1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && is_evex_instruction) {
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x6E: // movd
 774     case 0x7E: // movd
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776       debug_only(has_disp32 = true);
 777       break;
 778 
 779     case 0xAD: // shrd r, a, %cl
 780     case 0xAF: // imul r, a
 781     case 0xBE: // movsbl r, a (movsxb)
 782     case 0xBF: // movswl r, a (movsxw)
 783     case 0xB6: // movzbl r, a (movzxb)
 784     case 0xB7: // movzwl r, a (movzxw)
 785     case REP16(0x40): // cmovl cc, r, a
 786     case 0xB0: // cmpxchgb
 787     case 0xB1: // cmpxchg
 788     case 0xC1: // xaddl
 789     case 0xC7: // cmpxchg8
 790     case REP16(0x90): // setcc a
 791       debug_only(has_disp32 = true);
 792       // fall out of the switch to decode the address
 793       break;
 794 
 795     case 0xC4: // pinsrw r, a, #8
 796       debug_only(has_disp32 = true);
 797     case 0xC5: // pextrw r, r, #8
 798       tail_size = 1;  // the imm8
 799       break;
 800 
 801     case 0xAC: // shrd r, a, #8
 802       debug_only(has_disp32 = true);
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case REP16(0x80): // jcc rdisp32
 807       if (which == end_pc_operand)  return ip + 4;
 808       assert(which == call32_operand, "jcc has no disp32 or imm");
 809       return ip;
 810     default:
 811       ShouldNotReachHere();
 812     }
 813     break;
 814 
 815   case 0x81: // addl a, #32; addl r, #32
 816     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 817     // on 32bit in the case of cmpl, the imm might be an oop
 818     tail_size = 4;
 819     debug_only(has_disp32 = true); // has both kinds of operands!
 820     break;
 821 
 822   case 0x83: // addl a, #8; addl r, #8
 823     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     tail_size = 1;
 826     break;
 827 
 828   case 0x9B:
 829     switch (0xFF & *ip++) {
 830     case 0xD9: // fnstcw a
 831       debug_only(has_disp32 = true);
 832       break;
 833     default:
 834       ShouldNotReachHere();
 835     }
 836     break;
 837 
 838   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 839   case REP4(0x10): // adc...
 840   case REP4(0x20): // and...
 841   case REP4(0x30): // xor...
 842   case REP4(0x08): // or...
 843   case REP4(0x18): // sbb...
 844   case REP4(0x28): // sub...
 845   case 0xF7: // mull a
 846   case 0x8D: // lea r, a
 847   case 0x87: // xchg r, a
 848   case REP4(0x38): // cmp...
 849   case 0x85: // test r, a
 850     debug_only(has_disp32 = true); // has both kinds of operands!
 851     break;
 852 
 853   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 854   case 0xC6: // movb a, #8
 855   case 0x80: // cmpb a, #8
 856   case 0x6B: // imul r, a, #8
 857     debug_only(has_disp32 = true); // has both kinds of operands!
 858     tail_size = 1; // the imm8
 859     break;
 860 
 861   case 0xC4: // VEX_3bytes
 862   case 0xC5: // VEX_2bytes
 863     assert((UseAVX > 0), "shouldn't have VEX prefix");
 864     assert(ip == inst+1, "no prefixes allowed");
 865     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 866     // but they have prefix 0x0F and processed when 0x0F processed above.
 867     //
 868     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 869     // instructions (these instructions are not supported in 64-bit mode).
 870     // To distinguish them bits [7:6] are set in the VEX second byte since
 871     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 872     // those VEX bits REX and vvvv bits are inverted.
 873     //
 874     // Fortunately C2 doesn't generate these instructions so we don't need
 875     // to check for them in product version.
 876 
 877     // Check second byte
 878     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 879 
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       ip++; // third byte
 883       is_64bit = ((VEX_W & *ip) == VEX_W);
 884     }
 885     ip++; // opcode
 886     // To find the end of instruction (which == end_pc_operand).
 887     switch (0xFF & *ip) {
 888     case 0x61: // pcmpestri r, r/a, #8
 889     case 0x70: // pshufd r, r/a, #8
 890     case 0x73: // psrldq r, #8
 891       tail_size = 1;  // the imm8
 892       break;
 893     default:
 894       break;
 895     }
 896     ip++; // skip opcode
 897     debug_only(has_disp32 = true); // has both kinds of operands!
 898     break;
 899 
 900   case 0x62: // EVEX_4bytes
 901     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 902     assert(ip == inst+1, "no prefixes allowed");
 903     // no EVEX collisions, all instructions that have 0x62 opcodes
 904     // have EVEX versions and are subopcodes of 0x66
 905     ip++; // skip P0 and exmaine W in P1
 906     is_64bit = ((VEX_W & *ip) == VEX_W);
 907     ip++; // move to P2
 908     ip++; // skip P2, move to opcode
 909     // To find the end of instruction (which == end_pc_operand).
 910     switch (0xFF & *ip) {
 911     case 0x61: // pcmpestri r, r/a, #8
 912     case 0x70: // pshufd r, r/a, #8
 913     case 0x73: // psrldq r, #8
 914       tail_size = 1;  // the imm8
 915       break;
 916     default:
 917       break;
 918     }
 919     ip++; // skip opcode
 920     debug_only(has_disp32 = true); // has both kinds of operands!
 921     break;
 922 
 923   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 924   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 925   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 926   case 0xDD: // fld_d a; fst_d a; fstp_d a
 927   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 928   case 0xDF: // fild_d a; fistp_d a
 929   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 930   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 931   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 932     debug_only(has_disp32 = true);
 933     break;
 934 
 935   case 0xE8: // call rdisp32
 936   case 0xE9: // jmp  rdisp32
 937     if (which == end_pc_operand)  return ip + 4;
 938     assert(which == call32_operand, "call has no disp32 or imm");
 939     return ip;
 940 
 941   case 0xF0:                    // Lock
 942     assert(os::is_MP(), "only on MP");
 943     goto again_after_prefix;
 944 
 945   case 0xF3:                    // For SSE
 946   case 0xF2:                    // For SSE2
 947     switch (0xFF & *ip++) {
 948     case REX:
 949     case REX_B:
 950     case REX_X:
 951     case REX_XB:
 952     case REX_R:
 953     case REX_RB:
 954     case REX_RX:
 955     case REX_RXB:
 956     case REX_W:
 957     case REX_WB:
 958     case REX_WX:
 959     case REX_WXB:
 960     case REX_WR:
 961     case REX_WRB:
 962     case REX_WRX:
 963     case REX_WRXB:
 964       NOT_LP64(assert(false, "found 64bit prefix"));
 965       ip++;
 966     default:
 967       ip++;
 968     }
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   default:
 973     ShouldNotReachHere();
 974 
 975 #undef REP8
 976 #undef REP16
 977   }
 978 
 979   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 980 #ifdef _LP64
 981   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 982 #else
 983   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 984   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 985 #endif // LP64
 986   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 987 
 988   // parse the output of emit_operand
 989   int op2 = 0xFF & *ip++;
 990   int base = op2 & 0x07;
 991   int op3 = -1;
 992   const int b100 = 4;
 993   const int b101 = 5;
 994   if (base == b100 && (op2 >> 6) != 3) {
 995     op3 = 0xFF & *ip++;
 996     base = op3 & 0x07;   // refetch the base
 997   }
 998   // now ip points at the disp (if any)
 999 
1000   switch (op2 >> 6) {
1001   case 0:
1002     // [00 reg  100][ss index base]
1003     // [00 reg  100][00   100  esp]
1004     // [00 reg base]
1005     // [00 reg  100][ss index  101][disp32]
1006     // [00 reg  101]               [disp32]
1007 
1008     if (base == b101) {
1009       if (which == disp32_operand)
1010         return ip;              // caller wants the disp32
1011       ip += 4;                  // skip the disp32
1012     }
1013     break;
1014 
1015   case 1:
1016     // [01 reg  100][ss index base][disp8]
1017     // [01 reg  100][00   100  esp][disp8]
1018     // [01 reg base]               [disp8]
1019     ip += 1;                    // skip the disp8
1020     break;
1021 
1022   case 2:
1023     // [10 reg  100][ss index base][disp32]
1024     // [10 reg  100][00   100  esp][disp32]
1025     // [10 reg base]               [disp32]
1026     if (which == disp32_operand)
1027       return ip;                // caller wants the disp32
1028     ip += 4;                    // skip the disp32
1029     break;
1030 
1031   case 3:
1032     // [11 reg base]  (not a memory addressing mode)
1033     break;
1034   }
1035 
1036   if (which == end_pc_operand) {
1037     return ip + tail_size;
1038   }
1039 
1040 #ifdef _LP64
1041   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1042 #else
1043   assert(which == imm_operand, "instruction has only an imm field");
1044 #endif // LP64
1045   return ip;
1046 }
1047 
1048 address Assembler::locate_next_instruction(address inst) {
1049   // Secretly share code with locate_operand:
1050   return locate_operand(inst, end_pc_operand);
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1056   address inst = inst_mark();
1057   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1058   address opnd;
1059 
1060   Relocation* r = rspec.reloc();
1061   if (r->type() == relocInfo::none) {
1062     return;
1063   } else if (r->is_call() || format == call32_operand) {
1064     // assert(format == imm32_operand, "cannot specify a nonzero format");
1065     opnd = locate_operand(inst, call32_operand);
1066   } else if (r->is_data()) {
1067     assert(format == imm_operand || format == disp32_operand
1068            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1069     opnd = locate_operand(inst, (WhichOperand)format);
1070   } else {
1071     assert(format == imm_operand, "cannot specify a format");
1072     return;
1073   }
1074   assert(opnd == pc(), "must put operand where relocs can find it");
1075 }
1076 #endif // ASSERT
1077 
1078 void Assembler::emit_operand32(Register reg, Address adr) {
1079   assert(reg->encoding() < 8, "no extended registers");
1080   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1081   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1082                adr._rspec);
1083 }
1084 
1085 void Assembler::emit_operand(Register reg, Address adr,
1086                              int rip_relative_correction) {
1087   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1088                adr._rspec,
1089                rip_relative_correction);
1090 }
1091 
1092 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1093   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1094                adr._rspec);
1095 }
1096 
1097 // MMX operations
1098 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1101 }
1102 
1103 // work around gcc (3.2.1-7a) bug
1104 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1105   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1106   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1107 }
1108 
1109 
1110 void Assembler::emit_farith(int b1, int b2, int i) {
1111   assert(isByte(b1) && isByte(b2), "wrong opcode");
1112   assert(0 <= i &&  i < 8, "illegal stack offset");
1113   emit_int8(b1);
1114   emit_int8(b2 + i);
1115 }
1116 
1117 
1118 // Now the Assembler instructions (identical for 32/64 bits)
1119 
1120 void Assembler::adcl(Address dst, int32_t imm32) {
1121   InstructionMark im(this);
1122   prefix(dst);
1123   emit_arith_operand(0x81, rdx, dst, imm32);
1124 }
1125 
1126 void Assembler::adcl(Address dst, Register src) {
1127   InstructionMark im(this);
1128   prefix(dst, src);
1129   emit_int8(0x11);
1130   emit_operand(src, dst);
1131 }
1132 
1133 void Assembler::adcl(Register dst, int32_t imm32) {
1134   prefix(dst);
1135   emit_arith(0x81, 0xD0, dst, imm32);
1136 }
1137 
1138 void Assembler::adcl(Register dst, Address src) {
1139   InstructionMark im(this);
1140   prefix(src, dst);
1141   emit_int8(0x13);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::adcl(Register dst, Register src) {
1146   (void) prefix_and_encode(dst->encoding(), src->encoding());
1147   emit_arith(0x13, 0xC0, dst, src);
1148 }
1149 
1150 void Assembler::addl(Address dst, int32_t imm32) {
1151   InstructionMark im(this);
1152   prefix(dst);
1153   emit_arith_operand(0x81, rax, dst, imm32);
1154 }
1155 
1156 void Assembler::addl(Address dst, Register src) {
1157   InstructionMark im(this);
1158   prefix(dst, src);
1159   emit_int8(0x01);
1160   emit_operand(src, dst);
1161 }
1162 
1163 void Assembler::addl(Register dst, int32_t imm32) {
1164   prefix(dst);
1165   emit_arith(0x81, 0xC0, dst, imm32);
1166 }
1167 
1168 void Assembler::addl(Register dst, Address src) {
1169   InstructionMark im(this);
1170   prefix(src, dst);
1171   emit_int8(0x03);
1172   emit_operand(dst, src);
1173 }
1174 
1175 void Assembler::addl(Register dst, Register src) {
1176   (void) prefix_and_encode(dst->encoding(), src->encoding());
1177   emit_arith(0x03, 0xC0, dst, src);
1178 }
1179 
1180 void Assembler::addr_nop_4() {
1181   assert(UseAddressNop, "no CPU support");
1182   // 4 bytes: NOP DWORD PTR [EAX+0]
1183   emit_int8(0x0F);
1184   emit_int8(0x1F);
1185   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1186   emit_int8(0);    // 8-bits offset (1 byte)
1187 }
1188 
1189 void Assembler::addr_nop_5() {
1190   assert(UseAddressNop, "no CPU support");
1191   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1192   emit_int8(0x0F);
1193   emit_int8(0x1F);
1194   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1195   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1196   emit_int8(0);    // 8-bits offset (1 byte)
1197 }
1198 
1199 void Assembler::addr_nop_7() {
1200   assert(UseAddressNop, "no CPU support");
1201   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1202   emit_int8(0x0F);
1203   emit_int8(0x1F);
1204   emit_int8((unsigned char)0x80);
1205                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1206   emit_int32(0);   // 32-bits offset (4 bytes)
1207 }
1208 
1209 void Assembler::addr_nop_8() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8((unsigned char)0x84);
1215                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1216   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1217   emit_int32(0);   // 32-bits offset (4 bytes)
1218 }
1219 
1220 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1222   if (VM_Version::supports_evex()) {
1223     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1224   } else {
1225     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1226   }
1227 }
1228 
1229 void Assembler::addsd(XMMRegister dst, Address src) {
1230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1231   if (VM_Version::supports_evex()) {
1232     tuple_type = EVEX_T1S;
1233     input_size_in_bits = EVEX_64bit;
1234     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1235   } else {
1236     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1237   }
1238 }
1239 
1240 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1242   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1243 }
1244 
1245 void Assembler::addss(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1247   if (VM_Version::supports_evex()) {
1248     tuple_type = EVEX_T1S;
1249     input_size_in_bits = EVEX_32bit;
1250   }
1251   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1252 }
1253 
1254 void Assembler::aesdec(XMMRegister dst, Address src) {
1255   assert(VM_Version::supports_aes(), "");
1256   InstructionMark im(this);
1257   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1258               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1259   emit_int8((unsigned char)0xDE);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1264   assert(VM_Version::supports_aes(), "");
1265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1266                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1267   emit_int8((unsigned char)0xDE);
1268   emit_int8(0xC0 | encode);
1269 }
1270 
1271 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1272   assert(VM_Version::supports_aes(), "");
1273   InstructionMark im(this);
1274   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1275               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1276   emit_int8((unsigned char)0xDF);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1281   assert(VM_Version::supports_aes(), "");
1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1283                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1284   emit_int8((unsigned char)0xDF);
1285   emit_int8((unsigned char)(0xC0 | encode));
1286 }
1287 
1288 void Assembler::aesenc(XMMRegister dst, Address src) {
1289   assert(VM_Version::supports_aes(), "");
1290   InstructionMark im(this);
1291   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1292               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1293   emit_int8((unsigned char)0xDC);
1294   emit_operand(dst, src);
1295 }
1296 
1297 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1298   assert(VM_Version::supports_aes(), "");
1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1300                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1301   emit_int8((unsigned char)0xDC);
1302   emit_int8(0xC0 | encode);
1303 }
1304 
1305 void Assembler::aesenclast(XMMRegister dst, Address src) {
1306   assert(VM_Version::supports_aes(), "");
1307   InstructionMark im(this);
1308   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1309               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1310   emit_int8((unsigned char)0xDD);
1311   emit_operand(dst, src);
1312 }
1313 
1314 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1315   assert(VM_Version::supports_aes(), "");
1316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1317                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1318   emit_int8((unsigned char)0xDD);
1319   emit_int8((unsigned char)(0xC0 | encode));
1320 }
1321 
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2, false);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38_legacy(dst, src1, src2, false);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src, false);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38_legacy(rbx, dst, src, false);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src, false);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38(rdx, dst, src, false);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src, false);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38_legacy(rcx, dst, src, false);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     tuple_type = EVEX_T1S;
1573     input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     tuple_type = EVEX_T1S;
1592     input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1611 }
1612 
1613 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1616 }
1617 
1618 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1620   if (VM_Version::supports_evex()) {
1621     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1622   } else {
1623     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1624   }
1625 }
1626 
1627 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   if (VM_Version::supports_evex()) {
1630     tuple_type = EVEX_T1F;
1631     input_size_in_bits = EVEX_64bit;
1632     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1633   } else {
1634     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1635   }
1636 }
1637 
1638 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1640   int encode = 0;
1641   if (VM_Version::supports_evex()) {
1642     encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
1643   } else {
1644     encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
1645   }
1646   emit_int8(0x2A);
1647   emit_int8((unsigned char)(0xC0 | encode));
1648 }
1649 
1650 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   if (VM_Version::supports_evex()) {
1653     tuple_type = EVEX_T1S;
1654     input_size_in_bits = EVEX_32bit;
1655     emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
1656   } else {
1657     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1658   }
1659 }
1660 
1661 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
1664   emit_int8(0x2A);
1665   emit_int8((unsigned char)(0xC0 | encode));
1666 }
1667 
1668 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1669   if (VM_Version::supports_evex()) {
1670     tuple_type = EVEX_T1S;
1671     input_size_in_bits = EVEX_32bit;
1672   }
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
1675 }
1676 
1677 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1679   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1680 }
1681 
1682 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1683   if (VM_Version::supports_evex()) {
1684     tuple_type = EVEX_T1S;
1685     input_size_in_bits = EVEX_32bit;
1686   }
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 
1692 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1694   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
1695   emit_int8(0x2C);
1696   emit_int8((unsigned char)(0xC0 | encode));
1697 }
1698 
1699 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1701   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
1702   emit_int8(0x2C);
1703   emit_int8((unsigned char)(0xC0 | encode));
1704 }
1705 
1706 void Assembler::decl(Address dst) {
1707   // Don't use it directly. Use MacroAssembler::decrement() instead.
