1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && is_evex_instruction) {
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x6E: // movd
 774     case 0x7E: // movd
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776       debug_only(has_disp32 = true);
 777       break;
 778 
 779     case 0xAD: // shrd r, a, %cl
 780     case 0xAF: // imul r, a
 781     case 0xBE: // movsbl r, a (movsxb)
 782     case 0xBF: // movswl r, a (movsxw)
 783     case 0xB6: // movzbl r, a (movzxb)
 784     case 0xB7: // movzwl r, a (movzxw)
 785     case REP16(0x40): // cmovl cc, r, a
 786     case 0xB0: // cmpxchgb
 787     case 0xB1: // cmpxchg
 788     case 0xC1: // xaddl
 789     case 0xC7: // cmpxchg8
 790     case REP16(0x90): // setcc a
 791       debug_only(has_disp32 = true);
 792       // fall out of the switch to decode the address
 793       break;
 794 
 795     case 0xC4: // pinsrw r, a, #8
 796       debug_only(has_disp32 = true);
 797     case 0xC5: // pextrw r, r, #8
 798       tail_size = 1;  // the imm8
 799       break;
 800 
 801     case 0xAC: // shrd r, a, #8
 802       debug_only(has_disp32 = true);
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case REP16(0x80): // jcc rdisp32
 807       if (which == end_pc_operand)  return ip + 4;
 808       assert(which == call32_operand, "jcc has no disp32 or imm");
 809       return ip;
 810     default:
 811       ShouldNotReachHere();
 812     }
 813     break;
 814 
 815   case 0x81: // addl a, #32; addl r, #32
 816     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 817     // on 32bit in the case of cmpl, the imm might be an oop
 818     tail_size = 4;
 819     debug_only(has_disp32 = true); // has both kinds of operands!
 820     break;
 821 
 822   case 0x83: // addl a, #8; addl r, #8
 823     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     tail_size = 1;
 826     break;
 827 
 828   case 0x9B:
 829     switch (0xFF & *ip++) {
 830     case 0xD9: // fnstcw a
 831       debug_only(has_disp32 = true);
 832       break;
 833     default:
 834       ShouldNotReachHere();
 835     }
 836     break;
 837 
 838   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 839   case REP4(0x10): // adc...
 840   case REP4(0x20): // and...
 841   case REP4(0x30): // xor...
 842   case REP4(0x08): // or...
 843   case REP4(0x18): // sbb...
 844   case REP4(0x28): // sub...
 845   case 0xF7: // mull a
 846   case 0x8D: // lea r, a
 847   case 0x87: // xchg r, a
 848   case REP4(0x38): // cmp...
 849   case 0x85: // test r, a
 850     debug_only(has_disp32 = true); // has both kinds of operands!
 851     break;
 852 
 853   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 854   case 0xC6: // movb a, #8
 855   case 0x80: // cmpb a, #8
 856   case 0x6B: // imul r, a, #8
 857     debug_only(has_disp32 = true); // has both kinds of operands!
 858     tail_size = 1; // the imm8
 859     break;
 860 
 861   case 0xC4: // VEX_3bytes
 862   case 0xC5: // VEX_2bytes
 863     assert((UseAVX > 0), "shouldn't have VEX prefix");
 864     assert(ip == inst+1, "no prefixes allowed");
 865     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 866     // but they have prefix 0x0F and processed when 0x0F processed above.
 867     //
 868     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 869     // instructions (these instructions are not supported in 64-bit mode).
 870     // To distinguish them bits [7:6] are set in the VEX second byte since
 871     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 872     // those VEX bits REX and vvvv bits are inverted.
 873     //
 874     // Fortunately C2 doesn't generate these instructions so we don't need
 875     // to check for them in product version.
 876 
 877     // Check second byte
 878     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 879 
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       ip++; // third byte
 883       is_64bit = ((VEX_W & *ip) == VEX_W);
 884     }
 885     ip++; // opcode
 886     // To find the end of instruction (which == end_pc_operand).
 887     switch (0xFF & *ip) {
 888     case 0x61: // pcmpestri r, r/a, #8
 889     case 0x70: // pshufd r, r/a, #8
 890     case 0x73: // psrldq r, #8
 891       tail_size = 1;  // the imm8
 892       break;
 893     default:
 894       break;
 895     }
 896     ip++; // skip opcode
 897     debug_only(has_disp32 = true); // has both kinds of operands!
 898     break;
 899 
 900   case 0x62: // EVEX_4bytes
 901     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 902     assert(ip == inst+1, "no prefixes allowed");
 903     // no EVEX collisions, all instructions that have 0x62 opcodes
 904     // have EVEX versions and are subopcodes of 0x66
 905     ip++; // skip P0 and exmaine W in P1
 906     is_64bit = ((VEX_W & *ip) == VEX_W);
 907     ip++; // move to P2
 908     ip++; // skip P2, move to opcode
 909     // To find the end of instruction (which == end_pc_operand).
 910     switch (0xFF & *ip) {
 911     case 0x61: // pcmpestri r, r/a, #8
 912     case 0x70: // pshufd r, r/a, #8
 913     case 0x73: // psrldq r, #8
 914       tail_size = 1;  // the imm8
 915       break;
 916     default:
 917       break;
 918     }
 919     ip++; // skip opcode
 920     debug_only(has_disp32 = true); // has both kinds of operands!
 921     break;
 922 
 923   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 924   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 925   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 926   case 0xDD: // fld_d a; fst_d a; fstp_d a
 927   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 928   case 0xDF: // fild_d a; fistp_d a
 929   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 930   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 931   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 932     debug_only(has_disp32 = true);
 933     break;
 934 
 935   case 0xE8: // call rdisp32
 936   case 0xE9: // jmp  rdisp32
 937     if (which == end_pc_operand)  return ip + 4;
 938     assert(which == call32_operand, "call has no disp32 or imm");
 939     return ip;
 940 
 941   case 0xF0:                    // Lock
 942     assert(os::is_MP(), "only on MP");
 943     goto again_after_prefix;
 944 
 945   case 0xF3:                    // For SSE
 946   case 0xF2:                    // For SSE2
 947     switch (0xFF & *ip++) {
 948     case REX:
 949     case REX_B:
 950     case REX_X:
 951     case REX_XB:
 952     case REX_R:
 953     case REX_RB:
 954     case REX_RX:
 955     case REX_RXB:
 956     case REX_W:
 957     case REX_WB:
 958     case REX_WX:
 959     case REX_WXB:
 960     case REX_WR:
 961     case REX_WRB:
 962     case REX_WRX:
 963     case REX_WRXB:
 964       NOT_LP64(assert(false, "found 64bit prefix"));
 965       ip++;
 966     default:
 967       ip++;
 968     }
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   default:
 973     ShouldNotReachHere();
 974 
 975 #undef REP8
 976 #undef REP16
 977   }
 978 
 979   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 980 #ifdef _LP64
 981   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 982 #else
 983   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 984   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 985 #endif // LP64
 986   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 987 
 988   // parse the output of emit_operand
 989   int op2 = 0xFF & *ip++;
 990   int base = op2 & 0x07;
 991   int op3 = -1;
 992   const int b100 = 4;
 993   const int b101 = 5;
 994   if (base == b100 && (op2 >> 6) != 3) {
 995     op3 = 0xFF & *ip++;
 996     base = op3 & 0x07;   // refetch the base
 997   }
 998   // now ip points at the disp (if any)
 999 
1000   switch (op2 >> 6) {
1001   case 0:
1002     // [00 reg  100][ss index base]
1003     // [00 reg  100][00   100  esp]
1004     // [00 reg base]
1005     // [00 reg  100][ss index  101][disp32]
1006     // [00 reg  101]               [disp32]
1007 
1008     if (base == b101) {
1009       if (which == disp32_operand)
1010         return ip;              // caller wants the disp32
1011       ip += 4;                  // skip the disp32
1012     }
1013     break;
1014 
1015   case 1:
1016     // [01 reg  100][ss index base][disp8]
1017     // [01 reg  100][00   100  esp][disp8]
1018     // [01 reg base]               [disp8]
1019     ip += 1;                    // skip the disp8
1020     break;
1021 
1022   case 2:
1023     // [10 reg  100][ss index base][disp32]
1024     // [10 reg  100][00   100  esp][disp32]
1025     // [10 reg base]               [disp32]
1026     if (which == disp32_operand)
1027       return ip;                // caller wants the disp32
1028     ip += 4;                    // skip the disp32
1029     break;
1030 
1031   case 3:
1032     // [11 reg base]  (not a memory addressing mode)
1033     break;
1034   }
1035 
1036   if (which == end_pc_operand) {
1037     return ip + tail_size;
1038   }
1039 
1040 #ifdef _LP64
1041   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1042 #else
1043   assert(which == imm_operand, "instruction has only an imm field");
1044 #endif // LP64
1045   return ip;
1046 }
1047 
1048 address Assembler::locate_next_instruction(address inst) {
1049   // Secretly share code with locate_operand:
1050   return locate_operand(inst, end_pc_operand);
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1056   address inst = inst_mark();
1057   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1058   address opnd;
1059 
1060   Relocation* r = rspec.reloc();
1061   if (r->type() == relocInfo::none) {
1062     return;
1063   } else if (r->is_call() || format == call32_operand) {
1064     // assert(format == imm32_operand, "cannot specify a nonzero format");
1065     opnd = locate_operand(inst, call32_operand);
1066   } else if (r->is_data()) {
1067     assert(format == imm_operand || format == disp32_operand
1068            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1069     opnd = locate_operand(inst, (WhichOperand)format);
1070   } else {
1071     assert(format == imm_operand, "cannot specify a format");
1072     return;
1073   }
1074   assert(opnd == pc(), "must put operand where relocs can find it");
1075 }
1076 #endif // ASSERT
1077 
1078 void Assembler::emit_operand32(Register reg, Address adr) {
1079   assert(reg->encoding() < 8, "no extended registers");
1080   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1081   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1082                adr._rspec);
1083 }
1084 
1085 void Assembler::emit_operand(Register reg, Address adr,
1086                              int rip_relative_correction) {
1087   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1088                adr._rspec,
1089                rip_relative_correction);
1090 }
1091 
1092 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1093   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1094                adr._rspec);
1095 }
1096 
1097 // MMX operations
1098 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1101 }
1102 
1103 // work around gcc (3.2.1-7a) bug
1104 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1105   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1106   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1107 }
1108 
1109 
1110 void Assembler::emit_farith(int b1, int b2, int i) {
1111   assert(isByte(b1) && isByte(b2), "wrong opcode");
1112   assert(0 <= i &&  i < 8, "illegal stack offset");
1113   emit_int8(b1);
1114   emit_int8(b2 + i);
1115 }
1116 
1117 
1118 // Now the Assembler instructions (identical for 32/64 bits)
1119 
1120 void Assembler::adcl(Address dst, int32_t imm32) {
1121   InstructionMark im(this);
1122   prefix(dst);
1123   emit_arith_operand(0x81, rdx, dst, imm32);
1124 }
1125 
1126 void Assembler::adcl(Address dst, Register src) {
1127   InstructionMark im(this);
1128   prefix(dst, src);
1129   emit_int8(0x11);
1130   emit_operand(src, dst);
1131 }
1132 
1133 void Assembler::adcl(Register dst, int32_t imm32) {
1134   prefix(dst);
1135   emit_arith(0x81, 0xD0, dst, imm32);
1136 }
1137 
1138 void Assembler::adcl(Register dst, Address src) {
1139   InstructionMark im(this);
1140   prefix(src, dst);
1141   emit_int8(0x13);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::adcl(Register dst, Register src) {
1146   (void) prefix_and_encode(dst->encoding(), src->encoding());
1147   emit_arith(0x13, 0xC0, dst, src);
1148 }
1149 
1150 void Assembler::addl(Address dst, int32_t imm32) {
1151   InstructionMark im(this);
1152   prefix(dst);
1153   emit_arith_operand(0x81, rax, dst, imm32);
1154 }
1155 
1156 void Assembler::addl(Address dst, Register src) {
1157   InstructionMark im(this);
1158   prefix(dst, src);
1159   emit_int8(0x01);
1160   emit_operand(src, dst);
1161 }
1162 
1163 void Assembler::addl(Register dst, int32_t imm32) {
1164   prefix(dst);
1165   emit_arith(0x81, 0xC0, dst, imm32);
1166 }
1167 
1168 void Assembler::addl(Register dst, Address src) {
1169   InstructionMark im(this);
1170   prefix(src, dst);
1171   emit_int8(0x03);
1172   emit_operand(dst, src);
1173 }
1174 
1175 void Assembler::addl(Register dst, Register src) {
1176   (void) prefix_and_encode(dst->encoding(), src->encoding());
1177   emit_arith(0x03, 0xC0, dst, src);
1178 }
1179 
1180 void Assembler::addr_nop_4() {
1181   assert(UseAddressNop, "no CPU support");
1182   // 4 bytes: NOP DWORD PTR [EAX+0]
1183   emit_int8(0x0F);
1184   emit_int8(0x1F);
1185   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1186   emit_int8(0);    // 8-bits offset (1 byte)
1187 }
1188 
1189 void Assembler::addr_nop_5() {
1190   assert(UseAddressNop, "no CPU support");
1191   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1192   emit_int8(0x0F);
1193   emit_int8(0x1F);
1194   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1195   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1196   emit_int8(0);    // 8-bits offset (1 byte)
1197 }
1198 
1199 void Assembler::addr_nop_7() {
1200   assert(UseAddressNop, "no CPU support");
1201   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1202   emit_int8(0x0F);
1203   emit_int8(0x1F);
1204   emit_int8((unsigned char)0x80);
1205                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1206   emit_int32(0);   // 32-bits offset (4 bytes)
1207 }
1208 
1209 void Assembler::addr_nop_8() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8((unsigned char)0x84);
1215                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1216   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1217   emit_int32(0);   // 32-bits offset (4 bytes)
1218 }
1219 
1220 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1222   if (VM_Version::supports_evex()) {
1223     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1224   } else {
1225     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1226   }
1227 }
1228 
1229 void Assembler::addsd(XMMRegister dst, Address src) {
1230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1231   if (VM_Version::supports_evex()) {
1232     tuple_type = EVEX_T1S;
1233     input_size_in_bits = EVEX_64bit;
1234     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1235   } else {
1236     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1237   }
1238 }
1239 
1240 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1242   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1243 }
1244 
1245 void Assembler::addss(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1247   if (VM_Version::supports_evex()) {
1248     tuple_type = EVEX_T1S;
1249     input_size_in_bits = EVEX_32bit;
1250   }
1251   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1252 }
1253 
1254 void Assembler::aesdec(XMMRegister dst, Address src) {
1255   assert(VM_Version::supports_aes(), "");
1256   InstructionMark im(this);
1257   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1258               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1259   emit_int8((unsigned char)0xDE);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1264   assert(VM_Version::supports_aes(), "");
1265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1266                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1267   emit_int8((unsigned char)0xDE);
1268   emit_int8(0xC0 | encode);
1269 }
1270 
1271 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1272   assert(VM_Version::supports_aes(), "");
1273   InstructionMark im(this);
1274   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1275               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1276   emit_int8((unsigned char)0xDF);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1281   assert(VM_Version::supports_aes(), "");
1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1283                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1284   emit_int8((unsigned char)0xDF);
1285   emit_int8((unsigned char)(0xC0 | encode));
1286 }
1287 
1288 void Assembler::aesenc(XMMRegister dst, Address src) {
1289   assert(VM_Version::supports_aes(), "");
1290   InstructionMark im(this);
1291   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1292               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1293   emit_int8((unsigned char)0xDC);
1294   emit_operand(dst, src);
1295 }
1296 
1297 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1298   assert(VM_Version::supports_aes(), "");
1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1300                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1301   emit_int8((unsigned char)0xDC);
1302   emit_int8(0xC0 | encode);
1303 }
1304 
1305 void Assembler::aesenclast(XMMRegister dst, Address src) {
1306   assert(VM_Version::supports_aes(), "");
1307   InstructionMark im(this);
1308   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1309               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1310   emit_int8((unsigned char)0xDD);
1311   emit_operand(dst, src);
1312 }
1313 
1314 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1315   assert(VM_Version::supports_aes(), "");
1316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1317                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1318   emit_int8((unsigned char)0xDD);
1319   emit_int8((unsigned char)(0xC0 | encode));
1320 }
1321 
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2, false);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38_legacy(dst, src1, src2, false);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src, false);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38_legacy(rbx, dst, src, false);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src, false);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38(rdx, dst, src, false);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src, false);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38_legacy(rcx, dst, src, false);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     tuple_type = EVEX_T1S;
1573     input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     tuple_type = EVEX_T1S;
1592     input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1611 }
1612 
1613 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1616 }
1617 
1618 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1620   if (VM_Version::supports_evex()) {
1621     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1622   } else {
1623     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1624   }
1625 }
1626 
1627 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   if (VM_Version::supports_evex()) {
1630     tuple_type = EVEX_T1F;
1631     input_size_in_bits = EVEX_64bit;
1632     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1633   } else {
1634     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1635   }
1636 }
1637 
1638 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1640   int encode = 0;
1641   if (VM_Version::supports_evex()) {
1642     encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
1643   } else {
1644     encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
1645   }
1646   emit_int8(0x2A);
1647   emit_int8((unsigned char)(0xC0 | encode));
1648 }
1649 
1650 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   if (VM_Version::supports_evex()) {
1653     tuple_type = EVEX_T1S;
1654     input_size_in_bits = EVEX_32bit;
1655     emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
1656   } else {
1657     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1658   }
1659 }
1660 
1661 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
1664   emit_int8(0x2A);
1665   emit_int8((unsigned char)(0xC0 | encode));
1666 }
1667 
1668 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1669   if (VM_Version::supports_evex()) {
1670     tuple_type = EVEX_T1S;
1671     input_size_in_bits = EVEX_32bit;
1672   }
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
1675 }
1676 
1677 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1679   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1680 }
1681 
1682 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1683   if (VM_Version::supports_evex()) {
1684     tuple_type = EVEX_T1S;
1685     input_size_in_bits = EVEX_32bit;
1686   }
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 
1692 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1694   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
1695   emit_int8(0x2C);
1696   emit_int8((unsigned char)(0xC0 | encode));
1697 }
1698 
1699 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1701   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
1702   emit_int8(0x2C);
1703   emit_int8((unsigned char)(0xC0 | encode));
1704 }
1705 
1706 void Assembler::decl(Address dst) {
1707   // Don't use it directly. Use MacroAssembler::decrement() instead.
1708   InstructionMark im(this);
1709   prefix(dst);
1710   emit_int8((unsigned char)0xFF);
1711   emit_operand(rcx, dst);
1712 }
1713 
1714 void Assembler::divsd(XMMRegister dst, Address src) {
1715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1716   if (VM_Version::supports_evex()) {
1717     tuple_type = EVEX_T1S;
1718     input_size_in_bits = EVEX_64bit;
1719     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1720   } else {
1721     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1722   }
1723 }
1724 
1725 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   if (VM_Version::supports_evex()) {
1728     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1729   } else {
1730     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1731   }
1732 }
1733 
1734 void Assembler::divss(XMMRegister dst, Address src) {
1735   if (VM_Version::supports_evex()) {
1736     tuple_type = EVEX_T1S;
1737     input_size_in_bits = EVEX_32bit;
1738   }
1739   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1740   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1741 }
1742 
1743 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1744   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1745   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1746 }
1747 
1748 void Assembler::emms() {
1749   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1750   emit_int8(0x0F);
1751   emit_int8(0x77);
1752 }
1753 
1754 void Assembler::hlt() {
1755   emit_int8((unsigned char)0xF4);
1756 }
1757 
1758 void Assembler::idivl(Register src) {
1759   int encode = prefix_and_encode(src->encoding());
1760   emit_int8((unsigned char)0xF7);
1761   emit_int8((unsigned char)(0xF8 | encode));
1762 }
1763 
1764 void Assembler::divl(Register src) { // Unsigned
1765   int encode = prefix_and_encode(src->encoding());
1766   emit_int8((unsigned char)0xF7);
1767   emit_int8((unsigned char)(0xF0 | encode));
1768 }
1769 
1770 void Assembler::imull(Register dst, Register src) {
1771   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1772   emit_int8(0x0F);
1773   emit_int8((unsigned char)0xAF);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 
1778 void Assembler::imull(Register dst, Register src, int value) {
1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1780   if (is8bit(value)) {
1781     emit_int8(0x6B);
1782     emit_int8((unsigned char)(0xC0 | encode));
1783     emit_int8(value & 0xFF);
1784   } else {
1785     emit_int8(0x69);
1786     emit_int8((unsigned char)(0xC0 | encode));
1787     emit_int32(value);
1788   }
1789 }
1790 
1791 void Assembler::imull(Register dst, Address src) {
1792   InstructionMark im(this);
1793   prefix(src, dst);
1794   emit_int8(0x0F);
1795   emit_int8((unsigned char) 0xAF);
1796   emit_operand(dst, src);
1797 }
1798 
1799 
1800 void Assembler::incl(Address dst) {
1801   // Don't use it directly. Use MacroAssembler::increment() instead.
1802   InstructionMark im(this);
1803   prefix(dst);
1804   emit_int8((unsigned char)0xFF);
1805   emit_operand(rax, dst);
1806 }
1807 
1808 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1809   InstructionMark im(this);
1810   assert((0 <= cc) && (cc < 16), "illegal cc");
1811   if (L.is_bound()) {
1812     address dst = target(L);
1813     assert(dst != NULL, "jcc most probably wrong");
1814 
1815     const int short_size = 2;
1816     const int long_size = 6;
1817     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1818     if (maybe_short && is8bit(offs - short_size)) {
1819       // 0111 tttn #8-bit disp
1820       emit_int8(0x70 | cc);
1821       emit_int8((offs - short_size) & 0xFF);
1822     } else {
1823       // 0000 1111 1000 tttn #32-bit disp
1824       assert(is_simm32(offs - long_size),
1825              "must be 32bit offset (call4)");
1826       emit_int8(0x0F);
1827       emit_int8((unsigned char)(0x80 | cc));
1828       emit_int32(offs - long_size);
1829     }
1830   } else {
1831     // Note: could eliminate cond. jumps to this jump if condition
1832     //       is the same however, seems to be rather unlikely case.
