652 
2653     while(i >= 22) {
2654       i -= 11;
2655       emit_int8(0x66); // size prefix
2656       emit_int8(0x66); // size prefix
2657       emit_int8(0x66); // size prefix
2658       addr_nop_8();
2659     }
2660     // Generate first nop for size between 21-12
2661     switch (i) {
2662       case 21:
2663         i -= 1;
2664         emit_int8(0x66); // size prefix
2665       case 20:
2666       case 19:
2667         i -= 1;
2668         emit_int8(0x66); // size prefix
2669       case 18:
2670       case 17:
2671         i -= 1;
2672         emit_int8(0x66); // size prefix
2673       case 16:
2674       case 15:
2675         i -= 8;
2676         addr_nop_8();
2677         break;
2678       case 14:
2679       case 13:
2680         i -= 7;
2681         addr_nop_7();
2682         break;
2683       case 12:
2684         i -= 6;
2685         emit_int8(0x66); // size prefix
2686         addr_nop_5();
2687         break;
2688       default:
2689         assert(i < 12, " ");
2690     }
2691 
2692     // Generate second nop for size between 11-1
2693     switch (i) {
2694       case 11:
2695         emit_int8(0x66); // size prefix
2696       case 10:
2697         emit_int8(0x66); // size prefix
2698       case 9:
2699         emit_int8(0x66); // size prefix
2700       case 8:
2701         addr_nop_8();
2702         break;
2703       case 7:
2704         addr_nop_7();
2705         break;
2706       case 6:
2707         emit_int8(0x66); // size prefix
2708       case 5:
2709         addr_nop_5();
2710         break;
2711       case 4:
2712         addr_nop_4();
2713         break;
2714       case 3:
2715         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2716         emit_int8(0x66); // size prefix
2717       case 2:
2718         emit_int8(0x66); // size prefix
2719       case 1:
2720         emit_int8((unsigned char)0x90);
2721                          // nop
2722         break;
2723       default:
2724         assert(i == 0, " ");
2725     }
2726     return;
2727   }
2728 
2729   // Using nops with size prefixes "0x66 0x90".
2730   // From AMD Optimization Guide:
2731   //  1: 0x90
2732   //  2: 0x66 0x90
2733   //  3: 0x66 0x66 0x90
2734   //  4: 0x66 0x66 0x66 0x90
2735   //  5: 0x66 0x66 0x90 0x66 0x90
2736   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2737   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2738   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2739   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2740   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2741   //
2742   while(i > 12) {
2743     i -= 4;
2744     emit_int8(0x66); // size prefix
2745     emit_int8(0x66);
2746     emit_int8(0x66);
2747     emit_int8((unsigned char)0x90);
2748                      // nop
2749   }
2750   // 1 - 12 nops
2751   if(i > 8) {
2752     if(i > 9) {
2753       i -= 1;
2754       emit_int8(0x66);
2755     }
2756     i -= 3;
2757     emit_int8(0x66);
2758     emit_int8(0x66);
2759     emit_int8((unsigned char)0x90);
2760   }
2761   // 1 - 8 nops
2762   if(i > 4) {
2763     if(i > 6) {
2764       i -= 1;
2765       emit_int8(0x66);
2766     }
2767     i -= 3;
2768     emit_int8(0x66);
2769     emit_int8(0x66);
2770     emit_int8((unsigned char)0x90);
2771   }
2772   switch (i) {
2773     case 4:
2774       emit_int8(0x66);
2775     case 3:
2776       emit_int8(0x66);
2777     case 2:
2778       emit_int8(0x66);
2779     case 1:
2780       emit_int8((unsigned char)0x90);
2781       break;
2782     default:
2783       assert(i == 0, " ");
2784   }
2785 }
2786 
2787 void Assembler::notl(Register dst) {
2788   int encode = prefix_and_encode(dst->encoding());
2789   emit_int8((unsigned char)0xF7);
2790   emit_int8((unsigned char)(0xD0 | encode));
2791 }
2792 
2793 void Assembler::orl(Address dst, int32_t imm32) {
2794   InstructionMark im(this);
2795   prefix(dst);
2796   emit_arith_operand(0x81, rcx, dst, imm32);
2797 }
2798 
2799 void Assembler::orl(Register dst, int32_t imm32) {
2800   prefix(dst);
2801   emit_arith(0x81, 0xC8, dst, imm32);
2802 }
2803 
2804 void Assembler::orl(Register dst, Address src) {
2805   InstructionMark im(this);
2806   prefix(src, dst);
2807   emit_int8(0x0B);
2808   emit_operand(dst, src);
2809 }
2810 
2811 void Assembler::orl(Register dst, Register src) {
2812   (void) prefix_and_encode(dst->encoding(), src->encoding());
2813   emit_arith(0x0B, 0xC0, dst, src);
2814 }
2815 
2816 void Assembler::packuswb(XMMRegister dst, Address src) {
2817   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2818   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2819   if (VM_Version::supports_evex()) {
2820     tuple_type = EVEX_FV;
2821     input_size_in_bits = EVEX_32bit;
2822   }
2823   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2824                   false, (VM_Version::supports_avx512dq() == false));
2825 }
2826 
2827 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2828   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2829   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2830                   false, (VM_Version::supports_avx512dq() == false));
2831 }
2832 
2833 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2834   assert(UseAVX > 0, "some form of AVX must be enabled");
2835   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
2836                  false, (VM_Version::supports_avx512dq() == false));
2837 }
2838 
2839 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2840   assert(VM_Version::supports_avx2(), "");
2841   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2842                                       VEX_OPCODE_0F_3A, true, vector_len);
2843   emit_int8(0x00);
2844   emit_int8(0xC0 | encode);
2845   emit_int8(imm8);
2846 }
2847 
2848 void Assembler::pause() {
2849   emit_int8((unsigned char)0xF3);
2850   emit_int8((unsigned char)0x90);
2851 }
2852 
2853 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2854   assert(VM_Version::supports_sse4_2(), "");
2855   InstructionMark im(this);
2856   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
2857               false, AVX_128bit, true);
2858   emit_int8(0x61);
2859   emit_operand(dst, src);
2860   emit_int8(imm8);
2861 }
2862 
2863 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2864   assert(VM_Version::supports_sse4_2(), "");
2865   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2866                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
2867   emit_int8(0x61);
2868   emit_int8((unsigned char)(0xC0 | encode));
2869   emit_int8(imm8);
2870 }
2871 
2872 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2873   assert(VM_Version::supports_sse4_1(), "");
2874   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2875                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2876   emit_int8(0x16);
2877   emit_int8((unsigned char)(0xC0 | encode));
2878   emit_int8(imm8);
2879 }
2880 
2881 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2882   assert(VM_Version::supports_sse4_1(), "");
2883   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2884                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2885   emit_int8(0x16);
2886   emit_int8((unsigned char)(0xC0 | encode));
2887   emit_int8(imm8);
2888 }
2889 
2890 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2891   assert(VM_Version::supports_sse4_1(), "");
2892   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2893                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2894   emit_int8(0x22);
2895   emit_int8((unsigned char)(0xC0 | encode));
2896   emit_int8(imm8);
2897 }
2898 
2899 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2900   assert(VM_Version::supports_sse4_1(), "");
2901   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2902                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2903   emit_int8(0x22);
2904   emit_int8((unsigned char)(0xC0 | encode));
2905   emit_int8(imm8);
2906 }
2907 
2908 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2909   assert(VM_Version::supports_sse4_1(), "");
2910   if (VM_Version::supports_evex()) {
2911     tuple_type = EVEX_HVM;
2912   }
2913   InstructionMark im(this);
2914   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2915   emit_int8(0x30);
2916   emit_operand(dst, src);
2917 }
2918 
2919 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2920   assert(VM_Version::supports_sse4_1(), "");
2921   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2922   emit_int8(0x30);
2923   emit_int8((unsigned char)(0xC0 | encode));
2924 }
2925 
2926 // generic
2927 void Assembler::pop(Register dst) {
2928   int encode = prefix_and_encode(dst->encoding());
2929   emit_int8(0x58 | encode);
2930 }
2931 
2932 void Assembler::popcntl(Register dst, Address src) {
2933   assert(VM_Version::supports_popcnt(), "must support");
2934   InstructionMark im(this);
2935   emit_int8((unsigned char)0xF3);
2936   prefix(src, dst);
2937   emit_int8(0x0F);
2938   emit_int8((unsigned char)0xB8);
2939   emit_operand(dst, src);
2940 }
2941 
2942 void Assembler::popcntl(Register dst, Register src) {
2943   assert(VM_Version::supports_popcnt(), "must support");
2944   emit_int8((unsigned char)0xF3);
2945   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2946   emit_int8(0x0F);
2947   emit_int8((unsigned char)0xB8);
2948   emit_int8((unsigned char)(0xC0 | encode));
2949 }
2950 
2951 void Assembler::popf() {
2952   emit_int8((unsigned char)0x9D);
2953 }
2954 
2955 #ifndef _LP64 // no 32bit push/pop on amd64
2956 void Assembler::popl(Address dst) {
2957   // NOTE: this will adjust stack by 8byte on 64bits
2958   InstructionMark im(this);
2959   prefix(dst);
2960   emit_int8((unsigned char)0x8F);
2961   emit_operand(rax, dst);
2962 }
2963 #endif
2964 
2965 void Assembler::prefetch_prefix(Address src) {
2966   prefix(src);
2967   emit_int8(0x0F);
2968 }
2969 
2970 void Assembler::prefetchnta(Address src) {
2971   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2972   InstructionMark im(this);
2973   prefetch_prefix(src);
2974   emit_int8(0x18);
2975   emit_operand(rax, src); // 0, src
2976 }
2977 
2978 void Assembler::prefetchr(Address src) {
2979   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2980   InstructionMark im(this);
2981   prefetch_prefix(src);
2982   emit_int8(0x0D);
2983   emit_operand(rax, src); // 0, src
2984 }
2985 
2986 void Assembler::prefetcht0(Address src) {
2987   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2988   InstructionMark im(this);
2989   prefetch_prefix(src);
2990   emit_int8(0x18);
2991   emit_operand(rcx, src); // 1, src
2992 }
2993 
2994 void Assembler::prefetcht1(Address src) {
2995   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2996   InstructionMark im(this);
2997   prefetch_prefix(src);
2998   emit_int8(0x18);
2999   emit_operand(rdx, src); // 2, src
3000 }
3001 
3002 void Assembler::prefetcht2(Address src) {
3003   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3004   InstructionMark im(this);
3005   prefetch_prefix(src);
3006   emit_int8(0x18);
3007   emit_operand(rbx, src); // 3, src
3008 }
3009 
3010 void Assembler::prefetchw(Address src) {
3011   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3012   InstructionMark im(this);
3013   prefetch_prefix(src);
3014   emit_int8(0x0D);
3015   emit_operand(rcx, src); // 1, src
3016 }
3017 
3018 void Assembler::prefix(Prefix p) {
3019   emit_int8(p);
3020 }
3021 
3022 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3023   assert(VM_Version::supports_ssse3(), "");
3024   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3025                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3026   emit_int8(0x00);
3027   emit_int8((unsigned char)(0xC0 | encode));
3028 }
3029 
3030 void Assembler::pshufb(XMMRegister dst, Address src) {
3031   assert(VM_Version::supports_ssse3(), "");
3032   if (VM_Version::supports_evex()) {
3033     tuple_type = EVEX_FVM;
3034   }
3035   InstructionMark im(this);
3036   simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3037               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3038   emit_int8(0x00);
3039   emit_operand(dst, src);
3040 }
3041 
3042 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3043   assert(isByte(mode), "invalid value");
3044   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3045   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3046   emit_int8(mode & 0xFF);
3047 
3048 }
3049 
3050 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3051   assert(isByte(mode), "invalid value");
3052   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3053   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3054   if (VM_Version::supports_evex()) {
3055     tuple_type = EVEX_FV;
3056     input_size_in_bits = EVEX_32bit;
3057   }
3058   InstructionMark im(this);
3059   simd_prefix(dst, src, VEX_SIMD_66, false);
3060   emit_int8(0x70);
3061   emit_operand(dst, src);
3062   emit_int8(mode & 0xFF);
3063 }
3064 
3065 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3066   assert(isByte(mode), "invalid value");
3067   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3068   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
3069                         (VM_Version::supports_avx512bw() == false));
3070   emit_int8(mode & 0xFF);
3071 }
3072 
3073 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3074   assert(isByte(mode), "invalid value");
3075   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3076   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3077   if (VM_Version::supports_evex()) {
3078     tuple_type = EVEX_FVM;
3079   }
3080   InstructionMark im(this);
3081   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
3082               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3083   emit_int8(0x70);
3084   emit_operand(dst, src);
3085   emit_int8(mode & 0xFF);
3086 }
3087 
3088 void Assembler::psrldq(XMMRegister dst, int shift) {
3089   // Shift 128 bit value in xmm register by number of bytes.