1708   InstructionMark im(this);
1709   prefix(dst);
1710   emit_int8((unsigned char)0xFF);
1711   emit_operand(rcx, dst);
1712 }
1713 
1714 void Assembler::divsd(XMMRegister dst, Address src) {
1715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1716   if (VM_Version::supports_evex()) {
1717     tuple_type = EVEX_T1S;
1718     input_size_in_bits = EVEX_64bit;
1719     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1720   } else {
1721     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1722   }
1723 }
1724 
1725 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   if (VM_Version::supports_evex()) {
1728     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1729   } else {
1730     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1731   }
1732 }
1733 
1734 void Assembler::divss(XMMRegister dst, Address src) {
1735   if (VM_Version::supports_evex()) {
1736     tuple_type = EVEX_T1S;
1737     input_size_in_bits = EVEX_32bit;
1738   }
1739   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1740   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1741 }
1742 
1743 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1744   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1745   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1746 }
1747 
1748 void Assembler::emms() {
1749   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1750   emit_int8(0x0F);
1751   emit_int8(0x77);
1752 }
1753 
1754 void Assembler::hlt() {
1755   emit_int8((unsigned char)0xF4);
1756 }
1757 
1758 void Assembler::idivl(Register src) {
1759   int encode = prefix_and_encode(src->encoding());
1760   emit_int8((unsigned char)0xF7);
1761   emit_int8((unsigned char)(0xF8 | encode));
1762 }
1763 
1764 void Assembler::divl(Register src) { // Unsigned
1765   int encode = prefix_and_encode(src->encoding());
1766   emit_int8((unsigned char)0xF7);
1767   emit_int8((unsigned char)(0xF0 | encode));
1768 }
1769 
1770 void Assembler::imull(Register dst, Register src) {
1771   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1772   emit_int8(0x0F);
1773   emit_int8((unsigned char)0xAF);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 
1778 void Assembler::imull(Register dst, Register src, int value) {
1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1780   if (is8bit(value)) {
1781     emit_int8(0x6B);
1782     emit_int8((unsigned char)(0xC0 | encode));
1783     emit_int8(value & 0xFF);
1784   } else {
1785     emit_int8(0x69);
1786     emit_int8((unsigned char)(0xC0 | encode));
1787     emit_int32(value);
1788   }
1789 }
1790 
1791 void Assembler::imull(Register dst, Address src) {
1792   InstructionMark im(this);
1793   prefix(src, dst);
1794   emit_int8(0x0F);
1795   emit_int8((unsigned char) 0xAF);
1796   emit_operand(dst, src);
1797 }
1798 
1799 
1800 void Assembler::incl(Address dst) {
1801   // Don't use it directly. Use MacroAssembler::increment() instead.
1802   InstructionMark im(this);
1803   prefix(dst);
1804   emit_int8((unsigned char)0xFF);
1805   emit_operand(rax, dst);
1806 }
1807 
1808 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1809   InstructionMark im(this);
1810   assert((0 <= cc) && (cc < 16), "illegal cc");
1811   if (L.is_bound()) {
1812     address dst = target(L);
1813     assert(dst != NULL, "jcc most probably wrong");
1814 
1815     const int short_size = 2;
1816     const int long_size = 6;
1817     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1818     if (maybe_short && is8bit(offs - short_size)) {
1819       // 0111 tttn #8-bit disp
1820       emit_int8(0x70 | cc);
1821       emit_int8((offs - short_size) & 0xFF);
1822     } else {
1823       // 0000 1111 1000 tttn #32-bit disp
1824       assert(is_simm32(offs - long_size),
1825              "must be 32bit offset (call4)");
1826       emit_int8(0x0F);
1827       emit_int8((unsigned char)(0x80 | cc));
1828       emit_int32(offs - long_size);
1829     }
1830   } else {
1831     // Note: could eliminate cond. jumps to this jump if condition
1832     //       is the same however, seems to be rather unlikely case.
1833     // Note: use jccb() if label to be bound is very close to get
1834     //       an 8-bit displacement
1835     L.add_patch_at(code(), locator());
1836     emit_int8(0x0F);
1837     emit_int8((unsigned char)(0x80 | cc));
1838     emit_int32(0);
1839   }
1840 }
1841 
1842 void Assembler::jccb(Condition cc, Label& L) {
1843   if (L.is_bound()) {
1844     const int short_size = 2;
1845     address entry = target(L);
1846 #ifdef ASSERT
1847     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1848     intptr_t delta = short_branch_delta();
1849     if (delta != 0) {
1850       dist += (dist < 0 ? (-delta) :delta);
1851     }
1852     assert(is8bit(dist), "Dispacement too large for a short jmp");
1853 #endif
1854     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1855     // 0111 tttn #8-bit disp
1856     emit_int8(0x70 | cc);
1857     emit_int8((offs - short_size) & 0xFF);
1858   } else {
1859     InstructionMark im(this);
1860     L.add_patch_at(code(), locator());
1861     emit_int8(0x70 | cc);
1862     emit_int8(0);
1863   }
1864 }
1865 
1866 void Assembler::jmp(Address adr) {
1867   InstructionMark im(this);
1868   prefix(adr);
1869   emit_int8((unsigned char)0xFF);
1870   emit_operand(rsp, adr);
1871 }
1872 
1873 void Assembler::jmp(Label& L, bool maybe_short) {
1874   if (L.is_bound()) {
1875     address entry = target(L);
1876     assert(entry != NULL, "jmp most probably wrong");
1877     InstructionMark im(this);
1878     const int short_size = 2;
1879     const int long_size = 5;
1880     intptr_t offs = entry - pc();
1881     if (maybe_short && is8bit(offs - short_size)) {
1882       emit_int8((unsigned char)0xEB);
1883       emit_int8((offs - short_size) & 0xFF);
1884     } else {
1885       emit_int8((unsigned char)0xE9);
1886       emit_int32(offs - long_size);
1887     }
1888   } else {
1889     // By default, forward jumps are always 32-bit displacements, since
1890     // we can't yet know where the label will be bound.  If you're sure that
1891     // the forward jump will not run beyond 256 bytes, use jmpb to
1892     // force an 8-bit displacement.
1893     InstructionMark im(this);
1894     L.add_patch_at(code(), locator());
1895     emit_int8((unsigned char)0xE9);
1896     emit_int32(0);
1897   }
1898 }
1899 
1900 void Assembler::jmp(Register entry) {
1901   int encode = prefix_and_encode(entry->encoding());
1902   emit_int8((unsigned char)0xFF);
1903   emit_int8((unsigned char)(0xE0 | encode));
1904 }
1905 
1906 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1907   InstructionMark im(this);
1908   emit_int8((unsigned char)0xE9);
1909   assert(dest != NULL, "must have a target");
1910   intptr_t disp = dest - (pc() + sizeof(int32_t));
1911   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1912   emit_data(disp, rspec.reloc(), call32_operand);
1913 }
1914 
1915 void Assembler::jmpb(Label& L) {
1916   if (L.is_bound()) {
1917     const int short_size = 2;
1918     address entry = target(L);
1919     assert(entry != NULL, "jmp most probably wrong");
1920 #ifdef ASSERT
1921     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1922     intptr_t delta = short_branch_delta();
1923     if (delta != 0) {
1924       dist += (dist < 0 ? (-delta) :delta);
1925     }
1926     assert(is8bit(dist), "Dispacement too large for a short jmp");
1927 #endif
1928     intptr_t offs = entry - pc();
1929     emit_int8((unsigned char)0xEB);
1930     emit_int8((offs - short_size) & 0xFF);
1931   } else {
1932     InstructionMark im(this);
1933     L.add_patch_at(code(), locator());
1934     emit_int8((unsigned char)0xEB);
1935     emit_int8(0);
1936   }
1937 }
1938 
1939 void Assembler::ldmxcsr( Address src) {
1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1941   InstructionMark im(this);
1942   prefix(src);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char)0xAE);
1945   emit_operand(as_Register(2), src);
1946 }
1947 
1948 void Assembler::leal(Register dst, Address src) {
1949   InstructionMark im(this);
1950 #ifdef _LP64
1951   emit_int8(0x67); // addr32
1952   prefix(src, dst);
1953 #endif // LP64
1954   emit_int8((unsigned char)0x8D);
1955   emit_operand(dst, src);
1956 }
1957 
1958 void Assembler::lfence() {
1959   emit_int8(0x0F);
1960   emit_int8((unsigned char)0xAE);
1961   emit_int8((unsigned char)0xE8);
1962 }
1963 
1964 void Assembler::lock() {
1965   emit_int8((unsigned char)0xF0);
1966 }
1967 
1968 void Assembler::lzcntl(Register dst, Register src) {
1969   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1970   emit_int8((unsigned char)0xF3);
1971   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xBD);
1974   emit_int8((unsigned char)(0xC0 | encode));
1975 }
1976 
1977 // Emit mfence instruction
1978 void Assembler::mfence() {
1979   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xAE);
1982   emit_int8((unsigned char)0xF0);
1983 }
1984 
1985 void Assembler::mov(Register dst, Register src) {
1986   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1987 }
1988 
1989 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1991   if (VM_Version::supports_evex()) {
1992     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
1993   } else {
1994     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1995   }
1996 }
1997 
1998 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1999   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2000   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2001 }
2002 
2003 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2005   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
2006                                       false, AVX_128bit);
2007   emit_int8(0x16);
2008   emit_int8((unsigned char)(0xC0 | encode));
2009 }
2010 
2011 void Assembler::movb(Register dst, Address src) {
2012   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2013   InstructionMark im(this);
2014   prefix(src, dst, true);
2015   emit_int8((unsigned char)0x8A);
2016   emit_operand(dst, src);
2017 }
2018 
2019 void Assembler::kmovq(KRegister dst, KRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2021   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2022                                       true, VEX_OPCODE_0F, true);
2023   emit_int8((unsigned char)0x90);
2024   emit_int8((unsigned char)(0xC0 | encode));
2025 }
2026 
2027 void Assembler::kmovq(KRegister dst, Address src) {
2028   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2029   int dst_enc = dst->encoding();
2030   int nds_enc = 0;
2031   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2032              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2033   emit_int8((unsigned char)0x90);
2034   emit_operand((Register)dst, src);
2035 }
2036 
2037 void Assembler::kmovq(Address dst, KRegister src) {
2038   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2039   int src_enc = src->encoding();
2040   int nds_enc = 0;
2041   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2042              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2043   emit_int8((unsigned char)0x90);
2044   emit_operand((Register)src, dst);
2045 }
2046 
2047 void Assembler::kmovql(KRegister dst, Register src) {
2048   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2049   bool supports_bw = VM_Version::supports_avx512bw();
2050   VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2051   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
2052                                       VEX_OPCODE_0F, supports_bw);
2053   emit_int8((unsigned char)0x92);
2054   emit_int8((unsigned char)(0xC0 | encode));
2055 }
2056 
2057 void Assembler::kmovdl(KRegister dst, Register src) {
2058   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2059   VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2060   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
2061   emit_int8((unsigned char)0x92);
2062   emit_int8((unsigned char)(0xC0 | encode));
2063 }
2064 
2065 void Assembler::movb(Address dst, int imm8) {
2066   InstructionMark im(this);
2067    prefix(dst);
2068   emit_int8((unsigned char)0xC6);
2069   emit_operand(rax, dst, 1);
2070   emit_int8(imm8);
2071 }
2072 
2073 
2074 void Assembler::movb(Address dst, Register src) {
2075   assert(src->has_byte_register(), "must have byte register");
2076   InstructionMark im(this);
2077   prefix(dst, src, true);
2078   emit_int8((unsigned char)0x88);
2079   emit_operand(src, dst);
2080 }
2081 
2082 void Assembler::movdl(XMMRegister dst, Register src) {
2083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2084   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
2085   emit_int8(0x6E);
2086   emit_int8((unsigned char)(0xC0 | encode));
2087 }
2088 
2089 void Assembler::movdl(Register dst, XMMRegister src) {
2090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2091   // swap src/dst to get correct prefix
2092   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
2093   emit_int8(0x7E);
2094   emit_int8((unsigned char)(0xC0 | encode));
2095 }
2096 
2097 void Assembler::movdl(XMMRegister dst, Address src) {
2098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2099   if (VM_Version::supports_evex()) {
2100     tuple_type = EVEX_T1S;
2101     input_size_in_bits = EVEX_32bit;
2102   }
2103   InstructionMark im(this);
2104   simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
2105   emit_int8(0x6E);
2106   emit_operand(dst, src);
2107 }
2108 
2109 void Assembler::movdl(Address dst, XMMRegister src) {
2110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2111   if (VM_Version::supports_evex()) {
2112     tuple_type = EVEX_T1S;
2113     input_size_in_bits = EVEX_32bit;
2114   }
2115   InstructionMark im(this);
2116   simd_prefix(dst, src, VEX_SIMD_66, true);
2117   emit_int8(0x7E);