1833     // Note: use jccb() if label to be bound is very close to get
1834     //       an 8-bit displacement
1835     L.add_patch_at(code(), locator());
1836     emit_int8(0x0F);
1837     emit_int8((unsigned char)(0x80 | cc));
1838     emit_int32(0);
1839   }
1840 }
1841 
1842 void Assembler::jccb(Condition cc, Label& L) {
1843   if (L.is_bound()) {
1844     const int short_size = 2;
1845     address entry = target(L);
1846 #ifdef ASSERT
1847     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1848     intptr_t delta = short_branch_delta();
1849     if (delta != 0) {
1850       dist += (dist < 0 ? (-delta) :delta);
1851     }
1852     assert(is8bit(dist), "Dispacement too large for a short jmp");
1853 #endif
1854     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1855     // 0111 tttn #8-bit disp
1856     emit_int8(0x70 | cc);
1857     emit_int8((offs - short_size) & 0xFF);
1858   } else {
1859     InstructionMark im(this);
1860     L.add_patch_at(code(), locator());
1861     emit_int8(0x70 | cc);
1862     emit_int8(0);
1863   }
1864 }
1865 
1866 void Assembler::jmp(Address adr) {
1867   InstructionMark im(this);
1868   prefix(adr);
1869   emit_int8((unsigned char)0xFF);
1870   emit_operand(rsp, adr);
1871 }
1872 
1873 void Assembler::jmp(Label& L, bool maybe_short) {
1874   if (L.is_bound()) {
1875     address entry = target(L);
1876     assert(entry != NULL, "jmp most probably wrong");
1877     InstructionMark im(this);
1878     const int short_size = 2;
1879     const int long_size = 5;
1880     intptr_t offs = entry - pc();
1881     if (maybe_short && is8bit(offs - short_size)) {
1882       emit_int8((unsigned char)0xEB);
1883       emit_int8((offs - short_size) & 0xFF);
1884     } else {
1885       emit_int8((unsigned char)0xE9);
1886       emit_int32(offs - long_size);
1887     }
1888   } else {
1889     // By default, forward jumps are always 32-bit displacements, since
1890     // we can't yet know where the label will be bound.  If you're sure that
1891     // the forward jump will not run beyond 256 bytes, use jmpb to
1892     // force an 8-bit displacement.
1893     InstructionMark im(this);
1894     L.add_patch_at(code(), locator());
1895     emit_int8((unsigned char)0xE9);
1896     emit_int32(0);
1897   }
1898 }
1899 
1900 void Assembler::jmp(Register entry) {
1901   int encode = prefix_and_encode(entry->encoding());
1902   emit_int8((unsigned char)0xFF);
1903   emit_int8((unsigned char)(0xE0 | encode));
1904 }
1905 
1906 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1907   InstructionMark im(this);
1908   emit_int8((unsigned char)0xE9);
1909   assert(dest != NULL, "must have a target");
1910   intptr_t disp = dest - (pc() + sizeof(int32_t));
1911   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1912   emit_data(disp, rspec.reloc(), call32_operand);
1913 }
1914 
1915 void Assembler::jmpb(Label& L) {
1916   if (L.is_bound()) {
1917     const int short_size = 2;
1918     address entry = target(L);
1919     assert(entry != NULL, "jmp most probably wrong");
1920 #ifdef ASSERT
1921     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1922     intptr_t delta = short_branch_delta();
1923     if (delta != 0) {
1924       dist += (dist < 0 ? (-delta) :delta);
1925     }
1926     assert(is8bit(dist), "Dispacement too large for a short jmp");
1927 #endif
1928     intptr_t offs = entry - pc();
1929     emit_int8((unsigned char)0xEB);
1930     emit_int8((offs - short_size) & 0xFF);
1931   } else {
1932     InstructionMark im(this);
1933     L.add_patch_at(code(), locator());
1934     emit_int8((unsigned char)0xEB);
1935     emit_int8(0);
1936   }
1937 }
1938 
1939 void Assembler::ldmxcsr( Address src) {
1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1941   InstructionMark im(this);
1942   prefix(src);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char)0xAE);
1945   emit_operand(as_Register(2), src);
1946 }
1947 
1948 void Assembler::leal(Register dst, Address src) {
1949   InstructionMark im(this);
1950 #ifdef _LP64
1951   emit_int8(0x67); // addr32
1952   prefix(src, dst);
1953 #endif // LP64
1954   emit_int8((unsigned char)0x8D);
1955   emit_operand(dst, src);
1956 }
1957 
1958 void Assembler::lfence() {
1959   emit_int8(0x0F);
1960   emit_int8((unsigned char)0xAE);
1961   emit_int8((unsigned char)0xE8);
1962 }
1963 
1964 void Assembler::lock() {
1965   emit_int8((unsigned char)0xF0);
1966 }
1967 
1968 void Assembler::lzcntl(Register dst, Register src) {
1969   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1970   emit_int8((unsigned char)0xF3);
1971   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xBD);
1974   emit_int8((unsigned char)(0xC0 | encode));
1975 }
1976 
1977 // Emit mfence instruction
1978 void Assembler::mfence() {
1979   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xAE);
1982   emit_int8((unsigned char)0xF0);
1983 }
1984 
1985 void Assembler::mov(Register dst, Register src) {
1986   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1987 }
1988 
1989 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1991   if (VM_Version::supports_evex()) {
1992     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
1993   } else {
1994     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1995   }
1996 }
1997 
1998 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1999   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2000   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2001 }
2002 
2003 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2005   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
2006                                       false, AVX_128bit);
2007   emit_int8(0x16);
2008   emit_int8((unsigned char)(0xC0 | encode));
2009 }
2010 
2011 void Assembler::movb(Register dst, Address src) {
2012   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2013   InstructionMark im(this);
2014   prefix(src, dst, true);
2015   emit_int8((unsigned char)0x8A);
2016   emit_operand(dst, src);
2017 }
2018 
2019 void Assembler::kmovq(KRegister dst, KRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2021   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2022                                       true, VEX_OPCODE_0F, true);
2023   emit_int8((unsigned char)0x90);
2024   emit_int8((unsigned char)(0xC0 | encode));
2025 }
2026 
2027 void Assembler::kmovq(KRegister dst, Address src) {
2028   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2029   int dst_enc = dst->encoding();
2030   int nds_enc = 0;
2031   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2032              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2033   emit_int8((unsigned char)0x90);
2034   emit_operand((Register)dst, src);
2035 }
2036 
2037 void Assembler::kmovq(Address dst, KRegister src) {
2038   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2039   int src_enc = src->encoding();
2040   int nds_enc = 0;
2041   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2042              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2043   emit_int8((unsigned char)0x90);
2044   emit_operand((Register)src, dst);
2045 }
2046 
2047 void Assembler::kmovql(KRegister dst, Register src) {
2048   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2049   bool supports_bw = VM_Version::supports_avx512bw();
2050   VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2051   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
2052                                       VEX_OPCODE_0F, supports_bw);
2053   emit_int8((unsigned char)0x92);
2054   emit_int8((unsigned char)(0xC0 | encode));
2055 }
2056 
2057 void Assembler::kmovdl(KRegister dst, Register src) {
2058   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2059   VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2060   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
2061   emit_int8((unsigned char)0x92);
2062   emit_int8((unsigned char)(0xC0 | encode));
2063 }
2064 
2065 void Assembler::movb(Address dst, int imm8) {
2066   InstructionMark im(this);
2067    prefix(dst);
2068   emit_int8((unsigned char)0xC6);
2069   emit_operand(rax, dst, 1);
2070   emit_int8(imm8);
2071 }
2072 
2073 
2074 void Assembler::movb(Address dst, Register src) {
2075   assert(src->has_byte_register(), "must have byte register");
2076   InstructionMark im(this);
2077   prefix(dst, src, true);
2078   emit_int8((unsigned char)0x88);
2079   emit_operand(src, dst);
2080 }
2081 
2082 void Assembler::movdl(XMMRegister dst, Register src) {
2083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2084   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
2085   emit_int8(0x6E);
2086   emit_int8((unsigned char)(0xC0 | encode));
2087 }
2088 
2089 void Assembler::movdl(Register dst, XMMRegister src) {
2090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2091   // swap src/dst to get correct prefix
2092   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
2093   emit_int8(0x7E);
2094   emit_int8((unsigned char)(0xC0 | encode));
2095 }
2096 
2097 void Assembler::movdl(XMMRegister dst, Address src) {
2098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2099   if (VM_Version::supports_evex()) {
2100     tuple_type = EVEX_T1S;
2101     input_size_in_bits = EVEX_32bit;
2102   }
2103   InstructionMark im(this);
2104   simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
2105   emit_int8(0x6E);
2106   emit_operand(dst, src);
2107 }
2108 
2109 void Assembler::movdl(Address dst, XMMRegister src) {
2110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2111   if (VM_Version::supports_evex()) {
2112     tuple_type = EVEX_T1S;
2113     input_size_in_bits = EVEX_32bit;
2114   }
2115   InstructionMark im(this);
2116   simd_prefix(dst, src, VEX_SIMD_66, true);
2117   emit_int8(0x7E);
2118   emit_operand(src, dst);
2119 }
2120 
2121 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2124 }
2125 
2126 void Assembler::movdqa(XMMRegister dst, Address src) {
2127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2128   if (VM_Version::supports_evex()) {
2129     tuple_type = EVEX_FVM;
2130   }
2131   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2132 }
2133 
2134 void Assembler::movdqu(XMMRegister dst, Address src) {
2135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2136   if (VM_Version::supports_evex()) {
2137     tuple_type = EVEX_FVM;
2138   }
2139   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2140 }
2141 
2142 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2144   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2145 }
2146 
2147 void Assembler::movdqu(Address dst, XMMRegister src) {
2148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2149   if (VM_Version::supports_evex()) {
2150     tuple_type = EVEX_FVM;
2151   }
2152   InstructionMark im(this);
2153   simd_prefix(dst, src, VEX_SIMD_F3, false);
2154   emit_int8(0x7F);
2155   emit_operand(src, dst);
2156 }
2157 
2158 // Move Unaligned 256bit Vector
2159 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2160   assert(UseAVX > 0, "");
2161   if (VM_Version::supports_evex()) {
2162     tuple_type = EVEX_FVM;
2163   }
2164   int vector_len = AVX_256bit;
2165   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2166   emit_int8(0x6F);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2171   assert(UseAVX > 0, "");
2172   if (VM_Version::supports_evex()) {
2173     tuple_type = EVEX_FVM;
2174   }
2175   InstructionMark im(this);
2176   int vector_len = AVX_256bit;
2177   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2178   emit_int8(0x6F);
2179   emit_operand(dst, src);
2180 }
2181 
2182 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2183   assert(UseAVX > 0, "");
2184   if (VM_Version::supports_evex()) {
2185     tuple_type = EVEX_FVM;
2186   }
2187   InstructionMark im(this);
2188   int vector_len = AVX_256bit;
2189   // swap src<->dst for encoding
2190   assert(src != xnoreg, "sanity");
2191   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2192   emit_int8(0x7F);
2193   emit_operand(src, dst);
2194 }
2195 
2196 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2197 void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2198   assert(UseAVX > 0, "");
2199   int src_enc = src->encoding();
2200   int dst_enc = dst->encoding();
2201   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2202                                      true, vector_len, false, false);
2203   emit_int8(0x6F);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
2208   assert(UseAVX > 0, "");
2209   InstructionMark im(this);
2210   if (VM_Version::supports_evex()) {
2211     tuple_type = EVEX_FVM;
2212     vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2213   } else {
2214     vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2215   }
2216   emit_int8(0x6F);
2217   emit_operand(dst, src);
2218 }
2219 
2220 void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
2221   assert(UseAVX > 0, "");
2222   InstructionMark im(this);
2223   assert(src != xnoreg, "sanity");
2224   if (VM_Version::supports_evex()) {
2225     tuple_type = EVEX_FVM;
2226     // swap src<->dst for encoding
2227     vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2228   } else {
2229     // swap src<->dst for encoding
2230     vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2231   }
2232   emit_int8(0x7F);
2233   emit_operand(src, dst);
2234 }
2235 
2236 // Uses zero extension on 64bit
2237 
2238 void Assembler::movl(Register dst, int32_t imm32) {
2239   int encode = prefix_and_encode(dst->encoding());
2240   emit_int8((unsigned char)(0xB8 | encode));
2241   emit_int32(imm32);
2242 }
2243 
2244 void Assembler::movl(Register dst, Register src) {
2245   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2246   emit_int8((unsigned char)0x8B);
2247   emit_int8((unsigned char)(0xC0 | encode));
2248 }
2249 
2250 void Assembler::movl(Register dst, Address src) {
2251   InstructionMark im(this);
2252   prefix(src, dst);
2253   emit_int8((unsigned char)0x8B);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movl(Address dst, int32_t imm32) {
2258   InstructionMark im(this);
2259   prefix(dst);
2260   emit_int8((unsigned char)0xC7);
2261   emit_operand(rax, dst, 4);
2262   emit_int32(imm32);
2263 }
2264 
2265 void Assembler::movl(Address dst, Register src) {
2266   InstructionMark im(this);
2267   prefix(dst, src);
2268   emit_int8((unsigned char)0x89);
2269   emit_operand(src, dst);
2270 }
2271 
2272 // New cpus require to use movsd and movss to avoid partial register stall
2273 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2274 // The selection is done in MacroAssembler::movdbl() and movflt().
2275 void Assembler::movlpd(XMMRegister dst, Address src) {
2276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2277   if (VM_Version::supports_evex()) {
2278     tuple_type = EVEX_T1S;
2279     input_size_in_bits = EVEX_32bit;
2280   }
2281   emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
2282 }
2283 
2284 void Assembler::movq( MMXRegister dst, Address src ) {
2285   assert( VM_Version::supports_mmx(), "" );
2286   emit_int8(0x0F);
2287   emit_int8(0x6F);
2288   emit_operand(dst, src);
2289 }
2290 
2291 void Assembler::movq( Address dst, MMXRegister src ) {
2292   assert( VM_Version::supports_mmx(), "" );
2293   emit_int8(0x0F);
2294   emit_int8(0x7F);
2295   // workaround gcc (3.2.1-7a) bug
2296   // In that version of gcc with only an emit_operand(MMX, Address)
2297   // gcc will tail jump and try and reverse the parameters completely
2298   // obliterating dst in the process. By having a version available
2299   // that doesn't need to swap the args at the tail jump the bug is
2300   // avoided.
2301   emit_operand(dst, src);
2302 }
2303 
2304 void Assembler::movq(XMMRegister dst, Address src) {
2305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2306   InstructionMark im(this);
2307   if (VM_Version::supports_evex()) {
2308     tuple_type = EVEX_T1S;
2309     input_size_in_bits = EVEX_64bit;
2310     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
2311   } else {
2312     simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
2313   }
2314   emit_int8(0x7E);
2315   emit_operand(dst, src);
2316 }
2317 
2318 void Assembler::movq(Address dst, XMMRegister src) {
2319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2320   InstructionMark im(this);
2321   if (VM_Version::supports_evex()) {
2322     tuple_type = EVEX_T1S;
2323     input_size_in_bits = EVEX_64bit;
2324     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
2325                 VEX_OPCODE_0F, true, AVX_128bit);
2326   } else {
2327     simd_prefix(dst, src, VEX_SIMD_66, true);
2328   }
2329   emit_int8((unsigned char)0xD6);
2330   emit_operand(src, dst);
2331 }
2332 
2333 void Assembler::movsbl(Register dst, Address src) { // movsxb
2334   InstructionMark im(this);
2335   prefix(src, dst);
2336   emit_int8(0x0F);
2337   emit_int8((unsigned char)0xBE);
2338   emit_operand(dst, src);
2339 }
2340 
2341 void Assembler::movsbl(Register dst, Register src) { // movsxb
2342   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2343   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2344   emit_int8(0x0F);
2345   emit_int8((unsigned char)0xBE);
2346   emit_int8((unsigned char)(0xC0 | encode));
2347 }
2348 
2349 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2351   if (VM_Version::supports_evex()) {
2352     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
2353   } else {
2354     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2355   }
2356 }
2357 
2358 void Assembler::movsd(XMMRegister dst, Address src) {
2359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2360   if (VM_Version::supports_evex()) {
2361     tuple_type = EVEX_T1S;
2362     input_size_in_bits = EVEX_64bit;
2363     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
2364   } else {
2365     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2366   }
2367 }
2368 
2369 void Assembler::movsd(Address dst, XMMRegister src) {
2370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2371   InstructionMark im(this);
2372   if (VM_Version::supports_evex()) {
2373     tuple_type = EVEX_T1S;
2374     input_size_in_bits = EVEX_64bit;
2375     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2376   } else {
2377     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
2378   }
2379   emit_int8(0x11);
2380   emit_operand(src, dst);
2381 }
2382 
2383 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2384   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2385   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
2386 }
2387 
2388 void Assembler::movss(XMMRegister dst, Address src) {
2389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2390   if (VM_Version::supports_evex()) {
2391     tuple_type = EVEX_T1S;
2392     input_size_in_bits = EVEX_32bit;
2393   }
2394   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
2395 }
2396 
2397 void Assembler::movss(Address dst, XMMRegister src) {
2398   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2399   if (VM_Version::supports_evex()) {
2400     tuple_type = EVEX_T1S;
2401     input_size_in_bits = EVEX_32bit;
2402   }
2403   InstructionMark im(this);
2404   simd_prefix(dst, src, VEX_SIMD_F3, false);
2405   emit_int8(0x11);
2406   emit_operand(src, dst);
2407 }
2408 
2409 void Assembler::movswl(Register dst, Address src) { // movsxw
2410   InstructionMark im(this);
2411   prefix(src, dst);
2412   emit_int8(0x0F);
2413   emit_int8((unsigned char)0xBF);
2414   emit_operand(dst, src);
2415 }
2416 
2417 void Assembler::movswl(Register dst, Register src) { // movsxw
2418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2419   emit_int8(0x0F);
2420   emit_int8((unsigned char)0xBF);
2421   emit_int8((unsigned char)(0xC0 | encode));
2422 }
2423 
2424 void Assembler::movw(Address dst, int imm16) {
2425   InstructionMark im(this);
2426 
2427   emit_int8(0x66); // switch to 16-bit mode
2428   prefix(dst);
2429   emit_int8((unsigned char)0xC7);
2430   emit_operand(rax, dst, 2);
2431   emit_int16(imm16);
2432 }
2433 
2434 void Assembler::movw(Register dst, Address src) {
2435   InstructionMark im(this);
2436   emit_int8(0x66);
2437   prefix(src, dst);
2438   emit_int8((unsigned char)0x8B);
2439   emit_operand(dst, src);
2440 }
2441 
2442 void Assembler::movw(Address dst, Register src) {
2443   InstructionMark im(this);
2444   emit_int8(0x66);
2445   prefix(dst, src);
2446   emit_int8((unsigned char)0x89);
2447   emit_operand(src, dst);
2448 }
2449 
2450 void Assembler::movzbl(Register dst, Address src) { // movzxb
2451   InstructionMark im(this);
2452   prefix(src, dst);
2453   emit_int8(0x0F);
2454   emit_int8((unsigned char)0xB6);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::movzbl(Register dst, Register src) { // movzxb
2459   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2460   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2461   emit_int8(0x0F);
2462   emit_int8((unsigned char)0xB6);
2463   emit_int8(0xC0 | encode);
2464 }
2465 
2466 void Assembler::movzwl(Register dst, Address src) { // movzxw
2467   InstructionMark im(this);
2468   prefix(src, dst);
2469   emit_int8(0x0F);
2470   emit_int8((unsigned char)0xB7);
2471   emit_operand(dst, src);
2472 }
2473 
2474 void Assembler::movzwl(Register dst, Register src) { // movzxw
2475   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2476   emit_int8(0x0F);
2477   emit_int8((unsigned char)0xB7);
2478   emit_int8(0xC0 | encode);
2479 }
2480 
2481 void Assembler::mull(Address src) {
2482   InstructionMark im(this);
2483   prefix(src);
2484   emit_int8((unsigned char)0xF7);
2485   emit_operand(rsp, src);
2486 }
2487 
2488 void Assembler::mull(Register src) {
2489   int encode = prefix_and_encode(src->encoding());
2490   emit_int8((unsigned char)0xF7);
2491   emit_int8((unsigned char)(0xE0 | encode));
2492 }
2493 
2494 void Assembler::mulsd(XMMRegister dst, Address src) {
2495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2496   if (VM_Version::supports_evex()) {
2497     tuple_type = EVEX_T1S;
2498     input_size_in_bits = EVEX_64bit;
2499     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2500   } else {
2501     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2502   }
2503 }
2504 
2505 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2507   if (VM_Version::supports_evex()) {
2508     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2509   } else {
2510     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2511   }
2512 }
2513 
2514 void Assembler::mulss(XMMRegister dst, Address src) {
2515   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2516   if (VM_Version::supports_evex()) {
2517     tuple_type = EVEX_T1S;
2518     input_size_in_bits = EVEX_32bit;
2519   }
2520   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2521 }
2522 
2523 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2524   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2525   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2526 }
2527 
2528 void Assembler::negl(Register dst) {
2529   int encode = prefix_and_encode(dst->encoding());
2530   emit_int8((unsigned char)0xF7);
2531   emit_int8((unsigned char)(0xD8 | encode));
2532 }
2533 
2534 void Assembler::nop(int i) {
2535 #ifdef ASSERT
2536   assert(i > 0, " ");
2537   // The fancy nops aren't currently recognized by debuggers making it a
2538   // pain to disassemble code while debugging. If asserts are on clearly
2539   // speed is not an issue so simply use the single byte traditional nop
2540   // to do alignment.