3090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3091   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F,
3092                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3093   emit_int8(0x73);
3094   emit_int8((unsigned char)(0xC0 | encode));
3095   emit_int8(shift);
3096 }
3097 
3098 void Assembler::ptest(XMMRegister dst, Address src) {
3099   assert(VM_Version::supports_sse4_1(), "");
3100   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3101   InstructionMark im(this);
3102   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
3103   emit_int8(0x17);
3104   emit_operand(dst, src);
3105 }
3106 
3107 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3108   assert(VM_Version::supports_sse4_1(), "");
3109   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3110                                       false, VEX_OPCODE_0F_38);
3111   emit_int8(0x17);
3112   emit_int8((unsigned char)(0xC0 | encode));
3113 }
3114 
3115 void Assembler::vptest(XMMRegister dst, Address src) {
3116   assert(VM_Version::supports_avx(), "");
3117   InstructionMark im(this);
3118   int vector_len = AVX_256bit;
3119   assert(dst != xnoreg, "sanity");
3120   int dst_enc = dst->encoding();
3121   // swap src<->dst for encoding
3122   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
3123   emit_int8(0x17);
3124   emit_operand(dst, src);
3125 }
3126 
3127 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3128   assert(VM_Version::supports_avx(), "");
3129   int vector_len = AVX_256bit;
3130   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3131                                      vector_len, VEX_OPCODE_0F_38);
3132   emit_int8(0x17);
3133   emit_int8((unsigned char)(0xC0 | encode));
3134 }
3135 
3136 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3137   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3138   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3139   if (VM_Version::supports_evex()) {
3140     tuple_type = EVEX_FVM;
3141   }
3142   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
3143 }
3144 
3145 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3146   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3147   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
3148 }
3149 
3150 void Assembler::punpckldq(XMMRegister dst, Address src) {
3151   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3152   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3153   if (VM_Version::supports_evex()) {
3154     tuple_type = EVEX_FV;
3155     input_size_in_bits = EVEX_32bit;
3156   }
3157   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3158 }
3159 
3160 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3161   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3162   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3163 }
3164 
3165 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3166   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3167   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3168 }
3169 
3170 void Assembler::push(int32_t imm32) {
3171   // in 64bits we push 64bits onto the stack but only
3172   // take a 32bit immediate
3173   emit_int8(0x68);
3174   emit_int32(imm32);
3175 }
3176 
3177 void Assembler::push(Register src) {
3178   int encode = prefix_and_encode(src->encoding());
3179 
3180   emit_int8(0x50 | encode);
3181 }
3182 
3183 void Assembler::pushf() {
3184   emit_int8((unsigned char)0x9C);
3185 }
3186 
3187 #ifndef _LP64 // no 32bit push/pop on amd64
3188 void Assembler::pushl(Address src) {
3189   // Note this will push 64bit on 64bit
3190   InstructionMark im(this);
3191   prefix(src);
3192   emit_int8((unsigned char)0xFF);
3193   emit_operand(rsi, src);
3194 }
3195 #endif
3196 
3197 void Assembler::rcll(Register dst, int imm8) {
3198   assert(isShiftCount(imm8), "illegal shift count");
3199   int encode = prefix_and_encode(dst->encoding());
3200   if (imm8 == 1) {
3201     emit_int8((unsigned char)0xD1);
3202     emit_int8((unsigned char)(0xD0 | encode));
3203   } else {
3204     emit_int8((unsigned char)0xC1);
3205     emit_int8((unsigned char)0xD0 | encode);
3206     emit_int8(imm8);
3207   }
3208 }
3209 
3210 void Assembler::rdtsc() {
3211   emit_int8((unsigned char)0x0F);
3212   emit_int8((unsigned char)0x31);
3213 }
3214 
3215 // copies data from [esi] to [edi] using rcx pointer sized words
3216 // generic
3217 void Assembler::rep_mov() {
3218   emit_int8((unsigned char)0xF3);
3219   // MOVSQ
3220   LP64_ONLY(prefix(REX_W));
3221   emit_int8((unsigned char)0xA5);
3222 }
3223 
3224 // sets rcx bytes with rax, value at [edi]
3225 void Assembler::rep_stosb() {
3226   emit_int8((unsigned char)0xF3); // REP
3227   LP64_ONLY(prefix(REX_W));
3228   emit_int8((unsigned char)0xAA); // STOSB
3229 }
3230 
3231 // sets rcx pointer sized words with rax, value at [edi]
3232 // generic
3233 void Assembler::rep_stos() {
3234   emit_int8((unsigned char)0xF3); // REP
3235   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3236   emit_int8((unsigned char)0xAB);
3237 }
3238 
3239 // scans rcx pointer sized words at [edi] for occurance of rax,
3240 // generic
3241 void Assembler::repne_scan() { // repne_scan
3242   emit_int8((unsigned char)0xF2);
3243   // SCASQ
3244   LP64_ONLY(prefix(REX_W));
3245   emit_int8((unsigned char)0xAF);
3246 }
3247 
3248 #ifdef _LP64
3249 // scans rcx 4 byte words at [edi] for occurance of rax,
3250 // generic
3251 void Assembler::repne_scanl() { // repne_scan
3252   emit_int8((unsigned char)0xF2);
3253   // SCASL
3254   emit_int8((unsigned char)0xAF);
3255 }
3256 #endif
3257 
3258 void Assembler::ret(int imm16) {
3259   if (imm16 == 0) {
3260     emit_int8((unsigned char)0xC3);
3261   } else {
3262     emit_int8((unsigned char)0xC2);
3263     emit_int16(imm16);
3264   }
3265 }
3266 
3267 void Assembler::sahf() {
3268 #ifdef _LP64
3269   // Not supported in 64bit mode
3270   ShouldNotReachHere();
3271 #endif
3272   emit_int8((unsigned char)0x9E);
3273 }
3274 
3275 void Assembler::sarl(Register dst, int imm8) {
3276   int encode = prefix_and_encode(dst->encoding());
3277   assert(isShiftCount(imm8), "illegal shift count");
3278   if (imm8 == 1) {
3279     emit_int8((unsigned char)0xD1);
3280     emit_int8((unsigned char)(0xF8 | encode));
3281   } else {
3282     emit_int8((unsigned char)0xC1);
3283     emit_int8((unsigned char)(0xF8 | encode));
3284     emit_int8(imm8);
3285   }
3286 }
3287 
3288 void Assembler::sarl(Register dst) {
3289   int encode = prefix_and_encode(dst->encoding());
3290   emit_int8((unsigned char)0xD3);
3291   emit_int8((unsigned char)(0xF8 | encode));
3292 }
3293 
3294 void Assembler::sbbl(Address dst, int32_t imm32) {
3295   InstructionMark im(this);
3296   prefix(dst);
3297   emit_arith_operand(0x81, rbx, dst, imm32);
3298 }
3299 
3300 void Assembler::sbbl(Register dst, int32_t imm32) {
3301   prefix(dst);
3302   emit_arith(0x81, 0xD8, dst, imm32);
3303 }
3304 
3305 
3306 void Assembler::sbbl(Register dst, Address src) {
3307   InstructionMark im(this);
3308   prefix(src, dst);
3309   emit_int8(0x1B);
3310   emit_operand(dst, src);
3311 }
3312 
3313 void Assembler::sbbl(Register dst, Register src) {
3314   (void) prefix_and_encode(dst->encoding(), src->encoding());
3315   emit_arith(0x1B, 0xC0, dst, src);
3316 }
3317 
3318 void Assembler::setb(Condition cc, Register dst) {
3319   assert(0 <= cc && cc < 16, "illegal cc");
3320   int encode = prefix_and_encode(dst->encoding(), true);
3321   emit_int8(0x0F);
3322   emit_int8((unsigned char)0x90 | cc);
3323   emit_int8((unsigned char)(0xC0 | encode));
3324 }
3325 
3326 void Assembler::shll(Register dst, int imm8) {
3327   assert(isShiftCount(imm8), "illegal shift count");
3328   int encode = prefix_and_encode(dst->encoding());
3329   if (imm8 == 1 ) {
3330     emit_int8((unsigned char)0xD1);
3331     emit_int8((unsigned char)(0xE0 | encode));
3332   } else {
3333     emit_int8((unsigned char)0xC1);
3334     emit_int8((unsigned char)(0xE0 | encode));
3335     emit_int8(imm8);
3336   }
3337 }
3338 
3339 void Assembler::shll(Register dst) {
3340   int encode = prefix_and_encode(dst->encoding());
3341   emit_int8((unsigned char)0xD3);
3342   emit_int8((unsigned char)(0xE0 | encode));
3343 }
3344 
3345 void Assembler::shrl(Register dst, int imm8) {
3346   assert(isShiftCount(imm8), "illegal shift count");
3347   int encode = prefix_and_encode(dst->encoding());
3348   emit_int8((unsigned char)0xC1);
3349   emit_int8((unsigned char)(0xE8 | encode));
3350   emit_int8(imm8);
3351 }
3352 
3353 void Assembler::shrl(Register dst) {
3354   int encode = prefix_and_encode(dst->encoding());
3355   emit_int8((unsigned char)0xD3);
3356   emit_int8((unsigned char)(0xE8 | encode));
3357 }
3358 
3359 // copies a single word from [esi] to [edi]
3360 void Assembler::smovl() {
3361   emit_int8((unsigned char)0xA5);
3362 }
3363 
3364 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3365   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3366   if (VM_Version::supports_evex()) {
3367     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3368   } else {
3369     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3370   }
3371 }
3372 
3373 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3375   if (VM_Version::supports_evex()) {
3376     tuple_type = EVEX_T1S;
3377     input_size_in_bits = EVEX_64bit;
3378     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3379   } else {
3380     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3381   }
3382 }
3383 
3384 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3385   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3386   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3387 }
3388 
3389 void Assembler::std() {
3390   emit_int8((unsigned char)0xFD);
3391 }
3392 
3393 void Assembler::sqrtss(XMMRegister dst, Address src) {
3394   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3395   if (VM_Version::supports_evex()) {
3396     tuple_type = EVEX_T1S;
3397     input_size_in_bits = EVEX_32bit;
3398   }
3399   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3400 }
3401 
3402 void Assembler::stmxcsr( Address dst) {
3403   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3404   InstructionMark im(this);
3405   prefix(dst);
3406   emit_int8(0x0F);
3407   emit_int8((unsigned char)0xAE);
3408   emit_operand(as_Register(3), dst);
3409 }
3410 
3411 void Assembler::subl(Address dst, int32_t imm32) {
3412   InstructionMark im(this);
3413   prefix(dst);
3414   emit_arith_operand(0x81, rbp, dst, imm32);
3415 }
3416 
3417 void Assembler::subl(Address dst, Register src) {
3418   InstructionMark im(this);
3419   prefix(dst, src);
3420   emit_int8(0x29);
3421   emit_operand(src, dst);
3422 }
3423 
3424 void Assembler::subl(Register dst, int32_t imm32) {
3425   prefix(dst);
3426   emit_arith(0x81, 0xE8, dst, imm32);
3427 }
3428 
3429 // Force generation of a 4 byte immediate value even if it fits into 8bit
3430 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3431   prefix(dst);
3432   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3433 }
3434 
3435 void Assembler::subl(Register dst, Address src) {
3436   InstructionMark im(this);
3437   prefix(src, dst);
3438   emit_int8(0x2B);
3439   emit_operand(dst, src);
3440 }
3441 
3442 void Assembler::subl(Register dst, Register src) {
3443   (void) prefix_and_encode(dst->encoding(), src->encoding());
3444   emit_arith(0x2B, 0xC0, dst, src);
3445 }
3446 
3447 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3448   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3449   if (VM_Version::supports_evex()) {
3450     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3451   } else {
3452     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3453   }
3454 }
3455 
3456 void Assembler::subsd(XMMRegister dst, Address src) {
3457   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3458   if (VM_Version::supports_evex()) {
3459     tuple_type = EVEX_T1S;
3460     input_size_in_bits = EVEX_64bit;
3461   }
3462   emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3463 }
3464 
3465 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3466   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3467   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3468 }
3469 
3470 void Assembler::subss(XMMRegister dst, Address src) {
3471   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3472   if (VM_Version::supports_evex()) {
3473     tuple_type = EVEX_T1S;
3474     input_size_in_bits = EVEX_32bit;
3475   }
3476   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3477 }
3478 
3479 void Assembler::testb(Register dst, int imm8) {
3480   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3481   (void) prefix_and_encode(dst->encoding(), true);
3482   emit_arith_b(0xF6, 0xC0, dst, imm8);
3483 }
3484 
3485 void Assembler::testl(Register dst, int32_t imm32) {
3486   // not using emit_arith because test
3487   // doesn't support sign-extension of
3488   // 8bit operands
3489   int encode = dst->encoding();
3490   if (encode == 0) {
3491     emit_int8((unsigned char)0xA9);
3492   } else {
3493     encode = prefix_and_encode(encode);
3494     emit_int8((unsigned char)0xF7);
3495     emit_int8((unsigned char)(0xC0 | encode));
3496   }
3497   emit_int32(imm32);
3498 }
3499 
3500 void Assembler::testl(Register dst, Register src) {
3501   (void) prefix_and_encode(dst->encoding(), src->encoding());
3502   emit_arith(0x85, 0xC0, dst, src);
3503 }
3504 
3505 void Assembler::testl(Register dst, Address  src) {
3506   InstructionMark im(this);
3507   prefix(src, dst);
3508   emit_int8((unsigned char)0x85);
3509   emit_operand(dst, src);
3510 }
3511 
3512 void Assembler::tzcntl(Register dst, Register src) {
3513   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3514   emit_int8((unsigned char)0xF3);
3515   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3516   emit_int8(0x0F);
3517   emit_int8((unsigned char)0xBC);
3518   emit_int8((unsigned char)0xC0 | encode);
3519 }
3520 
3521 void Assembler::tzcntq(Register dst, Register src) {
3522   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3523   emit_int8((unsigned char)0xF3);
3524   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3525   emit_int8(0x0F);
3526   emit_int8((unsigned char)0xBC);
3527   emit_int8((unsigned char)(0xC0 | encode));
3528 }
3529 
3530 void Assembler::ucomisd(XMMRegister dst, Address src) {
3531   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3532   if (VM_Version::supports_evex()) {
3533     tuple_type = EVEX_T1S;
3534     input_size_in_bits = EVEX_64bit;
3535     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3536   } else {
3537     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3538   }
3539 }
3540 
3541 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3542   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3543   if (VM_Version::supports_evex()) {
3544     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3545   } else {
3546     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3547   }
3548 }
3549 
3550 void Assembler::ucomiss(XMMRegister dst, Address src) {
3551   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3552   if (VM_Version::supports_evex()) {
3553     tuple_type = EVEX_T1S;
3554     input_size_in_bits = EVEX_32bit;
3555   }
3556   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3557 }
3558 
3559 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3560   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3561   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3562 }
3563 
3564 void Assembler::xabort(int8_t imm8) {
3565   emit_int8((unsigned char)0xC6);
3566   emit_int8((unsigned char)0xF8);
3567   emit_int8((unsigned char)(imm8 & 0xFF));
3568 }
3569 
3570 void Assembler::xaddl(Address dst, Register src) {
3571   InstructionMark im(this);
3572   prefix(dst, src);
3573   emit_int8(0x0F);
3574   emit_int8((unsigned char)0xC1);
3575   emit_operand(src, dst);
3576 }
3577 
3578 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3579   InstructionMark im(this);
3580   relocate(rtype);
3581   if (abort.is_bound()) {
3582     address entry = target(abort);
3583     assert(entry != NULL, "abort entry NULL");
3584     intptr_t offset = entry - pc();
3585     emit_int8((unsigned char)0xC7);
3586     emit_int8((unsigned char)0xF8);
3587     emit_int32(offset - 6); // 2 opcode + 4 address
3588   } else {
3589     abort.add_patch_at(code(), locator());
3590     emit_int8((unsigned char)0xC7);
3591     emit_int8((unsigned char)0xF8);
3592     emit_int32(0);
3593   }
3594 }
3595 
3596 void Assembler::xchgl(Register dst, Address src) { // xchg
3597   InstructionMark im(this);
3598   prefix(src, dst);
3599   emit_int8((unsigned char)0x87);
3600   emit_operand(dst, src);
3601 }
3602 
3603 void Assembler::xchgl(Register dst, Register src) {
3604   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3605   emit_int8((unsigned char)0x87);
3606   emit_int8((unsigned char)(0xC0 | encode));
3607 }
3608 
3609 void Assembler::xend() {
3610   emit_int8((unsigned char)0x0F);
3611   emit_int8((unsigned char)0x01);
3612   emit_int8((unsigned char)0xD5);
3613 }
3614 
3615 void Assembler::xgetbv() {
3616   emit_int8(0x0F);
3617   emit_int8(0x01);
3618   emit_int8((unsigned char)0xD0);
3619 }
3620 
3621 void Assembler::xorl(Register dst, int32_t imm32) {
3622   prefix(dst);
3623   emit_arith(0x81, 0xF0, dst, imm32);
3624 }
3625 
3626 void Assembler::xorl(Register dst, Address src) {
3627   InstructionMark im(this);
3628   prefix(src, dst);
3629   emit_int8(0x33);
3630   emit_operand(dst, src);
3631 }
3632 
3633 void Assembler::xorl(Register dst, Register src) {
3634   (void) prefix_and_encode(dst->encoding(), src->encoding());
3635   emit_arith(0x33, 0xC0, dst, src);
3636 }
3637 
3638 
3639 // AVX 3-operands scalar float-point arithmetic instructions
3640 
3641 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3642   assert(VM_Version::supports_avx(), "");
3643   if (VM_Version::supports_evex()) {
3644     tuple_type = EVEX_T1S;
3645     input_size_in_bits = EVEX_64bit;
3646     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3647   } else {
3648     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3649   }
3650 }
3651 
3652 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3653   assert(VM_Version::supports_avx(), "");
3654   if (VM_Version::supports_evex()) {
3655     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3656   } else {
3657     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3658   }
3659 }
3660 
3661 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3662   assert(VM_Version::supports_avx(), "");
3663   if (VM_Version::supports_evex()) {
3664     tuple_type = EVEX_T1S;
3665     input_size_in_bits = EVEX_32bit;
3666   }
3667   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3668 }
3669 
3670 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3671   assert(VM_Version::supports_avx(), "");
3672   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3673 }
3674 
3675 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3676   assert(VM_Version::supports_avx(), "");
3677   if (VM_Version::supports_evex()) {
3678     tuple_type = EVEX_T1S;
3679     input_size_in_bits = EVEX_64bit;
3680     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3681   } else {
3682     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3683   }
3684 }
3685 
3686 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3687   assert(VM_Version::supports_avx(), "");
3688   if (VM_Version::supports_evex()) {
3689     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3690   } else {
3691     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3692   }
3693 }
3694 
3695 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3696   assert(VM_Version::supports_avx(), "");
3697   if (VM_Version::supports_evex()) {
3698     tuple_type = EVEX_T1S;
3699     input_size_in_bits = EVEX_32bit;
3700   }
3701   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3702 }
3703 
3704 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3705   assert(VM_Version::supports_avx(), "");
3706   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3707 }
3708 
3709 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3710   assert(VM_Version::supports_avx(), "");
3711   if (VM_Version::supports_evex()) {
3712     tuple_type = EVEX_T1S;
3713     input_size_in_bits = EVEX_64bit;
3714     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3715   } else {
3716     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3717   }
3718 }
3719 
3720 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3721   assert(VM_Version::supports_avx(), "");
3722   if (VM_Version::supports_evex()) {
3723     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3724   } else {
3725     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3726   }
3727 }
3728 
3729 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3730   assert(VM_Version::supports_avx(), "");
3731   if (VM_Version::supports_evex()) {
3732     tuple_type = EVEX_T1S;
3733     input_size_in_bits = EVEX_32bit;
3734   }
3735   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3736 }
3737 
3738 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3739   assert(VM_Version::supports_avx(), "");
3740   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3741 }
3742 
3743 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3744   assert(VM_Version::supports_avx(), "");
3745   if (VM_Version::supports_evex()) {
3746     tuple_type = EVEX_T1S;
3747     input_size_in_bits = EVEX_64bit;
3748     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3749   } else {
3750     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3751   }
3752 }
3753 
3754 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3755   assert(VM_Version::supports_avx(), "");
3756   if (VM_Version::supports_evex()) {
3757     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3758   } else {
3759     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3760   }
3761 }
3762 
3763 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3764   assert(VM_Version::supports_avx(), "");
3765   if (VM_Version::supports_evex()) {
3766     tuple_type = EVEX_T1S;
3767     input_size_in_bits = EVEX_32bit;
3768   }
3769   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3770 }
3771 
3772 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3773   assert(VM_Version::supports_avx(), "");
3774   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3775 }
3776 
3777 //====================VECTOR ARITHMETIC=====================================
3778 
3779 // Float-point vector arithmetic
3780 
3781 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3782   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3783   if (VM_Version::supports_evex()) {
3784     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3785   } else {
3786     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3787   }
3788 }
3789 
3790 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3791   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3792   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3793 }
3794 
3795 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3796   assert(VM_Version::supports_avx(), "");
3797   if (VM_Version::supports_evex()) {
3798     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3799   } else {
3800     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3801   }
3802 }
3803 
3804 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3805   assert(VM_Version::supports_avx(), "");
3806   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3807 }
3808 
3809 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3810   assert(VM_Version::supports_avx(), "");
3811   if (VM_Version::supports_evex()) {
3812     tuple_type = EVEX_FV;
3813     input_size_in_bits = EVEX_64bit;
3814     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3815   } else {
3816     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3817   }
3818 }
3819 
3820 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3821   assert(VM_Version::supports_avx(), "");
3822   if (VM_Version::supports_evex()) {
3823     tuple_type = EVEX_FV;
3824     input_size_in_bits = EVEX_32bit;
3825   }
3826   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3827 }
3828 
3829 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3831   if (VM_Version::supports_evex()) {
3832     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
3833   } else {
3834     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3835   }
3836 }