2118   emit_operand(src, dst);
2119 }
2120 
2121 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2124 }
2125 
2126 void Assembler::movdqa(XMMRegister dst, Address src) {
2127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2128   if (VM_Version::supports_evex()) {
2129     tuple_type = EVEX_FVM;
2130   }
2131   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2132 }
2133 
2134 void Assembler::movdqu(XMMRegister dst, Address src) {
2135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2136   if (VM_Version::supports_evex()) {
2137     tuple_type = EVEX_FVM;
2138   }
2139   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2140 }
2141 
2142 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2144   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2145 }
2146 
2147 void Assembler::movdqu(Address dst, XMMRegister src) {
2148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2149   if (VM_Version::supports_evex()) {
2150     tuple_type = EVEX_FVM;
2151   }
2152   InstructionMark im(this);
2153   simd_prefix(dst, src, VEX_SIMD_F3, false);
2154   emit_int8(0x7F);
2155   emit_operand(src, dst);
2156 }
2157 
2158 // Move Unaligned 256bit Vector
2159 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2160   assert(UseAVX > 0, "");
2161   if (VM_Version::supports_evex()) {
2162     tuple_type = EVEX_FVM;
2163   }
2164   int vector_len = AVX_256bit;
2165   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2166   emit_int8(0x6F);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2171   assert(UseAVX > 0, "");
2172   if (VM_Version::supports_evex()) {
2173     tuple_type = EVEX_FVM;
2174   }
2175   InstructionMark im(this);
2176   int vector_len = AVX_256bit;
2177   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2178   emit_int8(0x6F);
2179   emit_operand(dst, src);
2180 }
2181 
2182 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2183   assert(UseAVX > 0, "");
2184   if (VM_Version::supports_evex()) {
2185     tuple_type = EVEX_FVM;
2186   }
2187   InstructionMark im(this);
2188   int vector_len = AVX_256bit;
2189   // swap src<->dst for encoding
2190   assert(src != xnoreg, "sanity");
2191   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2192   emit_int8(0x7F);
2193   emit_operand(src, dst);
2194 }
2195 
2196 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2197 void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2198   assert(UseAVX > 0, "");
2199   int src_enc = src->encoding();
2200   int dst_enc = dst->encoding();
2201   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2202                                      true, vector_len, false, false);
2203   emit_int8(0x6F);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
2208   assert(UseAVX > 0, "");
2209   InstructionMark im(this);
2210   if (VM_Version::supports_evex()) {
2211     tuple_type = EVEX_FVM;
2212     vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2213   } else {
2214     vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2215   }
2216   emit_int8(0x6F);
2217   emit_operand(dst, src);
2218 }
2219 
2220 void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
2221   assert(UseAVX > 0, "");
2222   InstructionMark im(this);
2223   assert(src != xnoreg, "sanity");
2224   if (VM_Version::supports_evex()) {
2225     tuple_type = EVEX_FVM;
2226     // swap src<->dst for encoding
2227     vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2228   } else {
2229     // swap src<->dst for encoding
2230     vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2231   }
2232   emit_int8(0x7F);
2233   emit_operand(src, dst);
2234 }
2235 
2236 // Uses zero extension on 64bit
2237 
2238 void Assembler::movl(Register dst, int32_t imm32) {
2239   int encode = prefix_and_encode(dst->encoding());
2240   emit_int8((unsigned char)(0xB8 | encode));
2241   emit_int32(imm32);
2242 }
2243 
2244 void Assembler::movl(Register dst, Register src) {
2245   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2246   emit_int8((unsigned char)0x8B);
2247   emit_int8((unsigned char)(0xC0 | encode));
2248 }
2249 
2250 void Assembler::movl(Register dst, Address src) {
2251   InstructionMark im(this);
2252   prefix(src, dst);
2253   emit_int8((unsigned char)0x8B);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movl(Address dst, int32_t imm32) {
2258   InstructionMark im(this);
2259   prefix(dst);
2260   emit_int8((unsigned char)0xC7);
2261   emit_operand(rax, dst, 4);
2262   emit_int32(imm32);
2263 }
2264 
2265 void Assembler::movl(Address dst, Register src) {
2266   InstructionMark im(this);
2267   prefix(dst, src);
2268   emit_int8((unsigned char)0x89);
2269   emit_operand(src, dst);
2270 }
2271 
2272 // New cpus require to use movsd and movss to avoid partial register stall
2273 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2274 // The selection is done in MacroAssembler::movdbl() and movflt().
2275 void Assembler::movlpd(XMMRegister dst, Address src) {
2276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2277   if (VM_Version::supports_evex()) {
2278     tuple_type = EVEX_T1S;
2279     input_size_in_bits = EVEX_32bit;
2280   }
2281   emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
2282 }
2283 
2284 void Assembler::movq( MMXRegister dst, Address src ) {
2285   assert( VM_Version::supports_mmx(), "" );
2286   emit_int8(0x0F);
2287   emit_int8(0x6F);
2288   emit_operand(dst, src);
2289 }
2290 
2291 void Assembler::movq( Address dst, MMXRegister src ) {
2292   assert( VM_Version::supports_mmx(), "" );
2293   emit_int8(0x0F);
2294   emit_int8(0x7F);
2295   // workaround gcc (3.2.1-7a) bug
2296   // In that version of gcc with only an emit_operand(MMX, Address)
2297   // gcc will tail jump and try and reverse the parameters completely
2298   // obliterating dst in the process. By having a version available
2299   // that doesn't need to swap the args at the tail jump the bug is
2300   // avoided.
2301   emit_operand(dst, src);
2302 }
2303 
2304 void Assembler::movq(XMMRegister dst, Address src) {
2305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2306   InstructionMark im(this);
2307   if (VM_Version::supports_evex()) {
2308     tuple_type = EVEX_T1S;
2309     input_size_in_bits = EVEX_64bit;
2310     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
2311   } else {
2312     simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
2313   }
2314   emit_int8(0x7E);
2315   emit_operand(dst, src);
2316 }
2317 
2318 void Assembler::movq(Address dst, XMMRegister src) {
2319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2320   InstructionMark im(this);
2321   if (VM_Version::supports_evex()) {
2322     tuple_type = EVEX_T1S;
2323     input_size_in_bits = EVEX_64bit;
2324     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
2325                 VEX_OPCODE_0F, true, AVX_128bit);
2326   } else {
2327     simd_prefix(dst, src, VEX_SIMD_66, true);
2328   }
2329   emit_int8((unsigned char)0xD6);
2330   emit_operand(src, dst);
2331 }
2332 
2333 void Assembler::movsbl(Register dst, Address src) { // movsxb
2334   InstructionMark im(this);
2335   prefix(src, dst);
2336   emit_int8(0x0F);
2337   emit_int8((unsigned char)0xBE);
2338   emit_operand(dst, src);
2339 }
2340 
2341 void Assembler::movsbl(Register dst, Register src) { // movsxb
2342   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2343   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2344   emit_int8(0x0F);
2345   emit_int8((unsigned char)0xBE);
2346   emit_int8((unsigned char)(0xC0 | encode));
2347 }
2348 
2349 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2351   if (VM_Version::supports_evex()) {
2352     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
2353   } else {
2354     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2355   }
2356 }
2357 
2358 void Assembler::movsd(XMMRegister dst, Address src) {
2359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2360   if (VM_Version::supports_evex()) {
2361     tuple_type = EVEX_T1S;
2362     input_size_in_bits = EVEX_64bit;
2363     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
2364   } else {
2365     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2366   }
2367 }
2368 
2369 void Assembler::movsd(Address dst, XMMRegister src) {
2370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2371   InstructionMark im(this);
2372   if (VM_Version::supports_evex()) {
2373     tuple_type = EVEX_T1S;
2374     input_size_in_bits = EVEX_64bit;
2375     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2376   } else {
2377     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
2378   }
2379   emit_int8(0x11);
2380   emit_operand(src, dst);
2381 }
2382 
2383 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2384   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2385   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
2386 }
2387 
2388 void Assembler::movss(XMMRegister dst, Address src) {
2389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2390   if (VM_Version::supports_evex()) {
2391     tuple_type = EVEX_T1S;
2392     input_size_in_bits = EVEX_32bit;
2393   }
2394   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
2395 }
2396 
2397 void Assembler::movss(Address dst, XMMRegister src) {
2398   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2399   if (VM_Version::supports_evex()) {
2400     tuple_type = EVEX_T1S;
2401     input_size_in_bits = EVEX_32bit;
2402   }
2403   InstructionMark im(this);
2404   simd_prefix(dst, src, VEX_SIMD_F3, false);
2405   emit_int8(0x11);
2406   emit_operand(src, dst);
2407 }
2408 
2409 void Assembler::movswl(Register dst, Address src) { // movsxw
2410   InstructionMark im(this);
2411   prefix(src, dst);
2412   emit_int8(0x0F);
2413   emit_int8((unsigned char)0xBF);
2414   emit_operand(dst, src);
2415 }
2416 
2417 void Assembler::movswl(Register dst, Register src) { // movsxw
2418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2419   emit_int8(0x0F);
2420   emit_int8((unsigned char)0xBF);
2421   emit_int8((unsigned char)(0xC0 | encode));
2422 }
2423 
2424 void Assembler::movw(Address dst, int imm16) {
2425   InstructionMark im(this);
2426 
2427   emit_int8(0x66); // switch to 16-bit mode
2428   prefix(dst);
2429   emit_int8((unsigned char)0xC7);
2430   emit_operand(rax, dst, 2);
2431   emit_int16(imm16);
2432 }
2433 
2434 void Assembler::movw(Register dst, Address src) {
2435   InstructionMark im(this);
2436   emit_int8(0x66);
2437   prefix(src, dst);
2438   emit_int8((unsigned char)0x8B);
2439   emit_operand(dst, src);
2440 }
2441 
2442 void Assembler::movw(Address dst, Register src) {
2443   InstructionMark im(this);
2444   emit_int8(0x66);
2445   prefix(dst, src);
2446   emit_int8((unsigned char)0x89);
2447   emit_operand(src, dst);
2448 }
2449 
2450 void Assembler::movzbl(Register dst, Address src) { // movzxb
2451   InstructionMark im(this);
2452   prefix(src, dst);
2453   emit_int8(0x0F);
2454   emit_int8((unsigned char)0xB6);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::movzbl(Register dst, Register src) { // movzxb
2459   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2460   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2461   emit_int8(0x0F);
2462   emit_int8((unsigned char)0xB6);
2463   emit_int8(0xC0 | encode);
2464 }
2465 
2466 void Assembler::movzwl(Register dst, Address src) { // movzxw
2467   InstructionMark im(this);
2468   prefix(src, dst);
2469   emit_int8(0x0F);
2470   emit_int8((unsigned char)0xB7);
2471   emit_operand(dst, src);
2472 }
2473 
2474 void Assembler::movzwl(Register dst, Register src) { // movzxw
2475   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2476   emit_int8(0x0F);
2477   emit_int8((unsigned char)0xB7);
2478   emit_int8(0xC0 | encode);
2479 }
2480 
2481 void Assembler::mull(Address src) {
2482   InstructionMark im(this);
2483   prefix(src);
2484   emit_int8((unsigned char)0xF7);
2485   emit_operand(rsp, src);
2486 }
2487 
2488 void Assembler::mull(Register src) {
2489   int encode = prefix_and_encode(src->encoding());
2490   emit_int8((unsigned char)0xF7);
2491   emit_int8((unsigned char)(0xE0 | encode));
2492 }
2493 
2494 void Assembler::mulsd(XMMRegister dst, Address src) {
2495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2496   if (VM_Version::supports_evex()) {
2497     tuple_type = EVEX_T1S;
2498     input_size_in_bits = EVEX_64bit;
2499     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2500   } else {
2501     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2502   }
2503 }
2504 
2505 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2507   if (VM_Version::supports_evex()) {
2508     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2509   } else {
2510     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2511   }
2512 }
2513 
2514 void Assembler::mulss(XMMRegister dst, Address src) {
2515   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2516   if (VM_Version::supports_evex()) {
2517     tuple_type = EVEX_T1S;
2518     input_size_in_bits = EVEX_32bit;
2519   }
2520   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2521 }
2522 
2523 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2524   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2525   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2526 }
2527 
2528 void Assembler::negl(Register dst) {
2529   int encode = prefix_and_encode(dst->encoding());
2530   emit_int8((unsigned char)0xF7);
2531   emit_int8((unsigned char)(0xD8 | encode));
2532 }
2533 
2534 void Assembler::nop(int i) {
2535 #ifdef ASSERT
2536   assert(i > 0, " ");
2537   // The fancy nops aren't currently recognized by debuggers making it a
2538   // pain to disassemble code while debugging. If asserts are on clearly
2539   // speed is not an issue so simply use the single byte traditional nop
2540   // to do alignment.