2541 
2542   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2543   return;
2544 
2545 #endif // ASSERT
2546 
2547   if (UseAddressNop && VM_Version::is_intel()) {
2548     //
2549     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2550     //  1: 0x90
2551     //  2: 0x66 0x90
2552     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2553     //  4: 0x0F 0x1F 0x40 0x00
2554     //  5: 0x0F 0x1F 0x44 0x00 0x00
2555     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2556     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2557     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2558     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2559     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2560     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2561 
2562     // The rest coding is Intel specific - don't use consecutive address nops
2563 
2564     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2565     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2566     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2567     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2568 
2569     while(i >= 15) {
2570       // For Intel don't generate consecutive addess nops (mix with regular nops)
2571       i -= 15;
2572       emit_int8(0x66);   // size prefix
2573       emit_int8(0x66);   // size prefix
2574       emit_int8(0x66);   // size prefix
2575       addr_nop_8();
2576       emit_int8(0x66);   // size prefix
2577       emit_int8(0x66);   // size prefix
2578       emit_int8(0x66);   // size prefix
2579       emit_int8((unsigned char)0x90);
2580                          // nop
2581     }
2582     switch (i) {
2583       case 14:
2584         emit_int8(0x66); // size prefix
2585       case 13:
2586         emit_int8(0x66); // size prefix
2587       case 12:
2588         addr_nop_8();
2589         emit_int8(0x66); // size prefix
2590         emit_int8(0x66); // size prefix
2591         emit_int8(0x66); // size prefix
2592         emit_int8((unsigned char)0x90);
2593                          // nop
2594         break;
2595       case 11:
2596         emit_int8(0x66); // size prefix
2597       case 10:
2598         emit_int8(0x66); // size prefix
2599       case 9:
2600         emit_int8(0x66); // size prefix
2601       case 8:
2602         addr_nop_8();
2603         break;
2604       case 7:
2605         addr_nop_7();
2606         break;
2607       case 6:
2608         emit_int8(0x66); // size prefix
2609       case 5:
2610         addr_nop_5();
2611         break;
2612       case 4:
2613         addr_nop_4();
2614         break;
2615       case 3:
2616         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2617         emit_int8(0x66); // size prefix
2618       case 2:
2619         emit_int8(0x66); // size prefix
2620       case 1:
2621         emit_int8((unsigned char)0x90);
2622                          // nop
2623         break;
2624       default:
2625         assert(i == 0, " ");
2626     }
2627     return;
2628   }
2629   if (UseAddressNop && VM_Version::is_amd()) {
2630     //
2631     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2632     //  1: 0x90
2633     //  2: 0x66 0x90
2634     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2635     //  4: 0x0F 0x1F 0x40 0x00
2636     //  5: 0x0F 0x1F 0x44 0x00 0x00
2637     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2638     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2639     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2640     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2641     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2642     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2643 
2644     // The rest coding is AMD specific - use consecutive address nops
2645 
2646     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2647     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2648     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2649     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2650     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2651     //     Size prefixes (0x66) are added for larger sizes
2652 
2653     while(i >= 22) {
2654       i -= 11;
2655       emit_int8(0x66); // size prefix
2656       emit_int8(0x66); // size prefix
2657       emit_int8(0x66); // size prefix
2658       addr_nop_8();
2659     }
2660     // Generate first nop for size between 21-12
2661     switch (i) {
2662       case 21:
2663         i -= 1;
2664         emit_int8(0x66); // size prefix
2665       case 20:
2666       case 19:
2667         i -= 1;
2668         emit_int8(0x66); // size prefix
2669       case 18:
2670       case 17:
2671         i -= 1;
2672         emit_int8(0x66); // size prefix
2673       case 16:
2674       case 15:
2675         i -= 8;
2676         addr_nop_8();
2677         break;
2678       case 14:
2679       case 13:
2680         i -= 7;
2681         addr_nop_7();
2682         break;
2683       case 12:
2684         i -= 6;
2685         emit_int8(0x66); // size prefix
2686         addr_nop_5();
2687         break;
2688       default:
2689         assert(i < 12, " ");
2690     }
2691 
2692     // Generate second nop for size between 11-1
2693     switch (i) {
2694       case 11:
2695         emit_int8(0x66); // size prefix
2696       case 10:
2697         emit_int8(0x66); // size prefix
2698       case 9:
2699         emit_int8(0x66); // size prefix
2700       case 8:
2701         addr_nop_8();
2702         break;
2703       case 7:
2704         addr_nop_7();
2705         break;
2706       case 6:
2707         emit_int8(0x66); // size prefix
2708       case 5:
2709         addr_nop_5();
2710         break;
2711       case 4:
2712         addr_nop_4();
2713         break;
2714       case 3:
2715         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2716         emit_int8(0x66); // size prefix
2717       case 2:
2718         emit_int8(0x66); // size prefix
2719       case 1:
2720         emit_int8((unsigned char)0x90);
2721                          // nop
2722         break;
2723       default:
2724         assert(i == 0, " ");
2725     }
2726     return;
2727   }
2728 
2729   // Using nops with size prefixes "0x66 0x90".
2730   // From AMD Optimization Guide:
2731   //  1: 0x90
2732   //  2: 0x66 0x90
2733   //  3: 0x66 0x66 0x90
2734   //  4: 0x66 0x66 0x66 0x90
2735   //  5: 0x66 0x66 0x90 0x66 0x90
2736   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2737   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2738   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2739   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2740   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2741   //
2742   while(i > 12) {
2743     i -= 4;
2744     emit_int8(0x66); // size prefix
2745     emit_int8(0x66);
2746     emit_int8(0x66);
2747     emit_int8((unsigned char)0x90);
2748                      // nop
2749   }
2750   // 1 - 12 nops
2751   if(i > 8) {
2752     if(i > 9) {
2753       i -= 1;
2754       emit_int8(0x66);
2755     }
2756     i -= 3;
2757     emit_int8(0x66);
2758     emit_int8(0x66);
2759     emit_int8((unsigned char)0x90);
2760   }
2761   // 1 - 8 nops
2762   if(i > 4) {
2763     if(i > 6) {
2764       i -= 1;
2765       emit_int8(0x66);
2766     }
2767     i -= 3;
2768     emit_int8(0x66);
2769     emit_int8(0x66);
2770     emit_int8((unsigned char)0x90);
2771   }
2772   switch (i) {
2773     case 4:
2774       emit_int8(0x66);
2775     case 3:
2776       emit_int8(0x66);
2777     case 2:
2778       emit_int8(0x66);
2779     case 1:
2780       emit_int8((unsigned char)0x90);
2781       break;
2782     default:
2783       assert(i == 0, " ");
2784   }
2785 }
2786 
2787 void Assembler::notl(Register dst) {
2788   int encode = prefix_and_encode(dst->encoding());
2789   emit_int8((unsigned char)0xF7);
2790   emit_int8((unsigned char)(0xD0 | encode));
2791 }
2792 
2793 void Assembler::orl(Address dst, int32_t imm32) {
2794   InstructionMark im(this);
2795   prefix(dst);
2796   emit_arith_operand(0x81, rcx, dst, imm32);
2797 }
2798 
2799 void Assembler::orl(Register dst, int32_t imm32) {
2800   prefix(dst);
2801   emit_arith(0x81, 0xC8, dst, imm32);
2802 }
2803 
2804 void Assembler::orl(Register dst, Address src) {
2805   InstructionMark im(this);
2806   prefix(src, dst);
2807   emit_int8(0x0B);
2808   emit_operand(dst, src);
2809 }
2810 
2811 void Assembler::orl(Register dst, Register src) {
2812   (void) prefix_and_encode(dst->encoding(), src->encoding());
2813   emit_arith(0x0B, 0xC0, dst, src);
2814 }
2815 
2816 void Assembler::packuswb(XMMRegister dst, Address src) {
2817   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2818   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2819   if (VM_Version::supports_evex()) {
2820     tuple_type = EVEX_FV;
2821     input_size_in_bits = EVEX_32bit;
2822   }
2823   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2824                   false, (VM_Version::supports_avx512dq() == false));
2825 }
2826 
2827 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2828   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2829   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2830                   false, (VM_Version::supports_avx512dq() == false));
2831 }
2832 
2833 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2834   assert(UseAVX > 0, "some form of AVX must be enabled");
2835   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
2836                  false, (VM_Version::supports_avx512dq() == false));
2837 }
2838 
2839 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2840   assert(VM_Version::supports_avx2(), "");
2841   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2842                                       VEX_OPCODE_0F_3A, true, vector_len);
2843   emit_int8(0x00);
2844   emit_int8(0xC0 | encode);
2845   emit_int8(imm8);
2846 }
2847 
2848 void Assembler::pause() {
2849   emit_int8((unsigned char)0xF3);
2850   emit_int8((unsigned char)0x90);
2851 }
2852 
2853 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2854   assert(VM_Version::supports_sse4_2(), "");
2855   InstructionMark im(this);
2856   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
2857               false, AVX_128bit, true);
2858   emit_int8(0x61);
2859   emit_operand(dst, src);
2860   emit_int8(imm8);
2861 }
2862 
2863 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2864   assert(VM_Version::supports_sse4_2(), "");
2865   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2866                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
2867   emit_int8(0x61);
2868   emit_int8((unsigned char)(0xC0 | encode));
2869   emit_int8(imm8);
2870 }
2871 
2872 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2873   assert(VM_Version::supports_sse4_1(), "");
2874   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2875                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2876   emit_int8(0x16);
2877   emit_int8((unsigned char)(0xC0 | encode));
2878   emit_int8(imm8);
2879 }
2880 
2881 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2882   assert(VM_Version::supports_sse4_1(), "");
2883   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2884                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2885   emit_int8(0x16);
2886   emit_int8((unsigned char)(0xC0 | encode));
2887   emit_int8(imm8);
2888 }
2889 
2890 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2891   assert(VM_Version::supports_sse4_1(), "");
2892   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2893                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2894   emit_int8(0x22);
2895   emit_int8((unsigned char)(0xC0 | encode));
2896   emit_int8(imm8);
2897 }
2898 
2899 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2900   assert(VM_Version::supports_sse4_1(), "");
2901   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2902                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2903   emit_int8(0x22);
2904   emit_int8((unsigned char)(0xC0 | encode));
2905   emit_int8(imm8);
2906 }
2907 
2908 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2909   assert(VM_Version::supports_sse4_1(), "");
2910   if (VM_Version::supports_evex()) {
2911     tuple_type = EVEX_HVM;
2912   }
2913   InstructionMark im(this);
2914   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2915   emit_int8(0x30);
2916   emit_operand(dst, src);
2917 }
2918 
2919 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2920   assert(VM_Version::supports_sse4_1(), "");
2921   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2922   emit_int8(0x30);
2923   emit_int8((unsigned char)(0xC0 | encode));
2924 }
2925 
2926 // generic
2927 void Assembler::pop(Register dst) {
2928   int encode = prefix_and_encode(dst->encoding());
2929   emit_int8(0x58 | encode);
2930 }
2931 
2932 void Assembler::popcntl(Register dst, Address src) {
2933   assert(VM_Version::supports_popcnt(), "must support");
2934   InstructionMark im(this);
2935   emit_int8((unsigned char)0xF3);
2936   prefix(src, dst);
2937   emit_int8(0x0F);
2938   emit_int8((unsigned char)0xB8);
2939   emit_operand(dst, src);
2940 }
2941 
2942 void Assembler::popcntl(Register dst, Register src) {
2943   assert(VM_Version::supports_popcnt(), "must support");
2944   emit_int8((unsigned char)0xF3);
2945   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2946   emit_int8(0x0F);
2947   emit_int8((unsigned char)0xB8);
2948   emit_int8((unsigned char)(0xC0 | encode));
2949 }
2950 
2951 void Assembler::popf() {
2952   emit_int8((unsigned char)0x9D);
2953 }
2954 
2955 #ifndef _LP64 // no 32bit push/pop on amd64
2956 void Assembler::popl(Address dst) {
2957   // NOTE: this will adjust stack by 8byte on 64bits
2958   InstructionMark im(this);
2959   prefix(dst);
2960   emit_int8((unsigned char)0x8F);
2961   emit_operand(rax, dst);
2962 }
2963 #endif
2964 
2965 void Assembler::prefetch_prefix(Address src) {
2966   prefix(src);
2967   emit_int8(0x0F);
2968 }
2969 
2970 void Assembler::prefetchnta(Address src) {
2971   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2972   InstructionMark im(this);
2973   prefetch_prefix(src);
2974   emit_int8(0x18);
2975   emit_operand(rax, src); // 0, src
2976 }
2977 
2978 void Assembler::prefetchr(Address src) {
2979   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2980   InstructionMark im(this);
2981   prefetch_prefix(src);
2982   emit_int8(0x0D);
2983   emit_operand(rax, src); // 0, src
2984 }
2985 
2986 void Assembler::prefetcht0(Address src) {
2987   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2988   InstructionMark im(this);
2989   prefetch_prefix(src);
2990   emit_int8(0x18);
2991   emit_operand(rcx, src); // 1, src
2992 }
2993 
2994 void Assembler::prefetcht1(Address src) {
2995   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2996   InstructionMark im(this);
2997   prefetch_prefix(src);
2998   emit_int8(0x18);
2999   emit_operand(rdx, src); // 2, src
3000 }
3001 
3002 void Assembler::prefetcht2(Address src) {
3003   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3004   InstructionMark im(this);
3005   prefetch_prefix(src);
3006   emit_int8(0x18);
3007   emit_operand(rbx, src); // 3, src
3008 }
3009 
3010 void Assembler::prefetchw(Address src) {
3011   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3012   InstructionMark im(this);
3013   prefetch_prefix(src);
3014   emit_int8(0x0D);
3015   emit_operand(rcx, src); // 1, src
3016 }
3017 
3018 void Assembler::prefix(Prefix p) {
3019   emit_int8(p);
3020 }
3021 
3022 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3023   assert(VM_Version::supports_ssse3(), "");
3024   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3025                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3026   emit_int8(0x00);
3027   emit_int8((unsigned char)(0xC0 | encode));
3028 }
3029 
3030 void Assembler::pshufb(XMMRegister dst, Address src) {
3031   assert(VM_Version::supports_ssse3(), "");
3032   if (VM_Version::supports_evex()) {
3033     tuple_type = EVEX_FVM;
3034   }
3035   InstructionMark im(this);
3036   simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3037               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3038   emit_int8(0x00);
3039   emit_operand(dst, src);
3040 }
3041 
3042 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3043   assert(isByte(mode), "invalid value");
3044   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3045   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3046   emit_int8(mode & 0xFF);
3047 
3048 }
3049 
3050 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3051   assert(isByte(mode), "invalid value");
3052   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3053   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3054   if (VM_Version::supports_evex()) {
3055     tuple_type = EVEX_FV;
3056     input_size_in_bits = EVEX_32bit;
3057   }
3058   InstructionMark im(this);
3059   simd_prefix(dst, src, VEX_SIMD_66, false);
3060   emit_int8(0x70);
3061   emit_operand(dst, src);
3062   emit_int8(mode & 0xFF);
3063 }
3064 
3065 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3066   assert(isByte(mode), "invalid value");
3067   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3068   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
3069                         (VM_Version::supports_avx512bw() == false));
3070   emit_int8(mode & 0xFF);
3071 }
3072 
3073 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3074   assert(isByte(mode), "invalid value");
3075   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3076   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3077   if (VM_Version::supports_evex()) {
3078     tuple_type = EVEX_FVM;
3079   }
3080   InstructionMark im(this);
3081   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
3082               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3083   emit_int8(0x70);
3084   emit_operand(dst, src);
3085   emit_int8(mode & 0xFF);
3086 }
3087 
3088 void Assembler::psrldq(XMMRegister dst, int shift) {
3089   // Shift 128 bit value in xmm register by number of bytes.
3090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3091   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F,
3092                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3093   emit_int8(0x73);
3094   emit_int8((unsigned char)(0xC0 | encode));
3095   emit_int8(shift);
3096 }
3097 
3098 void Assembler::ptest(XMMRegister dst, Address src) {
3099   assert(VM_Version::supports_sse4_1(), "");
3100   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3101   InstructionMark im(this);
3102   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, 
3103               VEX_OPCODE_0F_38, false, AVX_128bit, true);
3104   emit_int8(0x17);
3105   emit_operand(dst, src);
3106 }
3107 
3108 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3109   assert(VM_Version::supports_sse4_1(), "");
3110   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, 
3111                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
3112   emit_int8(0x17);
3113   emit_int8((unsigned char)(0xC0 | encode));
3114 }
3115 
3116 void Assembler::vptest(XMMRegister dst, Address src) {
3117   assert(VM_Version::supports_avx(), "");
3118   InstructionMark im(this);
3119   int vector_len = AVX_256bit;
3120   assert(dst != xnoreg, "sanity");
3121   int dst_enc = dst->encoding();
3122   // swap src<->dst for encoding
3123   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len, true, false);
3124   emit_int8(0x17);
3125   emit_operand(dst, src);
3126 }
3127 
3128 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3129   assert(VM_Version::supports_avx(), "");
3130   int vector_len = AVX_256bit;
3131   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3132                                      vector_len, VEX_OPCODE_0F_38, true, false);
3133   emit_int8(0x17);
3134   emit_int8((unsigned char)(0xC0 | encode));
3135 }
3136 
3137 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3138   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3139   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3140   if (VM_Version::supports_evex()) {
3141     tuple_type = EVEX_FVM;
3142   }
3143   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
3144 }
3145 
3146 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3147   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3148   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
3149 }
3150 
3151 void Assembler::punpckldq(XMMRegister dst, Address src) {
3152   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3153   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3154   if (VM_Version::supports_evex()) {
3155     tuple_type = EVEX_FV;
3156     input_size_in_bits = EVEX_32bit;
3157   }
3158   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3159 }
3160 
3161 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3162   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3163   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3164 }
3165 
3166 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3168   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3169 }
3170 
3171 void Assembler::push(int32_t imm32) {
3172   // in 64bits we push 64bits onto the stack but only
3173   // take a 32bit immediate
3174   emit_int8(0x68);
3175   emit_int32(imm32);
3176 }
3177 
3178 void Assembler::push(Register src) {
3179   int encode = prefix_and_encode(src->encoding());
3180 
3181   emit_int8(0x50 | encode);
3182 }
3183 
3184 void Assembler::pushf() {
3185   emit_int8((unsigned char)0x9C);
3186 }
3187 
3188 #ifndef _LP64 // no 32bit push/pop on amd64
3189 void Assembler::pushl(Address src) {
3190   // Note this will push 64bit on 64bit
3191   InstructionMark im(this);
3192   prefix(src);
3193   emit_int8((unsigned char)0xFF);
3194   emit_operand(rsi, src);
3195 }
3196 #endif
3197 
3198 void Assembler::rcll(Register dst, int imm8) {
3199   assert(isShiftCount(imm8), "illegal shift count");
3200   int encode = prefix_and_encode(dst->encoding());
3201   if (imm8 == 1) {
3202     emit_int8((unsigned char)0xD1);
3203     emit_int8((unsigned char)(0xD0 | encode));
3204   } else {
3205     emit_int8((unsigned char)0xC1);
3206     emit_int8((unsigned char)0xD0 | encode);
3207     emit_int8(imm8);
3208   }
3209 }
3210 
3211 void Assembler::rdtsc() {
3212   emit_int8((unsigned char)0x0F);
3213   emit_int8((unsigned char)0x31);
3214 }
3215 
3216 // copies data from [esi] to [edi] using rcx pointer sized words
3217 // generic
3218 void Assembler::rep_mov() {
3219   emit_int8((unsigned char)0xF3);
3220   // MOVSQ
3221   LP64_ONLY(prefix(REX_W));
3222   emit_int8((unsigned char)0xA5);
3223 }
3224 
3225 // sets rcx bytes with rax, value at [edi]
3226 void Assembler::rep_stosb() {
3227   emit_int8((unsigned char)0xF3); // REP
3228   LP64_ONLY(prefix(REX_W));
3229   emit_int8((unsigned char)0xAA); // STOSB
3230 }
3231 
3232 // sets rcx pointer sized words with rax, value at [edi]
3233 // generic
3234 void Assembler::rep_stos() {
3235   emit_int8((unsigned char)0xF3); // REP
3236   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3237   emit_int8((unsigned char)0xAB);
3238 }
3239 
3240 // scans rcx pointer sized words at [edi] for occurance of rax,
3241 // generic
3242 void Assembler::repne_scan() { // repne_scan
3243   emit_int8((unsigned char)0xF2);
3244   // SCASQ
3245   LP64_ONLY(prefix(REX_W));
3246   emit_int8((unsigned char)0xAF);
3247 }
3248 
3249 #ifdef _LP64
3250 // scans rcx 4 byte words at [edi] for occurance of rax,
3251 // generic
3252 void Assembler::repne_scanl() { // repne_scan
3253   emit_int8((unsigned char)0xF2);
3254   // SCASL
3255   emit_int8((unsigned char)0xAF);
3256 }
3257 #endif
3258 
3259 void Assembler::ret(int imm16) {
3260   if (imm16 == 0) {
3261     emit_int8((unsigned char)0xC3);
3262   } else {
3263     emit_int8((unsigned char)0xC2);
3264     emit_int16(imm16);
3265   }
3266 }
3267 
3268 void Assembler::sahf() {
3269 #ifdef _LP64
3270   // Not supported in 64bit mode
3271   ShouldNotReachHere();
3272 #endif
3273   emit_int8((unsigned char)0x9E);
3274 }
3275 
3276 void Assembler::sarl(Register dst, int imm8) {
3277   int encode = prefix_and_encode(dst->encoding());
3278   assert(isShiftCount(imm8), "illegal shift count");
3279   if (imm8 == 1) {
3280     emit_int8((unsigned char)0xD1);
3281     emit_int8((unsigned char)(0xF8 | encode));
3282   } else {
3283     emit_int8((unsigned char)0xC1);
3284     emit_int8((unsigned char)(0xF8 | encode));
3285     emit_int8(imm8);
3286   }
3287 }
3288 
3289 void Assembler::sarl(Register dst) {
3290   int encode = prefix_and_encode(dst->encoding());
3291   emit_int8((unsigned char)0xD3);
3292   emit_int8((unsigned char)(0xF8 | encode));
3293 }
3294 
3295 void Assembler::sbbl(Address dst, int32_t imm32) {
3296   InstructionMark im(this);
3297   prefix(dst);
3298   emit_arith_operand(0x81, rbx, dst, imm32);
3299 }
3300 
3301 void Assembler::sbbl(Register dst, int32_t imm32) {
3302   prefix(dst);
3303   emit_arith(0x81, 0xD8, dst, imm32);
3304 }
3305 
3306 
3307 void Assembler::sbbl(Register dst, Address src) {
3308   InstructionMark im(this);
3309   prefix(src, dst);
3310   emit_int8(0x1B);
3311   emit_operand(dst, src);
3312 }
3313 
3314 void Assembler::sbbl(Register dst, Register src) {
3315   (void) prefix_and_encode(dst->encoding(), src->encoding());
3316   emit_arith(0x1B, 0xC0, dst, src);
3317 }
3318 
3319 void Assembler::setb(Condition cc, Register dst) {
3320   assert(0 <= cc && cc < 16, "illegal cc");
3321   int encode = prefix_and_encode(dst->encoding(), true);
3322   emit_int8(0x0F);
3323   emit_int8((unsigned char)0x90 | cc);
3324   emit_int8((unsigned char)(0xC0 | encode));
3325 }
3326 
3327 void Assembler::shll(Register dst, int imm8) {
3328   assert(isShiftCount(imm8), "illegal shift count");
3329   int encode = prefix_and_encode(dst->encoding());
3330   if (imm8 == 1 ) {
3331     emit_int8((unsigned char)0xD1);
3332     emit_int8((unsigned char)(0xE0 | encode));
3333   } else {
3334     emit_int8((unsigned char)0xC1);
3335     emit_int8((unsigned char)(0xE0 | encode));
3336     emit_int8(imm8);
3337   }
3338 }
3339 
3340 void Assembler::shll(Register dst) {
3341   int encode = prefix_and_encode(dst->encoding());
3342   emit_int8((unsigned char)0xD3);
3343   emit_int8((unsigned char)(0xE0 | encode));
3344 }
3345 
3346 void Assembler::shrl(Register dst, int imm8) {
3347   assert(isShiftCount(imm8), "illegal shift count");
3348   int encode = prefix_and_encode(dst->encoding());
3349   emit_int8((unsigned char)0xC1);
3350   emit_int8((unsigned char)(0xE8 | encode));
3351   emit_int8(imm8);
3352 }
3353 
3354 void Assembler::shrl(Register dst) {
3355   int encode = prefix_and_encode(dst->encoding());
3356   emit_int8((unsigned char)0xD3);
3357   emit_int8((unsigned char)(0xE8 | encode));
3358 }
3359 
3360 // copies a single word from [esi] to [edi]
3361 void Assembler::smovl() {
3362   emit_int8((unsigned char)0xA5);
3363 }
3364 
3365 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3366   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3367   if (VM_Version::supports_evex()) {
3368     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3369   } else {
3370     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3371   }
3372 }
3373 
3374 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3375   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3376   if (VM_Version::supports_evex()) {
3377     tuple_type = EVEX_T1S;
3378     input_size_in_bits = EVEX_64bit;
3379     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3380   } else {
3381     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3382   }
3383 }
3384 
3385 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3386   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3387   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3388 }
3389 
3390 void Assembler::std() {
3391   emit_int8((unsigned char)0xFD);
3392 }
3393 
3394 void Assembler::sqrtss(XMMRegister dst, Address src) {
3395   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3396   if (VM_Version::supports_evex()) {
3397     tuple_type = EVEX_T1S;
3398     input_size_in_bits = EVEX_32bit;
3399   }
3400   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3401 }
3402 
3403 void Assembler::stmxcsr( Address dst) {
3404   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3405   InstructionMark im(this);
3406   prefix(dst);
3407   emit_int8(0x0F);
3408   emit_int8((unsigned char)0xAE);
3409   emit_operand(as_Register(3), dst);
3410 }
3411 
3412 void Assembler::subl(Address dst, int32_t imm32) {
3413   InstructionMark im(this);
3414   prefix(dst);
3415   emit_arith_operand(0x81, rbp, dst, imm32);
3416 }
3417 
3418 void Assembler::subl(Address dst, Register src) {
3419   InstructionMark im(this);
3420   prefix(dst, src);
3421   emit_int8(0x29);
3422   emit_operand(src, dst);
3423 }
3424 
3425 void Assembler::subl(Register dst, int32_t imm32) {
3426   prefix(dst);
3427   emit_arith(0x81, 0xE8, dst, imm32);
3428 }
3429 
3430 // Force generation of a 4 byte immediate value even if it fits into 8bit
3431 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3432   prefix(dst);
3433   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3434 }
3435 
3436 void Assembler::subl(Register dst, Address src) {
3437   InstructionMark im(this);
3438   prefix(src, dst);
3439   emit_int8(0x2B);
3440   emit_operand(dst, src);
3441 }
3442 
3443 void Assembler::subl(Register dst, Register src) {
3444   (void) prefix_and_encode(dst->encoding(), src->encoding());
3445   emit_arith(0x2B, 0xC0, dst, src);
3446 }
3447 
3448 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3449   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3450   if (VM_Version::supports_evex()) {
3451     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3452   } else {
3453     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3454   }
3455 }
3456 
3457 void Assembler::subsd(XMMRegister dst, Address src) {
3458   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3459   if (VM_Version::supports_evex()) {
3460     tuple_type = EVEX_T1S;
3461     input_size_in_bits = EVEX_64bit;
3462   }
3463   emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3464 }
3465 
3466 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3467   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3468   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3469 }
3470 
3471 void Assembler::subss(XMMRegister dst, Address src) {
3472   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3473   if (VM_Version::supports_evex()) {
3474     tuple_type = EVEX_T1S;
3475     input_size_in_bits = EVEX_32bit;
3476   }
3477   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3478 }
3479 
3480 void Assembler::testb(Register dst, int imm8) {
3481   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3482   (void) prefix_and_encode(dst->encoding(), true);
3483   emit_arith_b(0xF6, 0xC0, dst, imm8);
3484 }
3485 
3486 void Assembler::testl(Register dst, int32_t imm32) {
3487   // not using emit_arith because test
3488   // doesn't support sign-extension of
3489   // 8bit operands
3490   int encode = dst->encoding();
3491   if (encode == 0) {
3492     emit_int8((unsigned char)0xA9);
3493   } else {
3494     encode = prefix_and_encode(encode);
3495     emit_int8((unsigned char)0xF7);
3496     emit_int8((unsigned char)(0xC0 | encode));
3497   }
3498   emit_int32(imm32);
3499 }
3500 
3501 void Assembler::testl(Register dst, Register src) {
3502   (void) prefix_and_encode(dst->encoding(), src->encoding());
3503   emit_arith(0x85, 0xC0, dst, src);
3504 }
3505 
3506 void Assembler::testl(Register dst, Address  src) {
3507   InstructionMark im(this);
3508   prefix(src, dst);
3509   emit_int8((unsigned char)0x85);