3837 
3838 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3840   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3841 }
3842 
3843 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3844   assert(VM_Version::supports_avx(), "");
3845   if (VM_Version::supports_evex()) {
3846     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3847   } else {
3848     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3849   }
3850 }
3851 
3852 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3853   assert(VM_Version::supports_avx(), "");
3854   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3855 }
3856 
3857 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3858   assert(VM_Version::supports_avx(), "");
3859   if (VM_Version::supports_evex()) {
3860     tuple_type = EVEX_FV;
3861     input_size_in_bits = EVEX_64bit;
3862     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3863   } else {
3864     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3865   }
3866 }
3867 
3868 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3869   assert(VM_Version::supports_avx(), "");
3870   if (VM_Version::supports_evex()) {
3871     tuple_type = EVEX_FV;
3872     input_size_in_bits = EVEX_32bit;
3873   }
3874   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3875 }
3876 
3877 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3878   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3879   if (VM_Version::supports_evex()) {
3880     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3881   } else {
3882     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3883   }
3884 }
3885 
3886 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3888   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3889 }
3890 
3891 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3892   assert(VM_Version::supports_avx(), "");
3893   if (VM_Version::supports_evex()) {
3894     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3895   } else {
3896     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3897   }
3898 }
3899 
3900 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3901   assert(VM_Version::supports_avx(), "");
3902   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3903 }
3904 
3905 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3906   assert(VM_Version::supports_avx(), "");
3907   if (VM_Version::supports_evex()) {
3908     tuple_type = EVEX_FV;
3909     input_size_in_bits = EVEX_64bit;
3910     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3911   } else {
3912     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3913   }
3914 }
3915 
3916 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3917   assert(VM_Version::supports_avx(), "");
3918   if (VM_Version::supports_evex()) {
3919     tuple_type = EVEX_FV;
3920     input_size_in_bits = EVEX_32bit;
3921   }
3922   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3923 }
3924 
3925 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3926   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3927   if (VM_Version::supports_evex()) {
3928     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
3929   } else {
3930     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3931   }
3932 }
3933 
3934 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3935   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3936   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3937 }
3938 
3939 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3940   assert(VM_Version::supports_avx(), "");
3941   if (VM_Version::supports_evex()) {
3942     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3943   } else {
3944     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3945   }
3946 }
3947 
3948 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3949   assert(VM_Version::supports_avx(), "");
3950   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3951 }
3952 
3953 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3954   assert(VM_Version::supports_avx(), "");
3955   if (VM_Version::supports_evex()) {
3956     tuple_type = EVEX_FV;
3957     input_size_in_bits = EVEX_64bit;
3958     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3959   } else {
3960     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3961   }
3962 }
3963 
3964 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3965   assert(VM_Version::supports_avx(), "");
3966   if (VM_Version::supports_evex()) {
3967     tuple_type = EVEX_FV;
3968     input_size_in_bits = EVEX_32bit;
3969   }
3970   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3971 }
3972 
3973 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3974   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3975   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
3976     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
3977   } else {
3978     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
3979   }
3980 }
3981 
3982 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3983   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3984   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
3985                   (VM_Version::supports_avx512dq() == false));
3986 }
3987 
3988 void Assembler::andps(XMMRegister dst, Address src) {
3989   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3990   if (VM_Version::supports_evex()) {
3991     tuple_type = EVEX_FV;
3992     input_size_in_bits = EVEX_32bit;
3993   }
3994   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
3995                   false, (VM_Version::supports_avx512dq() == false));
3996 }
3997 
3998 void Assembler::andpd(XMMRegister dst, Address src) {
3999   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4000   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4001     tuple_type = EVEX_FV;
4002     input_size_in_bits = EVEX_64bit;
4003     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4004   } else {
4005     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4006   }
4007 }
4008 
4009 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4010   assert(VM_Version::supports_avx(), "");
4011   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4012     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4013   } else {
4014     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4015   }
4016 }
4017 
4018 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4019   assert(VM_Version::supports_avx(), "");
4020   bool legacy_mode = (VM_Version::supports_avx512dq() == false);
4021   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
4022 }
4023 
4024 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4025   assert(VM_Version::supports_avx(), "");
4026   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4027     tuple_type = EVEX_FV;
4028     input_size_in_bits = EVEX_64bit;
4029     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4030   } else {
4031     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4032   }
4033 }
4034 
4035 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4036   assert(VM_Version::supports_avx(), "");
4037   if (VM_Version::supports_evex()) {
4038     tuple_type = EVEX_FV;
4039     input_size_in_bits = EVEX_32bit;
4040   }
4041   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
4042                  (VM_Version::supports_avx512dq() == false));
4043 }
4044 
4045 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4046   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4047   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4048     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4049   } else {
4050     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4051   }
4052 }
4053 
4054 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4055   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4056   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
4057                   false, (VM_Version::supports_avx512dq() == false));
4058 }
4059 
4060 void Assembler::xorpd(XMMRegister dst, Address src) {
4061   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4062   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4063     tuple_type = EVEX_FV;
4064     input_size_in_bits = EVEX_64bit;
4065     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4066   } else {
4067     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4068   }
4069 }
4070 
4071 void Assembler::xorps(XMMRegister dst, Address src) {
4072   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4073   if (VM_Version::supports_evex()) {
4074     tuple_type = EVEX_FV;
4075     input_size_in_bits = EVEX_32bit;
4076   }
4077   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
4078                   (VM_Version::supports_avx512dq() == false));
4079 }
4080 
4081 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4082   assert(VM_Version::supports_avx(), "");
4083   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4084     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4085   } else {
4086     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4087   }
4088 }
4089 
4090 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4091   assert(VM_Version::supports_avx(), "");
4092   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4093                  (VM_Version::supports_avx512dq() == false));
4094 }
4095 
4096 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4097   assert(VM_Version::supports_avx(), "");
4098   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4099     tuple_type = EVEX_FV;
4100     input_size_in_bits = EVEX_64bit;
4101     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4102   } else {
4103     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4104   }
4105 }
4106 
4107 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4108   assert(VM_Version::supports_avx(), "");
4109   if (VM_Version::supports_evex()) {
4110     tuple_type = EVEX_FV;
4111     input_size_in_bits = EVEX_32bit;
4112   }
4113   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4114                  (VM_Version::supports_avx512dq() == false));
4115 }
4116 
4117 // Integer vector arithmetic
4118 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4119   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4120          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4121   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4122                                      VEX_OPCODE_0F_38, true, false);
4123   emit_int8(0x01);
4124   emit_int8((unsigned char)(0xC0 | encode));
4125 }
4126 
4127 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4128   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4129          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4130   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4131                                      VEX_OPCODE_0F_38, true, false);
4132   emit_int8(0x02);
4133   emit_int8((unsigned char)(0xC0 | encode));
4134 }
4135 
4136 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4137   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4138   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
4139 }
4140 
4141 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4142   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4143   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
4144 }
4145 
4146 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4147   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4148   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4149 }
4150 
4151 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4152   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4153   if (VM_Version::supports_evex()) {
4154     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4155   } else {
4156     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4157   }
4158 }
4159 
4160 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4161   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4162   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4163                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4164   emit_int8(0x01);
4165   emit_int8((unsigned char)(0xC0 | encode));
4166 }
4167 
4168 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4169   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4170   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4171                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4172   emit_int8(0x02);
4173   emit_int8((unsigned char)(0xC0 | encode));
4174 }
4175 
4176 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4177   assert(UseAVX > 0, "requires some form of AVX");
4178   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
4179                  (VM_Version::supports_avx512bw() == false));
4180 }
4181 
4182 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4183   assert(UseAVX > 0, "requires some form of AVX");
4184   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
4185                  (VM_Version::supports_avx512bw() == false));
4186 }
4187 
4188 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4189   assert(UseAVX > 0, "requires some form of AVX");
4190   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4191 }
4192 
4193 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4194   assert(UseAVX > 0, "requires some form of AVX");
4195   if (VM_Version::supports_evex()) {
4196     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4197   } else {
4198     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4199   }
4200 }
4201 
4202 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4203   assert(UseAVX > 0, "requires some form of AVX");
4204   if (VM_Version::supports_evex()) {
4205     tuple_type = EVEX_FVM;
4206   }
4207   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
4208 }
4209 
4210 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4211   assert(UseAVX > 0, "requires some form of AVX");
4212   if (VM_Version::supports_evex()) {
4213     tuple_type = EVEX_FVM;
4214   }
4215   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
4216 }
4217 
4218 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4219   assert(UseAVX > 0, "requires some form of AVX");
4220   if (VM_Version::supports_evex()) {
4221     tuple_type = EVEX_FV;
4222     input_size_in_bits = EVEX_32bit;
4223   }
4224   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4225 }
4226 
4227 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4228   assert(UseAVX > 0, "requires some form of AVX");
4229   if (VM_Version::supports_evex()) {
4230     tuple_type = EVEX_FV;
4231     input_size_in_bits = EVEX_64bit;
4232     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4233   } else {
4234     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4235   }
4236 }
4237 
4238 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4240   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
4241 }
4242 
4243 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4244   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4245   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
4246 }
4247 
4248 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4250   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4251 }
4252 
4253 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4255   if (VM_Version::supports_evex()) {
4256     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4257   } else {
4258     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4259   }
4260 }
4261 
4262 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4263   assert(UseAVX > 0, "requires some form of AVX");
4264   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4265                  (VM_Version::supports_avx512bw() == false));
4266 }
4267 
4268 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4269   assert(UseAVX > 0, "requires some form of AVX");
4270   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4271                  (VM_Version::supports_avx512bw() == false));
4272 }
4273 
4274 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4275   assert(UseAVX > 0, "requires some form of AVX");
4276   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4277 }
4278 
4279 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4280   assert(UseAVX > 0, "requires some form of AVX");
4281   if (VM_Version::supports_evex()) {
4282     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4283   } else {
4284     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4285   }
4286 }
4287 
4288 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4289   assert(UseAVX > 0, "requires some form of AVX");
4290   if (VM_Version::supports_evex()) {
4291     tuple_type = EVEX_FVM;
4292   }
4293   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4294                  (VM_Version::supports_avx512bw() == false));
4295 }
4296 
4297 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4298   assert(UseAVX > 0, "requires some form of AVX");
4299   if (VM_Version::supports_evex()) {
4300     tuple_type = EVEX_FVM;
4301   }
4302   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4303                  (VM_Version::supports_avx512bw() == false));
4304 }
4305 
4306 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4307   assert(UseAVX > 0, "requires some form of AVX");
4308   if (VM_Version::supports_evex()) {
4309     tuple_type = EVEX_FV;
4310     input_size_in_bits = EVEX_32bit;
4311   }
4312   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4313 }
4314 
4315 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4316   assert(UseAVX > 0, "requires some form of AVX");
4317   if (VM_Version::supports_evex()) {
4318     tuple_type = EVEX_FV;
4319     input_size_in_bits = EVEX_64bit;
4320     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4321   } else {
4322     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4323   }
4324 }
4325 
4326 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4327   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4328   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
4329                   (VM_Version::supports_avx512bw() == false));
4330 }
4331 
4332 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4333   assert(VM_Version::supports_sse4_1(), "");
4334   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4335                                       false, VEX_OPCODE_0F_38);
4336   emit_int8(0x40);
4337   emit_int8((unsigned char)(0xC0 | encode));
4338 }
4339 
4340 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4341   assert(UseAVX > 0, "requires some form of AVX");
4342   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
4343                  (VM_Version::supports_avx512bw() == false));
4344 }
4345 
4346 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4347   assert(UseAVX > 0, "requires some form of AVX");
4348   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4349                                      vector_len, VEX_OPCODE_0F_38);
4350   emit_int8(0x40);
4351   emit_int8((unsigned char)(0xC0 | encode));
4352 }
4353 
4354 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4355   assert(UseAVX > 2, "requires some form of AVX");
4356   int src_enc = src->encoding();
4357   int dst_enc = dst->encoding();
4358   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4359   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4360                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
4361   emit_int8(0x40);
4362   emit_int8((unsigned char)(0xC0 | encode));
4363 }
4364 
4365 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4366   assert(UseAVX > 0, "requires some form of AVX");
4367   if (VM_Version::supports_evex()) {
4368     tuple_type = EVEX_FVM;
4369   }
4370   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
4371 }
4372 
4373 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4374   assert(UseAVX > 0, "requires some form of AVX");
4375   if (VM_Version::supports_evex()) {
4376     tuple_type = EVEX_FV;
4377     input_size_in_bits = EVEX_32bit;
4378   }
4379   InstructionMark im(this);
4380   int dst_enc = dst->encoding();
4381   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4382   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4383              VEX_OPCODE_0F_38, false, vector_len);
4384   emit_int8(0x40);
4385   emit_operand(dst, src);
4386 }
4387 
4388 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4389   assert(UseAVX > 0, "requires some form of AVX");
4390   if (VM_Version::supports_evex()) {
4391     tuple_type = EVEX_FV;
4392     input_size_in_bits = EVEX_64bit;
4393   }
4394   InstructionMark im(this);
4395   int dst_enc = dst->encoding();
4396   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4397   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
4398   emit_int8(0x40);
4399   emit_operand(dst, src);
4400 }
4401 
4402 // Shift packed integers left by specified number of bits.
4403 void Assembler::psllw(XMMRegister dst, int shift) {
4404   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4405   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4406   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4407                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
4408   emit_int8(0x71);
4409   emit_int8((unsigned char)(0xC0 | encode));
4410   emit_int8(shift & 0xFF);
4411 }
4412 
4413 void Assembler::pslld(XMMRegister dst, int shift) {
4414   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4415   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4416   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
4417   emit_int8(0x72);
4418   emit_int8((unsigned char)(0xC0 | encode));
4419   emit_int8(shift & 0xFF);
4420 }
4421 
4422 void Assembler::psllq(XMMRegister dst, int shift) {
4423   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4424   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4425   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4426   emit_int8(0x73);
4427   emit_int8((unsigned char)(0xC0 | encode));
4428   emit_int8(shift & 0xFF);
4429 }
4430 
4431 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4432   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4433   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
4434                   (VM_Version::supports_avx512bw() == false));
4435 }
4436 
4437 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4438   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4439   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4440 }
4441 
4442 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4444   if (VM_Version::supports_evex()) {
4445     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4446   } else {
4447     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4448   }
4449 }
4450 
4451 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4452   assert(UseAVX > 0, "requires some form of AVX");
4453   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4454   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
4455                  (VM_Version::supports_avx512bw() == false));
4456   emit_int8(shift & 0xFF);
4457 }
4458 
4459 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4460   assert(UseAVX > 0, "requires some form of AVX");
4461   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4462   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4463   emit_int8(shift & 0xFF);
4464 }
4465 
4466 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4467   assert(UseAVX > 0, "requires some form of AVX");
4468   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4469   if (VM_Version::supports_evex()) {
4470     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4471   } else {
4472     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4473   }
4474   emit_int8(shift & 0xFF);
4475 }
4476 
4477 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4478   assert(UseAVX > 0, "requires some form of AVX");
4479   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
4480                  (VM_Version::supports_avx512bw() == false));
4481 }
4482 
4483 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4484   assert(UseAVX > 0, "requires some form of AVX");
4485   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4486 }
4487 
4488 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4489   assert(UseAVX > 0, "requires some form of AVX");
4490   if (VM_Version::supports_evex()) {
4491     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4492   } else {
4493     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4494   }
4495 }
4496 
4497 // Shift packed integers logically right by specified number of bits.