2541 
2542   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2543   return;
2544 
2545 #endif // ASSERT
2546 
2547   if (UseAddressNop && VM_Version::is_intel()) {
2548     //
2549     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2550     //  1: 0x90
2551     //  2: 0x66 0x90
2552     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2553     //  4: 0x0F 0x1F 0x40 0x00
2554     //  5: 0x0F 0x1F 0x44 0x00 0x00
2555     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2556     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2557     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2558     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2559     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2560     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2561 
2562     // The rest coding is Intel specific - don't use consecutive address nops
2563 
2564     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2565     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2566     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2567     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2568 
2569     while(i >= 15) {
2570       // For Intel don't generate consecutive addess nops (mix with regular nops)
2571       i -= 15;
2572       emit_int8(0x66);   // size prefix
2573       emit_int8(0x66);   // size prefix
2574       emit_int8(0x66);   // size prefix
2575       addr_nop_8();
2576       emit_int8(0x66);   // size prefix
2577       emit_int8(0x66);   // size prefix
2578       emit_int8(0x66);   // size prefix
2579       emit_int8((unsigned char)0x90);
2580                          // nop
2581     }
2582     switch (i) {
2583       case 14:
2584         emit_int8(0x66); // size prefix
2585       case 13:
2586         emit_int8(0x66); // size prefix
2587       case 12:
2588         addr_nop_8();
2589         emit_int8(0x66); // size prefix
2590         emit_int8(0x66); // size prefix
2591         emit_int8(0x66); // size prefix
2592         emit_int8((unsigned char)0x90);
2593                          // nop
2594         break;
2595       case 11:
2596         emit_int8(0x66); // size prefix
2597       case 10:
2598         emit_int8(0x66); // size prefix
2599       case 9:
2600         emit_int8(0x66); // size prefix
2601       case 8:
2602         addr_nop_8();
2603         break;
2604       case 7:
2605         addr_nop_7();
2606         break;
2607       case 6:
2608         emit_int8(0x66); // size prefix
2609       case 5:
2610         addr_nop_5();
2611         break;
2612       case 4:
2613         addr_nop_4();
2614         break;
2615       case 3:
2616         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2617         emit_int8(0x66); // size prefix
2618       case 2:
2619         emit_int8(0x66); // size prefix
2620       case 1:
2621         emit_int8((unsigned char)0x90);
2622                          // nop
2623         break;
2624       default:
2625         assert(i == 0, " ");
2626     }
2627     return;
2628   }
2629   if (UseAddressNop && VM_Version::is_amd()) {
2630     //
2631     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2632     //  1: 0x90
2633     //  2: 0x66 0x90
2634     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2635     //  4: 0x0F 0x1F 0x40 0x00
2636     //  5: 0x0F 0x1F 0x44 0x00 0x00
2637     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2638     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2639     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2640     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2641     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2642     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2643 
2644     // The rest coding is AMD specific - use consecutive address nops
2645 
2646     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2647     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2648     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2649     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2650     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2651     //     Size prefixes (0x66) are added for larger sizes
2652 
2653     while(i >= 22) {
2654       i -= 11;
2655       emit_int8(0x66); // size prefix
2656       emit_int8(0x66); // size prefix
2657       emit_int8(0x66); // size prefix
2658       addr_nop_8();
2659     }
2660     // Generate first nop for size between 21-12
2661     switch (i) {
2662       case 21:
2663         i -= 1;
2664         emit_int8(0x66); // size prefix
2665       case 20:
2666       case 19:
2667         i -= 1;
2668         emit_int8(0x66); // size prefix
2669       case 18:
2670       case 17:
2671         i -= 1;
2672         emit_int8(0x66); // size prefix
2673       case 16:
2674       case 15:
2675         i -= 8;
2676         addr_nop_8();
2677         break;
2678       case 14:
2679       case 13:
2680         i -= 7;
2681         addr_nop_7();
2682         break;
2683       case 12:
2684         i -= 6;
2685         emit_int8(0x66); // size prefix
2686         addr_nop_5();
2687         break;
2688       default:
2689         assert(i < 12, " ");
2690     }
2691 
2692     // Generate second nop for size between 11-1
2693     switch (i) {
2694       case 11:
2695         emit_int8(0x66); // size prefix
2696       case 10:
2697         emit_int8(0x66); // size prefix
2698       case 9:
2699         emit_int8(0x66); // size prefix
2700       case 8:
2701         addr_nop_8();
2702         break;
2703       case 7:
2704         addr_nop_7();
2705         break;
2706       case 6:
2707         emit_int8(0x66); // size prefix
2708       case 5:
2709         addr_nop_5();
2710         break;
2711       case 4:
2712         addr_nop_4();
2713         break;
2714       case 3:
2715         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2716         emit_int8(0x66); // size prefix
2717       case 2:
2718         emit_int8(0x66); // size prefix
2719       case 1:
2720         emit_int8((unsigned char)0x90);
2721                          // nop
2722         break;
2723       default:
2724         assert(i == 0, " ");
2725     }
2726     return;
2727   }
2728 
2729   // Using nops with size prefixes "0x66 0x90".
2730   // From AMD Optimization Guide:
2731   //  1: 0x90
2732   //  2: 0x66 0x90
2733   //  3: 0x66 0x66 0x90
2734   //  4: 0x66 0x66 0x66 0x90
2735   //  5: 0x66 0x66 0x90 0x66 0x90
2736   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2737   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2738   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2739   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2740   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2741   //
2742   while(i > 12) {
2743     i -= 4;
2744     emit_int8(0x66); // size prefix
2745     emit_int8(0x66);
2746     emit_int8(0x66);
2747     emit_int8((unsigned char)0x90);
2748                      // nop
2749   }
2750   // 1 - 12 nops
2751   if(i > 8) {
2752     if(i > 9) {
2753       i -= 1;
2754       emit_int8(0x66);
2755     }
2756     i -= 3;
2757     emit_int8(0x66);
2758     emit_int8(0x66);
2759     emit_int8((unsigned char)0x90);
2760   }
2761   // 1 - 8 nops
2762   if(i > 4) {
2763     if(i > 6) {
2764       i -= 1;
2765       emit_int8(0x66);
2766     }
2767     i -= 3;
2768     emit_int8(0x66);
2769     emit_int8(0x66);
2770     emit_int8((unsigned char)0x90);
2771   }
2772   switch (i) {
2773     case 4:
2774       emit_int8(0x66);
2775     case 3:
2776       emit_int8(0x66);
2777     case 2:
2778       emit_int8(0x66);
2779     case 1:
2780       emit_int8((unsigned char)0x90);
2781       break;
2782     default:
2783       assert(i == 0, " ");
2784   }
2785 }
2786 
2787 void Assembler::notl(Register dst) {
2788   int encode = prefix_and_encode(dst->encoding());
2789   emit_int8((unsigned char)0xF7);
2790   emit_int8((unsigned char)(0xD0 | encode));
2791 }
2792 
2793 void Assembler::orl(Address dst, int32_t imm32) {
2794   InstructionMark im(this);
2795   prefix(dst);
2796   emit_arith_operand(0x81, rcx, dst, imm32);
2797 }
2798 
2799 void Assembler::orl(Register dst, int32_t imm32) {
2800   prefix(dst);
2801   emit_arith(0x81, 0xC8, dst, imm32);
2802 }
2803 
2804 void Assembler::orl(Register dst, Address src) {
2805   InstructionMark im(this);
2806   prefix(src, dst);
2807   emit_int8(0x0B);
2808   emit_operand(dst, src);
2809 }
2810 
2811 void Assembler::orl(Register dst, Register src) {
2812   (void) prefix_and_encode(dst->encoding(), src->encoding());
2813   emit_arith(0x0B, 0xC0, dst, src);
2814 }
2815 
2816 void Assembler::orl(Address dst, Register src) {
2817   InstructionMark im(this);
2818   prefix(dst, src);
2819   emit_int8(0x09);
2820   emit_operand(src, dst);
2821 }
2822 
2823 void Assembler::packuswb(XMMRegister dst, Address src) {
2824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2825   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2826   if (VM_Version::supports_evex()) {
2827     tuple_type = EVEX_FV;
2828     input_size_in_bits = EVEX_32bit;
2829   }
2830   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2831                   false, (VM_Version::supports_avx512dq() == false));
2832 }
2833 
2834 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2836   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2837                   false, (VM_Version::supports_avx512dq() == false));
2838 }
2839 
2840 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2841   assert(UseAVX > 0, "some form of AVX must be enabled");
2842   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
2843                  false, (VM_Version::supports_avx512dq() == false));
2844 }
2845 
2846 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2847   assert(VM_Version::supports_avx2(), "");
2848   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2849                                       VEX_OPCODE_0F_3A, true, vector_len);
2850   emit_int8(0x00);
2851   emit_int8(0xC0 | encode);
2852   emit_int8(imm8);
2853 }
2854 
2855 void Assembler::pause() {
2856   emit_int8((unsigned char)0xF3);
2857   emit_int8((unsigned char)0x90);
2858 }
2859 
2860 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2861   assert(VM_Version::supports_sse4_2(), "");
2862   InstructionMark im(this);
2863   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
2864               false, AVX_128bit, true);
2865   emit_int8(0x61);
2866   emit_operand(dst, src);
2867   emit_int8(imm8);
2868 }
2869 
2870 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2871   assert(VM_Version::supports_sse4_2(), "");
2872   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2873                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
2874   emit_int8(0x61);
2875   emit_int8((unsigned char)(0xC0 | encode));
2876   emit_int8(imm8);
2877 }
2878 
2879 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2880   assert(VM_Version::supports_sse4_1(), "");
2881   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2882                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2883   emit_int8(0x16);
2884   emit_int8((unsigned char)(0xC0 | encode));
2885   emit_int8(imm8);
2886 }
2887 
2888 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2889   assert(VM_Version::supports_sse4_1(), "");
2890   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2891                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2892   emit_int8(0x16);
2893   emit_int8((unsigned char)(0xC0 | encode));
2894   emit_int8(imm8);
2895 }
2896 
2897 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
2898   assert(VM_Version::supports_sse2(), "");
2899   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2900                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
2901   emit_int8(0x15);
2902   emit_int8((unsigned char)(0xC0 | encode));
2903   emit_int8(imm8);
2904 }
2905 
2906 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2907   assert(VM_Version::supports_sse4_1(), "");
2908   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2909                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2910   emit_int8(0x22);
2911   emit_int8((unsigned char)(0xC0 | encode));
2912   emit_int8(imm8);
2913 }
2914 
2915 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2916   assert(VM_Version::supports_sse4_1(), "");
2917   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2918                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2919   emit_int8(0x22);
2920   emit_int8((unsigned char)(0xC0 | encode));
2921   emit_int8(imm8);
2922 }
2923 
2924 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
2925   assert(VM_Version::supports_sse2(), "");
2926   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F,
2927                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
2928   emit_int8((unsigned char)0xC4);
2929   emit_int8((unsigned char)(0xC0 | encode));
2930   emit_int8(imm8);
2931 }
2932 
2933 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2934   assert(VM_Version::supports_sse4_1(), "");
2935   if (VM_Version::supports_evex()) {
2936     tuple_type = EVEX_HVM;
2937   }
2938   InstructionMark im(this);
2939   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2940   emit_int8(0x30);
2941   emit_operand(dst, src);
2942 }
2943 
2944 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2945   assert(VM_Version::supports_sse4_1(), "");
2946   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2947   emit_int8(0x30);
2948   emit_int8((unsigned char)(0xC0 | encode));
2949 }
2950 
2951 // generic
2952 void Assembler::pop(Register dst) {
2953   int encode = prefix_and_encode(dst->encoding());
2954   emit_int8(0x58 | encode);
2955 }
2956 
2957 void Assembler::popcntl(Register dst, Address src) {
2958   assert(VM_Version::supports_popcnt(), "must support");
2959   InstructionMark im(this);
2960   emit_int8((unsigned char)0xF3);
2961   prefix(src, dst);
2962   emit_int8(0x0F);
2963   emit_int8((unsigned char)0xB8);
2964   emit_operand(dst, src);
2965 }
2966 
2967 void Assembler::popcntl(Register dst, Register src) {
2968   assert(VM_Version::supports_popcnt(), "must support");
2969   emit_int8((unsigned char)0xF3);
2970   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2971   emit_int8(0x0F);
2972   emit_int8((unsigned char)0xB8);
2973   emit_int8((unsigned char)(0xC0 | encode));
2974 }
2975 
2976 void Assembler::popf() {
2977   emit_int8((unsigned char)0x9D);
2978 }
2979 
2980 #ifndef _LP64 // no 32bit push/pop on amd64
2981 void Assembler::popl(Address dst) {
2982   // NOTE: this will adjust stack by 8byte on 64bits
2983   InstructionMark im(this);
2984   prefix(dst);
2985   emit_int8((unsigned char)0x8F);
2986   emit_operand(rax, dst);
2987 }
2988 #endif
2989 
2990 void Assembler::prefetch_prefix(Address src) {
2991   prefix(src);
2992   emit_int8(0x0F);
2993 }
2994 
2995 void Assembler::prefetchnta(Address src) {
2996   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2997   InstructionMark im(this);
2998   prefetch_prefix(src);
2999   emit_int8(0x18);
3000   emit_operand(rax, src); // 0, src
3001 }
3002 
3003 void Assembler::prefetchr(Address src) {
3004   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3005   InstructionMark im(this);
3006   prefetch_prefix(src);
3007   emit_int8(0x0D);
3008   emit_operand(rax, src); // 0, src
3009 }
3010 
3011 void Assembler::prefetcht0(Address src) {
3012   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3013   InstructionMark im(this);
3014   prefetch_prefix(src);
3015   emit_int8(0x18);
3016   emit_operand(rcx, src); // 1, src
3017 }
3018 
3019 void Assembler::prefetcht1(Address src) {
3020   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3021   InstructionMark im(this);
3022   prefetch_prefix(src);
3023   emit_int8(0x18);
3024   emit_operand(rdx, src); // 2, src
3025 }
3026 
3027 void Assembler::prefetcht2(Address src) {
3028   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3029   InstructionMark im(this);
3030   prefetch_prefix(src);
3031   emit_int8(0x18);
3032   emit_operand(rbx, src); // 3, src
3033 }
3034 
3035 void Assembler::prefetchw(Address src) {
3036   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3037   InstructionMark im(this);
3038   prefetch_prefix(src);
3039   emit_int8(0x0D);
3040   emit_operand(rcx, src); // 1, src
3041 }
3042 
3043 void Assembler::prefix(Prefix p) {
3044   emit_int8(p);
3045 }
3046 
3047 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3048   assert(VM_Version::supports_ssse3(), "");
3049   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3050                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3051   emit_int8(0x00);
3052   emit_int8((unsigned char)(0xC0 | encode));
3053 }
3054 
3055 void Assembler::pshufb(XMMRegister dst, Address src) {
3056   assert(VM_Version::supports_ssse3(), "");
3057   if (VM_Version::supports_evex()) {
3058     tuple_type = EVEX_FVM;
3059   }
3060   InstructionMark im(this);
3061   simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3062               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3063   emit_int8(0x00);
3064   emit_operand(dst, src);
3065 }
3066 
3067 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3068   assert(isByte(mode), "invalid value");
3069   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3070   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3071   emit_int8(mode & 0xFF);
3072 
3073 }
3074 
3075 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3076   assert(isByte(mode), "invalid value");
3077   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3078   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3079   if (VM_Version::supports_evex()) {
3080     tuple_type = EVEX_FV;
3081     input_size_in_bits = EVEX_32bit;
3082   }
3083   InstructionMark im(this);
3084   simd_prefix(dst, src, VEX_SIMD_66, false);
3085   emit_int8(0x70);
3086   emit_operand(dst, src);
3087   emit_int8(mode & 0xFF);
3088 }
3089 
3090 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3091   assert(isByte(mode), "invalid value");
3092   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3093   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
3094                         (VM_Version::supports_avx512bw() == false));
3095   emit_int8(mode & 0xFF);
3096 }
3097 
3098 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3099   assert(isByte(mode), "invalid value");
3100   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3101   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3102   if (VM_Version::supports_evex()) {
3103     tuple_type = EVEX_FVM;
3104   }
3105   InstructionMark im(this);
3106   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
3107               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3108   emit_int8(0x70);
3109   emit_operand(dst, src);
3110   emit_int8(mode & 0xFF);
3111 }
3112 
3113 void Assembler::psrldq(XMMRegister dst, int shift) {
3114   // Shift 128 bit value in xmm register by number of bytes.