3510   emit_operand(dst, src);
3511 }
3512 
3513 void Assembler::tzcntl(Register dst, Register src) {
3514   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3515   emit_int8((unsigned char)0xF3);
3516   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3517   emit_int8(0x0F);
3518   emit_int8((unsigned char)0xBC);
3519   emit_int8((unsigned char)0xC0 | encode);
3520 }
3521 
3522 void Assembler::tzcntq(Register dst, Register src) {
3523   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3524   emit_int8((unsigned char)0xF3);
3525   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3526   emit_int8(0x0F);
3527   emit_int8((unsigned char)0xBC);
3528   emit_int8((unsigned char)(0xC0 | encode));
3529 }
3530 
3531 void Assembler::ucomisd(XMMRegister dst, Address src) {
3532   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3533   if (VM_Version::supports_evex()) {
3534     tuple_type = EVEX_T1S;
3535     input_size_in_bits = EVEX_64bit;
3536     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3537   } else {
3538     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3539   }
3540 }
3541 
3542 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3543   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3544   if (VM_Version::supports_evex()) {
3545     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3546   } else {
3547     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3548   }
3549 }
3550 
3551 void Assembler::ucomiss(XMMRegister dst, Address src) {
3552   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3553   if (VM_Version::supports_evex()) {
3554     tuple_type = EVEX_T1S;
3555     input_size_in_bits = EVEX_32bit;
3556   }
3557   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3558 }
3559 
3560 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3561   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3562   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3563 }
3564 
3565 void Assembler::xabort(int8_t imm8) {
3566   emit_int8((unsigned char)0xC6);
3567   emit_int8((unsigned char)0xF8);
3568   emit_int8((unsigned char)(imm8 & 0xFF));
3569 }
3570 
3571 void Assembler::xaddl(Address dst, Register src) {
3572   InstructionMark im(this);
3573   prefix(dst, src);
3574   emit_int8(0x0F);
3575   emit_int8((unsigned char)0xC1);
3576   emit_operand(src, dst);
3577 }
3578 
3579 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3580   InstructionMark im(this);
3581   relocate(rtype);
3582   if (abort.is_bound()) {
3583     address entry = target(abort);
3584     assert(entry != NULL, "abort entry NULL");
3585     intptr_t offset = entry - pc();
3586     emit_int8((unsigned char)0xC7);
3587     emit_int8((unsigned char)0xF8);
3588     emit_int32(offset - 6); // 2 opcode + 4 address
3589   } else {
3590     abort.add_patch_at(code(), locator());
3591     emit_int8((unsigned char)0xC7);
3592     emit_int8((unsigned char)0xF8);
3593     emit_int32(0);
3594   }
3595 }
3596 
3597 void Assembler::xchgl(Register dst, Address src) { // xchg
3598   InstructionMark im(this);
3599   prefix(src, dst);
3600   emit_int8((unsigned char)0x87);
3601   emit_operand(dst, src);
3602 }
3603 
3604 void Assembler::xchgl(Register dst, Register src) {
3605   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3606   emit_int8((unsigned char)0x87);
3607   emit_int8((unsigned char)(0xC0 | encode));
3608 }
3609 
3610 void Assembler::xend() {
3611   emit_int8((unsigned char)0x0F);
3612   emit_int8((unsigned char)0x01);
3613   emit_int8((unsigned char)0xD5);
3614 }
3615 
3616 void Assembler::xgetbv() {
3617   emit_int8(0x0F);
3618   emit_int8(0x01);
3619   emit_int8((unsigned char)0xD0);
3620 }
3621 
3622 void Assembler::xorl(Register dst, int32_t imm32) {
3623   prefix(dst);
3624   emit_arith(0x81, 0xF0, dst, imm32);
3625 }
3626 
3627 void Assembler::xorl(Register dst, Address src) {
3628   InstructionMark im(this);
3629   prefix(src, dst);
3630   emit_int8(0x33);
3631   emit_operand(dst, src);
3632 }
3633 
3634 void Assembler::xorl(Register dst, Register src) {
3635   (void) prefix_and_encode(dst->encoding(), src->encoding());
3636   emit_arith(0x33, 0xC0, dst, src);
3637 }
3638 
3639 
3640 // AVX 3-operands scalar float-point arithmetic instructions
3641 
3642 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3643   assert(VM_Version::supports_avx(), "");
3644   if (VM_Version::supports_evex()) {
3645     tuple_type = EVEX_T1S;
3646     input_size_in_bits = EVEX_64bit;
3647     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3648   } else {
3649     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3650   }
3651 }
3652 
3653 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3654   assert(VM_Version::supports_avx(), "");
3655   if (VM_Version::supports_evex()) {
3656     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3657   } else {
3658     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3659   }
3660 }
3661 
3662 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3663   assert(VM_Version::supports_avx(), "");
3664   if (VM_Version::supports_evex()) {
3665     tuple_type = EVEX_T1S;
3666     input_size_in_bits = EVEX_32bit;
3667   }
3668   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3669 }
3670 
3671 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3672   assert(VM_Version::supports_avx(), "");
3673   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3674 }
3675 
3676 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3677   assert(VM_Version::supports_avx(), "");
3678   if (VM_Version::supports_evex()) {
3679     tuple_type = EVEX_T1S;
3680     input_size_in_bits = EVEX_64bit;
3681     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3682   } else {
3683     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3684   }
3685 }
3686 
3687 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3688   assert(VM_Version::supports_avx(), "");
3689   if (VM_Version::supports_evex()) {
3690     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3691   } else {
3692     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3693   }
3694 }
3695 
3696 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3697   assert(VM_Version::supports_avx(), "");
3698   if (VM_Version::supports_evex()) {
3699     tuple_type = EVEX_T1S;
3700     input_size_in_bits = EVEX_32bit;
3701   }
3702   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3703 }
3704 
3705 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3706   assert(VM_Version::supports_avx(), "");
3707   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3708 }
3709 
3710 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3711   assert(VM_Version::supports_avx(), "");
3712   if (VM_Version::supports_evex()) {
3713     tuple_type = EVEX_T1S;
3714     input_size_in_bits = EVEX_64bit;
3715     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3716   } else {
3717     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3718   }
3719 }
3720 
3721 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3722   assert(VM_Version::supports_avx(), "");
3723   if (VM_Version::supports_evex()) {
3724     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3725   } else {
3726     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3727   }
3728 }
3729 
3730 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3731   assert(VM_Version::supports_avx(), "");
3732   if (VM_Version::supports_evex()) {
3733     tuple_type = EVEX_T1S;
3734     input_size_in_bits = EVEX_32bit;
3735   }
3736   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3737 }
3738 
3739 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3740   assert(VM_Version::supports_avx(), "");
3741   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3742 }
3743 
3744 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3745   assert(VM_Version::supports_avx(), "");
3746   if (VM_Version::supports_evex()) {
3747     tuple_type = EVEX_T1S;
3748     input_size_in_bits = EVEX_64bit;
3749     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3750   } else {
3751     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3752   }
3753 }
3754 
3755 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3756   assert(VM_Version::supports_avx(), "");
3757   if (VM_Version::supports_evex()) {
3758     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3759   } else {
3760     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3761   }
3762 }
3763 
3764 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3765   assert(VM_Version::supports_avx(), "");
3766   if (VM_Version::supports_evex()) {
3767     tuple_type = EVEX_T1S;
3768     input_size_in_bits = EVEX_32bit;
3769   }
3770   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3771 }
3772 
3773 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3774   assert(VM_Version::supports_avx(), "");
3775   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3776 }
3777 
3778 //====================VECTOR ARITHMETIC=====================================
3779 
3780 // Float-point vector arithmetic
3781 
3782 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3784   if (VM_Version::supports_evex()) {
3785     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3786   } else {
3787     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3788   }
3789 }
3790 
3791 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3793   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3794 }
3795 
3796 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3797   assert(VM_Version::supports_avx(), "");
3798   if (VM_Version::supports_evex()) {
3799     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3800   } else {
3801     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3802   }
3803 }
3804 
3805 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3806   assert(VM_Version::supports_avx(), "");
3807   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3808 }
3809 
3810 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3811   assert(VM_Version::supports_avx(), "");
3812   if (VM_Version::supports_evex()) {
3813     tuple_type = EVEX_FV;
3814     input_size_in_bits = EVEX_64bit;
3815     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3816   } else {
3817     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3818   }
3819 }
3820 
3821 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3822   assert(VM_Version::supports_avx(), "");
3823   if (VM_Version::supports_evex()) {
3824     tuple_type = EVEX_FV;
3825     input_size_in_bits = EVEX_32bit;
3826   }
3827   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3828 }
3829 
3830 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3831   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3832   if (VM_Version::supports_evex()) {
3833     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
3834   } else {
3835     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3836   }
3837 }
3838 
3839 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3840   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3841   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3842 }
3843 
3844 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3845   assert(VM_Version::supports_avx(), "");
3846   if (VM_Version::supports_evex()) {
3847     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3848   } else {
3849     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3850   }
3851 }
3852 
3853 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3854   assert(VM_Version::supports_avx(), "");
3855   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3856 }
3857 
3858 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3859   assert(VM_Version::supports_avx(), "");
3860   if (VM_Version::supports_evex()) {
3861     tuple_type = EVEX_FV;
3862     input_size_in_bits = EVEX_64bit;
3863     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3864   } else {
3865     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3866   }
3867 }
3868 
3869 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3870   assert(VM_Version::supports_avx(), "");
3871   if (VM_Version::supports_evex()) {
3872     tuple_type = EVEX_FV;
3873     input_size_in_bits = EVEX_32bit;
3874   }
3875   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3876 }
3877 
3878 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3879   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3880   if (VM_Version::supports_evex()) {
3881     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3882   } else {
3883     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3884   }
3885 }
3886 
3887 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3888   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3889   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3890 }
3891 
3892 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3893   assert(VM_Version::supports_avx(), "");
3894   if (VM_Version::supports_evex()) {
3895     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3896   } else {
3897     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3898   }
3899 }
3900 
3901 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3902   assert(VM_Version::supports_avx(), "");
3903   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3904 }
3905 
3906 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3907   assert(VM_Version::supports_avx(), "");
3908   if (VM_Version::supports_evex()) {
3909     tuple_type = EVEX_FV;
3910     input_size_in_bits = EVEX_64bit;
3911     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3912   } else {
3913     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3914   }
3915 }
3916 
3917 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3918   assert(VM_Version::supports_avx(), "");
3919   if (VM_Version::supports_evex()) {
3920     tuple_type = EVEX_FV;
3921     input_size_in_bits = EVEX_32bit;
3922   }
3923   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3924 }
3925 
3926 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3927   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3928   if (VM_Version::supports_evex()) {
3929     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
3930   } else {
3931     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3932   }
3933 }
3934 
3935 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3936   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3937   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3938 }
3939 
3940 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3941   assert(VM_Version::supports_avx(), "");
3942   if (VM_Version::supports_evex()) {
3943     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3944   } else {
3945     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3946   }
3947 }
3948 
3949 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3950   assert(VM_Version::supports_avx(), "");
3951   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3952 }
3953 
3954 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3955   assert(VM_Version::supports_avx(), "");
3956   if (VM_Version::supports_evex()) {
3957     tuple_type = EVEX_FV;
3958     input_size_in_bits = EVEX_64bit;
3959     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3960   } else {
3961     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3962   }
3963 }
3964 
3965 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3966   assert(VM_Version::supports_avx(), "");
3967   if (VM_Version::supports_evex()) {
3968     tuple_type = EVEX_FV;
3969     input_size_in_bits = EVEX_32bit;
3970   }
3971   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3972 }
3973 
3974 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3976   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
3977     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
3978   } else {
3979     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
3980   }
3981 }
3982 
3983 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3984   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3985   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
3986                   (VM_Version::supports_avx512dq() == false));
3987 }
3988 
3989 void Assembler::andps(XMMRegister dst, Address src) {
3990   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3991   if (VM_Version::supports_evex()) {
3992     tuple_type = EVEX_FV;
3993     input_size_in_bits = EVEX_32bit;
3994   }
3995   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
3996                   false, (VM_Version::supports_avx512dq() == false));
3997 }
3998 
3999 void Assembler::andpd(XMMRegister dst, Address src) {
4000   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4001   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4002     tuple_type = EVEX_FV;
4003     input_size_in_bits = EVEX_64bit;
4004     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4005   } else {
4006     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4007   }
4008 }
4009 
4010 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4011   assert(VM_Version::supports_avx(), "");
4012   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4013     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4014   } else {
4015     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4016   }
4017 }
4018 
4019 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4020   assert(VM_Version::supports_avx(), "");
4021   bool legacy_mode = (VM_Version::supports_avx512dq() == false);
4022   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
4023 }
4024 
4025 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4026   assert(VM_Version::supports_avx(), "");
4027   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4028     tuple_type = EVEX_FV;
4029     input_size_in_bits = EVEX_64bit;
4030     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4031   } else {
4032     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4033   }
4034 }
4035 
4036 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4037   assert(VM_Version::supports_avx(), "");
4038   if (VM_Version::supports_evex()) {
4039     tuple_type = EVEX_FV;
4040     input_size_in_bits = EVEX_32bit;
4041   }
4042   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
4043                  (VM_Version::supports_avx512dq() == false));
4044 }
4045 
4046 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4047   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4048   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4049     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4050   } else {
4051     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4052   }
4053 }
4054 
4055 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4056   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4057   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
4058                   false, (VM_Version::supports_avx512dq() == false));
4059 }
4060 
4061 void Assembler::xorpd(XMMRegister dst, Address src) {
4062   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4063   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4064     tuple_type = EVEX_FV;
4065     input_size_in_bits = EVEX_64bit;
4066     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4067   } else {
4068     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4069   }
4070 }
4071 
4072 void Assembler::xorps(XMMRegister dst, Address src) {
4073   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4074   if (VM_Version::supports_evex()) {
4075     tuple_type = EVEX_FV;
4076     input_size_in_bits = EVEX_32bit;
4077   }
4078   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
4079                   (VM_Version::supports_avx512dq() == false));
4080 }
4081 
4082 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4083   assert(VM_Version::supports_avx(), "");
4084   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4085     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4086   } else {
4087     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4088   }
4089 }
4090 
4091 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4092   assert(VM_Version::supports_avx(), "");
4093   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4094                  (VM_Version::supports_avx512dq() == false));
4095 }
4096 
4097 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4098   assert(VM_Version::supports_avx(), "");
4099   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4100     tuple_type = EVEX_FV;
4101     input_size_in_bits = EVEX_64bit;
4102     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4103   } else {
4104     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4105   }
4106 }
4107 
4108 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4109   assert(VM_Version::supports_avx(), "");
4110   if (VM_Version::supports_evex()) {
4111     tuple_type = EVEX_FV;
4112     input_size_in_bits = EVEX_32bit;
4113   }
4114   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4115                  (VM_Version::supports_avx512dq() == false));
4116 }
4117 
4118 // Integer vector arithmetic
4119 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4120   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4121          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4122   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4123                                      VEX_OPCODE_0F_38, true, false);
4124   emit_int8(0x01);
4125   emit_int8((unsigned char)(0xC0 | encode));
4126 }
4127 
4128 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4129   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4130          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4131   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4132                                      VEX_OPCODE_0F_38, true, false);
4133   emit_int8(0x02);
4134   emit_int8((unsigned char)(0xC0 | encode));
4135 }
4136 
4137 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4138   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4139   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
4140 }
4141 
4142 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4144   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
4145 }
4146 
4147 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4149   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4150 }
4151 
4152 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4153   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4154   if (VM_Version::supports_evex()) {
4155     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4156   } else {
4157     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4158   }
4159 }
4160 
4161 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4162   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4163   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4164                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4165   emit_int8(0x01);
4166   emit_int8((unsigned char)(0xC0 | encode));
4167 }
4168 
4169 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4170   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4171   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4172                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4173   emit_int8(0x02);
4174   emit_int8((unsigned char)(0xC0 | encode));
4175 }
4176 
4177 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4178   assert(UseAVX > 0, "requires some form of AVX");
4179   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
4180                  (VM_Version::supports_avx512bw() == false));
4181 }
4182 
4183 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4184   assert(UseAVX > 0, "requires some form of AVX");
4185   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
4186                  (VM_Version::supports_avx512bw() == false));
4187 }
4188 
4189 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4190   assert(UseAVX > 0, "requires some form of AVX");
4191   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4192 }
4193 
4194 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4195   assert(UseAVX > 0, "requires some form of AVX");
4196   if (VM_Version::supports_evex()) {
4197     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4198   } else {
4199     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4200   }
4201 }
4202 
4203 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4204   assert(UseAVX > 0, "requires some form of AVX");
4205   if (VM_Version::supports_evex()) {
4206     tuple_type = EVEX_FVM;
4207   }
4208   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
4209 }
4210 
4211 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4212   assert(UseAVX > 0, "requires some form of AVX");
4213   if (VM_Version::supports_evex()) {
4214     tuple_type = EVEX_FVM;
4215   }
4216   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
4217 }
4218 
4219 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4220   assert(UseAVX > 0, "requires some form of AVX");
4221   if (VM_Version::supports_evex()) {
4222     tuple_type = EVEX_FV;
4223     input_size_in_bits = EVEX_32bit;
4224   }
4225   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4226 }
4227 
4228 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4229   assert(UseAVX > 0, "requires some form of AVX");
4230   if (VM_Version::supports_evex()) {
4231     tuple_type = EVEX_FV;
4232     input_size_in_bits = EVEX_64bit;
4233     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4234   } else {
4235     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4236   }
4237 }
4238 
4239 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4240   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4241   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
4242 }
4243 
4244 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4245   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4246   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
4247 }
4248 
4249 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4250   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4251   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4252 }
4253 
4254 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4255   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4256   if (VM_Version::supports_evex()) {
4257     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4258   } else {
4259     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4260   }
4261 }
4262 
4263 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4264   assert(UseAVX > 0, "requires some form of AVX");
4265   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4266                  (VM_Version::supports_avx512bw() == false));
4267 }
4268 
4269 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4270   assert(UseAVX > 0, "requires some form of AVX");
4271   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4272                  (VM_Version::supports_avx512bw() == false));
4273 }
4274 
4275 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4276   assert(UseAVX > 0, "requires some form of AVX");
4277   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4278 }
4279 
4280 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4281   assert(UseAVX > 0, "requires some form of AVX");
4282   if (VM_Version::supports_evex()) {
4283     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4284   } else {
4285     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4286   }
4287 }
4288 
4289 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4290   assert(UseAVX > 0, "requires some form of AVX");
4291   if (VM_Version::supports_evex()) {
4292     tuple_type = EVEX_FVM;
4293   }
4294   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4295                  (VM_Version::supports_avx512bw() == false));
4296 }
4297 
4298 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4299   assert(UseAVX > 0, "requires some form of AVX");
4300   if (VM_Version::supports_evex()) {
4301     tuple_type = EVEX_FVM;
4302   }
4303   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4304                  (VM_Version::supports_avx512bw() == false));
4305 }
4306 
4307 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4308   assert(UseAVX > 0, "requires some form of AVX");
4309   if (VM_Version::supports_evex()) {
4310     tuple_type = EVEX_FV;
4311     input_size_in_bits = EVEX_32bit;
4312   }
4313   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4314 }
4315 
4316 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4317   assert(UseAVX > 0, "requires some form of AVX");
4318   if (VM_Version::supports_evex()) {
4319     tuple_type = EVEX_FV;
4320     input_size_in_bits = EVEX_64bit;
4321     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4322   } else {
4323     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4324   }
4325 }
4326 
4327 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4329   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
4330                   (VM_Version::supports_avx512bw() == false));
4331 }
4332 
4333 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4334   assert(VM_Version::supports_sse4_1(), "");
4335   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4336                                       false, VEX_OPCODE_0F_38);
4337   emit_int8(0x40);
4338   emit_int8((unsigned char)(0xC0 | encode));
4339 }
4340 
4341 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4342   assert(UseAVX > 0, "requires some form of AVX");
4343   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
4344                  (VM_Version::supports_avx512bw() == false));
4345 }
4346 
4347 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4348   assert(UseAVX > 0, "requires some form of AVX");
4349   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4350                                      vector_len, VEX_OPCODE_0F_38);
4351   emit_int8(0x40);
4352   emit_int8((unsigned char)(0xC0 | encode));
4353 }
4354 
4355 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4356   assert(UseAVX > 2, "requires some form of AVX");
4357   int src_enc = src->encoding();
4358   int dst_enc = dst->encoding();
4359   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4360   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4361                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
4362   emit_int8(0x40);
4363   emit_int8((unsigned char)(0xC0 | encode));
4364 }
4365 
4366 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4367   assert(UseAVX > 0, "requires some form of AVX");
4368   if (VM_Version::supports_evex()) {
4369     tuple_type = EVEX_FVM;
4370   }
4371   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
4372 }
4373 
4374 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4375   assert(UseAVX > 0, "requires some form of AVX");
4376   if (VM_Version::supports_evex()) {
4377     tuple_type = EVEX_FV;
4378     input_size_in_bits = EVEX_32bit;
4379   }
4380   InstructionMark im(this);
4381   int dst_enc = dst->encoding();
4382   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4383   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4384              VEX_OPCODE_0F_38, false, vector_len);
4385   emit_int8(0x40);
4386   emit_operand(dst, src);
4387 }
4388 
4389 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4390   assert(UseAVX > 0, "requires some form of AVX");
4391   if (VM_Version::supports_evex()) {
4392     tuple_type = EVEX_FV;
4393     input_size_in_bits = EVEX_64bit;
4394   }
4395   InstructionMark im(this);
4396   int dst_enc = dst->encoding();
4397   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4398   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
4399   emit_int8(0x40);
4400   emit_operand(dst, src);
4401 }
4402 
4403 // Shift packed integers left by specified number of bits.