4498 void Assembler::psrlw(XMMRegister dst, int shift) {
4499   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4500   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4501   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4502                                       (VM_Version::supports_avx512bw() == false));
4503   emit_int8(0x71);
4504   emit_int8((unsigned char)(0xC0 | encode));
4505   emit_int8(shift & 0xFF);
4506 }
4507 
4508 void Assembler::psrld(XMMRegister dst, int shift) {
4509   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4510   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4511   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
4512   emit_int8(0x72);
4513   emit_int8((unsigned char)(0xC0 | encode));
4514   emit_int8(shift & 0xFF);
4515 }
4516 
4517 void Assembler::psrlq(XMMRegister dst, int shift) {
4518   // Do not confuse it with psrldq SSE2 instruction which
4519   // shifts 128 bit value in xmm register by number of bytes.
4520   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4521   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4522   int encode = 0;
4523   if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
4524     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
4525   } else {
4526     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4527   }
4528   emit_int8(0x73);
4529   emit_int8((unsigned char)(0xC0 | encode));
4530   emit_int8(shift & 0xFF);
4531 }
4532 
4533 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4534   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4535   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
4536                   (VM_Version::supports_avx512bw() == false));
4537 }
4538 
4539 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4540   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4541   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4542 }
4543 
4544 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4545   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4546   if (VM_Version::supports_evex()) {
4547     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4548   } else {
4549     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4550   }
4551 }
4552 
4553 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4554   assert(UseAVX > 0, "requires some form of AVX");
4555   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4556   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
4557                  (VM_Version::supports_avx512bw() == false));
4558   emit_int8(shift & 0xFF);
4559 }
4560 
4561 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4562   assert(UseAVX > 0, "requires some form of AVX");
4563   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4564   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4565   emit_int8(shift & 0xFF);
4566 }
4567 
4568 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4569   assert(UseAVX > 0, "requires some form of AVX");
4570   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4571   if (VM_Version::supports_evex()) {
4572     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4573   } else {
4574     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4575   }
4576   emit_int8(shift & 0xFF);
4577 }
4578 
4579 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4580   assert(UseAVX > 0, "requires some form of AVX");
4581   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
4582                  (VM_Version::supports_avx512bw() == false));
4583 }
4584 
4585 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4586   assert(UseAVX > 0, "requires some form of AVX");
4587   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4588 }
4589 
4590 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4591   assert(UseAVX > 0, "requires some form of AVX");
4592   if (VM_Version::supports_evex()) {
4593     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4594   } else {
4595     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4596   }
4597 }
4598 
4599 // Shift packed integers arithmetically right by specified number of bits.
4600 void Assembler::psraw(XMMRegister dst, int shift) {
4601   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4602   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4603   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4604                                       (VM_Version::supports_avx512bw() == false));
4605   emit_int8(0x71);
4606   emit_int8((unsigned char)(0xC0 | encode));
4607   emit_int8(shift & 0xFF);
4608 }
4609 
4610 void Assembler::psrad(XMMRegister dst, int shift) {
4611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4612   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4613   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
4614   emit_int8(0x72);
4615   emit_int8((unsigned char)(0xC0 | encode));
4616   emit_int8(shift & 0xFF);
4617 }
4618 
4619 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4621   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
4622                   (VM_Version::supports_avx512bw() == false));
4623 }
4624 
4625 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4627   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4628 }
4629 
4630 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4631   assert(UseAVX > 0, "requires some form of AVX");
4632   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4633   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
4634                  (VM_Version::supports_avx512bw() == false));
4635   emit_int8(shift & 0xFF);
4636 }
4637 
4638 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4639   assert(UseAVX > 0, "requires some form of AVX");
4640   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4641   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4642   emit_int8(shift & 0xFF);
4643 }
4644 
4645 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4646   assert(UseAVX > 0, "requires some form of AVX");
4647   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
4648                  (VM_Version::supports_avx512bw() == false));
4649 }
4650 
4651 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4652   assert(UseAVX > 0, "requires some form of AVX");
4653   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4654 }
4655 
4656 
4657 // AND packed integers
4658 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4659   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4660   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4661 }
4662 
4663 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4664   assert(UseAVX > 0, "requires some form of AVX");
4665   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4666 }
4667 
4668 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4669   assert(UseAVX > 0, "requires some form of AVX");
4670   if (VM_Version::supports_evex()) {
4671     tuple_type = EVEX_FV;
4672     input_size_in_bits = EVEX_32bit;
4673   }
4674   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4675 }
4676 
4677 void Assembler::por(XMMRegister dst, XMMRegister src) {
4678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4679   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4680 }
4681 
4682 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4683   assert(UseAVX > 0, "requires some form of AVX");
4684   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4685 }
4686 
4687 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4688   assert(UseAVX > 0, "requires some form of AVX");
4689   if (VM_Version::supports_evex()) {
4690     tuple_type = EVEX_FV;
4691     input_size_in_bits = EVEX_32bit;
4692   }
4693   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4694 }
4695 
4696 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4698   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4699 }
4700 
4701 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4702   assert(UseAVX > 0, "requires some form of AVX");
4703   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4704 }
4705 
4706 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4707   assert(UseAVX > 0, "requires some form of AVX");
4708   if (VM_Version::supports_evex()) {
4709     tuple_type = EVEX_FV;
4710     input_size_in_bits = EVEX_32bit;
4711   }
4712   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4713 }
4714 
4715 
4716 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4717   assert(VM_Version::supports_avx(), "");
4718   int vector_len = AVX_256bit;
4719   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4720   emit_int8(0x18);
4721   emit_int8((unsigned char)(0xC0 | encode));
4722   // 0x00 - insert into lower 128 bits
4723   // 0x01 - insert into upper 128 bits
4724   emit_int8(0x01);
4725 }
4726 
4727 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4728   assert(VM_Version::supports_evex(), "");
4729   int vector_len = AVX_512bit;
4730   int src_enc = src->encoding();
4731   int dst_enc = dst->encoding();
4732   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4733   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4734                                      VEX_OPCODE_0F_3A, true, vector_len, false, false);
4735   emit_int8(0x1A);
4736   emit_int8((unsigned char)(0xC0 | encode));
4737   // 0x00 - insert into lower 256 bits
4738   // 0x01 - insert into upper 256 bits
4739   emit_int8(0x01);
4740 }
4741 
4742 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
4743   assert(VM_Version::supports_avx(), "");
4744   if (VM_Version::supports_evex()) {
4745     tuple_type = EVEX_T4;
4746     input_size_in_bits = EVEX_64bit;
4747   }
4748   InstructionMark im(this);
4749   int vector_len = AVX_512bit;
4750   assert(dst != xnoreg, "sanity");
4751   int dst_enc = dst->encoding();
4752   // swap src<->dst for encoding
4753   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
4754   emit_int8(0x1A);
4755   emit_operand(dst, src);
4756   // 0x01 - insert into upper 128 bits
4757   emit_int8(0x01);
4758 }
4759 
4760 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
4761   assert(VM_Version::supports_avx(), "");
4762   if (VM_Version::supports_evex()) {
4763     tuple_type = EVEX_T4;
4764     input_size_in_bits = EVEX_32bit;
4765   }
4766   InstructionMark im(this);
4767   int vector_len = AVX_256bit;
4768   assert(dst != xnoreg, "sanity");
4769   int dst_enc = dst->encoding();
4770   // swap src<->dst for encoding
4771   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4772   emit_int8(0x18);
4773   emit_operand(dst, src);
4774   // 0x01 - insert into upper 128 bits
4775   emit_int8(0x01);
4776 }
4777 
4778 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
4779   assert(VM_Version::supports_avx(), "");
4780   int vector_len = AVX_256bit;
4781   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4782   emit_int8(0x19);
4783   emit_int8((unsigned char)(0xC0 | encode));
4784   // 0x00 - insert into lower 128 bits
4785   // 0x01 - insert into upper 128 bits
4786   emit_int8(0x01);
4787 }
4788 
4789 void Assembler::vextractf128h(Address dst, XMMRegister src) {
4790   assert(VM_Version::supports_avx(), "");
4791   if (VM_Version::supports_evex()) {
4792     tuple_type = EVEX_T4;
4793     input_size_in_bits = EVEX_32bit;
4794   }
4795   InstructionMark im(this);
4796   int vector_len = AVX_256bit;
4797   assert(src != xnoreg, "sanity");
4798   int src_enc = src->encoding();
4799   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4800   emit_int8(0x19);
4801   emit_operand(src, dst);
4802   // 0x01 - extract from upper 128 bits
4803   emit_int8(0x01);
4804 }
4805 
4806 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4807   assert(VM_Version::supports_avx2(), "");
4808   int vector_len = AVX_256bit;
4809   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4810   emit_int8(0x38);
4811   emit_int8((unsigned char)(0xC0 | encode));
4812   // 0x00 - insert into lower 128 bits
4813   // 0x01 - insert into upper 128 bits
4814   emit_int8(0x01);
4815 }
4816 
4817 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4818   assert(VM_Version::supports_evex(), "");
4819   int vector_len = AVX_512bit;
4820   int src_enc = src->encoding();
4821   int dst_enc = dst->encoding();
4822   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4823   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4824                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4825   emit_int8(0x38);
4826   emit_int8((unsigned char)(0xC0 | encode));
4827   // 0x00 - insert into lower 256 bits
4828   // 0x01 - insert into upper 256 bits
4829   emit_int8(0x01);
4830 }
4831 
4832 void Assembler::vinserti128h(XMMRegister dst, Address src) {
4833   assert(VM_Version::supports_avx2(), "");
4834   if (VM_Version::supports_evex()) {
4835     tuple_type = EVEX_T4;
4836     input_size_in_bits = EVEX_32bit;
4837   }
4838   InstructionMark im(this);
4839   int vector_len = AVX_256bit;
4840   assert(dst != xnoreg, "sanity");
4841   int dst_enc = dst->encoding();
4842   // swap src<->dst for encoding
4843   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4844   emit_int8(0x38);
4845   emit_operand(dst, src);
4846   // 0x01 - insert into upper 128 bits
4847   emit_int8(0x01);
4848 }
4849 
4850 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
4851   assert(VM_Version::supports_avx(), "");
4852   int vector_len = AVX_256bit;
4853   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4854   emit_int8(0x39);
4855   emit_int8((unsigned char)(0xC0 | encode));
4856   // 0x00 - insert into lower 128 bits
4857   // 0x01 - insert into upper 128 bits
4858   emit_int8(0x01);
4859 }
4860 
4861 void Assembler::vextracti128h(Address dst, XMMRegister src) {
4862   assert(VM_Version::supports_avx2(), "");
4863   if (VM_Version::supports_evex()) {
4864     tuple_type = EVEX_T4;
4865     input_size_in_bits = EVEX_32bit;
4866   }
4867   InstructionMark im(this);
4868   int vector_len = AVX_256bit;
4869   assert(src != xnoreg, "sanity");
4870   int src_enc = src->encoding();
4871   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4872   emit_int8(0x39);
4873   emit_operand(src, dst);
4874   // 0x01 - extract from upper 128 bits
4875   emit_int8(0x01);
4876 }
4877 
4878 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
4879   assert(VM_Version::supports_evex(), "");
4880   int vector_len = AVX_512bit;
4881   int src_enc = src->encoding();
4882   int dst_enc = dst->encoding();
4883   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4884                                      true, vector_len, false, false);
4885   emit_int8(0x3B);
4886   emit_int8((unsigned char)(0xC0 | encode));
4887   // 0x01 - extract from upper 256 bits
4888   emit_int8(0x01);
4889 }
4890 
4891 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
4892   assert(VM_Version::supports_evex(), "");
4893   int vector_len = AVX_512bit;
4894   int src_enc = src->encoding();
4895   int dst_enc = dst->encoding();
4896   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4897                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4898   emit_int8(0x39);
4899   emit_int8((unsigned char)(0xC0 | encode));
4900   // 0x01 - extract from bits 255:128
4901   // 0x02 - extract from bits 383:256
4902   // 0x03 - extract from bits 511:384
4903   emit_int8(value & 0x3);
4904 }
4905 
4906 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
4907   assert(VM_Version::supports_evex(), "");
4908   int vector_len = AVX_512bit;
4909   int src_enc = src->encoding();
4910   int dst_enc = dst->encoding();
4911   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4912                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4913   emit_int8(0x1B);
4914   emit_int8((unsigned char)(0xC0 | encode));
4915   // 0x01 - extract from upper 256 bits
4916   emit_int8(0x01);
4917 }
4918 
4919 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
4920   assert(VM_Version::supports_avx2(), "");
4921   tuple_type = EVEX_T4;
4922   input_size_in_bits = EVEX_64bit;
4923   InstructionMark im(this);
4924   int vector_len = AVX_512bit;
4925   assert(src != xnoreg, "sanity");
4926   int src_enc = src->encoding();
4927   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4928              VM_Version::supports_avx512dq(), vector_len);
4929   emit_int8(0x1B);
4930   emit_operand(src, dst);
4931   // 0x01 - extract from upper 128 bits
4932   emit_int8(0x01);
4933 }
4934 
4935 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
4936   assert(VM_Version::supports_evex(), "");
4937   int vector_len = AVX_512bit;
4938   int src_enc = src->encoding();
4939   int dst_enc = dst->encoding();
4940   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
4941                                      VEX_OPCODE_0F_3A, false, vector_len, false, false);
4942   emit_int8(0x19);
4943   emit_int8((unsigned char)(0xC0 | encode));
4944   // 0x01 - extract from bits 255:128
4945   // 0x02 - extract from bits 383:256
4946   // 0x03 - extract from bits 511:384
4947   emit_int8(value & 0x3);
4948 }
4949 
4950 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
4951   assert(VM_Version::supports_evex(), "");
4952   int vector_len = AVX_512bit;
4953   int src_enc = src->encoding();
4954   int dst_enc = dst->encoding();
4955   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4956                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4957   emit_int8(0x19);
4958   emit_int8((unsigned char)(0xC0 | encode));
4959   // 0x01 - extract from bits 255:128
4960   // 0x02 - extract from bits 383:256
4961   // 0x03 - extract from bits 511:384
4962   emit_int8(value & 0x3);
4963 }
4964 
4965 // duplicate 4-bytes integer data from src into 8 locations in dest
4966 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
4967   assert(VM_Version::supports_avx2(), "");
4968   int vector_len = AVX_256bit;
4969   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4970                                      vector_len, VEX_OPCODE_0F_38, false);
4971   emit_int8(0x58);
4972   emit_int8((unsigned char)(0xC0 | encode));
4973 }
4974 
4975 // duplicate 4-bytes integer data from src into 8 locations in dest
4976 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
4977   assert(VM_Version::supports_evex(), "");
4978   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4979                                      vector_len, VEX_OPCODE_0F_38, false);
4980   emit_int8(0x58);
4981   emit_int8((unsigned char)(0xC0 | encode));
4982 }
4983 
4984 // Carry-Less Multiplication Quadword
4985 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
4986   assert(VM_Version::supports_clmul(), "");
4987   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4988                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
4989   emit_int8(0x44);
4990   emit_int8((unsigned char)(0xC0 | encode));
4991   emit_int8((unsigned char)mask);
4992 }
4993 
4994 // Carry-Less Multiplication Quadword
4995 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
4996   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
4997   int vector_len = AVX_128bit;
4998   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4999                                      vector_len, VEX_OPCODE_0F_3A, true);
5000   emit_int8(0x44);
5001   emit_int8((unsigned char)(0xC0 | encode));
5002   emit_int8((unsigned char)mask);
5003 }
5004 
5005 void Assembler::vzeroupper() {
5006   assert(VM_Version::supports_avx(), "");
5007   if (UseAVX < 3)
5008   {
5009     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5010     emit_int8(0x77);
5011   }
5012 }
5013 
5014 
5015 #ifndef _LP64
5016 // 32bit only pieces of the assembler
5017 
5018 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5019   // NO PREFIX AS NEVER 64BIT
5020   InstructionMark im(this);
5021   emit_int8((unsigned char)0x81);
5022   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5023   emit_data(imm32, rspec, 0);
5024 }
5025 
5026 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5027   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5028   InstructionMark im(this);
5029   emit_int8((unsigned char)0x81);
5030   emit_operand(rdi, src1);
5031   emit_data(imm32, rspec, 0);
5032 }
5033 
5034 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5035 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5036 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5037 void Assembler::cmpxchg8(Address adr) {
5038   InstructionMark im(this);
5039   emit_int8(0x0F);
5040   emit_int8((unsigned char)0xC7);
5041   emit_operand(rcx, adr);
5042 }
5043 
5044 void Assembler::decl(Register dst) {
5045   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5046  emit_int8(0x48 | dst->encoding());
5047 }
5048 
5049 #endif // _LP64
5050 
5051 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5052 
5053 void Assembler::fabs() {
5054   emit_int8((unsigned char)0xD9);
5055   emit_int8((unsigned char)0xE1);
5056 }
5057 
5058 void Assembler::fadd(int i) {
5059   emit_farith(0xD8, 0xC0, i);
5060 }
5061 
5062 void Assembler::fadd_d(Address src) {
5063   InstructionMark im(this);
5064   emit_int8((unsigned char)0xDC);
5065   emit_operand32(rax, src);
5066 }
5067 
5068 void Assembler::fadd_s(Address src) {
5069   InstructionMark im(this);
5070   emit_int8((unsigned char)0xD8);
5071   emit_operand32(rax, src);
5072 }
5073 
5074 void Assembler::fadda(int i) {
5075   emit_farith(0xDC, 0xC0, i);
5076 }
5077 
5078 void Assembler::faddp(int i) {
5079   emit_farith(0xDE, 0xC0, i);
5080 }
5081 
5082 void Assembler::fchs() {
5083   emit_int8((unsigned char)0xD9);
5084   emit_int8((unsigned char)0xE0);
5085 }
5086 
5087 void Assembler::fcom(int i) {
5088   emit_farith(0xD8, 0xD0, i);
5089 }
5090 
5091 void Assembler::fcomp(int i) {
5092   emit_farith(0xD8, 0xD8, i);
5093 }
5094 
5095 void Assembler::fcomp_d(Address src) {
5096   InstructionMark im(this);
5097   emit_int8((unsigned char)0xDC);
5098   emit_operand32(rbx, src);
5099 }
5100 
5101 void Assembler::fcomp_s(Address src) {
5102   InstructionMark im(this);
5103   emit_int8((unsigned char)0xD8);
5104   emit_operand32(rbx, src);
5105 }
5106 
5107 void Assembler::fcompp() {
5108   emit_int8((unsigned char)0xDE);
5109   emit_int8((unsigned char)0xD9);
5110 }
5111 
5112 void Assembler::fcos() {
5113   emit_int8((unsigned char)0xD9);
5114   emit_int8((unsigned char)0xFF);
5115 }
5116 
5117 void Assembler::fdecstp() {
5118   emit_int8((unsigned char)0xD9);
5119   emit_int8((unsigned char)0xF6);
5120 }
5121 
5122 void Assembler::fdiv(int i) {
5123   emit_farith(0xD8, 0xF0, i);
5124 }
5125 
5126 void Assembler::fdiv_d(Address src) {
5127   InstructionMark im(this);
5128   emit_int8((unsigned char)0xDC);
5129   emit_operand32(rsi, src);
5130 }
5131 
5132 void Assembler::fdiv_s(Address src) {
5133   InstructionMark im(this);
5134   emit_int8((unsigned char)0xD8);
5135   emit_operand32(rsi, src);
5136 }
5137 
5138 void Assembler::fdiva(int i) {
5139   emit_farith(0xDC, 0xF8, i);
5140 }
5141 
5142 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5143 //       is erroneous for some of the floating-point instructions below.