3115   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3116   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3117   emit_int8(0x73);
3118   emit_int8((unsigned char)(0xC0 | encode));
3119   emit_int8(shift);
3120 }
3121 
3122 void Assembler::pslldq(XMMRegister dst, int shift) {
3123   // Shift left 128 bit value in xmm register by number of bytes.
3124   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3125   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3126   emit_int8(0x73);
3127   emit_int8((unsigned char)(0xC0 | encode));
3128   emit_int8(shift);
3129 }
3130 
3131 void Assembler::ptest(XMMRegister dst, Address src) {
3132   assert(VM_Version::supports_sse4_1(), "");
3133   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3134   InstructionMark im(this);
3135   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false,
3136               VEX_OPCODE_0F_38, false, AVX_128bit, true);
3137   emit_int8(0x17);
3138   emit_operand(dst, src);
3139 }
3140 
3141 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3142   assert(VM_Version::supports_sse4_1(), "");
3143   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
3144                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
3145   emit_int8(0x17);
3146   emit_int8((unsigned char)(0xC0 | encode));
3147 }
3148 
3149 void Assembler::vptest(XMMRegister dst, Address src) {
3150   assert(VM_Version::supports_avx(), "");
3151   InstructionMark im(this);
3152   int vector_len = AVX_256bit;
3153   assert(dst != xnoreg, "sanity");
3154   int dst_enc = dst->encoding();
3155   // swap src<->dst for encoding
3156   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len, true, false);
3157   emit_int8(0x17);
3158   emit_operand(dst, src);
3159 }
3160 
3161 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3162   assert(VM_Version::supports_avx(), "");
3163   int vector_len = AVX_256bit;
3164   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3165                                      vector_len, VEX_OPCODE_0F_38, true, false);
3166   emit_int8(0x17);
3167   emit_int8((unsigned char)(0xC0 | encode));
3168 }
3169 
3170 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3171   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3172   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3173   if (VM_Version::supports_evex()) {
3174     tuple_type = EVEX_FVM;
3175   }
3176   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
3177 }
3178 
3179 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3180   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3181   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
3182 }
3183 
3184 void Assembler::punpckldq(XMMRegister dst, Address src) {
3185   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3186   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3187   if (VM_Version::supports_evex()) {
3188     tuple_type = EVEX_FV;
3189     input_size_in_bits = EVEX_32bit;
3190   }
3191   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3192 }
3193 
3194 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3195   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3196   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3197 }
3198 
3199 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3200   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3201   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3202 }
3203 
3204 void Assembler::push(int32_t imm32) {
3205   // in 64bits we push 64bits onto the stack but only
3206   // take a 32bit immediate
3207   emit_int8(0x68);
3208   emit_int32(imm32);
3209 }
3210 
3211 void Assembler::push(Register src) {
3212   int encode = prefix_and_encode(src->encoding());
3213 
3214   emit_int8(0x50 | encode);
3215 }
3216 
3217 void Assembler::pushf() {
3218   emit_int8((unsigned char)0x9C);
3219 }
3220 
3221 #ifndef _LP64 // no 32bit push/pop on amd64
3222 void Assembler::pushl(Address src) {
3223   // Note this will push 64bit on 64bit
3224   InstructionMark im(this);
3225   prefix(src);
3226   emit_int8((unsigned char)0xFF);
3227   emit_operand(rsi, src);
3228 }
3229 #endif
3230 
3231 void Assembler::rcll(Register dst, int imm8) {
3232   assert(isShiftCount(imm8), "illegal shift count");
3233   int encode = prefix_and_encode(dst->encoding());
3234   if (imm8 == 1) {
3235     emit_int8((unsigned char)0xD1);
3236     emit_int8((unsigned char)(0xD0 | encode));
3237   } else {
3238     emit_int8((unsigned char)0xC1);
3239     emit_int8((unsigned char)0xD0 | encode);
3240     emit_int8(imm8);
3241   }
3242 }
3243 
3244 void Assembler::rdtsc() {
3245   emit_int8((unsigned char)0x0F);
3246   emit_int8((unsigned char)0x31);
3247 }
3248 
3249 // copies data from [esi] to [edi] using rcx pointer sized words
3250 // generic
3251 void Assembler::rep_mov() {
3252   emit_int8((unsigned char)0xF3);
3253   // MOVSQ
3254   LP64_ONLY(prefix(REX_W));
3255   emit_int8((unsigned char)0xA5);
3256 }
3257 
3258 // sets rcx bytes with rax, value at [edi]
3259 void Assembler::rep_stosb() {
3260   emit_int8((unsigned char)0xF3); // REP
3261   LP64_ONLY(prefix(REX_W));
3262   emit_int8((unsigned char)0xAA); // STOSB
3263 }
3264 
3265 // sets rcx pointer sized words with rax, value at [edi]
3266 // generic
3267 void Assembler::rep_stos() {
3268   emit_int8((unsigned char)0xF3); // REP
3269   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3270   emit_int8((unsigned char)0xAB);
3271 }
3272 
3273 // scans rcx pointer sized words at [edi] for occurance of rax,
3274 // generic
3275 void Assembler::repne_scan() { // repne_scan
3276   emit_int8((unsigned char)0xF2);
3277   // SCASQ
3278   LP64_ONLY(prefix(REX_W));
3279   emit_int8((unsigned char)0xAF);
3280 }
3281 
3282 #ifdef _LP64
3283 // scans rcx 4 byte words at [edi] for occurance of rax,
3284 // generic
3285 void Assembler::repne_scanl() { // repne_scan
3286   emit_int8((unsigned char)0xF2);
3287   // SCASL
3288   emit_int8((unsigned char)0xAF);
3289 }
3290 #endif
3291 
3292 void Assembler::ret(int imm16) {
3293   if (imm16 == 0) {
3294     emit_int8((unsigned char)0xC3);
3295   } else {
3296     emit_int8((unsigned char)0xC2);
3297     emit_int16(imm16);
3298   }
3299 }
3300 
3301 void Assembler::sahf() {
3302 #ifdef _LP64
3303   // Not supported in 64bit mode
3304   ShouldNotReachHere();
3305 #endif
3306   emit_int8((unsigned char)0x9E);
3307 }
3308 
3309 void Assembler::sarl(Register dst, int imm8) {
3310   int encode = prefix_and_encode(dst->encoding());
3311   assert(isShiftCount(imm8), "illegal shift count");
3312   if (imm8 == 1) {
3313     emit_int8((unsigned char)0xD1);
3314     emit_int8((unsigned char)(0xF8 | encode));
3315   } else {
3316     emit_int8((unsigned char)0xC1);
3317     emit_int8((unsigned char)(0xF8 | encode));
3318     emit_int8(imm8);
3319   }
3320 }
3321 
3322 void Assembler::sarl(Register dst) {
3323   int encode = prefix_and_encode(dst->encoding());
3324   emit_int8((unsigned char)0xD3);
3325   emit_int8((unsigned char)(0xF8 | encode));
3326 }
3327 
3328 void Assembler::sbbl(Address dst, int32_t imm32) {
3329   InstructionMark im(this);
3330   prefix(dst);
3331   emit_arith_operand(0x81, rbx, dst, imm32);
3332 }
3333 
3334 void Assembler::sbbl(Register dst, int32_t imm32) {
3335   prefix(dst);
3336   emit_arith(0x81, 0xD8, dst, imm32);
3337 }
3338 
3339 
3340 void Assembler::sbbl(Register dst, Address src) {
3341   InstructionMark im(this);
3342   prefix(src, dst);
3343   emit_int8(0x1B);
3344   emit_operand(dst, src);
3345 }
3346 
3347 void Assembler::sbbl(Register dst, Register src) {
3348   (void) prefix_and_encode(dst->encoding(), src->encoding());
3349   emit_arith(0x1B, 0xC0, dst, src);
3350 }
3351 
3352 void Assembler::setb(Condition cc, Register dst) {
3353   assert(0 <= cc && cc < 16, "illegal cc");
3354   int encode = prefix_and_encode(dst->encoding(), true);
3355   emit_int8(0x0F);
3356   emit_int8((unsigned char)0x90 | cc);
3357   emit_int8((unsigned char)(0xC0 | encode));
3358 }
3359 
3360 void Assembler::shll(Register dst, int imm8) {
3361   assert(isShiftCount(imm8), "illegal shift count");
3362   int encode = prefix_and_encode(dst->encoding());
3363   if (imm8 == 1 ) {
3364     emit_int8((unsigned char)0xD1);
3365     emit_int8((unsigned char)(0xE0 | encode));
3366   } else {
3367     emit_int8((unsigned char)0xC1);
3368     emit_int8((unsigned char)(0xE0 | encode));
3369     emit_int8(imm8);
3370   }
3371 }
3372 
3373 void Assembler::shll(Register dst) {
3374   int encode = prefix_and_encode(dst->encoding());
3375   emit_int8((unsigned char)0xD3);
3376   emit_int8((unsigned char)(0xE0 | encode));
3377 }
3378 
3379 void Assembler::shrl(Register dst, int imm8) {
3380   assert(isShiftCount(imm8), "illegal shift count");
3381   int encode = prefix_and_encode(dst->encoding());
3382   emit_int8((unsigned char)0xC1);
3383   emit_int8((unsigned char)(0xE8 | encode));
3384   emit_int8(imm8);
3385 }
3386 
3387 void Assembler::shrl(Register dst) {
3388   int encode = prefix_and_encode(dst->encoding());
3389   emit_int8((unsigned char)0xD3);
3390   emit_int8((unsigned char)(0xE8 | encode));
3391 }
3392 
3393 // copies a single word from [esi] to [edi]
3394 void Assembler::smovl() {
3395   emit_int8((unsigned char)0xA5);
3396 }
3397 
3398 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3400   if (VM_Version::supports_evex()) {
3401     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3402   } else {
3403     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3404   }
3405 }
3406 
3407 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3409   if (VM_Version::supports_evex()) {
3410     tuple_type = EVEX_T1S;
3411     input_size_in_bits = EVEX_64bit;
3412     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3413   } else {
3414     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3415   }
3416 }
3417 
3418 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3419   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3420   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3421 }
3422 
3423 void Assembler::std() {
3424   emit_int8((unsigned char)0xFD);
3425 }
3426 
3427 void Assembler::sqrtss(XMMRegister dst, Address src) {
3428   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3429   if (VM_Version::supports_evex()) {
3430     tuple_type = EVEX_T1S;
3431     input_size_in_bits = EVEX_32bit;
3432   }
3433   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3434 }
3435 
3436 void Assembler::stmxcsr( Address dst) {
3437   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3438   InstructionMark im(this);
3439   prefix(dst);
3440   emit_int8(0x0F);
3441   emit_int8((unsigned char)0xAE);
3442   emit_operand(as_Register(3), dst);
3443 }
3444 
3445 void Assembler::subl(Address dst, int32_t imm32) {
3446   InstructionMark im(this);
3447   prefix(dst);
3448   emit_arith_operand(0x81, rbp, dst, imm32);
3449 }
3450 
3451 void Assembler::subl(Address dst, Register src) {
3452   InstructionMark im(this);
3453   prefix(dst, src);
3454   emit_int8(0x29);
3455   emit_operand(src, dst);
3456 }
3457 
3458 void Assembler::subl(Register dst, int32_t imm32) {
3459   prefix(dst);
3460   emit_arith(0x81, 0xE8, dst, imm32);
3461 }
3462 
3463 // Force generation of a 4 byte immediate value even if it fits into 8bit
3464 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3465   prefix(dst);
3466   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3467 }
3468 
3469 void Assembler::subl(Register dst, Address src) {
3470   InstructionMark im(this);
3471   prefix(src, dst);
3472   emit_int8(0x2B);
3473   emit_operand(dst, src);
3474 }
3475 
3476 void Assembler::subl(Register dst, Register src) {
3477   (void) prefix_and_encode(dst->encoding(), src->encoding());
3478   emit_arith(0x2B, 0xC0, dst, src);
3479 }
3480 
3481 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3482   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3483   if (VM_Version::supports_evex()) {
3484     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3485   } else {
3486     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3487   }
3488 }
3489 
3490 void Assembler::subsd(XMMRegister dst, Address src) {
3491   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3492   if (VM_Version::supports_evex()) {
3493     tuple_type = EVEX_T1S;
3494     input_size_in_bits = EVEX_64bit;
3495   }
3496   emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3497 }
3498 
3499 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3500   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3501   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3502 }
3503 
3504 void Assembler::subss(XMMRegister dst, Address src) {
3505   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3506   if (VM_Version::supports_evex()) {
3507     tuple_type = EVEX_T1S;
3508     input_size_in_bits = EVEX_32bit;
3509   }
3510   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3511 }
3512 
3513 void Assembler::testb(Register dst, int imm8) {
3514   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3515   (void) prefix_and_encode(dst->encoding(), true);
3516   emit_arith_b(0xF6, 0xC0, dst, imm8);
3517 }
3518 
3519 void Assembler::testl(Register dst, int32_t imm32) {
3520   // not using emit_arith because test
3521   // doesn't support sign-extension of
3522   // 8bit operands
3523   int encode = dst->encoding();
3524   if (encode == 0) {
3525     emit_int8((unsigned char)0xA9);
3526   } else {
3527     encode = prefix_and_encode(encode);
3528     emit_int8((unsigned char)0xF7);
3529     emit_int8((unsigned char)(0xC0 | encode));
3530   }
3531   emit_int32(imm32);
3532 }
3533 
3534 void Assembler::testl(Register dst, Register src) {
3535   (void) prefix_and_encode(dst->encoding(), src->encoding());
3536   emit_arith(0x85, 0xC0, dst, src);
3537 }
3538 
3539 void Assembler::testl(Register dst, Address  src) {
3540   InstructionMark im(this);
3541   prefix(src, dst);
3542   emit_int8((unsigned char)0x85);
3543   emit_operand(dst, src);
3544 }
3545 
3546 void Assembler::tzcntl(Register dst, Register src) {
3547   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3548   emit_int8((unsigned char)0xF3);
3549   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3550   emit_int8(0x0F);
3551   emit_int8((unsigned char)0xBC);
3552   emit_int8((unsigned char)0xC0 | encode);
3553 }
3554 
3555 void Assembler::tzcntq(Register dst, Register src) {
3556   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3557   emit_int8((unsigned char)0xF3);
3558   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3559   emit_int8(0x0F);
3560   emit_int8((unsigned char)0xBC);
3561   emit_int8((unsigned char)(0xC0 | encode));
3562 }
3563 
3564 void Assembler::ucomisd(XMMRegister dst, Address src) {
3565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3566   if (VM_Version::supports_evex()) {
3567     tuple_type = EVEX_T1S;
3568     input_size_in_bits = EVEX_64bit;
3569     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3570   } else {
3571     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3572   }
3573 }
3574 
3575 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3576   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3577   if (VM_Version::supports_evex()) {
3578     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3579   } else {
3580     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3581   }
3582 }
3583 
3584 void Assembler::ucomiss(XMMRegister dst, Address src) {
3585   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3586   if (VM_Version::supports_evex()) {
3587     tuple_type = EVEX_T1S;
3588     input_size_in_bits = EVEX_32bit;
3589   }
3590   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3591 }
3592 
3593 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3595   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3596 }
3597 
3598 void Assembler::xabort(int8_t imm8) {
3599   emit_int8((unsigned char)0xC6);
3600   emit_int8((unsigned char)0xF8);
3601   emit_int8((unsigned char)(imm8 & 0xFF));
3602 }
3603 
3604 void Assembler::xaddl(Address dst, Register src) {
3605   InstructionMark im(this);
3606   prefix(dst, src);
3607   emit_int8(0x0F);
3608   emit_int8((unsigned char)0xC1);
3609   emit_operand(src, dst);
3610 }
3611 
3612 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3613   InstructionMark im(this);
3614   relocate(rtype);
3615   if (abort.is_bound()) {
3616     address entry = target(abort);
3617     assert(entry != NULL, "abort entry NULL");
3618     intptr_t offset = entry - pc();
3619     emit_int8((unsigned char)0xC7);
3620     emit_int8((unsigned char)0xF8);
3621     emit_int32(offset - 6); // 2 opcode + 4 address
3622   } else {
3623     abort.add_patch_at(code(), locator());
3624     emit_int8((unsigned char)0xC7);
3625     emit_int8((unsigned char)0xF8);
3626     emit_int32(0);
3627   }
3628 }
3629 
3630 void Assembler::xchgl(Register dst, Address src) { // xchg
3631   InstructionMark im(this);
3632   prefix(src, dst);
3633   emit_int8((unsigned char)0x87);
3634   emit_operand(dst, src);
3635 }
3636 
3637 void Assembler::xchgl(Register dst, Register src) {
3638   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3639   emit_int8((unsigned char)0x87);
3640   emit_int8((unsigned char)(0xC0 | encode));
3641 }
3642 
3643 void Assembler::xend() {
3644   emit_int8((unsigned char)0x0F);
3645   emit_int8((unsigned char)0x01);
3646   emit_int8((unsigned char)0xD5);
3647 }
3648 
3649 void Assembler::xgetbv() {
3650   emit_int8(0x0F);
3651   emit_int8(0x01);
3652   emit_int8((unsigned char)0xD0);
3653 }
3654 
3655 void Assembler::xorl(Register dst, int32_t imm32) {
3656   prefix(dst);
3657   emit_arith(0x81, 0xF0, dst, imm32);
3658 }
3659 
3660 void Assembler::xorl(Register dst, Address src) {
3661   InstructionMark im(this);
3662   prefix(src, dst);
3663   emit_int8(0x33);
3664   emit_operand(dst, src);
3665 }
3666 
3667 void Assembler::xorl(Register dst, Register src) {
3668   (void) prefix_and_encode(dst->encoding(), src->encoding());
3669   emit_arith(0x33, 0xC0, dst, src);
3670 }
3671 
3672 
3673 // AVX 3-operands scalar float-point arithmetic instructions
3674 
3675 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3676   assert(VM_Version::supports_avx(), "");