4404 void Assembler::psllw(XMMRegister dst, int shift) {
4405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4406   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4407   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4408                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
4409   emit_int8(0x71);
4410   emit_int8((unsigned char)(0xC0 | encode));
4411   emit_int8(shift & 0xFF);
4412 }
4413 
4414 void Assembler::pslld(XMMRegister dst, int shift) {
4415   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4416   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4417   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
4418   emit_int8(0x72);
4419   emit_int8((unsigned char)(0xC0 | encode));
4420   emit_int8(shift & 0xFF);
4421 }
4422 
4423 void Assembler::psllq(XMMRegister dst, int shift) {
4424   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4425   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4426   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4427   emit_int8(0x73);
4428   emit_int8((unsigned char)(0xC0 | encode));
4429   emit_int8(shift & 0xFF);
4430 }
4431 
4432 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4433   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4434   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
4435                   (VM_Version::supports_avx512bw() == false));
4436 }
4437 
4438 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4440   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4441 }
4442 
4443 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4444   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4445   if (VM_Version::supports_evex()) {
4446     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4447   } else {
4448     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4449   }
4450 }
4451 
4452 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4453   assert(UseAVX > 0, "requires some form of AVX");
4454   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4455   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
4456                  (VM_Version::supports_avx512bw() == false));
4457   emit_int8(shift & 0xFF);
4458 }
4459 
4460 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4461   assert(UseAVX > 0, "requires some form of AVX");
4462   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4463   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4464   emit_int8(shift & 0xFF);
4465 }
4466 
4467 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4468   assert(UseAVX > 0, "requires some form of AVX");
4469   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4470   if (VM_Version::supports_evex()) {
4471     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4472   } else {
4473     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4474   }
4475   emit_int8(shift & 0xFF);
4476 }
4477 
4478 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4479   assert(UseAVX > 0, "requires some form of AVX");
4480   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
4481                  (VM_Version::supports_avx512bw() == false));
4482 }
4483 
4484 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4485   assert(UseAVX > 0, "requires some form of AVX");
4486   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4487 }
4488 
4489 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4490   assert(UseAVX > 0, "requires some form of AVX");
4491   if (VM_Version::supports_evex()) {
4492     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4493   } else {
4494     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4495   }
4496 }
4497 
4498 // Shift packed integers logically right by specified number of bits.
4499 void Assembler::psrlw(XMMRegister dst, int shift) {
4500   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4501   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4502   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4503                                       (VM_Version::supports_avx512bw() == false));
4504   emit_int8(0x71);
4505   emit_int8((unsigned char)(0xC0 | encode));
4506   emit_int8(shift & 0xFF);
4507 }
4508 
4509 void Assembler::psrld(XMMRegister dst, int shift) {
4510   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4511   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4512   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
4513   emit_int8(0x72);
4514   emit_int8((unsigned char)(0xC0 | encode));
4515   emit_int8(shift & 0xFF);
4516 }
4517 
4518 void Assembler::psrlq(XMMRegister dst, int shift) {
4519   // Do not confuse it with psrldq SSE2 instruction which
4520   // shifts 128 bit value in xmm register by number of bytes.
4521   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4522   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4523   int encode = 0;
4524   if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
4525     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
4526   } else {
4527     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4528   }
4529   emit_int8(0x73);
4530   emit_int8((unsigned char)(0xC0 | encode));
4531   emit_int8(shift & 0xFF);
4532 }
4533 
4534 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4535   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4536   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
4537                   (VM_Version::supports_avx512bw() == false));
4538 }
4539 
4540 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4541   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4542   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4543 }
4544 
4545 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4547   if (VM_Version::supports_evex()) {
4548     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4549   } else {
4550     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4551   }
4552 }
4553 
4554 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4555   assert(UseAVX > 0, "requires some form of AVX");
4556   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4557   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
4558                  (VM_Version::supports_avx512bw() == false));
4559   emit_int8(shift & 0xFF);
4560 }
4561 
4562 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4563   assert(UseAVX > 0, "requires some form of AVX");
4564   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4565   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4566   emit_int8(shift & 0xFF);
4567 }
4568 
4569 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4570   assert(UseAVX > 0, "requires some form of AVX");
4571   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4572   if (VM_Version::supports_evex()) {
4573     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4574   } else {
4575     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4576   }
4577   emit_int8(shift & 0xFF);
4578 }
4579 
4580 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4581   assert(UseAVX > 0, "requires some form of AVX");
4582   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
4583                  (VM_Version::supports_avx512bw() == false));
4584 }
4585 
4586 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4587   assert(UseAVX > 0, "requires some form of AVX");
4588   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4589 }
4590 
4591 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4592   assert(UseAVX > 0, "requires some form of AVX");
4593   if (VM_Version::supports_evex()) {
4594     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4595   } else {
4596     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4597   }
4598 }
4599 
4600 // Shift packed integers arithmetically right by specified number of bits.
4601 void Assembler::psraw(XMMRegister dst, int shift) {
4602   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4603   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4604   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4605                                       (VM_Version::supports_avx512bw() == false));
4606   emit_int8(0x71);
4607   emit_int8((unsigned char)(0xC0 | encode));
4608   emit_int8(shift & 0xFF);
4609 }
4610 
4611 void Assembler::psrad(XMMRegister dst, int shift) {
4612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4613   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4614   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
4615   emit_int8(0x72);
4616   emit_int8((unsigned char)(0xC0 | encode));
4617   emit_int8(shift & 0xFF);
4618 }
4619 
4620 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4622   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
4623                   (VM_Version::supports_avx512bw() == false));
4624 }
4625 
4626 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4628   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4629 }
4630 
4631 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4632   assert(UseAVX > 0, "requires some form of AVX");
4633   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4634   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
4635                  (VM_Version::supports_avx512bw() == false));
4636   emit_int8(shift & 0xFF);
4637 }
4638 
4639 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4640   assert(UseAVX > 0, "requires some form of AVX");
4641   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4642   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4643   emit_int8(shift & 0xFF);
4644 }
4645 
4646 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4647   assert(UseAVX > 0, "requires some form of AVX");
4648   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
4649                  (VM_Version::supports_avx512bw() == false));
4650 }
4651 
4652 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4653   assert(UseAVX > 0, "requires some form of AVX");
4654   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4655 }
4656 
4657 
4658 // AND packed integers
4659 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4660   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4661   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4662 }
4663 
4664 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4665   assert(UseAVX > 0, "requires some form of AVX");
4666   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4667 }
4668 
4669 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4670   assert(UseAVX > 0, "requires some form of AVX");
4671   if (VM_Version::supports_evex()) {
4672     tuple_type = EVEX_FV;
4673     input_size_in_bits = EVEX_32bit;
4674   }
4675   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4676 }
4677 
4678 void Assembler::por(XMMRegister dst, XMMRegister src) {
4679   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4680   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4681 }
4682 
4683 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4684   assert(UseAVX > 0, "requires some form of AVX");
4685   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4686 }
4687 
4688 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4689   assert(UseAVX > 0, "requires some form of AVX");
4690   if (VM_Version::supports_evex()) {
4691     tuple_type = EVEX_FV;
4692     input_size_in_bits = EVEX_32bit;
4693   }
4694   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4695 }
4696 
4697 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4698   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4699   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4700 }
4701 
4702 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4703   assert(UseAVX > 0, "requires some form of AVX");
4704   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4705 }
4706 
4707 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4708   assert(UseAVX > 0, "requires some form of AVX");
4709   if (VM_Version::supports_evex()) {
4710     tuple_type = EVEX_FV;
4711     input_size_in_bits = EVEX_32bit;
4712   }
4713   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4714 }
4715 
4716 
4717 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4718   assert(VM_Version::supports_avx(), "");
4719   int vector_len = AVX_256bit;
4720   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4721   emit_int8(0x18);
4722   emit_int8((unsigned char)(0xC0 | encode));
4723   // 0x00 - insert into lower 128 bits
4724   // 0x01 - insert into upper 128 bits
4725   emit_int8(0x01);
4726 }
4727 
4728 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4729   assert(VM_Version::supports_evex(), "");
4730   int vector_len = AVX_512bit;
4731   int src_enc = src->encoding();
4732   int dst_enc = dst->encoding();
4733   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4734   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4735                                      VEX_OPCODE_0F_3A, true, vector_len, false, false);
4736   emit_int8(0x1A);
4737   emit_int8((unsigned char)(0xC0 | encode));
4738   // 0x00 - insert into lower 256 bits
4739   // 0x01 - insert into upper 256 bits
4740   emit_int8(0x01);
4741 }
4742 
4743 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
4744   assert(VM_Version::supports_avx(), "");
4745   if (VM_Version::supports_evex()) {
4746     tuple_type = EVEX_T4;
4747     input_size_in_bits = EVEX_64bit;
4748   }
4749   InstructionMark im(this);
4750   int vector_len = AVX_512bit;
4751   assert(dst != xnoreg, "sanity");
4752   int dst_enc = dst->encoding();
4753   // swap src<->dst for encoding
4754   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
4755   emit_int8(0x1A);
4756   emit_operand(dst, src);
4757   // 0x01 - insert into upper 128 bits
4758   emit_int8(0x01);
4759 }
4760 
4761 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
4762   assert(VM_Version::supports_avx(), "");
4763   if (VM_Version::supports_evex()) {
4764     tuple_type = EVEX_T4;
4765     input_size_in_bits = EVEX_32bit;
4766   }
4767   InstructionMark im(this);
4768   int vector_len = AVX_256bit;
4769   assert(dst != xnoreg, "sanity");
4770   int dst_enc = dst->encoding();
4771   // swap src<->dst for encoding
4772   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4773   emit_int8(0x18);
4774   emit_operand(dst, src);
4775   // 0x01 - insert into upper 128 bits
4776   emit_int8(0x01);
4777 }
4778 
4779 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
4780   assert(VM_Version::supports_avx(), "");
4781   int vector_len = AVX_256bit;
4782   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4783   emit_int8(0x19);
4784   emit_int8((unsigned char)(0xC0 | encode));
4785   // 0x00 - insert into lower 128 bits
4786   // 0x01 - insert into upper 128 bits
4787   emit_int8(0x01);
4788 }
4789 
4790 void Assembler::vextractf128h(Address dst, XMMRegister src) {
4791   assert(VM_Version::supports_avx(), "");
4792   if (VM_Version::supports_evex()) {
4793     tuple_type = EVEX_T4;
4794     input_size_in_bits = EVEX_32bit;
4795   }
4796   InstructionMark im(this);
4797   int vector_len = AVX_256bit;
4798   assert(src != xnoreg, "sanity");
4799   int src_enc = src->encoding();
4800   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4801   emit_int8(0x19);
4802   emit_operand(src, dst);
4803   // 0x01 - extract from upper 128 bits
4804   emit_int8(0x01);
4805 }
4806 
4807 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4808   assert(VM_Version::supports_avx2(), "");
4809   int vector_len = AVX_256bit;
4810   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4811   emit_int8(0x38);
4812   emit_int8((unsigned char)(0xC0 | encode));
4813   // 0x00 - insert into lower 128 bits
4814   // 0x01 - insert into upper 128 bits
4815   emit_int8(0x01);
4816 }
4817 
4818 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4819   assert(VM_Version::supports_evex(), "");
4820   int vector_len = AVX_512bit;
4821   int src_enc = src->encoding();
4822   int dst_enc = dst->encoding();
4823   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4824   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4825                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4826   emit_int8(0x38);
4827   emit_int8((unsigned char)(0xC0 | encode));
4828   // 0x00 - insert into lower 256 bits
4829   // 0x01 - insert into upper 256 bits
4830   emit_int8(0x01);
4831 }
4832 
4833 void Assembler::vinserti128h(XMMRegister dst, Address src) {
4834   assert(VM_Version::supports_avx2(), "");
4835   if (VM_Version::supports_evex()) {
4836     tuple_type = EVEX_T4;
4837     input_size_in_bits = EVEX_32bit;
4838   }
4839   InstructionMark im(this);
4840   int vector_len = AVX_256bit;
4841   assert(dst != xnoreg, "sanity");
4842   int dst_enc = dst->encoding();
4843   // swap src<->dst for encoding
4844   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4845   emit_int8(0x38);
4846   emit_operand(dst, src);
4847   // 0x01 - insert into upper 128 bits
4848   emit_int8(0x01);
4849 }
4850 
4851 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
4852   assert(VM_Version::supports_avx(), "");
4853   int vector_len = AVX_256bit;
4854   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4855   emit_int8(0x39);
4856   emit_int8((unsigned char)(0xC0 | encode));
4857   // 0x00 - insert into lower 128 bits
4858   // 0x01 - insert into upper 128 bits
4859   emit_int8(0x01);
4860 }
4861 
4862 void Assembler::vextracti128h(Address dst, XMMRegister src) {
4863   assert(VM_Version::supports_avx2(), "");
4864   if (VM_Version::supports_evex()) {
4865     tuple_type = EVEX_T4;
4866     input_size_in_bits = EVEX_32bit;
4867   }
4868   InstructionMark im(this);
4869   int vector_len = AVX_256bit;
4870   assert(src != xnoreg, "sanity");
4871   int src_enc = src->encoding();
4872   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4873   emit_int8(0x39);
4874   emit_operand(src, dst);
4875   // 0x01 - extract from upper 128 bits
4876   emit_int8(0x01);
4877 }
4878 
4879 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
4880   assert(VM_Version::supports_evex(), "");
4881   int vector_len = AVX_512bit;
4882   int src_enc = src->encoding();
4883   int dst_enc = dst->encoding();
4884   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4885                                      true, vector_len, false, false);
4886   emit_int8(0x3B);
4887   emit_int8((unsigned char)(0xC0 | encode));
4888   // 0x01 - extract from upper 256 bits
4889   emit_int8(0x01);
4890 }
4891 
4892 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
4893   assert(VM_Version::supports_evex(), "");
4894   int vector_len = AVX_512bit;
4895   int src_enc = src->encoding();
4896   int dst_enc = dst->encoding();
4897   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4898                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4899   emit_int8(0x39);
4900   emit_int8((unsigned char)(0xC0 | encode));
4901   // 0x01 - extract from bits 255:128
4902   // 0x02 - extract from bits 383:256
4903   // 0x03 - extract from bits 511:384
4904   emit_int8(value & 0x3);
4905 }
4906 
4907 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
4908   assert(VM_Version::supports_evex(), "");
4909   int vector_len = AVX_512bit;
4910   int src_enc = src->encoding();
4911   int dst_enc = dst->encoding();
4912   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4913                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4914   emit_int8(0x1B);
4915   emit_int8((unsigned char)(0xC0 | encode));
4916   // 0x01 - extract from upper 256 bits
4917   emit_int8(0x01);
4918 }
4919 
4920 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
4921   assert(VM_Version::supports_avx2(), "");
4922   tuple_type = EVEX_T4;
4923   input_size_in_bits = EVEX_64bit;
4924   InstructionMark im(this);
4925   int vector_len = AVX_512bit;
4926   assert(src != xnoreg, "sanity");
4927   int src_enc = src->encoding();
4928   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4929              VM_Version::supports_avx512dq(), vector_len);
4930   emit_int8(0x1B);
4931   emit_operand(src, dst);
4932   // 0x01 - extract from upper 128 bits
4933   emit_int8(0x01);
4934 }
4935 
4936 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
4937   assert(VM_Version::supports_evex(), "");
4938   int vector_len = AVX_512bit;
4939   int src_enc = src->encoding();
4940   int dst_enc = dst->encoding();
4941   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
4942                                      VEX_OPCODE_0F_3A, false, vector_len, false, false);
4943   emit_int8(0x19);
4944   emit_int8((unsigned char)(0xC0 | encode));
4945   // 0x01 - extract from bits 255:128
4946   // 0x02 - extract from bits 383:256
4947   // 0x03 - extract from bits 511:384
4948   emit_int8(value & 0x3);
4949 }
4950 
4951 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
4952   assert(VM_Version::supports_evex(), "");
4953   int vector_len = AVX_512bit;
4954   int src_enc = src->encoding();
4955   int dst_enc = dst->encoding();
4956   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4957                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4958   emit_int8(0x19);
4959   emit_int8((unsigned char)(0xC0 | encode));
4960   // 0x01 - extract from bits 255:128
4961   // 0x02 - extract from bits 383:256
4962   // 0x03 - extract from bits 511:384
4963   emit_int8(value & 0x3);
4964 }
4965 
4966 // duplicate 4-bytes integer data from src into 8 locations in dest
4967 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
4968   assert(VM_Version::supports_avx2(), "");
4969   int vector_len = AVX_256bit;
4970   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4971                                      vector_len, VEX_OPCODE_0F_38, false);
4972   emit_int8(0x58);
4973   emit_int8((unsigned char)(0xC0 | encode));
4974 }
4975 
4976 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
4977 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
4978   assert(VM_Version::supports_evex(), "");
4979   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4980                                      vector_len, VEX_OPCODE_0F_38, false);
4981   emit_int8(0x78);
4982   emit_int8((unsigned char)(0xC0 | encode));
4983 }
4984 
4985 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
4986   assert(VM_Version::supports_evex(), "");
4987   tuple_type = EVEX_T1S;
4988   input_size_in_bits = EVEX_8bit;
4989   InstructionMark im(this);
4990   assert(dst != xnoreg, "sanity");
4991   int dst_enc = dst->encoding();
4992   // swap src<->dst for encoding
4993   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
4994   emit_int8(0x78);
4995   emit_operand(dst, src);
4996 }
4997 
4998 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
4999 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5000   assert(VM_Version::supports_evex(), "");
5001   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5002                                      vector_len, VEX_OPCODE_0F_38, false);
5003   emit_int8(0x79);
5004   emit_int8((unsigned char)(0xC0 | encode));
5005 }
5006 
5007 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5008   assert(VM_Version::supports_evex(), "");
5009   tuple_type = EVEX_T1S;
5010   input_size_in_bits = EVEX_16bit;
5011   InstructionMark im(this);
5012   assert(dst != xnoreg, "sanity");
5013   int dst_enc = dst->encoding();
5014   // swap src<->dst for encoding
5015   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5016   emit_int8(0x79);
5017   emit_operand(dst, src);
5018 }
5019 
5020 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5021 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5022   assert(VM_Version::supports_evex(), "");
5023   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5024                                      vector_len, VEX_OPCODE_0F_38, false);
5025   emit_int8(0x58);
5026   emit_int8((unsigned char)(0xC0 | encode));
5027 }
5028 
5029 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5030   assert(VM_Version::supports_evex(), "");
5031   tuple_type = EVEX_T1S;
5032   input_size_in_bits = EVEX_32bit;
5033   InstructionMark im(this);
5034   assert(dst != xnoreg, "sanity");
5035   int dst_enc = dst->encoding();
5036   // swap src<->dst for encoding
5037   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5038   emit_int8(0x58);
5039   emit_operand(dst, src);
5040 }
5041 
5042 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5043 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5044   assert(VM_Version::supports_evex(), "");
5045   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5046                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5047   emit_int8(0x59);
5048   emit_int8((unsigned char)(0xC0 | encode));
5049 }
5050 
5051 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5052   assert(VM_Version::supports_evex(), "");
5053   tuple_type = EVEX_T1S;
5054   input_size_in_bits = EVEX_64bit;
5055   InstructionMark im(this);
5056   assert(dst != xnoreg, "sanity");
5057   int dst_enc = dst->encoding();
5058   // swap src<->dst for encoding
5059   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5060   emit_int8(0x59);
5061   emit_operand(dst, src);
5062 }
5063 
5064 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5065 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5066   assert(VM_Version::supports_evex(), "");
5067   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5068                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5069   emit_int8(0x18);
5070   emit_int8((unsigned char)(0xC0 | encode));
5071 }
5072 
5073 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5074   assert(VM_Version::supports_evex(), "");
5075   tuple_type = EVEX_T1S;
5076   input_size_in_bits = EVEX_32bit;
5077   InstructionMark im(this);
5078   assert(dst != xnoreg, "sanity");
5079   int dst_enc = dst->encoding();
5080   // swap src<->dst for encoding
5081   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5082   emit_int8(0x18);
5083   emit_operand(dst, src);
5084 }
5085 
5086 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5087 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5088   assert(VM_Version::supports_evex(), "");
5089   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5090                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5091   emit_int8(0x19);
5092   emit_int8((unsigned char)(0xC0 | encode));
5093 }
5094 
5095 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5096   assert(VM_Version::supports_evex(), "");
5097   tuple_type = EVEX_T1S;
5098   input_size_in_bits = EVEX_64bit;
5099   InstructionMark im(this);
5100   assert(dst != xnoreg, "sanity");
5101   int dst_enc = dst->encoding();
5102   // swap src<->dst for encoding
5103   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5104   emit_int8(0x19);
5105   emit_operand(dst, src);
5106 }
5107 
5108 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5109 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5110   assert(VM_Version::supports_evex(), "");
5111   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5112                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5113   emit_int8(0x7A);
5114   emit_int8((unsigned char)(0xC0 | encode));
5115 }
5116 
5117 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5118 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5119   assert(VM_Version::supports_evex(), "");
5120   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5121                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5122   emit_int8(0x7B);
5123   emit_int8((unsigned char)(0xC0 | encode));
5124 }
5125 
5126 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5127 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5128   assert(VM_Version::supports_evex(), "");
5129   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5130                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5131   emit_int8(0x7C);
5132   emit_int8((unsigned char)(0xC0 | encode));
5133 }
5134 
5135 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5136 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5137   assert(VM_Version::supports_evex(), "");
5138   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5139                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5140   emit_int8(0x7C);
5141   emit_int8((unsigned char)(0xC0 | encode));
5142 }
5143 
5144 // Carry-Less Multiplication Quadword
5145 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5146   assert(VM_Version::supports_clmul(), "");
5147   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
5148                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
5149   emit_int8(0x44);
5150   emit_int8((unsigned char)(0xC0 | encode));
5151   emit_int8((unsigned char)mask);
5152 }
5153 
5154 // Carry-Less Multiplication Quadword
5155 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5156   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5157   int vector_len = AVX_128bit;
5158   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
5159                                      vector_len, VEX_OPCODE_0F_3A, true);
5160   emit_int8(0x44);
5161   emit_int8((unsigned char)(0xC0 | encode));
5162   emit_int8((unsigned char)mask);
5163 }
5164 
5165 void Assembler::vzeroupper() {
5166   assert(VM_Version::supports_avx(), "");
5167   if (UseAVX < 3)
5168   {
5169     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5170     emit_int8(0x77);
5171   }
5172 }
5173 
5174 
5175 #ifndef _LP64
5176 // 32bit only pieces of the assembler
5177 
5178 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5179   // NO PREFIX AS NEVER 64BIT
5180   InstructionMark im(this);
5181   emit_int8((unsigned char)0x81);
5182   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5183   emit_data(imm32, rspec, 0);
5184 }
5185 
5186 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5187   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5188   InstructionMark im(this);
5189   emit_int8((unsigned char)0x81);
5190   emit_operand(rdi, src1);
5191   emit_data(imm32, rspec, 0);
5192 }
5193 
5194 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5195 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5196 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5197 void Assembler::cmpxchg8(Address adr) {
5198   InstructionMark im(this);
5199   emit_int8(0x0F);
5200   emit_int8((unsigned char)0xC7);
5201   emit_operand(rcx, adr);
5202 }
5203 
5204 void Assembler::decl(Register dst) {
5205   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5206  emit_int8(0x48 | dst->encoding());
5207 }
5208 
5209 #endif // _LP64
5210 
5211 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5212 
5213 void Assembler::fabs() {
5214   emit_int8((unsigned char)0xD9);
5215   emit_int8((unsigned char)0xE1);
5216 }
5217 
5218 void Assembler::fadd(int i) {
5219   emit_farith(0xD8, 0xC0, i);
5220 }
5221 
5222 void Assembler::fadd_d(Address src) {
5223   InstructionMark im(this);
5224   emit_int8((unsigned char)0xDC);
5225   emit_operand32(rax, src);
5226 }
5227 
5228 void Assembler::fadd_s(Address src) {
5229   InstructionMark im(this);
5230   emit_int8((unsigned char)0xD8);
5231   emit_operand32(rax, src);
5232 }
5233 
5234 void Assembler::fadda(int i) {
5235   emit_farith(0xDC, 0xC0, i);
5236 }
5237 
5238 void Assembler::faddp(int i) {
5239   emit_farith(0xDE, 0xC0, i);
5240 }
5241 
5242 void Assembler::fchs() {
5243   emit_int8((unsigned char)0xD9);
5244   emit_int8((unsigned char)0xE0);
5245 }
5246 
5247 void Assembler::fcom(int i) {
5248   emit_farith(0xD8, 0xD0, i);
5249 }
5250 
5251 void Assembler::fcomp(int i) {
5252   emit_farith(0xD8, 0xD8, i);
5253 }
5254 
5255 void Assembler::fcomp_d(Address src) {
5256   InstructionMark im(this);
5257   emit_int8((unsigned char)0xDC);
5258   emit_operand32(rbx, src);
5259 }
5260 
5261 void Assembler::fcomp_s(Address src) {
5262   InstructionMark im(this);
5263   emit_int8((unsigned char)0xD8);
5264   emit_operand32(rbx, src);
5265 }
5266 
5267 void Assembler::fcompp() {
5268   emit_int8((unsigned char)0xDE);
5269   emit_int8((unsigned char)0xD9);
5270 }
5271 
5272 void Assembler::fcos() {
5273   emit_int8((unsigned char)0xD9);
5274   emit_int8((unsigned char)0xFF);
5275 }
5276 
5277 void Assembler::fdecstp() {
5278   emit_int8((unsigned char)0xD9);
5279   emit_int8((unsigned char)0xF6);
5280 }
5281 
5282 void Assembler::fdiv(int i) {
5283   emit_farith(0xD8, 0xF0, i);
5284 }
5285 
5286 void Assembler::fdiv_d(Address src) {
5287   InstructionMark im(this);
5288   emit_int8((unsigned char)0xDC);
5289   emit_operand32(rsi, src);
5290 }
5291 
5292 void Assembler::fdiv_s(Address src) {
5293   InstructionMark im(this);
5294   emit_int8((unsigned char)0xD8);
5295   emit_operand32(rsi, src);
5296 }
5297 
5298 void Assembler::fdiva(int i) {
5299   emit_farith(0xDC, 0xF8, i);
5300 }
5301 
5302 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5303 //       is erroneous for some of the floating-point instructions below.