5144 
5145 void Assembler::fdivp(int i) {
5146   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5147 }
5148 
5149 void Assembler::fdivr(int i) {
5150   emit_farith(0xD8, 0xF8, i);
5151 }
5152 
5153 void Assembler::fdivr_d(Address src) {
5154   InstructionMark im(this);
5155   emit_int8((unsigned char)0xDC);
5156   emit_operand32(rdi, src);
5157 }
5158 
5159 void Assembler::fdivr_s(Address src) {
5160   InstructionMark im(this);
5161   emit_int8((unsigned char)0xD8);
5162   emit_operand32(rdi, src);
5163 }
5164 
5165 void Assembler::fdivra(int i) {
5166   emit_farith(0xDC, 0xF0, i);
5167 }
5168 
5169 void Assembler::fdivrp(int i) {
5170   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5171 }
5172 
5173 void Assembler::ffree(int i) {
5174   emit_farith(0xDD, 0xC0, i);
5175 }
5176 
5177 void Assembler::fild_d(Address adr) {
5178   InstructionMark im(this);
5179   emit_int8((unsigned char)0xDF);
5180   emit_operand32(rbp, adr);
5181 }
5182 
5183 void Assembler::fild_s(Address adr) {
5184   InstructionMark im(this);
5185   emit_int8((unsigned char)0xDB);
5186   emit_operand32(rax, adr);
5187 }
5188 
5189 void Assembler::fincstp() {
5190   emit_int8((unsigned char)0xD9);
5191   emit_int8((unsigned char)0xF7);
5192 }
5193 
5194 void Assembler::finit() {
5195   emit_int8((unsigned char)0x9B);
5196   emit_int8((unsigned char)0xDB);
5197   emit_int8((unsigned char)0xE3);
5198 }
5199 
5200 void Assembler::fist_s(Address adr) {
5201   InstructionMark im(this);
5202   emit_int8((unsigned char)0xDB);
5203   emit_operand32(rdx, adr);
5204 }
5205 
5206 void Assembler::fistp_d(Address adr) {
5207   InstructionMark im(this);
5208   emit_int8((unsigned char)0xDF);
5209   emit_operand32(rdi, adr);
5210 }
5211 
5212 void Assembler::fistp_s(Address adr) {
5213   InstructionMark im(this);
5214   emit_int8((unsigned char)0xDB);
5215   emit_operand32(rbx, adr);
5216 }
5217 
5218 void Assembler::fld1() {
5219   emit_int8((unsigned char)0xD9);
5220   emit_int8((unsigned char)0xE8);
5221 }
5222 
5223 void Assembler::fld_d(Address adr) {
5224   InstructionMark im(this);
5225   emit_int8((unsigned char)0xDD);
5226   emit_operand32(rax, adr);
5227 }
5228 
5229 void Assembler::fld_s(Address adr) {
5230   InstructionMark im(this);
5231   emit_int8((unsigned char)0xD9);
5232   emit_operand32(rax, adr);
5233 }
5234 
5235 
5236 void Assembler::fld_s(int index) {
5237   emit_farith(0xD9, 0xC0, index);
5238 }
5239 
5240 void Assembler::fld_x(Address adr) {
5241   InstructionMark im(this);
5242   emit_int8((unsigned char)0xDB);
5243   emit_operand32(rbp, adr);
5244 }
5245 
5246 void Assembler::fldcw(Address src) {
5247   InstructionMark im(this);
5248   emit_int8((unsigned char)0xD9);
5249   emit_operand32(rbp, src);
5250 }
5251 
5252 void Assembler::fldenv(Address src) {
5253   InstructionMark im(this);
5254   emit_int8((unsigned char)0xD9);
5255   emit_operand32(rsp, src);
5256 }
5257 
5258 void Assembler::fldlg2() {
5259   emit_int8((unsigned char)0xD9);
5260   emit_int8((unsigned char)0xEC);
5261 }
5262 
5263 void Assembler::fldln2() {
5264   emit_int8((unsigned char)0xD9);
5265   emit_int8((unsigned char)0xED);
5266 }
5267 
5268 void Assembler::fldz() {
5269   emit_int8((unsigned char)0xD9);
5270   emit_int8((unsigned char)0xEE);
5271 }
5272 
5273 void Assembler::flog() {
5274   fldln2();
5275   fxch();
5276   fyl2x();
5277 }
5278 
5279 void Assembler::flog10() {
5280   fldlg2();
5281   fxch();
5282   fyl2x();
5283 }
5284 
5285 void Assembler::fmul(int i) {
5286   emit_farith(0xD8, 0xC8, i);
5287 }
5288 
5289 void Assembler::fmul_d(Address src) {
5290   InstructionMark im(this);
5291   emit_int8((unsigned char)0xDC);
5292   emit_operand32(rcx, src);
5293 }
5294 
5295 void Assembler::fmul_s(Address src) {
5296   InstructionMark im(this);
5297   emit_int8((unsigned char)0xD8);
5298   emit_operand32(rcx, src);
5299 }
5300 
5301 void Assembler::fmula(int i) {
5302   emit_farith(0xDC, 0xC8, i);
5303 }
5304 
5305 void Assembler::fmulp(int i) {
5306   emit_farith(0xDE, 0xC8, i);
5307 }
5308 
5309 void Assembler::fnsave(Address dst) {
5310   InstructionMark im(this);
5311   emit_int8((unsigned char)0xDD);
5312   emit_operand32(rsi, dst);
5313 }
5314 
5315 void Assembler::fnstcw(Address src) {
5316   InstructionMark im(this);
5317   emit_int8((unsigned char)0x9B);
5318   emit_int8((unsigned char)0xD9);
5319   emit_operand32(rdi, src);
5320 }
5321 
5322 void Assembler::fnstsw_ax() {
5323   emit_int8((unsigned char)0xDF);
5324   emit_int8((unsigned char)0xE0);
5325 }
5326 
5327 void Assembler::fprem() {
5328   emit_int8((unsigned char)0xD9);
5329   emit_int8((unsigned char)0xF8);
5330 }
5331 
5332 void Assembler::fprem1() {
5333   emit_int8((unsigned char)0xD9);
5334   emit_int8((unsigned char)0xF5);
5335 }
5336 
5337 void Assembler::frstor(Address src) {
5338   InstructionMark im(this);
5339   emit_int8((unsigned char)0xDD);
5340   emit_operand32(rsp, src);
5341 }
5342 
5343 void Assembler::fsin() {
5344   emit_int8((unsigned char)0xD9);
5345   emit_int8((unsigned char)0xFE);
5346 }
5347 
5348 void Assembler::fsqrt() {
5349   emit_int8((unsigned char)0xD9);
5350   emit_int8((unsigned char)0xFA);
5351 }
5352 
5353 void Assembler::fst_d(Address adr) {
5354   InstructionMark im(this);
5355   emit_int8((unsigned char)0xDD);
5356   emit_operand32(rdx, adr);
5357 }
5358 
5359 void Assembler::fst_s(Address adr) {
5360   InstructionMark im(this);
5361   emit_int8((unsigned char)0xD9);
5362   emit_operand32(rdx, adr);
5363 }
5364 
5365 void Assembler::fstp_d(Address adr) {
5366   InstructionMark im(this);
5367   emit_int8((unsigned char)0xDD);
5368   emit_operand32(rbx, adr);
5369 }
5370 
5371 void Assembler::fstp_d(int index) {
5372   emit_farith(0xDD, 0xD8, index);
5373 }
5374 
5375 void Assembler::fstp_s(Address adr) {
5376   InstructionMark im(this);
5377   emit_int8((unsigned char)0xD9);
5378   emit_operand32(rbx, adr);
5379 }
5380 
5381 void Assembler::fstp_x(Address adr) {
5382   InstructionMark im(this);
5383   emit_int8((unsigned char)0xDB);
5384   emit_operand32(rdi, adr);
5385 }
5386 
5387 void Assembler::fsub(int i) {
5388   emit_farith(0xD8, 0xE0, i);
5389 }
5390 
5391 void Assembler::fsub_d(Address src) {
5392   InstructionMark im(this);
5393   emit_int8((unsigned char)0xDC);
5394   emit_operand32(rsp, src);
5395 }
5396 
5397 void Assembler::fsub_s(Address src) {
5398   InstructionMark im(this);
5399   emit_int8((unsigned char)0xD8);
5400   emit_operand32(rsp, src);
5401 }
5402 
5403 void Assembler::fsuba(int i) {
5404   emit_farith(0xDC, 0xE8, i);
5405 }
5406 
5407 void Assembler::fsubp(int i) {
5408   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5409 }
5410 
5411 void Assembler::fsubr(int i) {
5412   emit_farith(0xD8, 0xE8, i);
5413 }
5414 
5415 void Assembler::fsubr_d(Address src) {
5416   InstructionMark im(this);
5417   emit_int8((unsigned char)0xDC);
5418   emit_operand32(rbp, src);
5419 }
5420 
5421 void Assembler::fsubr_s(Address src) {
5422   InstructionMark im(this);
5423   emit_int8((unsigned char)0xD8);
5424   emit_operand32(rbp, src);
5425 }
5426 
5427 void Assembler::fsubra(int i) {
5428   emit_farith(0xDC, 0xE0, i);
5429 }
5430 
5431 void Assembler::fsubrp(int i) {
5432   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5433 }
5434 
5435 void Assembler::ftan() {
5436   emit_int8((unsigned char)0xD9);
5437   emit_int8((unsigned char)0xF2);
5438   emit_int8((unsigned char)0xDD);
5439   emit_int8((unsigned char)0xD8);
5440 }
5441 
5442 void Assembler::ftst() {
5443   emit_int8((unsigned char)0xD9);
5444   emit_int8((unsigned char)0xE4);
5445 }
5446 
5447 void Assembler::fucomi(int i) {
5448   // make sure the instruction is supported (introduced for P6, together with cmov)
5449   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5450   emit_farith(0xDB, 0xE8, i);
5451 }
5452 
5453 void Assembler::fucomip(int i) {
5454   // make sure the instruction is supported (introduced for P6, together with cmov)
5455   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5456   emit_farith(0xDF, 0xE8, i);
5457 }
5458 
5459 void Assembler::fwait() {
5460   emit_int8((unsigned char)0x9B);
5461 }
5462 
5463 void Assembler::fxch(int i) {
5464   emit_farith(0xD9, 0xC8, i);
5465 }
5466 
5467 void Assembler::fyl2x() {
5468   emit_int8((unsigned char)0xD9);
5469   emit_int8((unsigned char)0xF1);
5470 }
5471 
5472 void Assembler::frndint() {
5473   emit_int8((unsigned char)0xD9);
5474   emit_int8((unsigned char)0xFC);
5475 }
5476 
5477 void Assembler::f2xm1() {
5478   emit_int8((unsigned char)0xD9);
5479   emit_int8((unsigned char)0xF0);
5480 }
5481 
5482 void Assembler::fldl2e() {
5483   emit_int8((unsigned char)0xD9);
5484   emit_int8((unsigned char)0xEA);
5485 }
5486 
5487 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
5488 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
5489 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
5490 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
5491 
5492 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
5493 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5494   if (pre > 0) {
5495     emit_int8(simd_pre[pre]);
5496   }
5497   if (rex_w) {
5498     prefixq(adr, xreg);
5499   } else {
5500     prefix(adr, xreg);
5501   }
5502   if (opc > 0) {
5503     emit_int8(0x0F);
5504     int opc2 = simd_opc[opc];
5505     if (opc2 > 0) {
5506       emit_int8(opc2);
5507     }
5508   }
5509 }
5510 
5511 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5512   if (pre > 0) {
5513     emit_int8(simd_pre[pre]);
5514   }
5515   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
5516                           prefix_and_encode(dst_enc, src_enc);
5517   if (opc > 0) {
5518     emit_int8(0x0F);
5519     int opc2 = simd_opc[opc];
5520     if (opc2 > 0) {
5521       emit_int8(opc2);
5522     }
5523   }
5524   return encode;
5525 }
5526 
5527 
5528 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
5529   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
5530     prefix(VEX_3bytes);
5531 
5532     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
5533     byte1 = (~byte1) & 0xE0;
5534     byte1 |= opc;
5535     emit_int8(byte1);
5536 
5537     int byte2 = ((~nds_enc) & 0xf) << 3;
5538     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
5539     emit_int8(byte2);
5540   } else {
5541     prefix(VEX_2bytes);
5542 
5543     int byte1 = vex_r ? VEX_R : 0;
5544     byte1 = (~byte1) & 0x80;
5545     byte1 |= ((~nds_enc) & 0xf) << 3;
5546     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
5547     emit_int8(byte1);
5548   }
5549 }
5550 
5551 // This is a 4 byte encoding
5552 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
5553                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
5554                             bool is_extended_context, bool is_merge_context,
5555                             int vector_len, bool no_mask_reg ){
5556   // EVEX 0x62 prefix
5557   prefix(EVEX_4bytes);
5558   evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
5559 
5560   // P0: byte 2, initialized to RXBR`00mm
5561   // instead of not'd
5562   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
5563   byte2 = (~byte2) & 0xF0;
5564   // confine opc opcode extensions in mm bits to lower two bits
5565   // of form {0F, 0F_38, 0F_3A}
5566   byte2 |= opc;
5567   emit_int8(byte2);
5568 
5569   // P1: byte 3 as Wvvvv1pp
5570   int byte3 = ((~nds_enc) & 0xf) << 3;
5571   // p[10] is always 1
5572   byte3 |= EVEX_F;
5573   byte3 |= (vex_w & 1) << 7;
5574   // confine pre opcode extensions in pp bits to lower two bits
5575   // of form {66, F3, F2}
5576   byte3 |= pre;
5577   emit_int8(byte3);
5578 
5579   // P2: byte 4 as zL'Lbv'aaa
5580   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
5581   // EVEX.v` for extending EVEX.vvvv or VIDX
5582   byte4 |= (evex_v ? 0: EVEX_V);
5583   // third EXEC.b for broadcast actions
5584   byte4 |= (is_extended_context ? EVEX_Rb : 0);
5585   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
5586   byte4 |= ((vector_len) & 0x3) << 5;
5587   // last is EVEX.z for zero/merge actions
5588   byte4 |= (is_merge_context ? EVEX_Z : 0);
5589   emit_int8(byte4);
5590 }
5591 
5592 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
5593                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
5594   bool vex_r = (xreg_enc >= 8);
5595   bool vex_b = adr.base_needs_rex();
5596   bool vex_x = adr.index_needs_rex();
5597   avx_vector_len = vector_len;
5598 
5599   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5600   if (VM_Version::supports_avx512vl() == false) {
5601     switch (vector_len) {
5602     case AVX_128bit:
5603     case AVX_256bit:
5604       legacy_mode = true;
5605       break;
5606     }
5607   }
5608 
5609   if ((UseAVX > 2) && (legacy_mode == false))
5610   {
5611     bool evex_r = (xreg_enc >= 16);
5612     bool evex_v = (nds_enc >= 16);
5613     is_evex_instruction = true;
5614     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5615   } else {
5616     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5617   }
5618 }
5619 
5620 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
5621                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
5622   bool vex_r = (dst_enc >= 8);
5623   bool vex_b = (src_enc >= 8);
5624   bool vex_x = false;
5625   avx_vector_len = vector_len;
5626 
5627   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5628   if (VM_Version::supports_avx512vl() == false) {
5629     switch (vector_len) {
5630     case AVX_128bit:
5631     case AVX_256bit:
5632       legacy_mode = true;
5633       break;
5634     }
5635   }
5636 
5637   if ((UseAVX > 2) && (legacy_mode == false))
5638   {
5639     bool evex_r = (dst_enc >= 16);
5640     bool evex_v = (nds_enc >= 16);
5641     // can use vex_x as bank extender on rm encoding
5642     vex_x = (src_enc >= 16);
5643     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5644   } else {
5645     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5646   }
5647 
5648   // return modrm byte components for operands
5649   return (((dst_enc & 7) << 3) | (src_enc & 7));
5650 }
5651 
5652 
5653 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
5654                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5655   if (UseAVX > 0) {
5656     int xreg_enc = xreg->encoding();
5657     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
5658     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5659   } else {
5660     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
5661     rex_prefix(adr, xreg, pre, opc, rex_w);
5662   }
5663 }
5664 
5665 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
5666                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5667   int dst_enc = dst->encoding();
5668   int src_enc = src->encoding();
5669   if (UseAVX > 0) {
5670     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5671     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5672   } else {
5673     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
5674     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
5675   }
5676 }
5677 
5678 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
5679                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5680   int dst_enc = dst->encoding();
5681   int src_enc = src->encoding();
5682   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5683   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5684 }
5685 
5686 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
5687                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5688   int dst_enc = dst->encoding();
5689   int src_enc = src->encoding();
5690   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5691   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5692 }
5693 
5694 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5695   InstructionMark im(this);
5696   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5697   emit_int8(opcode);
5698   emit_operand(dst, src);
5699 }
5700 
5701 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
5702   InstructionMark im(this);
5703   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
5704   emit_int8(opcode);
5705   emit_operand(dst, src);
5706 }
5707 
5708 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5709   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5710   emit_int8(opcode);
5711   emit_int8((unsigned char)(0xC0 | encode));
5712 }
5713 
5714 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5715   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5716   emit_int8(opcode);
5717   emit_int8((unsigned char)(0xC0 | encode));
5718 }
5719 
5720 // Versions with no second source register (non-destructive source).