3677   if (VM_Version::supports_evex()) {
3678     tuple_type = EVEX_T1S;
3679     input_size_in_bits = EVEX_64bit;
3680     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3681   } else {
3682     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3683   }
3684 }
3685 
3686 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3687   assert(VM_Version::supports_avx(), "");
3688   if (VM_Version::supports_evex()) {
3689     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3690   } else {
3691     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3692   }
3693 }
3694 
3695 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3696   assert(VM_Version::supports_avx(), "");
3697   if (VM_Version::supports_evex()) {
3698     tuple_type = EVEX_T1S;
3699     input_size_in_bits = EVEX_32bit;
3700   }
3701   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3702 }
3703 
3704 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3705   assert(VM_Version::supports_avx(), "");
3706   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3707 }
3708 
3709 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3710   assert(VM_Version::supports_avx(), "");
3711   if (VM_Version::supports_evex()) {
3712     tuple_type = EVEX_T1S;
3713     input_size_in_bits = EVEX_64bit;
3714     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3715   } else {
3716     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3717   }
3718 }
3719 
3720 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3721   assert(VM_Version::supports_avx(), "");
3722   if (VM_Version::supports_evex()) {
3723     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3724   } else {
3725     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3726   }
3727 }
3728 
3729 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3730   assert(VM_Version::supports_avx(), "");
3731   if (VM_Version::supports_evex()) {
3732     tuple_type = EVEX_T1S;
3733     input_size_in_bits = EVEX_32bit;
3734   }
3735   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3736 }
3737 
3738 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3739   assert(VM_Version::supports_avx(), "");
3740   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3741 }
3742 
3743 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3744   assert(VM_Version::supports_avx(), "");
3745   if (VM_Version::supports_evex()) {
3746     tuple_type = EVEX_T1S;
3747     input_size_in_bits = EVEX_64bit;
3748     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3749   } else {
3750     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3751   }
3752 }
3753 
3754 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3755   assert(VM_Version::supports_avx(), "");
3756   if (VM_Version::supports_evex()) {
3757     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3758   } else {
3759     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3760   }
3761 }
3762 
3763 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3764   assert(VM_Version::supports_avx(), "");
3765   if (VM_Version::supports_evex()) {
3766     tuple_type = EVEX_T1S;
3767     input_size_in_bits = EVEX_32bit;
3768   }
3769   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3770 }
3771 
3772 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3773   assert(VM_Version::supports_avx(), "");
3774   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3775 }
3776 
3777 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3778   assert(VM_Version::supports_avx(), "");
3779   if (VM_Version::supports_evex()) {
3780     tuple_type = EVEX_T1S;
3781     input_size_in_bits = EVEX_64bit;
3782     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3783   } else {
3784     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3785   }
3786 }
3787 
3788 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3789   assert(VM_Version::supports_avx(), "");
3790   if (VM_Version::supports_evex()) {
3791     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3792   } else {
3793     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3794   }
3795 }
3796 
3797 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3798   assert(VM_Version::supports_avx(), "");
3799   if (VM_Version::supports_evex()) {
3800     tuple_type = EVEX_T1S;
3801     input_size_in_bits = EVEX_32bit;
3802   }
3803   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3804 }
3805 
3806 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3807   assert(VM_Version::supports_avx(), "");
3808   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3809 }
3810 
3811 //====================VECTOR ARITHMETIC=====================================
3812 
3813 // Float-point vector arithmetic
3814 
3815 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3816   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3817   if (VM_Version::supports_evex()) {
3818     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3819   } else {
3820     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3821   }
3822 }
3823 
3824 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3825   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3826   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3827 }
3828 
3829 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3830   assert(VM_Version::supports_avx(), "");
3831   if (VM_Version::supports_evex()) {
3832     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3833   } else {
3834     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3835   }
3836 }
3837 
3838 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3839   assert(VM_Version::supports_avx(), "");
3840   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3841 }
3842 
3843 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3844   assert(VM_Version::supports_avx(), "");
3845   if (VM_Version::supports_evex()) {
3846     tuple_type = EVEX_FV;
3847     input_size_in_bits = EVEX_64bit;
3848     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3849   } else {
3850     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3851   }
3852 }
3853 
3854 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3855   assert(VM_Version::supports_avx(), "");
3856   if (VM_Version::supports_evex()) {
3857     tuple_type = EVEX_FV;
3858     input_size_in_bits = EVEX_32bit;
3859   }
3860   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3861 }
3862 
3863 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3864   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3865   if (VM_Version::supports_evex()) {
3866     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
3867   } else {
3868     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3869   }
3870 }
3871 
3872 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3873   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3874   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3875 }
3876 
3877 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3878   assert(VM_Version::supports_avx(), "");
3879   if (VM_Version::supports_evex()) {
3880     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3881   } else {
3882     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3883   }
3884 }
3885 
3886 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3887   assert(VM_Version::supports_avx(), "");
3888   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3889 }
3890 
3891 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3892   assert(VM_Version::supports_avx(), "");
3893   if (VM_Version::supports_evex()) {
3894     tuple_type = EVEX_FV;
3895     input_size_in_bits = EVEX_64bit;
3896     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3897   } else {
3898     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3899   }
3900 }
3901 
3902 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3903   assert(VM_Version::supports_avx(), "");
3904   if (VM_Version::supports_evex()) {
3905     tuple_type = EVEX_FV;
3906     input_size_in_bits = EVEX_32bit;
3907   }
3908   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3909 }
3910 
3911 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3912   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3913   if (VM_Version::supports_evex()) {
3914     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3915   } else {
3916     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3917   }
3918 }
3919 
3920 void Assembler::mulpd(XMMRegister dst, Address src) {
3921   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3922   if (VM_Version::supports_evex()) {
3923     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3924   } else {
3925     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3926   }
3927 }
3928 
3929 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3930   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3931   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3932 }
3933 
3934 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3935   assert(VM_Version::supports_avx(), "");
3936   if (VM_Version::supports_evex()) {
3937     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3938   } else {
3939     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3940   }
3941 }
3942 
3943 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3944   assert(VM_Version::supports_avx(), "");
3945   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3946 }
3947 
3948 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3949   assert(VM_Version::supports_avx(), "");
3950   if (VM_Version::supports_evex()) {
3951     tuple_type = EVEX_FV;
3952     input_size_in_bits = EVEX_64bit;
3953     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3954   } else {
3955     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3956   }
3957 }
3958 
3959 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3960   assert(VM_Version::supports_avx(), "");
3961   if (VM_Version::supports_evex()) {
3962     tuple_type = EVEX_FV;
3963     input_size_in_bits = EVEX_32bit;
3964   }
3965   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3966 }
3967 
3968 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3970   if (VM_Version::supports_evex()) {
3971     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
3972   } else {
3973     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3974   }
3975 }
3976 
3977 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3978   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3979   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3980 }
3981 
3982 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3983   assert(VM_Version::supports_avx(), "");
3984   if (VM_Version::supports_evex()) {
3985     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3986   } else {
3987     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3988   }
3989 }
3990 
3991 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3992   assert(VM_Version::supports_avx(), "");
3993   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3994 }
3995 
3996 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3997   assert(VM_Version::supports_avx(), "");
3998   if (VM_Version::supports_evex()) {
3999     tuple_type = EVEX_FV;
4000     input_size_in_bits = EVEX_64bit;
4001     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4002   } else {
4003     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4004   }
4005 }
4006 
4007 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4008   assert(VM_Version::supports_avx(), "");
4009   if (VM_Version::supports_evex()) {
4010     tuple_type = EVEX_FV;
4011     input_size_in_bits = EVEX_32bit;
4012   }
4013   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
4014 }
4015 
4016 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4017   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4018   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4019     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4020   } else {
4021     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4022   }
4023 }
4024 
4025 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4026   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4027   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
4028                   (VM_Version::supports_avx512dq() == false));
4029 }
4030 
4031 void Assembler::andps(XMMRegister dst, Address src) {
4032   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4033   if (VM_Version::supports_evex()) {
4034     tuple_type = EVEX_FV;
4035     input_size_in_bits = EVEX_32bit;
4036   }
4037   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
4038                   false, (VM_Version::supports_avx512dq() == false));
4039 }
4040 
4041 void Assembler::andpd(XMMRegister dst, Address src) {
4042   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4043   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4044     tuple_type = EVEX_FV;
4045     input_size_in_bits = EVEX_64bit;
4046     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4047   } else {
4048     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4049   }
4050 }
4051 
4052 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4053   assert(VM_Version::supports_avx(), "");
4054   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4055     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4056   } else {
4057     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4058   }
4059 }
4060 
4061 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4062   assert(VM_Version::supports_avx(), "");
4063   bool legacy_mode = (VM_Version::supports_avx512dq() == false);
4064   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
4065 }
4066 
4067 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4068   assert(VM_Version::supports_avx(), "");
4069   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4070     tuple_type = EVEX_FV;
4071     input_size_in_bits = EVEX_64bit;
4072     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4073   } else {
4074     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4075   }
4076 }
4077 
4078 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4079   assert(VM_Version::supports_avx(), "");
4080   if (VM_Version::supports_evex()) {
4081     tuple_type = EVEX_FV;
4082     input_size_in_bits = EVEX_32bit;
4083   }
4084   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
4085                  (VM_Version::supports_avx512dq() == false));
4086 }
4087 
4088 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4089   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4090   if (VM_Version::supports_evex()) {
4091     emit_simd_arith_q(0x15, dst, src, VEX_SIMD_66);
4092   } else {
4093     emit_simd_arith(0x15, dst, src, VEX_SIMD_66);
4094   }
4095 }
4096 
4097 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4099   if (VM_Version::supports_evex()) {
4100     emit_simd_arith_q(0x14, dst, src, VEX_SIMD_66);
4101   } else {
4102     emit_simd_arith(0x14, dst, src, VEX_SIMD_66);
4103   }
4104 }
4105 
4106 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4107   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4108   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4109     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4110   } else {
4111     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4112   }
4113 }
4114 
4115 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4116   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4117   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
4118                   false, (VM_Version::supports_avx512dq() == false));
4119 }
4120 
4121 void Assembler::xorpd(XMMRegister dst, Address src) {
4122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4123   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4124     tuple_type = EVEX_FV;
4125     input_size_in_bits = EVEX_64bit;
4126     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4127   } else {
4128     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4129   }
4130 }
4131 
4132 void Assembler::xorps(XMMRegister dst, Address src) {
4133   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4134   if (VM_Version::supports_evex()) {
4135     tuple_type = EVEX_FV;
4136     input_size_in_bits = EVEX_32bit;
4137   }
4138   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
4139                   (VM_Version::supports_avx512dq() == false));
4140 }
4141 
4142 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4143   assert(VM_Version::supports_avx(), "");
4144   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4145     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4146   } else {
4147     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4148   }
4149 }
4150 
4151 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4152   assert(VM_Version::supports_avx(), "");
4153   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4154                  (VM_Version::supports_avx512dq() == false));
4155 }
4156 
4157 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4158   assert(VM_Version::supports_avx(), "");
4159   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4160     tuple_type = EVEX_FV;
4161     input_size_in_bits = EVEX_64bit;
4162     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4163   } else {
4164     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4165   }
4166 }
4167 
4168 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4169   assert(VM_Version::supports_avx(), "");
4170   if (VM_Version::supports_evex()) {
4171     tuple_type = EVEX_FV;
4172     input_size_in_bits = EVEX_32bit;
4173   }
4174   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4175                  (VM_Version::supports_avx512dq() == false));
4176 }
4177 
4178 // Integer vector arithmetic
4179 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4180   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4181          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4182   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4183                                      VEX_OPCODE_0F_38, true, false);
4184   emit_int8(0x01);
4185   emit_int8((unsigned char)(0xC0 | encode));
4186 }
4187 