5304 
5305 void Assembler::fdivp(int i) {
5306   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5307 }
5308 
5309 void Assembler::fdivr(int i) {
5310   emit_farith(0xD8, 0xF8, i);
5311 }
5312 
5313 void Assembler::fdivr_d(Address src) {
5314   InstructionMark im(this);
5315   emit_int8((unsigned char)0xDC);
5316   emit_operand32(rdi, src);
5317 }
5318 
5319 void Assembler::fdivr_s(Address src) {
5320   InstructionMark im(this);
5321   emit_int8((unsigned char)0xD8);
5322   emit_operand32(rdi, src);
5323 }
5324 
5325 void Assembler::fdivra(int i) {
5326   emit_farith(0xDC, 0xF0, i);
5327 }
5328 
5329 void Assembler::fdivrp(int i) {
5330   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5331 }
5332 
5333 void Assembler::ffree(int i) {
5334   emit_farith(0xDD, 0xC0, i);
5335 }
5336 
5337 void Assembler::fild_d(Address adr) {
5338   InstructionMark im(this);
5339   emit_int8((unsigned char)0xDF);
5340   emit_operand32(rbp, adr);
5341 }
5342 
5343 void Assembler::fild_s(Address adr) {
5344   InstructionMark im(this);
5345   emit_int8((unsigned char)0xDB);
5346   emit_operand32(rax, adr);
5347 }
5348 
5349 void Assembler::fincstp() {
5350   emit_int8((unsigned char)0xD9);
5351   emit_int8((unsigned char)0xF7);
5352 }
5353 
5354 void Assembler::finit() {
5355   emit_int8((unsigned char)0x9B);
5356   emit_int8((unsigned char)0xDB);
5357   emit_int8((unsigned char)0xE3);
5358 }
5359 
5360 void Assembler::fist_s(Address adr) {
5361   InstructionMark im(this);
5362   emit_int8((unsigned char)0xDB);
5363   emit_operand32(rdx, adr);
5364 }
5365 
5366 void Assembler::fistp_d(Address adr) {
5367   InstructionMark im(this);
5368   emit_int8((unsigned char)0xDF);
5369   emit_operand32(rdi, adr);
5370 }
5371 
5372 void Assembler::fistp_s(Address adr) {
5373   InstructionMark im(this);
5374   emit_int8((unsigned char)0xDB);
5375   emit_operand32(rbx, adr);
5376 }
5377 
5378 void Assembler::fld1() {
5379   emit_int8((unsigned char)0xD9);
5380   emit_int8((unsigned char)0xE8);
5381 }
5382 
5383 void Assembler::fld_d(Address adr) {
5384   InstructionMark im(this);
5385   emit_int8((unsigned char)0xDD);
5386   emit_operand32(rax, adr);
5387 }
5388 
5389 void Assembler::fld_s(Address adr) {
5390   InstructionMark im(this);
5391   emit_int8((unsigned char)0xD9);
5392   emit_operand32(rax, adr);
5393 }
5394 
5395 
5396 void Assembler::fld_s(int index) {
5397   emit_farith(0xD9, 0xC0, index);
5398 }
5399 
5400 void Assembler::fld_x(Address adr) {
5401   InstructionMark im(this);
5402   emit_int8((unsigned char)0xDB);
5403   emit_operand32(rbp, adr);
5404 }
5405 
5406 void Assembler::fldcw(Address src) {
5407   InstructionMark im(this);
5408   emit_int8((unsigned char)0xD9);
5409   emit_operand32(rbp, src);
5410 }
5411 
5412 void Assembler::fldenv(Address src) {
5413   InstructionMark im(this);
5414   emit_int8((unsigned char)0xD9);
5415   emit_operand32(rsp, src);
5416 }
5417 
5418 void Assembler::fldlg2() {
5419   emit_int8((unsigned char)0xD9);
5420   emit_int8((unsigned char)0xEC);
5421 }
5422 
5423 void Assembler::fldln2() {
5424   emit_int8((unsigned char)0xD9);
5425   emit_int8((unsigned char)0xED);
5426 }
5427 
5428 void Assembler::fldz() {
5429   emit_int8((unsigned char)0xD9);
5430   emit_int8((unsigned char)0xEE);
5431 }
5432 
5433 void Assembler::flog() {
5434   fldln2();
5435   fxch();
5436   fyl2x();
5437 }
5438 
5439 void Assembler::flog10() {
5440   fldlg2();
5441   fxch();
5442   fyl2x();
5443 }
5444 
5445 void Assembler::fmul(int i) {
5446   emit_farith(0xD8, 0xC8, i);
5447 }
5448 
5449 void Assembler::fmul_d(Address src) {
5450   InstructionMark im(this);
5451   emit_int8((unsigned char)0xDC);
5452   emit_operand32(rcx, src);
5453 }
5454 
5455 void Assembler::fmul_s(Address src) {
5456   InstructionMark im(this);
5457   emit_int8((unsigned char)0xD8);
5458   emit_operand32(rcx, src);
5459 }
5460 
5461 void Assembler::fmula(int i) {
5462   emit_farith(0xDC, 0xC8, i);
5463 }
5464 
5465 void Assembler::fmulp(int i) {
5466   emit_farith(0xDE, 0xC8, i);
5467 }
5468 
5469 void Assembler::fnsave(Address dst) {
5470   InstructionMark im(this);
5471   emit_int8((unsigned char)0xDD);
5472   emit_operand32(rsi, dst);
5473 }
5474 
5475 void Assembler::fnstcw(Address src) {
5476   InstructionMark im(this);
5477   emit_int8((unsigned char)0x9B);
5478   emit_int8((unsigned char)0xD9);
5479   emit_operand32(rdi, src);
5480 }
5481 
5482 void Assembler::fnstsw_ax() {
5483   emit_int8((unsigned char)0xDF);
5484   emit_int8((unsigned char)0xE0);
5485 }
5486 
5487 void Assembler::fprem() {
5488   emit_int8((unsigned char)0xD9);
5489   emit_int8((unsigned char)0xF8);
5490 }
5491 
5492 void Assembler::fprem1() {
5493   emit_int8((unsigned char)0xD9);
5494   emit_int8((unsigned char)0xF5);
5495 }
5496 
5497 void Assembler::frstor(Address src) {
5498   InstructionMark im(this);
5499   emit_int8((unsigned char)0xDD);
5500   emit_operand32(rsp, src);
5501 }
5502 
5503 void Assembler::fsin() {
5504   emit_int8((unsigned char)0xD9);
5505   emit_int8((unsigned char)0xFE);
5506 }
5507 
5508 void Assembler::fsqrt() {
5509   emit_int8((unsigned char)0xD9);
5510   emit_int8((unsigned char)0xFA);
5511 }
5512 
5513 void Assembler::fst_d(Address adr) {
5514   InstructionMark im(this);
5515   emit_int8((unsigned char)0xDD);
5516   emit_operand32(rdx, adr);
5517 }
5518 
5519 void Assembler::fst_s(Address adr) {
5520   InstructionMark im(this);
5521   emit_int8((unsigned char)0xD9);
5522   emit_operand32(rdx, adr);
5523 }
5524 
5525 void Assembler::fstp_d(Address adr) {
5526   InstructionMark im(this);
5527   emit_int8((unsigned char)0xDD);
5528   emit_operand32(rbx, adr);
5529 }
5530 
5531 void Assembler::fstp_d(int index) {
5532   emit_farith(0xDD, 0xD8, index);
5533 }
5534 
5535 void Assembler::fstp_s(Address adr) {
5536   InstructionMark im(this);
5537   emit_int8((unsigned char)0xD9);
5538   emit_operand32(rbx, adr);
5539 }
5540 
5541 void Assembler::fstp_x(Address adr) {
5542   InstructionMark im(this);
5543   emit_int8((unsigned char)0xDB);
5544   emit_operand32(rdi, adr);
5545 }
5546 
5547 void Assembler::fsub(int i) {
5548   emit_farith(0xD8, 0xE0, i);
5549 }
5550 
5551 void Assembler::fsub_d(Address src) {
5552   InstructionMark im(this);
5553   emit_int8((unsigned char)0xDC);
5554   emit_operand32(rsp, src);
5555 }
5556 
5557 void Assembler::fsub_s(Address src) {
5558   InstructionMark im(this);
5559   emit_int8((unsigned char)0xD8);
5560   emit_operand32(rsp, src);
5561 }
5562 
5563 void Assembler::fsuba(int i) {
5564   emit_farith(0xDC, 0xE8, i);
5565 }
5566 
5567 void Assembler::fsubp(int i) {
5568   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5569 }
5570 
5571 void Assembler::fsubr(int i) {
5572   emit_farith(0xD8, 0xE8, i);
5573 }
5574 
5575 void Assembler::fsubr_d(Address src) {
5576   InstructionMark im(this);
5577   emit_int8((unsigned char)0xDC);
5578   emit_operand32(rbp, src);
5579 }
5580 
5581 void Assembler::fsubr_s(Address src) {
5582   InstructionMark im(this);
5583   emit_int8((unsigned char)0xD8);
5584   emit_operand32(rbp, src);
5585 }
5586 
5587 void Assembler::fsubra(int i) {
5588   emit_farith(0xDC, 0xE0, i);
5589 }
5590 
5591 void Assembler::fsubrp(int i) {
5592   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5593 }
5594 
5595 void Assembler::ftan() {
5596   emit_int8((unsigned char)0xD9);
5597   emit_int8((unsigned char)0xF2);
5598   emit_int8((unsigned char)0xDD);
5599   emit_int8((unsigned char)0xD8);
5600 }
5601 
5602 void Assembler::ftst() {
5603   emit_int8((unsigned char)0xD9);
5604   emit_int8((unsigned char)0xE4);
5605 }
5606 
5607 void Assembler::fucomi(int i) {
5608   // make sure the instruction is supported (introduced for P6, together with cmov)
5609   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5610   emit_farith(0xDB, 0xE8, i);
5611 }
5612 
5613 void Assembler::fucomip(int i) {
5614   // make sure the instruction is supported (introduced for P6, together with cmov)
5615   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5616   emit_farith(0xDF, 0xE8, i);
5617 }
5618 
5619 void Assembler::fwait() {
5620   emit_int8((unsigned char)0x9B);
5621 }
5622 
5623 void Assembler::fxch(int i) {
5624   emit_farith(0xD9, 0xC8, i);
5625 }
5626 
5627 void Assembler::fyl2x() {
5628   emit_int8((unsigned char)0xD9);
5629   emit_int8((unsigned char)0xF1);
5630 }
5631 
5632 void Assembler::frndint() {
5633   emit_int8((unsigned char)0xD9);
5634   emit_int8((unsigned char)0xFC);
5635 }
5636 
5637 void Assembler::f2xm1() {
5638   emit_int8((unsigned char)0xD9);
5639   emit_int8((unsigned char)0xF0);
5640 }
5641 
5642 void Assembler::fldl2e() {
5643   emit_int8((unsigned char)0xD9);
5644   emit_int8((unsigned char)0xEA);
5645 }
5646 
5647 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
5648 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
5649 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
5650 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
5651 
5652 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
5653 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5654   if (pre > 0) {
5655     emit_int8(simd_pre[pre]);
5656   }
5657   if (rex_w) {
5658     prefixq(adr, xreg);
5659   } else {
5660     prefix(adr, xreg);
5661   }
5662   if (opc > 0) {
5663     emit_int8(0x0F);
5664     int opc2 = simd_opc[opc];
5665     if (opc2 > 0) {
5666       emit_int8(opc2);
5667     }
5668   }
5669 }
5670 
5671 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5672   if (pre > 0) {
5673     emit_int8(simd_pre[pre]);
5674   }
5675   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
5676                           prefix_and_encode(dst_enc, src_enc);
5677   if (opc > 0) {
5678     emit_int8(0x0F);
5679     int opc2 = simd_opc[opc];
5680     if (opc2 > 0) {
5681       emit_int8(opc2);
5682     }
5683   }
5684   return encode;
5685 }
5686 
5687 
5688 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
5689   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
5690     prefix(VEX_3bytes);
5691 
5692     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
5693     byte1 = (~byte1) & 0xE0;
5694     byte1 |= opc;
5695     emit_int8(byte1);
5696 
5697     int byte2 = ((~nds_enc) & 0xf) << 3;
5698     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
5699     emit_int8(byte2);
5700   } else {
5701     prefix(VEX_2bytes);
5702 
5703     int byte1 = vex_r ? VEX_R : 0;
5704     byte1 = (~byte1) & 0x80;
5705     byte1 |= ((~nds_enc) & 0xf) << 3;
5706     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
5707     emit_int8(byte1);
5708   }
5709 }
5710 
5711 // This is a 4 byte encoding
5712 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
5713                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
5714                             bool is_extended_context, bool is_merge_context,
5715                             int vector_len, bool no_mask_reg ){
5716   // EVEX 0x62 prefix
5717   prefix(EVEX_4bytes);
5718   evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
5719 
5720   // P0: byte 2, initialized to RXBR`00mm
5721   // instead of not'd
5722   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
5723   byte2 = (~byte2) & 0xF0;
5724   // confine opc opcode extensions in mm bits to lower two bits
5725   // of form {0F, 0F_38, 0F_3A}
5726   byte2 |= opc;
5727   emit_int8(byte2);
5728 
5729   // P1: byte 3 as Wvvvv1pp
5730   int byte3 = ((~nds_enc) & 0xf) << 3;
5731   // p[10] is always 1
5732   byte3 |= EVEX_F;
5733   byte3 |= (vex_w & 1) << 7;
5734   // confine pre opcode extensions in pp bits to lower two bits
5735   // of form {66, F3, F2}
5736   byte3 |= pre;
5737   emit_int8(byte3);
5738 
5739   // P2: byte 4 as zL'Lbv'aaa
5740   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
5741   // EVEX.v` for extending EVEX.vvvv or VIDX
5742   byte4 |= (evex_v ? 0: EVEX_V);
5743   // third EXEC.b for broadcast actions
5744   byte4 |= (is_extended_context ? EVEX_Rb : 0);
5745   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
5746   byte4 |= ((vector_len) & 0x3) << 5;
5747   // last is EVEX.z for zero/merge actions
5748   byte4 |= (is_merge_context ? EVEX_Z : 0);
5749   emit_int8(byte4);
5750 }
5751 
5752 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
5753                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
5754   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
5755   bool vex_b = adr.base_needs_rex();
5756   bool vex_x = adr.index_needs_rex();
5757   avx_vector_len = vector_len;
5758 
5759   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5760   if (VM_Version::supports_avx512vl() == false) {
5761     switch (vector_len) {
5762     case AVX_128bit:
5763     case AVX_256bit:
5764       legacy_mode = true;
5765       break;
5766     }
5767   }
5768 
5769   if ((UseAVX > 2) && (legacy_mode == false))
5770   {
5771     bool evex_r = (xreg_enc >= 16);
5772     bool evex_v = (nds_enc >= 16);
5773     is_evex_instruction = true;
5774     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5775   } else {
5776     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5777   }
5778 }
5779 
5780 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
5781                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
5782   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
5783   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
5784   bool vex_x = false;
5785   avx_vector_len = vector_len;
5786 
5787   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5788   if (VM_Version::supports_avx512vl() == false) {
5789     switch (vector_len) {
5790     case AVX_128bit:
5791     case AVX_256bit:
5792       legacy_mode = true;
5793       break;
5794     }
5795   }
5796 
5797   if ((UseAVX > 2) && (legacy_mode == false))
5798   {
5799     bool evex_r = (dst_enc >= 16);
5800     bool evex_v = (nds_enc >= 16);
5801     // can use vex_x as bank extender on rm encoding
5802     vex_x = (src_enc >= 16);
5803     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5804   } else {
5805     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5806   }
5807 
5808   // return modrm byte components for operands
5809   return (((dst_enc & 7) << 3) | (src_enc & 7));
5810 }
5811 
5812 
5813 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
5814                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5815   if (UseAVX > 0) {
5816     int xreg_enc = xreg->encoding();
5817     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
5818     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5819   } else {
5820     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
5821     rex_prefix(adr, xreg, pre, opc, rex_w);
5822   }
5823 }
5824 
5825 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
5826                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5827   int dst_enc = dst->encoding();
5828   int src_enc = src->encoding();
5829   if (UseAVX > 0) {
5830     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5831     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5832   } else {
5833     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
5834     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
5835   }
5836 }
5837 
5838 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
5839                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5840   int dst_enc = dst->encoding();
5841   int src_enc = src->encoding();
5842   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5843   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5844 }
5845 
5846 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
5847                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5848   int dst_enc = dst->encoding();
5849   int src_enc = src->encoding();
5850   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5851   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5852 }
5853 
5854 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5855   InstructionMark im(this);
5856   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5857   emit_int8(opcode);
5858   emit_operand(dst, src);
5859 }
5860 
5861 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
5862   InstructionMark im(this);
5863   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
5864   emit_int8(opcode);
5865   emit_operand(dst, src);
5866 }
5867 
5868 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5869   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5870   emit_int8(opcode);
5871   emit_int8((unsigned char)(0xC0 | encode));
5872 }
5873 
5874 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5875   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5876   emit_int8(opcode);
5877   emit_int8((unsigned char)(0xC0 | encode));
5878 }
5879 
5880 // Versions with no second source register (non-destructive source).