5721 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5722   InstructionMark im(this);
5723   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
5724   emit_int8(opcode);
5725   emit_operand(dst, src);
5726 }
5727 
5728 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5729   InstructionMark im(this);
5730   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
5731   emit_int8(opcode);
5732   emit_operand(dst, src);
5733 }
5734 
5735 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5736   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
5737   emit_int8(opcode);
5738   emit_int8((unsigned char)(0xC0 | encode));
5739 }
5740 
5741 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5742   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5743   emit_int8(opcode);
5744   emit_int8((unsigned char)(0xC0 | encode));
5745 }
5746 
5747 // 3-operands AVX instructions
5748 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
5749                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5750   InstructionMark im(this);
5751   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
5752   emit_int8(opcode);
5753   emit_operand(dst, src);
5754 }
5755 
5756 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
5757                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5758   InstructionMark im(this);
5759   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
5760   emit_int8(opcode);
5761   emit_operand(dst, src);
5762 }
5763 
5764 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5765                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5766   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
5767   emit_int8(opcode);
5768   emit_int8((unsigned char)(0xC0 | encode));
5769 }
5770 
5771 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5772                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5773   int src_enc = src->encoding();
5774   int dst_enc = dst->encoding();
5775   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5776   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
5777   emit_int8(opcode);
5778   emit_int8((unsigned char)(0xC0 | encode));
5779 }
5780 
5781 #ifndef _LP64
5782 
5783 void Assembler::incl(Register dst) {
5784   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5785   emit_int8(0x40 | dst->encoding());
5786 }
5787 
5788 void Assembler::lea(Register dst, Address src) {
5789   leal(dst, src);
5790 }
5791 
5792 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5793   InstructionMark im(this);
5794   emit_int8((unsigned char)0xC7);
5795   emit_operand(rax, dst);
5796   emit_data((int)imm32, rspec, 0);
5797 }
5798 
5799 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5800   InstructionMark im(this);
5801   int encode = prefix_and_encode(dst->encoding());
5802   emit_int8((unsigned char)(0xB8 | encode));
5803   emit_data((int)imm32, rspec, 0);
5804 }
5805 
5806 void Assembler::popa() { // 32bit
5807   emit_int8(0x61);
5808 }
5809 
5810 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
5811   InstructionMark im(this);
5812   emit_int8(0x68);
5813   emit_data(imm32, rspec, 0);
5814 }
5815 
5816 void Assembler::pusha() { // 32bit
5817   emit_int8(0x60);
5818 }
5819 
5820 void Assembler::set_byte_if_not_zero(Register dst) {
5821   emit_int8(0x0F);
5822   emit_int8((unsigned char)0x95);
5823   emit_int8((unsigned char)(0xE0 | dst->encoding()));
5824 }
5825 
5826 void Assembler::shldl(Register dst, Register src) {
5827   emit_int8(0x0F);
5828   emit_int8((unsigned char)0xA5);
5829   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
5830 }
5831 
5832 void Assembler::shrdl(Register dst, Register src) {
5833   emit_int8(0x0F);
5834   emit_int8((unsigned char)0xAD);
5835   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
5836 }
5837 
5838 #else // LP64
5839 
5840 void Assembler::set_byte_if_not_zero(Register dst) {
5841   int enc = prefix_and_encode(dst->encoding(), true);
5842   emit_int8(0x0F);
5843   emit_int8((unsigned char)0x95);
5844   emit_int8((unsigned char)(0xE0 | enc));
5845 }
5846 
5847 // 64bit only pieces of the assembler
5848 // This should only be used by 64bit instructions that can use rip-relative
5849 // it cannot be used by instructions that want an immediate value.
5850 
5851 bool Assembler::reachable(AddressLiteral adr) {
5852   int64_t disp;
5853   // None will force a 64bit literal to the code stream. Likely a placeholder
5854   // for something that will be patched later and we need to certain it will
5855   // always be reachable.
5856   if (adr.reloc() == relocInfo::none) {
5857     return false;
5858   }
5859   if (adr.reloc() == relocInfo::internal_word_type) {
5860     // This should be rip relative and easily reachable.
5861     return true;
5862   }
5863   if (adr.reloc() == relocInfo::virtual_call_type ||
5864       adr.reloc() == relocInfo::opt_virtual_call_type ||
5865       adr.reloc() == relocInfo::static_call_type ||
5866       adr.reloc() == relocInfo::static_stub_type ) {
5867     // This should be rip relative within the code cache and easily
5868     // reachable until we get huge code caches. (At which point
5869     // ic code is going to have issues).
5870     return true;
5871   }
5872   if (adr.reloc() != relocInfo::external_word_type &&
5873       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
5874       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
5875       adr.reloc() != relocInfo::runtime_call_type ) {
5876     return false;
5877   }
5878 
5879   // Stress the correction code
5880   if (ForceUnreachable) {
5881     // Must be runtimecall reloc, see if it is in the codecache
5882     // Flipping stuff in the codecache to be unreachable causes issues
5883     // with things like inline caches where the additional instructions
5884     // are not handled.
5885     if (CodeCache::find_blob(adr._target) == NULL) {
5886       return false;
5887     }
5888   }
5889   // For external_word_type/runtime_call_type if it is reachable from where we
5890   // are now (possibly a temp buffer) and where we might end up
5891   // anywhere in the codeCache then we are always reachable.
5892   // This would have to change if we ever save/restore shared code
5893   // to be more pessimistic.
5894   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
5895   if (!is_simm32(disp)) return false;
5896   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
5897   if (!is_simm32(disp)) return false;
5898 
5899   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
5900 
5901   // Because rip relative is a disp + address_of_next_instruction and we
5902   // don't know the value of address_of_next_instruction we apply a fudge factor
5903   // to make sure we will be ok no matter the size of the instruction we get placed into.
5904   // We don't have to fudge the checks above here because they are already worst case.
5905 
5906   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
5907   // + 4 because better safe than sorry.
5908   const int fudge = 12 + 4;
5909   if (disp < 0) {
5910     disp -= fudge;
5911   } else {
5912     disp += fudge;
5913   }
5914   return is_simm32(disp);
5915 }
5916 
5917 // Check if the polling page is not reachable from the code cache using rip-relative
5918 // addressing.
5919 bool Assembler::is_polling_page_far() {
5920   intptr_t addr = (intptr_t)os::get_polling_page();
5921   return ForceUnreachable ||
5922          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
5923          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
5924 }
5925 
5926 void Assembler::emit_data64(jlong data,
5927                             relocInfo::relocType rtype,
5928                             int format) {
5929   if (rtype == relocInfo::none) {
5930     emit_int64(data);
5931   } else {
5932     emit_data64(data, Relocation::spec_simple(rtype), format);
5933   }
5934 }
5935 
5936 void Assembler::emit_data64(jlong data,
5937                             RelocationHolder const& rspec,
5938                             int format) {
5939   assert(imm_operand == 0, "default format must be immediate in this file");
5940   assert(imm_operand == format, "must be immediate");
5941   assert(inst_mark() != NULL, "must be inside InstructionMark");
5942   // Do not use AbstractAssembler::relocate, which is not intended for
5943   // embedded words.  Instead, relocate to the enclosing instruction.
5944   code_section()->relocate(inst_mark(), rspec, format);
5945 #ifdef ASSERT
5946   check_relocation(rspec, format);
5947 #endif
5948   emit_int64(data);
5949 }
5950 
5951 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
5952   if (reg_enc >= 8) {
5953     prefix(REX_B);
5954     reg_enc -= 8;
5955   } else if (byteinst && reg_enc >= 4) {
5956     prefix(REX);
5957   }
5958   return reg_enc;
5959 }
5960 
5961 int Assembler::prefixq_and_encode(int reg_enc) {
5962   if (reg_enc < 8) {
5963     prefix(REX_W);
5964   } else {
5965     prefix(REX_WB);
5966     reg_enc -= 8;
5967   }
5968   return reg_enc;
5969 }
5970 
5971 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
5972   if (dst_enc < 8) {
5973     if (src_enc >= 8) {
5974       prefix(REX_B);
5975       src_enc -= 8;
5976     } else if (byteinst && src_enc >= 4) {
5977       prefix(REX);
5978     }
5979   } else {
5980     if (src_enc < 8) {
5981       prefix(REX_R);
5982     } else {
5983       prefix(REX_RB);
5984       src_enc -= 8;
5985     }
5986     dst_enc -= 8;
5987   }
5988   return dst_enc << 3 | src_enc;
5989 }
5990 
5991 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
5992   if (dst_enc < 8) {
5993     if (src_enc < 8) {
5994       prefix(REX_W);
5995     } else {
5996       prefix(REX_WB);
5997       src_enc -= 8;
5998     }
5999   } else {
6000     if (src_enc < 8) {
6001       prefix(REX_WR);
6002     } else {
6003       prefix(REX_WRB);
6004       src_enc -= 8;
6005     }
6006     dst_enc -= 8;
6007   }
6008   return dst_enc << 3 | src_enc;
6009 }
6010 
6011 void Assembler::prefix(Register reg) {
6012   if (reg->encoding() >= 8) {
6013     prefix(REX_B);
6014   }
6015 }
6016 
6017 void Assembler::prefix(Address adr) {
6018   if (adr.base_needs_rex()) {
6019     if (adr.index_needs_rex()) {
6020       prefix(REX_XB);
6021     } else {
6022       prefix(REX_B);
6023     }
6024   } else {
6025     if (adr.index_needs_rex()) {
6026       prefix(REX_X);
6027     }
6028   }
6029 }
6030 
6031 void Assembler::prefixq(Address adr) {
6032   if (adr.base_needs_rex()) {
6033     if (adr.index_needs_rex()) {
6034       prefix(REX_WXB);
6035     } else {
6036       prefix(REX_WB);
6037     }
6038   } else {
6039     if (adr.index_needs_rex()) {
6040       prefix(REX_WX);
6041     } else {
6042       prefix(REX_W);
6043     }
6044   }
6045 }
6046 
6047 
6048 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6049   if (reg->encoding() < 8) {
6050     if (adr.base_needs_rex()) {
6051       if (adr.index_needs_rex()) {
6052         prefix(REX_XB);
6053       } else {
6054         prefix(REX_B);
6055       }
6056     } else {
6057       if (adr.index_needs_rex()) {
6058         prefix(REX_X);
6059       } else if (byteinst && reg->encoding() >= 4 ) {
6060         prefix(REX);
6061       }
6062     }
6063   } else {
6064     if (adr.base_needs_rex()) {
6065       if (adr.index_needs_rex()) {
6066         prefix(REX_RXB);
6067       } else {
6068         prefix(REX_RB);
6069       }
6070     } else {
6071       if (adr.index_needs_rex()) {
6072         prefix(REX_RX);
6073       } else {
6074         prefix(REX_R);
6075       }
6076     }
6077   }
6078 }
6079 
6080 void Assembler::prefixq(Address adr, Register src) {
6081   if (src->encoding() < 8) {
6082     if (adr.base_needs_rex()) {
6083       if (adr.index_needs_rex()) {
6084         prefix(REX_WXB);
6085       } else {
6086         prefix(REX_WB);
6087       }
6088     } else {
6089       if (adr.index_needs_rex()) {
6090         prefix(REX_WX);
6091       } else {
6092         prefix(REX_W);
6093       }
6094     }
6095   } else {
6096     if (adr.base_needs_rex()) {
6097       if (adr.index_needs_rex()) {
6098         prefix(REX_WRXB);
6099       } else {
6100         prefix(REX_WRB);
6101       }
6102     } else {
6103       if (adr.index_needs_rex()) {
6104         prefix(REX_WRX);
6105       } else {
6106         prefix(REX_WR);
6107       }
6108     }
6109   }
6110 }
6111 
6112 void Assembler::prefix(Address adr, XMMRegister reg) {
6113   if (reg->encoding() < 8) {
6114     if (adr.base_needs_rex()) {
6115       if (adr.index_needs_rex()) {
6116         prefix(REX_XB);
6117       } else {
6118         prefix(REX_B);
6119       }
6120     } else {
6121       if (adr.index_needs_rex()) {
6122         prefix(REX_X);
6123       }
6124     }
6125   } else {
6126     if (adr.base_needs_rex()) {
6127       if (adr.index_needs_rex()) {
6128         prefix(REX_RXB);
6129       } else {
6130         prefix(REX_RB);
6131       }
6132     } else {
6133       if (adr.index_needs_rex()) {
6134         prefix(REX_RX);
6135       } else {
6136         prefix(REX_R);
6137       }
6138     }
6139   }
6140 }
6141 
6142 void Assembler::prefixq(Address adr, XMMRegister src) {
6143   if (src->encoding() < 8) {
6144     if (adr.base_needs_rex()) {
6145       if (adr.index_needs_rex()) {
6146         prefix(REX_WXB);
6147       } else {
6148         prefix(REX_WB);
6149       }
6150     } else {
6151       if (adr.index_needs_rex()) {
6152         prefix(REX_WX);
6153       } else {
6154         prefix(REX_W);
6155       }
6156     }
6157   } else {
6158     if (adr.base_needs_rex()) {
6159       if (adr.index_needs_rex()) {
6160         prefix(REX_WRXB);
6161       } else {
6162         prefix(REX_WRB);
6163       }
6164     } else {
6165       if (adr.index_needs_rex()) {
6166         prefix(REX_WRX);
6167       } else {
6168         prefix(REX_WR);
6169       }
6170     }
6171   }
6172 }
6173 
6174 void Assembler::adcq(Register dst, int32_t imm32) {
6175   (void) prefixq_and_encode(dst->encoding());
6176   emit_arith(0x81, 0xD0, dst, imm32);
6177 }
6178 
6179 void Assembler::adcq(Register dst, Address src) {
6180   InstructionMark im(this);
6181   prefixq(src, dst);
6182   emit_int8(0x13);
6183   emit_operand(dst, src);
6184 }
6185 
6186 void Assembler::adcq(Register dst, Register src) {
6187   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6188   emit_arith(0x13, 0xC0, dst, src);
6189 }
6190 
6191 void Assembler::addq(Address dst, int32_t imm32) {
6192   InstructionMark im(this);
6193   prefixq(dst);
6194   emit_arith_operand(0x81, rax, dst,imm32);
6195 }
6196 
6197 void Assembler::addq(Address dst, Register src) {
6198   InstructionMark im(this);
6199   prefixq(dst, src);
6200   emit_int8(0x01);
6201   emit_operand(src, dst);
6202 }
6203 
6204 void Assembler::addq(Register dst, int32_t imm32) {
6205   (void) prefixq_and_encode(dst->encoding());
6206   emit_arith(0x81, 0xC0, dst, imm32);
6207 }
6208 
6209 void Assembler::addq(Register dst, Address src) {
6210   InstructionMark im(this);
6211   prefixq(src, dst);
6212   emit_int8(0x03);
6213   emit_operand(dst, src);
6214 }
6215 
6216 void Assembler::addq(Register dst, Register src) {
6217   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6218   emit_arith(0x03, 0xC0, dst, src);
6219 }
6220 
6221 void Assembler::adcxq(Register dst, Register src) {
6222   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6223   emit_int8((unsigned char)0x66);