4188 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4189   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4190          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4191   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4192                                      VEX_OPCODE_0F_38, true, false);
4193   emit_int8(0x02);
4194   emit_int8((unsigned char)(0xC0 | encode));
4195 }
4196 
4197 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4198   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4199   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
4200 }
4201 
4202 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4203   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4204   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
4205 }
4206 
4207 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4208   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4209   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4210 }
4211 
4212 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4213   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4214   if (VM_Version::supports_evex()) {
4215     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4216   } else {
4217     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4218   }
4219 }
4220 
4221 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4222   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4223   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4224                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4225   emit_int8(0x01);
4226   emit_int8((unsigned char)(0xC0 | encode));
4227 }
4228 
4229 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4230   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4231   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4232                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4233   emit_int8(0x02);
4234   emit_int8((unsigned char)(0xC0 | encode));
4235 }
4236 
4237 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4238   assert(UseAVX > 0, "requires some form of AVX");
4239   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
4240                  (VM_Version::supports_avx512bw() == false));
4241 }
4242 
4243 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4244   assert(UseAVX > 0, "requires some form of AVX");
4245   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
4246                  (VM_Version::supports_avx512bw() == false));
4247 }
4248 
4249 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4250   assert(UseAVX > 0, "requires some form of AVX");
4251   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4252 }
4253 
4254 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4255   assert(UseAVX > 0, "requires some form of AVX");
4256   if (VM_Version::supports_evex()) {
4257     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4258   } else {
4259     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4260   }
4261 }
4262 
4263 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4264   assert(UseAVX > 0, "requires some form of AVX");
4265   if (VM_Version::supports_evex()) {
4266     tuple_type = EVEX_FVM;
4267   }
4268   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
4269 }
4270 
4271 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4272   assert(UseAVX > 0, "requires some form of AVX");
4273   if (VM_Version::supports_evex()) {
4274     tuple_type = EVEX_FVM;
4275   }
4276   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
4277 }
4278 
4279 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4280   assert(UseAVX > 0, "requires some form of AVX");
4281   if (VM_Version::supports_evex()) {
4282     tuple_type = EVEX_FV;
4283     input_size_in_bits = EVEX_32bit;
4284   }
4285   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4286 }
4287 
4288 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4289   assert(UseAVX > 0, "requires some form of AVX");
4290   if (VM_Version::supports_evex()) {
4291     tuple_type = EVEX_FV;
4292     input_size_in_bits = EVEX_64bit;
4293     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4294   } else {
4295     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4296   }
4297 }
4298 
4299 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4300   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4301   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
4302 }
4303 
4304 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4306   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
4307 }
4308 
4309 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4311   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4312 }
4313 
4314 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4315   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4316   if (VM_Version::supports_evex()) {
4317     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4318   } else {
4319     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4320   }
4321 }
4322 
4323 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4324   assert(UseAVX > 0, "requires some form of AVX");
4325   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4326                  (VM_Version::supports_avx512bw() == false));
4327 }
4328 
4329 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4330   assert(UseAVX > 0, "requires some form of AVX");
4331   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4332                  (VM_Version::supports_avx512bw() == false));
4333 }
4334 
4335 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4336   assert(UseAVX > 0, "requires some form of AVX");
4337   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4338 }
4339 
4340 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4341   assert(UseAVX > 0, "requires some form of AVX");
4342   if (VM_Version::supports_evex()) {
4343     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4344   } else {
4345     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4346   }
4347 }
4348 
4349 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4350   assert(UseAVX > 0, "requires some form of AVX");
4351   if (VM_Version::supports_evex()) {
4352     tuple_type = EVEX_FVM;
4353   }
4354   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4355                  (VM_Version::supports_avx512bw() == false));
4356 }
4357 
4358 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4359   assert(UseAVX > 0, "requires some form of AVX");
4360   if (VM_Version::supports_evex()) {
4361     tuple_type = EVEX_FVM;
4362   }
4363   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4364                  (VM_Version::supports_avx512bw() == false));
4365 }
4366 
4367 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4368   assert(UseAVX > 0, "requires some form of AVX");
4369   if (VM_Version::supports_evex()) {
4370     tuple_type = EVEX_FV;
4371     input_size_in_bits = EVEX_32bit;
4372   }
4373   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4374 }
4375 
4376 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4377   assert(UseAVX > 0, "requires some form of AVX");
4378   if (VM_Version::supports_evex()) {
4379     tuple_type = EVEX_FV;
4380     input_size_in_bits = EVEX_64bit;
4381     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4382   } else {
4383     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4384   }
4385 }
4386 
4387 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4388   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4389   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
4390                   (VM_Version::supports_avx512bw() == false));
4391 }
4392 
4393 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4394   assert(VM_Version::supports_sse4_1(), "");
4395   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4396                                       false, VEX_OPCODE_0F_38);
4397   emit_int8(0x40);
4398   emit_int8((unsigned char)(0xC0 | encode));
4399 }
4400 
4401 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4402   assert(UseAVX > 0, "requires some form of AVX");
4403   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
4404                  (VM_Version::supports_avx512bw() == false));
4405 }
4406 
4407 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4408   assert(UseAVX > 0, "requires some form of AVX");
4409   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4410                                      vector_len, VEX_OPCODE_0F_38);
4411   emit_int8(0x40);
4412   emit_int8((unsigned char)(0xC0 | encode));
4413 }
4414 
4415 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4416   assert(UseAVX > 2, "requires some form of AVX");
4417   int src_enc = src->encoding();
4418   int dst_enc = dst->encoding();
4419   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4420   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4421                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
4422   emit_int8(0x40);
4423   emit_int8((unsigned char)(0xC0 | encode));
4424 }
4425 
4426 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4427   assert(UseAVX > 0, "requires some form of AVX");
4428   if (VM_Version::supports_evex()) {
4429     tuple_type = EVEX_FVM;
4430   }
4431   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
4432 }
4433 
4434 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4435   assert(UseAVX > 0, "requires some form of AVX");
4436   if (VM_Version::supports_evex()) {
4437     tuple_type = EVEX_FV;
4438     input_size_in_bits = EVEX_32bit;
4439   }
4440   InstructionMark im(this);
4441   int dst_enc = dst->encoding();
4442   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4443   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4444              VEX_OPCODE_0F_38, false, vector_len);
4445   emit_int8(0x40);
4446   emit_operand(dst, src);
4447 }
4448 
4449 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4450   assert(UseAVX > 0, "requires some form of AVX");
4451   if (VM_Version::supports_evex()) {
4452     tuple_type = EVEX_FV;
4453     input_size_in_bits = EVEX_64bit;
4454   }
4455   InstructionMark im(this);
4456   int dst_enc = dst->encoding();
4457   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4458   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
4459   emit_int8(0x40);
4460   emit_operand(dst, src);
4461 }
4462 
4463 // Shift packed integers left by specified number of bits.
4464 void Assembler::psllw(XMMRegister dst, int shift) {
4465   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4466   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4467   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4468                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
4469   emit_int8(0x71);
4470   emit_int8((unsigned char)(0xC0 | encode));
4471   emit_int8(shift & 0xFF);
4472 }
4473 
4474 void Assembler::pslld(XMMRegister dst, int shift) {
4475   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4476   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4477   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
4478   emit_int8(0x72);
4479   emit_int8((unsigned char)(0xC0 | encode));
4480   emit_int8(shift & 0xFF);
4481 }
4482 
4483 void Assembler::psllq(XMMRegister dst, int shift) {
4484   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4485   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4486   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4487   emit_int8(0x73);
4488   emit_int8((unsigned char)(0xC0 | encode));
4489   emit_int8(shift & 0xFF);
4490 }
4491 
4492 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4493   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4494   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
4495                   (VM_Version::supports_avx512bw() == false));
4496 }
4497 
4498 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4499   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4500   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4501 }
4502 
4503 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4504   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4505   if (VM_Version::supports_evex()) {
4506     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4507   } else {
4508     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4509   }
4510 }
4511 
4512 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4513   assert(UseAVX > 0, "requires some form of AVX");
4514   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4515   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
4516                  (VM_Version::supports_avx512bw() == false));
4517   emit_int8(shift & 0xFF);
4518 }
4519 
4520 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4521   assert(UseAVX > 0, "requires some form of AVX");
4522   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4523   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4524   emit_int8(shift & 0xFF);
4525 }
4526 
4527 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4528   assert(UseAVX > 0, "requires some form of AVX");
4529   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4530   if (VM_Version::supports_evex()) {
4531     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4532   } else {
4533     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4534   }
4535   emit_int8(shift & 0xFF);
4536 }
4537 
4538 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4539   assert(UseAVX > 0, "requires some form of AVX");
4540   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
4541                  (VM_Version::supports_avx512bw() == false));
4542 }
4543 
4544 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4545   assert(UseAVX > 0, "requires some form of AVX");
4546   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4547 }
4548 
4549 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4550   assert(UseAVX > 0, "requires some form of AVX");
4551   if (VM_Version::supports_evex()) {
4552     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4553   } else {
4554     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4555   }
4556 }
4557 
4558 // Shift packed integers logically right by specified number of bits.
4559 void Assembler::psrlw(XMMRegister dst, int shift) {
4560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4561   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4562   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4563                                       (VM_Version::supports_avx512bw() == false));
4564   emit_int8(0x71);
4565   emit_int8((unsigned char)(0xC0 | encode));
4566   emit_int8(shift & 0xFF);
4567 }
4568 
4569 void Assembler::psrld(XMMRegister dst, int shift) {
4570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4571   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4572   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
4573   emit_int8(0x72);
4574   emit_int8((unsigned char)(0xC0 | encode));
4575   emit_int8(shift & 0xFF);
4576 }
4577 
4578 void Assembler::psrlq(XMMRegister dst, int shift) {
4579   // Do not confuse it with psrldq SSE2 instruction which
4580   // shifts 128 bit value in xmm register by number of bytes.
4581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4582   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4583   int encode = 0;
4584   if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
4585     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
4586   } else {
4587     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4588   }
4589   emit_int8(0x73);
4590   emit_int8((unsigned char)(0xC0 | encode));
4591   emit_int8(shift & 0xFF);
4592 }
4593 
4594 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4595   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4596   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
4597                   (VM_Version::supports_avx512bw() == false));
4598 }
4599 
4600 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4601   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4602   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4603 }
4604 
4605 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4606   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4607   if (VM_Version::supports_evex()) {
4608     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4609   } else {
4610     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4611   }
4612 }
4613 
4614 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4615   assert(UseAVX > 0, "requires some form of AVX");
4616   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4617   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
4618                  (VM_Version::supports_avx512bw() == false));
4619   emit_int8(shift & 0xFF);
4620 }
4621 
4622 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4623   assert(UseAVX > 0, "requires some form of AVX");
4624   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4625   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4626   emit_int8(shift & 0xFF);
4627 }
4628 
4629 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4630   assert(UseAVX > 0, "requires some form of AVX");
4631   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4632   if (VM_Version::supports_evex()) {
4633     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4634   } else {
4635     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4636   }
4637   emit_int8(shift & 0xFF);
4638 }
4639 
4640 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4641   assert(UseAVX > 0, "requires some form of AVX");
4642   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
4643                  (VM_Version::supports_avx512bw() == false));
4644 }
4645 
4646 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4647   assert(UseAVX > 0, "requires some form of AVX");
4648   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4649 }
4650 
4651 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4652   assert(UseAVX > 0, "requires some form of AVX");
4653   if (VM_Version::supports_evex()) {
4654     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4655   } else {
4656     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4657   }
4658 }
4659 
4660 // Shift packed integers arithmetically right by specified number of bits.