5881 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5882   InstructionMark im(this);
5883   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
5884   emit_int8(opcode);
5885   emit_operand(dst, src);
5886 }
5887 
5888 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5889   InstructionMark im(this);
5890   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
5891   emit_int8(opcode);
5892   emit_operand(dst, src);
5893 }
5894 
5895 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5896   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
5897   emit_int8(opcode);
5898   emit_int8((unsigned char)(0xC0 | encode));
5899 }
5900 
5901 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5902   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5903   emit_int8(opcode);
5904   emit_int8((unsigned char)(0xC0 | encode));
5905 }
5906 
5907 // 3-operands AVX instructions
5908 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
5909                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5910   InstructionMark im(this);
5911   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
5912   emit_int8(opcode);
5913   emit_operand(dst, src);
5914 }
5915 
5916 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
5917                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5918   InstructionMark im(this);
5919   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
5920   emit_int8(opcode);
5921   emit_operand(dst, src);
5922 }
5923 
5924 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5925                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5926   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
5927   emit_int8(opcode);
5928   emit_int8((unsigned char)(0xC0 | encode));
5929 }
5930 
5931 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5932                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5933   int src_enc = src->encoding();
5934   int dst_enc = dst->encoding();
5935   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5936   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
5937   emit_int8(opcode);
5938   emit_int8((unsigned char)(0xC0 | encode));
5939 }
5940 
5941 #ifndef _LP64
5942 
5943 void Assembler::incl(Register dst) {
5944   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5945   emit_int8(0x40 | dst->encoding());
5946 }
5947 
5948 void Assembler::lea(Register dst, Address src) {
5949   leal(dst, src);
5950 }
5951 
5952 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5953   InstructionMark im(this);
5954   emit_int8((unsigned char)0xC7);
5955   emit_operand(rax, dst);
5956   emit_data((int)imm32, rspec, 0);
5957 }
5958 
5959 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5960   InstructionMark im(this);
5961   int encode = prefix_and_encode(dst->encoding());
5962   emit_int8((unsigned char)(0xB8 | encode));
5963   emit_data((int)imm32, rspec, 0);
5964 }
5965 
5966 void Assembler::popa() { // 32bit
5967   emit_int8(0x61);
5968 }
5969 
5970 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
5971   InstructionMark im(this);
5972   emit_int8(0x68);
5973   emit_data(imm32, rspec, 0);
5974 }
5975 
5976 void Assembler::pusha() { // 32bit
5977   emit_int8(0x60);
5978 }
5979 
5980 void Assembler::set_byte_if_not_zero(Register dst) {
5981   emit_int8(0x0F);
5982   emit_int8((unsigned char)0x95);
5983   emit_int8((unsigned char)(0xE0 | dst->encoding()));
5984 }
5985 
5986 void Assembler::shldl(Register dst, Register src) {
5987   emit_int8(0x0F);
5988   emit_int8((unsigned char)0xA5);
5989   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
5990 }
5991 
5992 void Assembler::shrdl(Register dst, Register src) {
5993   emit_int8(0x0F);
5994   emit_int8((unsigned char)0xAD);
5995   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
5996 }
5997 
5998 #else // LP64
5999 
6000 void Assembler::set_byte_if_not_zero(Register dst) {
6001   int enc = prefix_and_encode(dst->encoding(), true);
6002   emit_int8(0x0F);
6003   emit_int8((unsigned char)0x95);
6004   emit_int8((unsigned char)(0xE0 | enc));
6005 }
6006 
6007 // 64bit only pieces of the assembler
6008 // This should only be used by 64bit instructions that can use rip-relative
6009 // it cannot be used by instructions that want an immediate value.
6010 
6011 bool Assembler::reachable(AddressLiteral adr) {
6012   int64_t disp;
6013   // None will force a 64bit literal to the code stream. Likely a placeholder
6014   // for something that will be patched later and we need to certain it will
6015   // always be reachable.
6016   if (adr.reloc() == relocInfo::none) {
6017     return false;
6018   }
6019   if (adr.reloc() == relocInfo::internal_word_type) {
6020     // This should be rip relative and easily reachable.
6021     return true;
6022   }
6023   if (adr.reloc() == relocInfo::virtual_call_type ||
6024       adr.reloc() == relocInfo::opt_virtual_call_type ||
6025       adr.reloc() == relocInfo::static_call_type ||
6026       adr.reloc() == relocInfo::static_stub_type ) {
6027     // This should be rip relative within the code cache and easily
6028     // reachable until we get huge code caches. (At which point
6029     // ic code is going to have issues).
6030     return true;
6031   }
6032   if (adr.reloc() != relocInfo::external_word_type &&
6033       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6034       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6035       adr.reloc() != relocInfo::runtime_call_type ) {
6036     return false;
6037   }
6038 
6039   // Stress the correction code
6040   if (ForceUnreachable) {
6041     // Must be runtimecall reloc, see if it is in the codecache
6042     // Flipping stuff in the codecache to be unreachable causes issues
6043     // with things like inline caches where the additional instructions
6044     // are not handled.
6045     if (CodeCache::find_blob(adr._target) == NULL) {
6046       return false;
6047     }
6048   }
6049   // For external_word_type/runtime_call_type if it is reachable from where we
6050   // are now (possibly a temp buffer) and where we might end up
6051   // anywhere in the codeCache then we are always reachable.
6052   // This would have to change if we ever save/restore shared code
6053   // to be more pessimistic.
6054   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6055   if (!is_simm32(disp)) return false;
6056   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6057   if (!is_simm32(disp)) return false;
6058 
6059   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6060 
6061   // Because rip relative is a disp + address_of_next_instruction and we
6062   // don't know the value of address_of_next_instruction we apply a fudge factor
6063   // to make sure we will be ok no matter the size of the instruction we get placed into.
6064   // We don't have to fudge the checks above here because they are already worst case.
6065 
6066   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6067   // + 4 because better safe than sorry.
6068   const int fudge = 12 + 4;
6069   if (disp < 0) {
6070     disp -= fudge;
6071   } else {
6072     disp += fudge;
6073   }
6074   return is_simm32(disp);
6075 }
6076 
6077 // Check if the polling page is not reachable from the code cache using rip-relative
6078 // addressing.
6079 bool Assembler::is_polling_page_far() {
6080   intptr_t addr = (intptr_t)os::get_polling_page();
6081   return ForceUnreachable ||
6082          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6083          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6084 }
6085 
6086 void Assembler::emit_data64(jlong data,
6087                             relocInfo::relocType rtype,
6088                             int format) {
6089   if (rtype == relocInfo::none) {
6090     emit_int64(data);
6091   } else {
6092     emit_data64(data, Relocation::spec_simple(rtype), format);
6093   }
6094 }
6095 
6096 void Assembler::emit_data64(jlong data,
6097                             RelocationHolder const& rspec,
6098                             int format) {
6099   assert(imm_operand == 0, "default format must be immediate in this file");
6100   assert(imm_operand == format, "must be immediate");
6101   assert(inst_mark() != NULL, "must be inside InstructionMark");
6102   // Do not use AbstractAssembler::relocate, which is not intended for
6103   // embedded words.  Instead, relocate to the enclosing instruction.
6104   code_section()->relocate(inst_mark(), rspec, format);
6105 #ifdef ASSERT
6106   check_relocation(rspec, format);
6107 #endif
6108   emit_int64(data);
6109 }
6110 
6111 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6112   if (reg_enc >= 8) {
6113     prefix(REX_B);
6114     reg_enc -= 8;
6115   } else if (byteinst && reg_enc >= 4) {
6116     prefix(REX);
6117   }
6118   return reg_enc;
6119 }
6120 
6121 int Assembler::prefixq_and_encode(int reg_enc) {
6122   if (reg_enc < 8) {
6123     prefix(REX_W);
6124   } else {
6125     prefix(REX_WB);
6126     reg_enc -= 8;
6127   }
6128   return reg_enc;
6129 }
6130 
6131 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
6132   if (dst_enc < 8) {
6133     if (src_enc >= 8) {
6134       prefix(REX_B);
6135       src_enc -= 8;
6136     } else if (byteinst && src_enc >= 4) {
6137       prefix(REX);
6138     }
6139   } else {
6140     if (src_enc < 8) {
6141       prefix(REX_R);
6142     } else {
6143       prefix(REX_RB);
6144       src_enc -= 8;
6145     }
6146     dst_enc -= 8;
6147   }
6148   return dst_enc << 3 | src_enc;
6149 }
6150 
6151 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6152   if (dst_enc < 8) {
6153     if (src_enc < 8) {
6154       prefix(REX_W);
6155     } else {
6156       prefix(REX_WB);
6157       src_enc -= 8;
6158     }
6159   } else {
6160     if (src_enc < 8) {
6161       prefix(REX_WR);
6162     } else {
6163       prefix(REX_WRB);
6164       src_enc -= 8;
6165     }
6166     dst_enc -= 8;
6167   }
6168   return dst_enc << 3 | src_enc;
6169 }
6170 
6171 void Assembler::prefix(Register reg) {
6172   if (reg->encoding() >= 8) {
6173     prefix(REX_B);
6174   }
6175 }
6176 
6177 void Assembler::prefix(Address adr) {
6178   if (adr.base_needs_rex()) {
6179     if (adr.index_needs_rex()) {
6180       prefix(REX_XB);
6181     } else {
6182       prefix(REX_B);
6183     }
6184   } else {
6185     if (adr.index_needs_rex()) {
6186       prefix(REX_X);
6187     }
6188   }
6189 }
6190 
6191 void Assembler::prefixq(Address adr) {
6192   if (adr.base_needs_rex()) {
6193     if (adr.index_needs_rex()) {
6194       prefix(REX_WXB);
6195     } else {
6196       prefix(REX_WB);
6197     }
6198   } else {
6199     if (adr.index_needs_rex()) {
6200       prefix(REX_WX);
6201     } else {
6202       prefix(REX_W);
6203     }
6204   }
6205 }
6206 
6207 
6208 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6209   if (reg->encoding() < 8) {
6210     if (adr.base_needs_rex()) {
6211       if (adr.index_needs_rex()) {
6212         prefix(REX_XB);
6213       } else {
6214         prefix(REX_B);
6215       }
6216     } else {
6217       if (adr.index_needs_rex()) {
6218         prefix(REX_X);
6219       } else if (byteinst && reg->encoding() >= 4 ) {
6220         prefix(REX);
6221       }
6222     }
6223   } else {
6224     if (adr.base_needs_rex()) {
6225       if (adr.index_needs_rex()) {
6226         prefix(REX_RXB);
6227       } else {
6228         prefix(REX_RB);
6229       }
6230     } else {
6231       if (adr.index_needs_rex()) {
6232         prefix(REX_RX);
6233       } else {
6234         prefix(REX_R);
6235       }
6236     }
6237   }
6238 }
6239 
6240 void Assembler::prefixq(Address adr, Register src) {
6241   if (src->encoding() < 8) {
6242     if (adr.base_needs_rex()) {
6243       if (adr.index_needs_rex()) {
6244         prefix(REX_WXB);
6245       } else {
6246         prefix(REX_WB);
6247       }
6248     } else {
6249       if (adr.index_needs_rex()) {
6250         prefix(REX_WX);
6251       } else {
6252         prefix(REX_W);
6253       }
6254     }
6255   } else {
6256     if (adr.base_needs_rex()) {
6257       if (adr.index_needs_rex()) {
6258         prefix(REX_WRXB);
6259       } else {
6260         prefix(REX_WRB);
6261       }
6262     } else {
6263       if (adr.index_needs_rex()) {
6264         prefix(REX_WRX);
6265       } else {
6266         prefix(REX_WR);
6267       }
6268     }
6269   }
6270 }
6271 
6272 void Assembler::prefix(Address adr, XMMRegister reg) {
6273   if (reg->encoding() < 8) {
6274     if (adr.base_needs_rex()) {
6275       if (adr.index_needs_rex()) {
6276         prefix(REX_XB);
6277       } else {
6278         prefix(REX_B);
6279       }
6280     } else {
6281       if (adr.index_needs_rex()) {
6282         prefix(REX_X);
6283       }
6284     }
6285   } else {
6286     if (adr.base_needs_rex()) {
6287       if (adr.index_needs_rex()) {
6288         prefix(REX_RXB);
6289       } else {
6290         prefix(REX_RB);
6291       }
6292     } else {
6293       if (adr.index_needs_rex()) {
6294         prefix(REX_RX);
6295       } else {
6296         prefix(REX_R);
6297       }
6298     }
6299   }
6300 }
6301 
6302 void Assembler::prefixq(Address adr, XMMRegister src) {
6303   if (src->encoding() < 8) {
6304     if (adr.base_needs_rex()) {
6305       if (adr.index_needs_rex()) {
6306         prefix(REX_WXB);
6307       } else {
6308         prefix(REX_WB);
6309       }
6310     } else {
6311       if (adr.index_needs_rex()) {
6312         prefix(REX_WX);
6313       } else {
6314         prefix(REX_W);
6315       }
6316     }
6317   } else {
6318     if (adr.base_needs_rex()) {
6319       if (adr.index_needs_rex()) {
6320         prefix(REX_WRXB);
6321       } else {
6322         prefix(REX_WRB);
6323       }
6324     } else {
6325       if (adr.index_needs_rex()) {
6326         prefix(REX_WRX);
6327       } else {
6328         prefix(REX_WR);
6329       }
6330     }
6331   }
6332 }
6333 
6334 void Assembler::adcq(Register dst, int32_t imm32) {
6335   (void) prefixq_and_encode(dst->encoding());
6336   emit_arith(0x81, 0xD0, dst, imm32);
6337 }
6338 
6339 void Assembler::adcq(Register dst, Address src) {
6340   InstructionMark im(this);
6341   prefixq(src, dst);
6342   emit_int8(0x13);
6343   emit_operand(dst, src);
6344 }
6345 
6346 void Assembler::adcq(Register dst, Register src) {
6347   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6348   emit_arith(0x13, 0xC0, dst, src);
6349 }
6350 
6351 void Assembler::addq(Address dst, int32_t imm32) {
6352   InstructionMark im(this);
6353   prefixq(dst);
6354   emit_arith_operand(0x81, rax, dst,imm32);
6355 }
6356 
6357 void Assembler::addq(Address dst, Register src) {
6358   InstructionMark im(this);
6359   prefixq(dst, src);
6360   emit_int8(0x01);
6361   emit_operand(src, dst);
6362 }
6363 
6364 void Assembler::addq(Register dst, int32_t imm32) {
6365   (void) prefixq_and_encode(dst->encoding());
6366   emit_arith(0x81, 0xC0, dst, imm32);
6367 }
6368 
6369 void Assembler::addq(Register dst, Address src) {
6370   InstructionMark im(this);
6371   prefixq(src, dst);
6372   emit_int8(0x03);
6373   emit_operand(dst, src);
6374 }
6375 
6376 void Assembler::addq(Register dst, Register src) {
6377   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6378   emit_arith(0x03, 0xC0, dst, src);
6379 }
6380 
6381 void Assembler::adcxq(Register dst, Register src) {
6382   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6383   emit_int8((unsigned char)0x66);
6384   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6385   emit_int8(0x0F);
6386   emit_int8(0x38);
6387   emit_int8((unsigned char)0xF6);
6388   emit_int8((unsigned char)(0xC0 | encode));
6389 }
6390 
6391 void Assembler::adoxq(Register dst, Register src) {
6392   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6393   emit_int8((unsigned char)0xF3);
6394   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6395   emit_int8(0x0F);
6396   emit_int8(0x38);
6397   emit_int8((unsigned char)0xF6);
6398   emit_int8((unsigned char)(0xC0 | encode));
6399 }
6400 
6401 void Assembler::andq(Address dst, int32_t imm32) {
6402   InstructionMark im(this);
6403   prefixq(dst);
6404   emit_int8((unsigned char)0x81);
6405   emit_operand(rsp, dst, 4);
6406   emit_int32(imm32);
6407 }
6408 
6409 void Assembler::andq(Register dst, int32_t imm32) {
6410   (void) prefixq_and_encode(dst->encoding());
6411   emit_arith(0x81, 0xE0, dst, imm32);
6412 }
6413 
6414 void Assembler::andq(Register dst, Address src) {
6415   InstructionMark im(this);
6416   prefixq(src, dst);
6417   emit_int8(0x23);
6418   emit_operand(dst, src);
6419 }
6420 
6421 void Assembler::andq(Register dst, Register src) {
6422   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6423   emit_arith(0x23, 0xC0, dst, src);
6424 }
6425 
6426 void Assembler::andnq(Register dst, Register src1, Register src2) {
6427   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6428   int encode = vex_prefix_0F38_and_encode_q_legacy(dst, src1, src2);
6429   emit_int8((unsigned char)0xF2);
6430   emit_int8((unsigned char)(0xC0 | encode));
6431 }
6432 
6433 void Assembler::andnq(Register dst, Register src1, Address src2) {
6434   InstructionMark im(this);
6435   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6436   vex_prefix_0F38_q_legacy(dst, src1, src2);
6437   emit_int8((unsigned char)0xF2);
6438   emit_operand(dst, src2);
6439 }
6440 
6441 void Assembler::bsfq(Register dst, Register src) {
6442   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6443   emit_int8(0x0F);
6444   emit_int8((unsigned char)0xBC);
6445   emit_int8((unsigned char)(0xC0 | encode));
6446 }
6447 
6448 void Assembler::bsrq(Register dst, Register src) {
6449   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6450   emit_int8(0x0F);
6451   emit_int8((unsigned char)0xBD);
6452   emit_int8((unsigned char)(0xC0 | encode));
6453 }
6454 
6455 void Assembler::bswapq(Register reg) {
6456   int encode = prefixq_and_encode(reg->encoding());
6457   emit_int8(0x0F);
6458   emit_int8((unsigned char)(0xC8 | encode));
6459 }
6460 
6461 void Assembler::blsiq(Register dst, Register src) {
6462   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6463   int encode = vex_prefix_0F38_and_encode_q_legacy(rbx, dst, src);
6464   emit_int8((unsigned char)0xF3);
6465   emit_int8((unsigned char)(0xC0 | encode));
6466 }
6467 
6468 void Assembler::blsiq(Register dst, Address src) {
6469   InstructionMark im(this);
6470   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6471   vex_prefix_0F38_q_legacy(rbx, dst, src);
6472   emit_int8((unsigned char)0xF3);
6473   emit_operand(rbx, src);
6474 }
6475 
6476 void Assembler::blsmskq(Register dst, Register src) {
6477   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6478   int encode = vex_prefix_0F38_and_encode_q_legacy(rdx, dst, src);
6479   emit_int8((unsigned char)0xF3);
6480   emit_int8((unsigned char)(0xC0 | encode));
6481 }
6482 
6483 void Assembler::blsmskq(Register dst, Address src) {
6484   InstructionMark im(this);
6485   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6486   vex_prefix_0F38_q_legacy(rdx, dst, src);
6487   emit_int8((unsigned char)0xF3);
6488   emit_operand(rdx, src);
6489 }
6490 
6491 void Assembler::blsrq(Register dst, Register src) {
6492   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6493   int encode = vex_prefix_0F38_and_encode_q_legacy(rcx, dst, src);
6494   emit_int8((unsigned char)0xF3);
6495   emit_int8((unsigned char)(0xC0 | encode));
6496 }
6497 
6498 void Assembler::blsrq(Register dst, Address src) {
6499   InstructionMark im(this);
6500   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6501   vex_prefix_0F38_q_legacy(rcx, dst, src);
6502   emit_int8((unsigned char)0xF3);
6503   emit_operand(rcx, src);
6504 }
6505 
6506 void Assembler::cdqq() {
6507   prefix(REX_W);
6508   emit_int8((unsigned char)0x99);
6509 }
6510 
6511 void Assembler::clflush(Address adr) {
6512   prefix(adr);
6513   emit_int8(0x0F);
6514   emit_int8((unsigned char)0xAE);
6515   emit_operand(rdi, adr);
6516 }
6517 
6518 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6519   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6520   emit_int8(0x0F);
6521   emit_int8(0x40 | cc);
6522   emit_int8((unsigned char)(0xC0 | encode));
6523 }
6524 
6525 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6526   InstructionMark im(this);
6527   prefixq(src, dst);
6528   emit_int8(0x0F);
6529   emit_int8(0x40 | cc);
6530   emit_operand(dst, src);
6531 }
6532 
6533 void Assembler::cmpq(Address dst, int32_t imm32) {
6534   InstructionMark im(this);
6535   prefixq(dst);
6536   emit_int8((unsigned char)0x81);
6537   emit_operand(rdi, dst, 4);
6538   emit_int32(imm32);
6539 }
6540 
6541 void Assembler::cmpq(Register dst, int32_t imm32) {
6542   (void) prefixq_and_encode(dst->encoding());
6543   emit_arith(0x81, 0xF8, dst, imm32);
6544 }
6545 
6546 void Assembler::cmpq(Address dst, Register src) {
6547   InstructionMark im(this);
6548   prefixq(dst, src);
6549   emit_int8(0x3B);
6550   emit_operand(src, dst);
6551 }
6552 
6553 void Assembler::cmpq(Register dst, Register src) {
6554   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6555   emit_arith(0x3B, 0xC0, dst, src);
6556 }
6557 
6558 void Assembler::cmpq(Register dst, Address  src) {
6559   InstructionMark im(this);
6560   prefixq(src, dst);
6561   emit_int8(0x3B);
6562   emit_operand(dst, src);
6563 }
6564 
6565 void Assembler::cmpxchgq(Register reg, Address adr) {
6566   InstructionMark im(this);
6567   prefixq(adr, reg);
6568   emit_int8(0x0F);
6569   emit_int8((unsigned char)0xB1);
6570   emit_operand(reg, adr);
6571 }
6572 
6573 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
6574   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6575   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
6576   emit_int8(0x2A);
6577   emit_int8((unsigned char)(0xC0 | encode));
6578 }
6579 
6580 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
6581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6582   if (VM_Version::supports_evex()) {
6583     tuple_type = EVEX_T1S;
6584     input_size_in_bits = EVEX_32bit;
6585   }
6586   InstructionMark im(this);