6224   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6225   emit_int8(0x0F);
6226   emit_int8(0x38);
6227   emit_int8((unsigned char)0xF6);
6228   emit_int8((unsigned char)(0xC0 | encode));
6229 }
6230 
6231 void Assembler::adoxq(Register dst, Register src) {
6232   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6233   emit_int8((unsigned char)0xF3);
6234   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6235   emit_int8(0x0F);
6236   emit_int8(0x38);
6237   emit_int8((unsigned char)0xF6);
6238   emit_int8((unsigned char)(0xC0 | encode));
6239 }
6240 
6241 void Assembler::andq(Address dst, int32_t imm32) {
6242   InstructionMark im(this);
6243   prefixq(dst);
6244   emit_int8((unsigned char)0x81);
6245   emit_operand(rsp, dst, 4);
6246   emit_int32(imm32);
6247 }
6248 
6249 void Assembler::andq(Register dst, int32_t imm32) {
6250   (void) prefixq_and_encode(dst->encoding());
6251   emit_arith(0x81, 0xE0, dst, imm32);
6252 }
6253 
6254 void Assembler::andq(Register dst, Address src) {
6255   InstructionMark im(this);
6256   prefixq(src, dst);
6257   emit_int8(0x23);
6258   emit_operand(dst, src);
6259 }
6260 
6261 void Assembler::andq(Register dst, Register src) {
6262   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6263   emit_arith(0x23, 0xC0, dst, src);
6264 }
6265 
6266 void Assembler::andnq(Register dst, Register src1, Register src2) {
6267   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6268   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
6269   emit_int8((unsigned char)0xF2);
6270   emit_int8((unsigned char)(0xC0 | encode));
6271 }
6272 
6273 void Assembler::andnq(Register dst, Register src1, Address src2) {
6274   if (VM_Version::supports_evex()) {
6275     tuple_type = EVEX_T1S;
6276     input_size_in_bits = EVEX_64bit;
6277   }
6278   InstructionMark im(this);
6279   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6280   vex_prefix_0F38_q(dst, src1, src2);
6281   emit_int8((unsigned char)0xF2);
6282   emit_operand(dst, src2);
6283 }
6284 
6285 void Assembler::bsfq(Register dst, Register src) {
6286   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6287   emit_int8(0x0F);
6288   emit_int8((unsigned char)0xBC);
6289   emit_int8((unsigned char)(0xC0 | encode));
6290 }
6291 
6292 void Assembler::bsrq(Register dst, Register src) {
6293   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6294   emit_int8(0x0F);
6295   emit_int8((unsigned char)0xBD);
6296   emit_int8((unsigned char)(0xC0 | encode));
6297 }
6298 
6299 void Assembler::bswapq(Register reg) {
6300   int encode = prefixq_and_encode(reg->encoding());
6301   emit_int8(0x0F);
6302   emit_int8((unsigned char)(0xC8 | encode));
6303 }
6304 
6305 void Assembler::blsiq(Register dst, Register src) {
6306   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6307   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
6308   emit_int8((unsigned char)0xF3);
6309   emit_int8((unsigned char)(0xC0 | encode));
6310 }
6311 
6312 void Assembler::blsiq(Register dst, Address src) {
6313   InstructionMark im(this);
6314   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6315   vex_prefix_0F38_q(rbx, dst, src);
6316   emit_int8((unsigned char)0xF3);
6317   emit_operand(rbx, src);
6318 }
6319 
6320 void Assembler::blsmskq(Register dst, Register src) {
6321   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6322   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
6323   emit_int8((unsigned char)0xF3);
6324   emit_int8((unsigned char)(0xC0 | encode));
6325 }
6326 
6327 void Assembler::blsmskq(Register dst, Address src) {
6328   InstructionMark im(this);
6329   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6330   vex_prefix_0F38_q(rdx, dst, src);
6331   emit_int8((unsigned char)0xF3);
6332   emit_operand(rdx, src);
6333 }
6334 
6335 void Assembler::blsrq(Register dst, Register src) {
6336   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6337   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
6338   emit_int8((unsigned char)0xF3);
6339   emit_int8((unsigned char)(0xC0 | encode));
6340 }
6341 
6342 void Assembler::blsrq(Register dst, Address src) {
6343   InstructionMark im(this);
6344   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6345   vex_prefix_0F38_q(rcx, dst, src);
6346   emit_int8((unsigned char)0xF3);
6347   emit_operand(rcx, src);
6348 }
6349 
6350 void Assembler::cdqq() {
6351   prefix(REX_W);
6352   emit_int8((unsigned char)0x99);
6353 }
6354 
6355 void Assembler::clflush(Address adr) {
6356   prefix(adr);
6357   emit_int8(0x0F);
6358   emit_int8((unsigned char)0xAE);
6359   emit_operand(rdi, adr);
6360 }
6361 
6362 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6363   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6364   emit_int8(0x0F);
6365   emit_int8(0x40 | cc);
6366   emit_int8((unsigned char)(0xC0 | encode));
6367 }
6368 
6369 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6370   InstructionMark im(this);
6371   prefixq(src, dst);
6372   emit_int8(0x0F);
6373   emit_int8(0x40 | cc);
6374   emit_operand(dst, src);
6375 }
6376 
6377 void Assembler::cmpq(Address dst, int32_t imm32) {
6378   InstructionMark im(this);
6379   prefixq(dst);
6380   emit_int8((unsigned char)0x81);
6381   emit_operand(rdi, dst, 4);
6382   emit_int32(imm32);
6383 }
6384 
6385 void Assembler::cmpq(Register dst, int32_t imm32) {
6386   (void) prefixq_and_encode(dst->encoding());
6387   emit_arith(0x81, 0xF8, dst, imm32);
6388 }
6389 
6390 void Assembler::cmpq(Address dst, Register src) {
6391   InstructionMark im(this);
6392   prefixq(dst, src);
6393   emit_int8(0x3B);
6394   emit_operand(src, dst);
6395 }
6396 
6397 void Assembler::cmpq(Register dst, Register src) {
6398   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6399   emit_arith(0x3B, 0xC0, dst, src);
6400 }
6401 
6402 void Assembler::cmpq(Register dst, Address  src) {
6403   InstructionMark im(this);
6404   prefixq(src, dst);
6405   emit_int8(0x3B);
6406   emit_operand(dst, src);
6407 }
6408 
6409 void Assembler::cmpxchgq(Register reg, Address adr) {
6410   InstructionMark im(this);
6411   prefixq(adr, reg);
6412   emit_int8(0x0F);
6413   emit_int8((unsigned char)0xB1);
6414   emit_operand(reg, adr);
6415 }
6416 
6417 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
6418   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6419   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
6420   emit_int8(0x2A);
6421   emit_int8((unsigned char)(0xC0 | encode));
6422 }
6423 
6424 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
6425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6426   if (VM_Version::supports_evex()) {
6427     tuple_type = EVEX_T1S;
6428     input_size_in_bits = EVEX_32bit;
6429   }
6430   InstructionMark im(this);
6431   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
6432   emit_int8(0x2A);
6433   emit_operand(dst, src);
6434 }
6435 
6436 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
6437   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6438   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
6439   emit_int8(0x2A);
6440   emit_int8((unsigned char)(0xC0 | encode));
6441 }
6442 
6443 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
6444   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6445   if (VM_Version::supports_evex()) {
6446     tuple_type = EVEX_T1S;
6447     input_size_in_bits = EVEX_32bit;
6448   }
6449   InstructionMark im(this);
6450   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
6451   emit_int8(0x2A);
6452   emit_operand(dst, src);
6453 }
6454 
6455 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
6456   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6457   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
6458   emit_int8(0x2C);
6459   emit_int8((unsigned char)(0xC0 | encode));
6460 }
6461 
6462 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
6463   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6464   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
6465   emit_int8(0x2C);
6466   emit_int8((unsigned char)(0xC0 | encode));
6467 }
6468 
6469 void Assembler::decl(Register dst) {
6470   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6471   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
6472   int encode = prefix_and_encode(dst->encoding());
6473   emit_int8((unsigned char)0xFF);
6474   emit_int8((unsigned char)(0xC8 | encode));
6475 }
6476 
6477 void Assembler::decq(Register dst) {
6478   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6479   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6480   int encode = prefixq_and_encode(dst->encoding());
6481   emit_int8((unsigned char)0xFF);
6482   emit_int8(0xC8 | encode);
6483 }
6484 
6485 void Assembler::decq(Address dst) {
6486   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6487   InstructionMark im(this);
6488   prefixq(dst);
6489   emit_int8((unsigned char)0xFF);
6490   emit_operand(rcx, dst);
6491 }
6492 
6493 void Assembler::fxrstor(Address src) {
6494   prefixq(src);
6495   emit_int8(0x0F);
6496   emit_int8((unsigned char)0xAE);
6497   emit_operand(as_Register(1), src);
6498 }
6499 
6500 void Assembler::fxsave(Address dst) {
6501   prefixq(dst);
6502   emit_int8(0x0F);
6503   emit_int8((unsigned char)0xAE);
6504   emit_operand(as_Register(0), dst);
6505 }
6506 
6507 void Assembler::idivq(Register src) {
6508   int encode = prefixq_and_encode(src->encoding());
6509   emit_int8((unsigned char)0xF7);
6510   emit_int8((unsigned char)(0xF8 | encode));
6511 }
6512 
6513 void Assembler::imulq(Register dst, Register src) {
6514   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6515   emit_int8(0x0F);
6516   emit_int8((unsigned char)0xAF);
6517   emit_int8((unsigned char)(0xC0 | encode));
6518 }
6519 
6520 void Assembler::imulq(Register dst, Register src, int value) {
6521   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6522   if (is8bit(value)) {
6523     emit_int8(0x6B);
6524     emit_int8((unsigned char)(0xC0 | encode));
6525     emit_int8(value & 0xFF);
6526   } else {
6527     emit_int8(0x69);
6528     emit_int8((unsigned char)(0xC0 | encode));
6529     emit_int32(value);
6530   }
6531 }
6532 
6533 void Assembler::imulq(Register dst, Address src) {
6534   InstructionMark im(this);
6535   prefixq(src, dst);
6536   emit_int8(0x0F);
6537   emit_int8((unsigned char) 0xAF);
6538   emit_operand(dst, src);
6539 }
6540 
6541 void Assembler::incl(Register dst) {
6542   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6543   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6544   int encode = prefix_and_encode(dst->encoding());
6545   emit_int8((unsigned char)0xFF);
6546   emit_int8((unsigned char)(0xC0 | encode));
6547 }
6548 
6549 void Assembler::incq(Register dst) {
6550   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6551   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6552   int encode = prefixq_and_encode(dst->encoding());
6553   emit_int8((unsigned char)0xFF);
6554   emit_int8((unsigned char)(0xC0 | encode));
6555 }
6556 
6557 void Assembler::incq(Address dst) {
6558   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6559   InstructionMark im(this);
6560   prefixq(dst);
6561   emit_int8((unsigned char)0xFF);
6562   emit_operand(rax, dst);
6563 }
6564 
6565 void Assembler::lea(Register dst, Address src) {
6566   leaq(dst, src);
6567 }
6568 
6569 void Assembler::leaq(Register dst, Address src) {
6570   InstructionMark im(this);
6571   prefixq(src, dst);
6572   emit_int8((unsigned char)0x8D);
6573   emit_operand(dst, src);
6574 }
6575 
6576 void Assembler::mov64(Register dst, int64_t imm64) {
6577   InstructionMark im(this);
6578   int encode = prefixq_and_encode(dst->encoding());
6579   emit_int8((unsigned char)(0xB8 | encode));
6580   emit_int64(imm64);
6581 }
6582 
6583 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
6584   InstructionMark im(this);
6585   int encode = prefixq_and_encode(dst->encoding());
6586   emit_int8(0xB8 | encode);
6587   emit_data64(imm64, rspec);
6588 }
6589 
6590 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6591   InstructionMark im(this);
6592   int encode = prefix_and_encode(dst->encoding());
6593   emit_int8((unsigned char)(0xB8 | encode));
6594   emit_data((int)imm32, rspec, narrow_oop_operand);
6595 }
6596 
6597 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6598   InstructionMark im(this);
6599   prefix(dst);
6600   emit_int8((unsigned char)0xC7);
6601   emit_operand(rax, dst, 4);
6602   emit_data((int)imm32, rspec, narrow_oop_operand);
6603 }
6604 
6605 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6606   InstructionMark im(this);
6607   int encode = prefix_and_encode(src1->encoding());
6608   emit_int8((unsigned char)0x81);
6609   emit_int8((unsigned char)(0xF8 | encode));
6610   emit_data((int)imm32, rspec, narrow_oop_operand);
6611 }
6612 
6613 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6614   InstructionMark im(this);
6615   prefix(src1);
6616   emit_int8((unsigned char)0x81);
6617   emit_operand(rax, src1, 4);
6618   emit_data((int)imm32, rspec, narrow_oop_operand);
6619 }
6620 
6621 void Assembler::lzcntq(Register dst, Register src) {
6622   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
6623   emit_int8((unsigned char)0xF3);
6624   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6625   emit_int8(0x0F);
6626   emit_int8((unsigned char)0xBD);
6627   emit_int8((unsigned char)(0xC0 | encode));
6628 }
6629 
6630 void Assembler::movdq(XMMRegister dst, Register src) {
6631   // table D-1 says MMX/SSE2
6632   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6633   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
6634   emit_int8(0x6E);
6635   emit_int8((unsigned char)(0xC0 | encode));
6636 }
6637 
6638 void Assembler::movdq(Register dst, XMMRegister src) {
6639   // table D-1 says MMX/SSE2
6640   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6641   // swap src/dst to get correct prefix
6642   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
6643   emit_int8(0x7E);
6644   emit_int8((unsigned char)(0xC0 | encode));
6645 }
6646 
6647 void Assembler::movq(Register dst, Register src) {
6648   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6649   emit_int8((unsigned char)0x8B);
6650   emit_int8((unsigned char)(0xC0 | encode));
6651 }
6652 
6653 void Assembler::movq(Register dst, Address src) {
6654   InstructionMark im(this);
6655   prefixq(src, dst);
6656   emit_int8((unsigned char)0x8B);
6657   emit_operand(dst, src);
6658 }
6659 
6660 void Assembler::movq(Address dst, Register src) {
6661   InstructionMark im(this);
6662   prefixq(dst, src);
6663   emit_int8((unsigned char)0x89);
6664   emit_operand(src, dst);
6665 }
6666 
6667 void Assembler::movsbq(Register dst, Address src) {
6668   InstructionMark im(this);
6669   prefixq(src, dst);
6670   emit_int8(0x0F);
6671   emit_int8((unsigned char)0xBE);
6672   emit_operand(dst, src);
6673 }
6674 
6675 void Assembler::movsbq(Register dst, Register src) {
6676   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6677   emit_int8(0x0F);
6678   emit_int8((unsigned char)0xBE);
6679   emit_int8((unsigned char)(0xC0 | encode));
6680 }
6681 
6682 void Assembler::movslq(Register dst, int32_t imm32) {
6683   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
6684   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
6685   // as a result we shouldn't use until tested at runtime...