6587   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
6588   emit_int8(0x2A);
6589   emit_operand(dst, src);
6590 }
6591 
6592 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
6593   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6594   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
6595   emit_int8(0x2A);
6596   emit_int8((unsigned char)(0xC0 | encode));
6597 }
6598 
6599 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
6600   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6601   if (VM_Version::supports_evex()) {
6602     tuple_type = EVEX_T1S;
6603     input_size_in_bits = EVEX_32bit;
6604   }
6605   InstructionMark im(this);
6606   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
6607   emit_int8(0x2A);
6608   emit_operand(dst, src);
6609 }
6610 
6611 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
6612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6613   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
6614   emit_int8(0x2C);
6615   emit_int8((unsigned char)(0xC0 | encode));
6616 }
6617 
6618 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
6619   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6620   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
6621   emit_int8(0x2C);
6622   emit_int8((unsigned char)(0xC0 | encode));
6623 }
6624 
6625 void Assembler::decl(Register dst) {
6626   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6627   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
6628   int encode = prefix_and_encode(dst->encoding());
6629   emit_int8((unsigned char)0xFF);
6630   emit_int8((unsigned char)(0xC8 | encode));
6631 }
6632 
6633 void Assembler::decq(Register dst) {
6634   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6635   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6636   int encode = prefixq_and_encode(dst->encoding());
6637   emit_int8((unsigned char)0xFF);
6638   emit_int8(0xC8 | encode);
6639 }
6640 
6641 void Assembler::decq(Address dst) {
6642   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6643   InstructionMark im(this);
6644   prefixq(dst);
6645   emit_int8((unsigned char)0xFF);
6646   emit_operand(rcx, dst);
6647 }
6648 
6649 void Assembler::fxrstor(Address src) {
6650   prefixq(src);
6651   emit_int8(0x0F);
6652   emit_int8((unsigned char)0xAE);
6653   emit_operand(as_Register(1), src);
6654 }
6655 
6656 void Assembler::fxsave(Address dst) {
6657   prefixq(dst);
6658   emit_int8(0x0F);
6659   emit_int8((unsigned char)0xAE);
6660   emit_operand(as_Register(0), dst);
6661 }
6662 
6663 void Assembler::idivq(Register src) {
6664   int encode = prefixq_and_encode(src->encoding());
6665   emit_int8((unsigned char)0xF7);
6666   emit_int8((unsigned char)(0xF8 | encode));
6667 }
6668 
6669 void Assembler::imulq(Register dst, Register src) {
6670   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6671   emit_int8(0x0F);
6672   emit_int8((unsigned char)0xAF);
6673   emit_int8((unsigned char)(0xC0 | encode));
6674 }
6675 
6676 void Assembler::imulq(Register dst, Register src, int value) {
6677   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6678   if (is8bit(value)) {
6679     emit_int8(0x6B);
6680     emit_int8((unsigned char)(0xC0 | encode));
6681     emit_int8(value & 0xFF);
6682   } else {
6683     emit_int8(0x69);
6684     emit_int8((unsigned char)(0xC0 | encode));
6685     emit_int32(value);
6686   }
6687 }
6688 
6689 void Assembler::imulq(Register dst, Address src) {
6690   InstructionMark im(this);
6691   prefixq(src, dst);
6692   emit_int8(0x0F);
6693   emit_int8((unsigned char) 0xAF);
6694   emit_operand(dst, src);
6695 }
6696 
6697 void Assembler::incl(Register dst) {
6698   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6699   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6700   int encode = prefix_and_encode(dst->encoding());
6701   emit_int8((unsigned char)0xFF);
6702   emit_int8((unsigned char)(0xC0 | encode));
6703 }
6704 
6705 void Assembler::incq(Register dst) {
6706   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6707   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6708   int encode = prefixq_and_encode(dst->encoding());
6709   emit_int8((unsigned char)0xFF);
6710   emit_int8((unsigned char)(0xC0 | encode));
6711 }
6712 
6713 void Assembler::incq(Address dst) {
6714   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6715   InstructionMark im(this);
6716   prefixq(dst);
6717   emit_int8((unsigned char)0xFF);
6718   emit_operand(rax, dst);
6719 }
6720 
6721 void Assembler::lea(Register dst, Address src) {
6722   leaq(dst, src);
6723 }
6724 
6725 void Assembler::leaq(Register dst, Address src) {
6726   InstructionMark im(this);
6727   prefixq(src, dst);
6728   emit_int8((unsigned char)0x8D);
6729   emit_operand(dst, src);
6730 }
6731 
6732 void Assembler::mov64(Register dst, int64_t imm64) {
6733   InstructionMark im(this);
6734   int encode = prefixq_and_encode(dst->encoding());
6735   emit_int8((unsigned char)(0xB8 | encode));
6736   emit_int64(imm64);
6737 }
6738 
6739 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
6740   InstructionMark im(this);
6741   int encode = prefixq_and_encode(dst->encoding());
6742   emit_int8(0xB8 | encode);
6743   emit_data64(imm64, rspec);
6744 }
6745 
6746 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6747   InstructionMark im(this);
6748   int encode = prefix_and_encode(dst->encoding());
6749   emit_int8((unsigned char)(0xB8 | encode));
6750   emit_data((int)imm32, rspec, narrow_oop_operand);
6751 }
6752 
6753 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6754   InstructionMark im(this);
6755   prefix(dst);
6756   emit_int8((unsigned char)0xC7);
6757   emit_operand(rax, dst, 4);
6758   emit_data((int)imm32, rspec, narrow_oop_operand);
6759 }
6760 
6761 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6762   InstructionMark im(this);
6763   int encode = prefix_and_encode(src1->encoding());
6764   emit_int8((unsigned char)0x81);
6765   emit_int8((unsigned char)(0xF8 | encode));
6766   emit_data((int)imm32, rspec, narrow_oop_operand);
6767 }
6768 
6769 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6770   InstructionMark im(this);
6771   prefix(src1);
6772   emit_int8((unsigned char)0x81);
6773   emit_operand(rax, src1, 4);
6774   emit_data((int)imm32, rspec, narrow_oop_operand);
6775 }
6776 
6777 void Assembler::lzcntq(Register dst, Register src) {
6778   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
6779   emit_int8((unsigned char)0xF3);
6780   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6781   emit_int8(0x0F);
6782   emit_int8((unsigned char)0xBD);
6783   emit_int8((unsigned char)(0xC0 | encode));
6784 }
6785 
6786 void Assembler::movdq(XMMRegister dst, Register src) {
6787   // table D-1 says MMX/SSE2
6788   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6789   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
6790   emit_int8(0x6E);
6791   emit_int8((unsigned char)(0xC0 | encode));
6792 }
6793 
6794 void Assembler::movdq(Register dst, XMMRegister src) {
6795   // table D-1 says MMX/SSE2
6796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6797   // swap src/dst to get correct prefix
6798   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
6799   emit_int8(0x7E);
6800   emit_int8((unsigned char)(0xC0 | encode));
6801 }
6802 
6803 void Assembler::movq(Register dst, Register src) {
6804   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6805   emit_int8((unsigned char)0x8B);
6806   emit_int8((unsigned char)(0xC0 | encode));
6807 }
6808 
6809 void Assembler::movq(Register dst, Address src) {
6810   InstructionMark im(this);
6811   prefixq(src, dst);
6812   emit_int8((unsigned char)0x8B);
6813   emit_operand(dst, src);
6814 }
6815 
6816 void Assembler::movq(Address dst, Register src) {
6817   InstructionMark im(this);
6818   prefixq(dst, src);
6819   emit_int8((unsigned char)0x89);
6820   emit_operand(src, dst);
6821 }
6822 
6823 void Assembler::movsbq(Register dst, Address src) {
6824   InstructionMark im(this);
6825   prefixq(src, dst);
6826   emit_int8(0x0F);
6827   emit_int8((unsigned char)0xBE);
6828   emit_operand(dst, src);
6829 }
6830 
6831 void Assembler::movsbq(Register dst, Register src) {
6832   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6833   emit_int8(0x0F);
6834   emit_int8((unsigned char)0xBE);
6835   emit_int8((unsigned char)(0xC0 | encode));
6836 }
6837 
6838 void Assembler::movslq(Register dst, int32_t imm32) {
6839   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
6840   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
6841   // as a result we shouldn't use until tested at runtime...
6842   ShouldNotReachHere();
6843   InstructionMark im(this);
6844   int encode = prefixq_and_encode(dst->encoding());
6845   emit_int8((unsigned char)(0xC7 | encode));
6846   emit_int32(imm32);
6847 }
6848 
6849 void Assembler::movslq(Address dst, int32_t imm32) {
6850   assert(is_simm32(imm32), "lost bits");
6851   InstructionMark im(this);
6852   prefixq(dst);
6853   emit_int8((unsigned char)0xC7);
6854   emit_operand(rax, dst, 4);
6855   emit_int32(imm32);
6856 }
6857 
6858 void Assembler::movslq(Register dst, Address src) {
6859   InstructionMark im(this);
6860   prefixq(src, dst);
6861   emit_int8(0x63);
6862   emit_operand(dst, src);
6863 }
6864 
6865 void Assembler::movslq(Register dst, Register src) {
6866   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6867   emit_int8(0x63);
6868   emit_int8((unsigned char)(0xC0 | encode));
6869 }
6870 
6871 void Assembler::movswq(Register dst, Address src) {
6872   InstructionMark im(this);
6873   prefixq(src, dst);
6874   emit_int8(0x0F);
6875   emit_int8((unsigned char)0xBF);
6876   emit_operand(dst, src);
6877 }
6878 
6879 void Assembler::movswq(Register dst, Register src) {
6880   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6881   emit_int8((unsigned char)0x0F);
6882   emit_int8((unsigned char)0xBF);
6883   emit_int8((unsigned char)(0xC0 | encode));
6884 }
6885 
6886 void Assembler::movzbq(Register dst, Address src) {
6887   InstructionMark im(this);
6888   prefixq(src, dst);
6889   emit_int8((unsigned char)0x0F);
6890   emit_int8((unsigned char)0xB6);
6891   emit_operand(dst, src);
6892 }
6893 
6894 void Assembler::movzbq(Register dst, Register src) {
6895   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6896   emit_int8(0x0F);
6897   emit_int8((unsigned char)0xB6);
6898   emit_int8(0xC0 | encode);
6899 }
6900 
6901 void Assembler::movzwq(Register dst, Address src) {
6902   InstructionMark im(this);
6903   prefixq(src, dst);
6904   emit_int8((unsigned char)0x0F);
6905   emit_int8((unsigned char)0xB7);
6906   emit_operand(dst, src);
6907 }
6908 
6909 void Assembler::movzwq(Register dst, Register src) {
6910   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6911   emit_int8((unsigned char)0x0F);
6912   emit_int8((unsigned char)0xB7);
6913   emit_int8((unsigned char)(0xC0 | encode));
6914 }
6915 
6916 void Assembler::mulq(Address src) {
6917   InstructionMark im(this);
6918   prefixq(src);
6919   emit_int8((unsigned char)0xF7);
6920   emit_operand(rsp, src);
6921 }
6922 
6923 void Assembler::mulq(Register src) {
6924   int encode = prefixq_and_encode(src->encoding());
6925   emit_int8((unsigned char)0xF7);
6926   emit_int8((unsigned char)(0xE0 | encode));
6927 }
6928 
6929 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
6930   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6931   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
6932                                      VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
6933   emit_int8((unsigned char)0xF6);
6934   emit_int8((unsigned char)(0xC0 | encode));
6935 }
6936 
6937 void Assembler::negq(Register dst) {
6938   int encode = prefixq_and_encode(dst->encoding());
6939   emit_int8((unsigned char)0xF7);
6940   emit_int8((unsigned char)(0xD8 | encode));
6941 }
6942 
6943 void Assembler::notq(Register dst) {
6944   int encode = prefixq_and_encode(dst->encoding());
6945   emit_int8((unsigned char)0xF7);
6946   emit_int8((unsigned char)(0xD0 | encode));
6947 }
6948 
6949 void Assembler::orq(Address dst, int32_t imm32) {
6950   InstructionMark im(this);
6951   prefixq(dst);
6952   emit_int8((unsigned char)0x81);
6953   emit_operand(rcx, dst, 4);
6954   emit_int32(imm32);
6955 }
6956 
6957 void Assembler::orq(Register dst, int32_t imm32) {
6958   (void) prefixq_and_encode(dst->encoding());
6959   emit_arith(0x81, 0xC8, dst, imm32);
6960 }
6961 
6962 void Assembler::orq(Register dst, Address src) {
6963   InstructionMark im(this);
6964   prefixq(src, dst);
6965   emit_int8(0x0B);
6966   emit_operand(dst, src);
6967 }
6968 
6969 void Assembler::orq(Register dst, Register src) {
6970   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6971   emit_arith(0x0B, 0xC0, dst, src);
6972 }
6973 
6974 void Assembler::popa() { // 64bit
6975   movq(r15, Address(rsp, 0));
6976   movq(r14, Address(rsp, wordSize));
6977   movq(r13, Address(rsp, 2 * wordSize));
6978   movq(r12, Address(rsp, 3 * wordSize));
6979   movq(r11, Address(rsp, 4 * wordSize));
6980   movq(r10, Address(rsp, 5 * wordSize));
6981   movq(r9,  Address(rsp, 6 * wordSize));
6982   movq(r8,  Address(rsp, 7 * wordSize));
6983   movq(rdi, Address(rsp, 8 * wordSize));
6984   movq(rsi, Address(rsp, 9 * wordSize));
6985   movq(rbp, Address(rsp, 10 * wordSize));
6986   // skip rsp
6987   movq(rbx, Address(rsp, 12 * wordSize));
6988   movq(rdx, Address(rsp, 13 * wordSize));
6989   movq(rcx, Address(rsp, 14 * wordSize));
6990   movq(rax, Address(rsp, 15 * wordSize));
6991 
6992   addq(rsp, 16 * wordSize);
6993 }
6994 
6995 void Assembler::popcntq(Register dst, Address src) {
6996   assert(VM_Version::supports_popcnt(), "must support");
6997   InstructionMark im(this);
6998   emit_int8((unsigned char)0xF3);
6999   prefixq(src, dst);
7000   emit_int8((unsigned char)0x0F);
7001   emit_int8((unsigned char)0xB8);
7002   emit_operand(dst, src);
7003 }
7004 
7005 void Assembler::popcntq(Register dst, Register src) {
7006   assert(VM_Version::supports_popcnt(), "must support");
7007   emit_int8((unsigned char)0xF3);
7008   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7009   emit_int8((unsigned char)0x0F);
7010   emit_int8((unsigned char)0xB8);
7011   emit_int8((unsigned char)(0xC0 | encode));
7012 }
7013 
7014 void Assembler::popq(Address dst) {
7015   InstructionMark im(this);
7016   prefixq(dst);
7017   emit_int8((unsigned char)0x8F);
7018   emit_operand(rax, dst);
7019 }
7020 
7021 void Assembler::pusha() { // 64bit
7022   // we have to store original rsp.  ABI says that 128 bytes
7023   // below rsp are local scratch.
7024   movq(Address(rsp, -5 * wordSize), rsp);
7025 
7026   subq(rsp, 16 * wordSize);
7027 
7028   movq(Address(rsp, 15 * wordSize), rax);
7029   movq(Address(rsp, 14 * wordSize), rcx);
7030   movq(Address(rsp, 13 * wordSize), rdx);
7031   movq(Address(rsp, 12 * wordSize), rbx);
7032   // skip rsp
7033   movq(Address(rsp, 10 * wordSize), rbp);
7034   movq(Address(rsp, 9 * wordSize), rsi);
7035   movq(Address(rsp, 8 * wordSize), rdi);
7036   movq(Address(rsp, 7 * wordSize), r8);
7037   movq(Address(rsp, 6 * wordSize), r9);
7038   movq(Address(rsp, 5 * wordSize), r10);
7039   movq(Address(rsp, 4 * wordSize), r11);
7040   movq(Address(rsp, 3 * wordSize), r12);
7041   movq(Address(rsp, 2 * wordSize), r13);
7042   movq(Address(rsp, wordSize), r14);
7043   movq(Address(rsp, 0), r15);
7044 }
7045 
7046 void Assembler::pushq(Address src) {
7047   InstructionMark im(this);
7048   prefixq(src);
7049   emit_int8((unsigned char)0xFF);
7050   emit_operand(rsi, src);
7051 }
7052 
7053 void Assembler::rclq(Register dst, int imm8) {
7054   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7055   int encode = prefixq_and_encode(dst->encoding());
7056   if (imm8 == 1) {
7057     emit_int8((unsigned char)0xD1);
7058     emit_int8((unsigned char)(0xD0 | encode));
7059   } else {
7060     emit_int8((unsigned char)0xC1);
7061     emit_int8((unsigned char)(0xD0 | encode));
7062     emit_int8(imm8);
7063   }
7064 }
7065 
7066 void Assembler::rorq(Register dst, int imm8) {
7067   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7068   int encode = prefixq_and_encode(dst->encoding());
7069   if (imm8 == 1) {
7070     emit_int8((unsigned char)0xD1);
7071     emit_int8((unsigned char)(0xC8 | encode));
7072   } else {
7073     emit_int8((unsigned char)0xC1);
7074     emit_int8((unsigned char)(0xc8 | encode));
7075     emit_int8(imm8);
7076   }
7077 }
7078 
7079 void Assembler::rorxq(Register dst, Register src, int imm8) {
7080   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7081   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
7082                                      VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
7083   emit_int8((unsigned char)0xF0);
7084   emit_int8((unsigned char)(0xC0 | encode));
7085   emit_int8(imm8);
7086 }
7087 
7088 void Assembler::sarq(Register dst, int imm8) {
7089   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7090   int encode = prefixq_and_encode(dst->encoding());
7091   if (imm8 == 1) {
7092     emit_int8((unsigned char)0xD1);
7093     emit_int8((unsigned char)(0xF8 | encode));
7094   } else {
7095     emit_int8((unsigned char)0xC1);
7096     emit_int8((unsigned char)(0xF8 | encode));
7097     emit_int8(imm8);
7098   }
7099 }
7100 
7101 void Assembler::sarq(Register dst) {
7102   int encode = prefixq_and_encode(dst->encoding());
7103   emit_int8((unsigned char)0xD3);
7104   emit_int8((unsigned char)(0xF8 | encode));
7105 }
7106 
7107 void Assembler::sbbq(Address dst, int32_t imm32) {
7108   InstructionMark im(this);
7109   prefixq(dst);
7110   emit_arith_operand(0x81, rbx, dst, imm32);
7111 }
7112 
7113 void Assembler::sbbq(Register dst, int32_t imm32) {
7114   (void) prefixq_and_encode(dst->encoding());
7115   emit_arith(0x81, 0xD8, dst, imm32);
7116 }
7117 
7118 void Assembler::sbbq(Register dst, Address src) {
7119   InstructionMark im(this);
7120   prefixq(src, dst);
7121   emit_int8(0x1B);
7122   emit_operand(dst, src);
7123 }
7124 
7125 void Assembler::sbbq(Register dst, Register src) {
7126   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7127   emit_arith(0x1B, 0xC0, dst, src);
7128 }
7129 
7130 void Assembler::shlq(Register dst, int imm8) {
7131   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7132   int encode = prefixq_and_encode(dst->encoding());
7133   if (imm8 == 1) {
7134     emit_int8((unsigned char)0xD1);
7135     emit_int8((unsigned char)(0xE0 | encode));
7136   } else {
7137     emit_int8((unsigned char)0xC1);
7138     emit_int8((unsigned char)(0xE0 | encode));
7139     emit_int8(imm8);
7140   }
7141 }
7142 
7143 void Assembler::shlq(Register dst) {
7144   int encode = prefixq_and_encode(dst->encoding());
7145   emit_int8((unsigned char)0xD3);
7146   emit_int8((unsigned char)(0xE0 | encode));
7147 }
7148 
7149 void Assembler::shrq(Register dst, int imm8) {
7150   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7151   int encode = prefixq_and_encode(dst->encoding());
7152   emit_int8((unsigned char)0xC1);
7153   emit_int8((unsigned char)(0xE8 | encode));
7154   emit_int8(imm8);
7155 }
7156 
7157 void Assembler::shrq(Register dst) {
7158   int encode = prefixq_and_encode(dst->encoding());
7159   emit_int8((unsigned char)0xD3);
7160   emit_int8(0xE8 | encode);
7161 }
7162 
7163 void Assembler::subq(Address dst, int32_t imm32) {
7164   InstructionMark im(this);
7165   prefixq(dst);
7166   emit_arith_operand(0x81, rbp, dst, imm32);
7167 }
7168 
7169 void Assembler::subq(Address dst, Register src) {
7170   InstructionMark im(this);
7171   prefixq(dst, src);
7172   emit_int8(0x29);
7173   emit_operand(src, dst);
7174 }
7175 
7176 void Assembler::subq(Register dst, int32_t imm32) {
7177   (void) prefixq_and_encode(dst->encoding());
7178   emit_arith(0x81, 0xE8, dst, imm32);
7179 }
7180 
7181 // Force generation of a 4 byte immediate value even if it fits into 8bit
7182 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7183   (void) prefixq_and_encode(dst->encoding());
7184   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7185 }
7186 
7187 void Assembler::subq(Register dst, Address src) {
7188   InstructionMark im(this);
7189   prefixq(src, dst);
7190   emit_int8(0x2B);
7191   emit_operand(dst, src);
7192 }
7193 
7194 void Assembler::subq(Register dst, Register src) {
7195   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7196   emit_arith(0x2B, 0xC0, dst, src);
7197 }
7198 
7199 void Assembler::testq(Register dst, int32_t imm32) {
7200   // not using emit_arith because test
7201   // doesn't support sign-extension of
7202   // 8bit operands
7203   int encode = dst->encoding();
7204   if (encode == 0) {
7205     prefix(REX_W);
7206     emit_int8((unsigned char)0xA9);
7207   } else {
7208     encode = prefixq_and_encode(encode);
7209     emit_int8((unsigned char)0xF7);
7210     emit_int8((unsigned char)(0xC0 | encode));
7211   }
7212   emit_int32(imm32);
7213 }
7214 
7215 void Assembler::testq(Register dst, Register src) {
7216   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7217   emit_arith(0x85, 0xC0, dst, src);
7218 }
7219 
7220 void Assembler::xaddq(Address dst, Register src) {
7221   InstructionMark im(this);
7222   prefixq(dst, src);
7223   emit_int8(0x0F);
7224   emit_int8((unsigned char)0xC1);
7225   emit_operand(src, dst);
7226 }
7227 
7228 void Assembler::xchgq(Register dst, Address src) {
7229   InstructionMark im(this);
7230   prefixq(src, dst);
7231   emit_int8((unsigned char)0x87);
7232   emit_operand(dst, src);
7233 }
7234 
7235 void Assembler::xchgq(Register dst, Register src) {
7236   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7237   emit_int8((unsigned char)0x87);
7238   emit_int8((unsigned char)(0xc0 | encode));
7239 }
7240 
7241 void Assembler::xorq(Register dst, Register src) {
7242   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7243   emit_arith(0x33, 0xC0, dst, src);
7244 }
7245 
7246 void Assembler::xorq(Register dst, Address src) {
7247   InstructionMark im(this);
7248   prefixq(src, dst);
7249   emit_int8(0x33);
7250   emit_operand(dst, src);
7251 }
7252 
7253 #endif // !LP64