6686   ShouldNotReachHere();
6687   InstructionMark im(this);
6688   int encode = prefixq_and_encode(dst->encoding());
6689   emit_int8((unsigned char)(0xC7 | encode));
6690   emit_int32(imm32);
6691 }
6692 
6693 void Assembler::movslq(Address dst, int32_t imm32) {
6694   assert(is_simm32(imm32), "lost bits");
6695   InstructionMark im(this);
6696   prefixq(dst);
6697   emit_int8((unsigned char)0xC7);
6698   emit_operand(rax, dst, 4);
6699   emit_int32(imm32);
6700 }
6701 
6702 void Assembler::movslq(Register dst, Address src) {
6703   InstructionMark im(this);
6704   prefixq(src, dst);
6705   emit_int8(0x63);
6706   emit_operand(dst, src);
6707 }
6708 
6709 void Assembler::movslq(Register dst, Register src) {
6710   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6711   emit_int8(0x63);
6712   emit_int8((unsigned char)(0xC0 | encode));
6713 }
6714 
6715 void Assembler::movswq(Register dst, Address src) {
6716   InstructionMark im(this);
6717   prefixq(src, dst);
6718   emit_int8(0x0F);
6719   emit_int8((unsigned char)0xBF);
6720   emit_operand(dst, src);
6721 }
6722 
6723 void Assembler::movswq(Register dst, Register src) {
6724   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6725   emit_int8((unsigned char)0x0F);
6726   emit_int8((unsigned char)0xBF);
6727   emit_int8((unsigned char)(0xC0 | encode));
6728 }
6729 
6730 void Assembler::movzbq(Register dst, Address src) {
6731   InstructionMark im(this);
6732   prefixq(src, dst);
6733   emit_int8((unsigned char)0x0F);
6734   emit_int8((unsigned char)0xB6);
6735   emit_operand(dst, src);
6736 }
6737 
6738 void Assembler::movzbq(Register dst, Register src) {
6739   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6740   emit_int8(0x0F);
6741   emit_int8((unsigned char)0xB6);
6742   emit_int8(0xC0 | encode);
6743 }
6744 
6745 void Assembler::movzwq(Register dst, Address src) {
6746   InstructionMark im(this);
6747   prefixq(src, dst);
6748   emit_int8((unsigned char)0x0F);
6749   emit_int8((unsigned char)0xB7);
6750   emit_operand(dst, src);
6751 }
6752 
6753 void Assembler::movzwq(Register dst, Register src) {
6754   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6755   emit_int8((unsigned char)0x0F);
6756   emit_int8((unsigned char)0xB7);
6757   emit_int8((unsigned char)(0xC0 | encode));
6758 }
6759 
6760 void Assembler::mulq(Address src) {
6761   InstructionMark im(this);
6762   prefixq(src);
6763   emit_int8((unsigned char)0xF7);
6764   emit_operand(rsp, src);
6765 }
6766 
6767 void Assembler::mulq(Register src) {
6768   int encode = prefixq_and_encode(src->encoding());
6769   emit_int8((unsigned char)0xF7);
6770   emit_int8((unsigned char)(0xE0 | encode));
6771 }
6772 
6773 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
6774   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6775   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
6776                                      VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
6777   emit_int8((unsigned char)0xF6);
6778   emit_int8((unsigned char)(0xC0 | encode));
6779 }
6780 
6781 void Assembler::negq(Register dst) {
6782   int encode = prefixq_and_encode(dst->encoding());
6783   emit_int8((unsigned char)0xF7);
6784   emit_int8((unsigned char)(0xD8 | encode));
6785 }
6786 
6787 void Assembler::notq(Register dst) {
6788   int encode = prefixq_and_encode(dst->encoding());
6789   emit_int8((unsigned char)0xF7);
6790   emit_int8((unsigned char)(0xD0 | encode));
6791 }
6792 
6793 void Assembler::orq(Address dst, int32_t imm32) {
6794   InstructionMark im(this);
6795   prefixq(dst);
6796   emit_int8((unsigned char)0x81);
6797   emit_operand(rcx, dst, 4);
6798   emit_int32(imm32);
6799 }
6800 
6801 void Assembler::orq(Register dst, int32_t imm32) {
6802   (void) prefixq_and_encode(dst->encoding());
6803   emit_arith(0x81, 0xC8, dst, imm32);
6804 }
6805 
6806 void Assembler::orq(Register dst, Address src) {
6807   InstructionMark im(this);
6808   prefixq(src, dst);
6809   emit_int8(0x0B);
6810   emit_operand(dst, src);
6811 }
6812 
6813 void Assembler::orq(Register dst, Register src) {
6814   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6815   emit_arith(0x0B, 0xC0, dst, src);
6816 }
6817 
6818 void Assembler::popa() { // 64bit
6819   movq(r15, Address(rsp, 0));
6820   movq(r14, Address(rsp, wordSize));
6821   movq(r13, Address(rsp, 2 * wordSize));
6822   movq(r12, Address(rsp, 3 * wordSize));
6823   movq(r11, Address(rsp, 4 * wordSize));
6824   movq(r10, Address(rsp, 5 * wordSize));
6825   movq(r9,  Address(rsp, 6 * wordSize));
6826   movq(r8,  Address(rsp, 7 * wordSize));
6827   movq(rdi, Address(rsp, 8 * wordSize));
6828   movq(rsi, Address(rsp, 9 * wordSize));
6829   movq(rbp, Address(rsp, 10 * wordSize));
6830   // skip rsp
6831   movq(rbx, Address(rsp, 12 * wordSize));
6832   movq(rdx, Address(rsp, 13 * wordSize));
6833   movq(rcx, Address(rsp, 14 * wordSize));
6834   movq(rax, Address(rsp, 15 * wordSize));
6835 
6836   addq(rsp, 16 * wordSize);
6837 }
6838 
6839 void Assembler::popcntq(Register dst, Address src) {
6840   assert(VM_Version::supports_popcnt(), "must support");
6841   InstructionMark im(this);
6842   emit_int8((unsigned char)0xF3);
6843   prefixq(src, dst);
6844   emit_int8((unsigned char)0x0F);
6845   emit_int8((unsigned char)0xB8);
6846   emit_operand(dst, src);
6847 }
6848 
6849 void Assembler::popcntq(Register dst, Register src) {
6850   assert(VM_Version::supports_popcnt(), "must support");
6851   emit_int8((unsigned char)0xF3);
6852   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6853   emit_int8((unsigned char)0x0F);
6854   emit_int8((unsigned char)0xB8);
6855   emit_int8((unsigned char)(0xC0 | encode));
6856 }
6857 
6858 void Assembler::popq(Address dst) {
6859   InstructionMark im(this);
6860   prefixq(dst);
6861   emit_int8((unsigned char)0x8F);
6862   emit_operand(rax, dst);
6863 }
6864 
6865 void Assembler::pusha() { // 64bit
6866   // we have to store original rsp.  ABI says that 128 bytes
6867   // below rsp are local scratch.
6868   movq(Address(rsp, -5 * wordSize), rsp);
6869 
6870   subq(rsp, 16 * wordSize);
6871 
6872   movq(Address(rsp, 15 * wordSize), rax);
6873   movq(Address(rsp, 14 * wordSize), rcx);
6874   movq(Address(rsp, 13 * wordSize), rdx);
6875   movq(Address(rsp, 12 * wordSize), rbx);
6876   // skip rsp
6877   movq(Address(rsp, 10 * wordSize), rbp);
6878   movq(Address(rsp, 9 * wordSize), rsi);
6879   movq(Address(rsp, 8 * wordSize), rdi);
6880   movq(Address(rsp, 7 * wordSize), r8);
6881   movq(Address(rsp, 6 * wordSize), r9);
6882   movq(Address(rsp, 5 * wordSize), r10);
6883   movq(Address(rsp, 4 * wordSize), r11);
6884   movq(Address(rsp, 3 * wordSize), r12);
6885   movq(Address(rsp, 2 * wordSize), r13);
6886   movq(Address(rsp, wordSize), r14);
6887   movq(Address(rsp, 0), r15);
6888 }
6889 
6890 void Assembler::pushq(Address src) {
6891   InstructionMark im(this);
6892   prefixq(src);
6893   emit_int8((unsigned char)0xFF);
6894   emit_operand(rsi, src);
6895 }
6896 
6897 void Assembler::rclq(Register dst, int imm8) {
6898   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6899   int encode = prefixq_and_encode(dst->encoding());
6900   if (imm8 == 1) {
6901     emit_int8((unsigned char)0xD1);
6902     emit_int8((unsigned char)(0xD0 | encode));
6903   } else {
6904     emit_int8((unsigned char)0xC1);
6905     emit_int8((unsigned char)(0xD0 | encode));
6906     emit_int8(imm8);
6907   }
6908 }
6909 
6910 void Assembler::rorq(Register dst, int imm8) {
6911   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6912   int encode = prefixq_and_encode(dst->encoding());
6913   if (imm8 == 1) {
6914     emit_int8((unsigned char)0xD1);
6915     emit_int8((unsigned char)(0xC8 | encode));
6916   } else {
6917     emit_int8((unsigned char)0xC1);
6918     emit_int8((unsigned char)(0xc8 | encode));
6919     emit_int8(imm8);
6920   }
6921 }
6922 
6923 void Assembler::rorxq(Register dst, Register src, int imm8) {
6924   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6925   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
6926                                      VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
6927   emit_int8((unsigned char)0xF0);
6928   emit_int8((unsigned char)(0xC0 | encode));
6929   emit_int8(imm8);
6930 }
6931 
6932 void Assembler::sarq(Register dst, int imm8) {
6933   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6934   int encode = prefixq_and_encode(dst->encoding());
6935   if (imm8 == 1) {
6936     emit_int8((unsigned char)0xD1);
6937     emit_int8((unsigned char)(0xF8 | encode));
6938   } else {
6939     emit_int8((unsigned char)0xC1);
6940     emit_int8((unsigned char)(0xF8 | encode));
6941     emit_int8(imm8);
6942   }
6943 }
6944 
6945 void Assembler::sarq(Register dst) {
6946   int encode = prefixq_and_encode(dst->encoding());
6947   emit_int8((unsigned char)0xD3);
6948   emit_int8((unsigned char)(0xF8 | encode));
6949 }
6950 
6951 void Assembler::sbbq(Address dst, int32_t imm32) {
6952   InstructionMark im(this);
6953   prefixq(dst);
6954   emit_arith_operand(0x81, rbx, dst, imm32);
6955 }
6956 
6957 void Assembler::sbbq(Register dst, int32_t imm32) {
6958   (void) prefixq_and_encode(dst->encoding());
6959   emit_arith(0x81, 0xD8, dst, imm32);
6960 }
6961 
6962 void Assembler::sbbq(Register dst, Address src) {
6963   InstructionMark im(this);
6964   prefixq(src, dst);
6965   emit_int8(0x1B);
6966   emit_operand(dst, src);
6967 }
6968 
6969 void Assembler::sbbq(Register dst, Register src) {
6970   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6971   emit_arith(0x1B, 0xC0, dst, src);
6972 }
6973 
6974 void Assembler::shlq(Register dst, int imm8) {
6975   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6976   int encode = prefixq_and_encode(dst->encoding());
6977   if (imm8 == 1) {
6978     emit_int8((unsigned char)0xD1);
6979     emit_int8((unsigned char)(0xE0 | encode));
6980   } else {
6981     emit_int8((unsigned char)0xC1);
6982     emit_int8((unsigned char)(0xE0 | encode));
6983     emit_int8(imm8);
6984   }
6985 }
6986 
6987 void Assembler::shlq(Register dst) {
6988   int encode = prefixq_and_encode(dst->encoding());
6989   emit_int8((unsigned char)0xD3);
6990   emit_int8((unsigned char)(0xE0 | encode));
6991 }
6992 
6993 void Assembler::shrq(Register dst, int imm8) {
6994   assert(isShiftCount(imm8 >> 1), "illegal shift count");
6995   int encode = prefixq_and_encode(dst->encoding());
6996   emit_int8((unsigned char)0xC1);
6997   emit_int8((unsigned char)(0xE8 | encode));
6998   emit_int8(imm8);
6999 }
7000 
7001 void Assembler::shrq(Register dst) {
7002   int encode = prefixq_and_encode(dst->encoding());
7003   emit_int8((unsigned char)0xD3);
7004   emit_int8(0xE8 | encode);
7005 }
7006 
7007 void Assembler::subq(Address dst, int32_t imm32) {
7008   InstructionMark im(this);
7009   prefixq(dst);
7010   emit_arith_operand(0x81, rbp, dst, imm32);
7011 }
7012 
7013 void Assembler::subq(Address dst, Register src) {
7014   InstructionMark im(this);
7015   prefixq(dst, src);
7016   emit_int8(0x29);
7017   emit_operand(src, dst);
7018 }
7019 
7020 void Assembler::subq(Register dst, int32_t imm32) {
7021   (void) prefixq_and_encode(dst->encoding());
7022   emit_arith(0x81, 0xE8, dst, imm32);
7023 }
7024 
7025 // Force generation of a 4 byte immediate value even if it fits into 8bit
7026 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7027   (void) prefixq_and_encode(dst->encoding());
7028   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7029 }
7030 
7031 void Assembler::subq(Register dst, Address src) {
7032   InstructionMark im(this);
7033   prefixq(src, dst);
7034   emit_int8(0x2B);
7035   emit_operand(dst, src);
7036 }
7037 
7038 void Assembler::subq(Register dst, Register src) {
7039   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7040   emit_arith(0x2B, 0xC0, dst, src);
7041 }
7042 
7043 void Assembler::testq(Register dst, int32_t imm32) {
7044   // not using emit_arith because test
7045   // doesn't support sign-extension of
7046   // 8bit operands
7047   int encode = dst->encoding();
7048   if (encode == 0) {
7049     prefix(REX_W);
7050     emit_int8((unsigned char)0xA9);
7051   } else {
7052     encode = prefixq_and_encode(encode);
7053     emit_int8((unsigned char)0xF7);
7054     emit_int8((unsigned char)(0xC0 | encode));
7055   }
7056   emit_int32(imm32);
7057 }
7058 
7059 void Assembler::testq(Register dst, Register src) {
7060   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7061   emit_arith(0x85, 0xC0, dst, src);
7062 }
7063 
7064 void Assembler::xaddq(Address dst, Register src) {
7065   InstructionMark im(this);
7066   prefixq(dst, src);
7067   emit_int8(0x0F);
7068   emit_int8((unsigned char)0xC1);
7069   emit_operand(src, dst);
7070 }
7071 
7072 void Assembler::xchgq(Register dst, Address src) {
7073   InstructionMark im(this);
7074   prefixq(src, dst);
7075   emit_int8((unsigned char)0x87);
7076   emit_operand(dst, src);
7077 }
7078 
7079 void Assembler::xchgq(Register dst, Register src) {
7080   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7081   emit_int8((unsigned char)0x87);
7082   emit_int8((unsigned char)(0xc0 | encode));
7083 }
7084 
7085 void Assembler::xorq(Register dst, Register src) {
7086   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7087   emit_arith(0x33, 0xC0, dst, src);
7088 }
7089 
7090 void Assembler::xorq(Register dst, Address src) {
7091   InstructionMark im(this);
7092   prefixq(src, dst);
7093   emit_int8(0x33);
7094   emit_operand(dst, src);
7095 }
7096 
7097 #endif // !LP64