4661 void Assembler::psraw(XMMRegister dst, int shift) {
4662   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4663   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4664   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4665                                       (VM_Version::supports_avx512bw() == false));
4666   emit_int8(0x71);
4667   emit_int8((unsigned char)(0xC0 | encode));
4668   emit_int8(shift & 0xFF);
4669 }
4670 
4671 void Assembler::psrad(XMMRegister dst, int shift) {
4672   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4673   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4674   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
4675   emit_int8(0x72);
4676   emit_int8((unsigned char)(0xC0 | encode));
4677   emit_int8(shift & 0xFF);
4678 }
4679 
4680 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4682   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
4683                   (VM_Version::supports_avx512bw() == false));
4684 }
4685 
4686 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4688   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4689 }
4690 
4691 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4692   assert(UseAVX > 0, "requires some form of AVX");
4693   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4694   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
4695                  (VM_Version::supports_avx512bw() == false));
4696   emit_int8(shift & 0xFF);
4697 }
4698 
4699 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4700   assert(UseAVX > 0, "requires some form of AVX");
4701   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4702   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4703   emit_int8(shift & 0xFF);
4704 }
4705 
4706 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4707   assert(UseAVX > 0, "requires some form of AVX");
4708   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
4709                  (VM_Version::supports_avx512bw() == false));
4710 }
4711 
4712 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4713   assert(UseAVX > 0, "requires some form of AVX");
4714   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4715 }
4716 
4717 
4718 // AND packed integers
4719 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4720   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4721   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4722 }
4723 
4724 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
4725   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4726   if (VM_Version::supports_evex()) {
4727     emit_simd_arith_q(0xDF, dst, src, VEX_SIMD_66);
4728   } else {
4729     emit_simd_arith(0xDF, dst, src, VEX_SIMD_66);
4730   }
4731 }
4732 
4733 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4734   assert(UseAVX > 0, "requires some form of AVX");
4735   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4736 }
4737 
4738 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4739   assert(UseAVX > 0, "requires some form of AVX");
4740   if (VM_Version::supports_evex()) {
4741     tuple_type = EVEX_FV;
4742     input_size_in_bits = EVEX_32bit;
4743   }
4744   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4745 }
4746 
4747 void Assembler::por(XMMRegister dst, XMMRegister src) {
4748   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4749   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4750 }
4751 
4752 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4753   assert(UseAVX > 0, "requires some form of AVX");
4754   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4755 }
4756 
4757 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4758   assert(UseAVX > 0, "requires some form of AVX");
4759   if (VM_Version::supports_evex()) {
4760     tuple_type = EVEX_FV;
4761     input_size_in_bits = EVEX_32bit;
4762   }
4763   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4764 }
4765 
4766 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4767   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4768   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4769 }
4770 
4771 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4772   assert(UseAVX > 0, "requires some form of AVX");
4773   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4774 }
4775 
4776 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4777   assert(UseAVX > 0, "requires some form of AVX");
4778   if (VM_Version::supports_evex()) {
4779     tuple_type = EVEX_FV;
4780     input_size_in_bits = EVEX_32bit;
4781   }
4782   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4783 }
4784 
4785 
4786 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4787   assert(VM_Version::supports_avx(), "");
4788   int vector_len = AVX_256bit;
4789   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4790   emit_int8(0x18);
4791   emit_int8((unsigned char)(0xC0 | encode));
4792   // 0x00 - insert into lower 128 bits
4793   // 0x01 - insert into upper 128 bits
4794   emit_int8(0x01);
4795 }
4796 
4797 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4798   assert(VM_Version::supports_evex(), "");
4799   int vector_len = AVX_512bit;
4800   int src_enc = src->encoding();
4801   int dst_enc = dst->encoding();
4802   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4803   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4804                                      VEX_OPCODE_0F_3A, true, vector_len, false, false);
4805   emit_int8(0x1A);
4806   emit_int8((unsigned char)(0xC0 | encode));
4807   // 0x00 - insert into lower 256 bits
4808   // 0x01 - insert into upper 256 bits
4809   emit_int8(0x01);
4810 }
4811 
4812 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
4813   assert(VM_Version::supports_avx(), "");
4814   if (VM_Version::supports_evex()) {
4815     tuple_type = EVEX_T4;
4816     input_size_in_bits = EVEX_64bit;
4817   }
4818   InstructionMark im(this);
4819   int vector_len = AVX_512bit;
4820   assert(dst != xnoreg, "sanity");
4821   int dst_enc = dst->encoding();
4822   // swap src<->dst for encoding
4823   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
4824   emit_int8(0x1A);
4825   emit_operand(dst, src);
4826   // 0x01 - insert into upper 128 bits
4827   emit_int8(0x01);
4828 }
4829 
4830 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
4831   assert(VM_Version::supports_avx(), "");
4832   if (VM_Version::supports_evex()) {
4833     tuple_type = EVEX_T4;
4834     input_size_in_bits = EVEX_32bit;
4835   }
4836   InstructionMark im(this);
4837   int vector_len = AVX_256bit;
4838   assert(dst != xnoreg, "sanity");
4839   int dst_enc = dst->encoding();
4840   // swap src<->dst for encoding
4841   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4842   emit_int8(0x18);
4843   emit_operand(dst, src);
4844   // 0x01 - insert into upper 128 bits
4845   emit_int8(0x01);
4846 }
4847 
4848 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
4849   assert(VM_Version::supports_avx(), "");
4850   int vector_len = AVX_256bit;
4851   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4852   emit_int8(0x19);
4853   emit_int8((unsigned char)(0xC0 | encode));
4854   // 0x00 - insert into lower 128 bits
4855   // 0x01 - insert into upper 128 bits
4856   emit_int8(0x01);
4857 }
4858 
4859 void Assembler::vextractf128h(Address dst, XMMRegister src) {
4860   assert(VM_Version::supports_avx(), "");
4861   if (VM_Version::supports_evex()) {
4862     tuple_type = EVEX_T4;
4863     input_size_in_bits = EVEX_32bit;
4864   }
4865   InstructionMark im(this);
4866   int vector_len = AVX_256bit;
4867   assert(src != xnoreg, "sanity");
4868   int src_enc = src->encoding();
4869   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4870   emit_int8(0x19);
4871   emit_operand(src, dst);
4872   // 0x01 - extract from upper 128 bits
4873   emit_int8(0x01);
4874 }
4875 
4876 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4877   assert(VM_Version::supports_avx2(), "");
4878   int vector_len = AVX_256bit;
4879   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4880   emit_int8(0x38);
4881   emit_int8((unsigned char)(0xC0 | encode));
4882   // 0x00 - insert into lower 128 bits
4883   // 0x01 - insert into upper 128 bits
4884   emit_int8(0x01);
4885 }
4886 
4887 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4888   assert(VM_Version::supports_evex(), "");
4889   int vector_len = AVX_512bit;
4890   int src_enc = src->encoding();
4891   int dst_enc = dst->encoding();
4892   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4893   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4894                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4895   emit_int8(0x38);
4896   emit_int8((unsigned char)(0xC0 | encode));
4897   // 0x00 - insert into lower 256 bits
4898   // 0x01 - insert into upper 256 bits
4899   emit_int8(0x01);
4900 }
4901 
4902 void Assembler::vinserti128h(XMMRegister dst, Address src) {
4903   assert(VM_Version::supports_avx2(), "");
4904   if (VM_Version::supports_evex()) {
4905     tuple_type = EVEX_T4;
4906     input_size_in_bits = EVEX_32bit;
4907   }
4908   InstructionMark im(this);
4909   int vector_len = AVX_256bit;
4910   assert(dst != xnoreg, "sanity");
4911   int dst_enc = dst->encoding();
4912   // swap src<->dst for encoding
4913   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4914   emit_int8(0x38);
4915   emit_operand(dst, src);
4916   // 0x01 - insert into upper 128 bits
4917   emit_int8(0x01);
4918 }
4919 
4920 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
4921   assert(VM_Version::supports_avx(), "");
4922   int vector_len = AVX_256bit;
4923   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4924   emit_int8(0x39);
4925   emit_int8((unsigned char)(0xC0 | encode));
4926   // 0x00 - insert into lower 128 bits
4927   // 0x01 - insert into upper 128 bits
4928   emit_int8(0x01);
4929 }
4930 
4931 void Assembler::vextracti128h(Address dst, XMMRegister src) {
4932   assert(VM_Version::supports_avx2(), "");
4933   if (VM_Version::supports_evex()) {
4934     tuple_type = EVEX_T4;
4935     input_size_in_bits = EVEX_32bit;
4936   }
4937   InstructionMark im(this);
4938   int vector_len = AVX_256bit;
4939   assert(src != xnoreg, "sanity");
4940   int src_enc = src->encoding();
4941   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4942   emit_int8(0x39);
4943   emit_operand(src, dst);
4944   // 0x01 - extract from upper 128 bits
4945   emit_int8(0x01);
4946 }
4947 
4948 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
4949   assert(VM_Version::supports_evex(), "");
4950   int vector_len = AVX_512bit;
4951   int src_enc = src->encoding();
4952   int dst_enc = dst->encoding();
4953   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4954                                      true, vector_len, false, false);
4955   emit_int8(0x3B);
4956   emit_int8((unsigned char)(0xC0 | encode));
4957   // 0x01 - extract from upper 256 bits
4958   emit_int8(0x01);
4959 }
4960 
4961 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
4962   assert(VM_Version::supports_evex(), "");
4963   int vector_len = AVX_512bit;
4964   int src_enc = src->encoding();
4965   int dst_enc = dst->encoding();
4966   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4967                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4968   emit_int8(0x39);
4969   emit_int8((unsigned char)(0xC0 | encode));
4970   // 0x01 - extract from bits 255:128
4971   // 0x02 - extract from bits 383:256
4972   // 0x03 - extract from bits 511:384
4973   emit_int8(value & 0x3);
4974 }
4975 
4976 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
4977   assert(VM_Version::supports_evex(), "");
4978   int vector_len = AVX_512bit;
4979   int src_enc = src->encoding();
4980   int dst_enc = dst->encoding();
4981   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4982                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4983   emit_int8(0x1B);
4984   emit_int8((unsigned char)(0xC0 | encode));
4985   // 0x01 - extract from upper 256 bits
4986   emit_int8(0x01);
4987 }
4988 
4989 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
4990   assert(VM_Version::supports_avx2(), "");
4991   tuple_type = EVEX_T4;
4992   input_size_in_bits = EVEX_64bit;
4993   InstructionMark im(this);
4994   int vector_len = AVX_512bit;
4995   assert(src != xnoreg, "sanity");
4996   int src_enc = src->encoding();
4997   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4998              VM_Version::supports_avx512dq(), vector_len);
4999   emit_int8(0x1B);
5000   emit_operand(src, dst);
5001   // 0x01 - extract from upper 128 bits
5002   emit_int8(0x01);
5003 }
5004 
5005 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
5006   assert(VM_Version::supports_evex(), "");
5007   int vector_len = AVX_512bit;
5008   int src_enc = src->encoding();
5009   int dst_enc = dst->encoding();
5010   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
5011                                      VEX_OPCODE_0F_3A, false, vector_len, false, false);
5012   emit_int8(0x19);
5013   emit_int8((unsigned char)(0xC0 | encode));
5014   // 0x01 - extract from bits 255:128
5015   // 0x02 - extract from bits 383:256
5016   // 0x03 - extract from bits 511:384
5017   emit_int8(value & 0x3);
5018 }
5019 
5020 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
5021   assert(VM_Version::supports_evex(), "");
5022   int vector_len = AVX_512bit;
5023   int src_enc = src->encoding();
5024   int dst_enc = dst->encoding();
5025   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5026                                      VM_Version::supports_avx512dq(), vector_len, false, false);
5027   emit_int8(0x19);
5028   emit_int8((unsigned char)(0xC0 | encode));
5029   // 0x01 - extract from bits 255:128
5030   // 0x02 - extract from bits 383:256
5031   // 0x03 - extract from bits 511:384
5032   emit_int8(value & 0x3);
5033 }
5034 
5035 // duplicate 4-bytes integer data from src into 8 locations in dest
5036 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
5037   assert(VM_Version::supports_avx2(), "");
5038   int vector_len = AVX_256bit;
5039   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5040                                      vector_len, VEX_OPCODE_0F_38, false);
5041   emit_int8(0x58);
5042   emit_int8((unsigned char)(0xC0 | encode));
5043 }
5044 
5045 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5046 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
5047   assert(VM_Version::supports_evex(), "");
5048   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5049                                      vector_len, VEX_OPCODE_0F_38, false);
5050   emit_int8(0x78);
5051   emit_int8((unsigned char)(0xC0 | encode));
5052 }
5053 
5054 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5055   assert(VM_Version::supports_evex(), "");
5056   tuple_type = EVEX_T1S;
5057   input_size_in_bits = EVEX_8bit;
5058   InstructionMark im(this);
5059   assert(dst != xnoreg, "sanity");
5060   int dst_enc = dst->encoding();
5061   // swap src<->dst for encoding
5062   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5063   emit_int8(0x78);
5064   emit_operand(dst, src);
5065 }
5066 
5067 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5068 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5069   assert(VM_Version::supports_evex(), "");
5070   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5071                                      vector_len, VEX_OPCODE_0F_38, false);
5072   emit_int8(0x79);
5073   emit_int8((unsigned char)(0xC0 | encode));
5074 }
5075 
5076 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5077   assert(VM_Version::supports_evex(), "");
5078   tuple_type = EVEX_T1S;
5079   input_size_in_bits = EVEX_16bit;
5080   InstructionMark im(this);
5081   assert(dst != xnoreg, "sanity");
5082   int dst_enc = dst->encoding();
5083   // swap src<->dst for encoding
5084   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5085   emit_int8(0x79);
5086   emit_operand(dst, src);
5087 }
5088 
5089 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5090 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5091   assert(VM_Version::supports_evex(), "");
5092   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5093                                      vector_len, VEX_OPCODE_0F_38, false);
5094   emit_int8(0x58);
5095   emit_int8((unsigned char)(0xC0 | encode));
5096 }
5097 
5098 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5099   assert(VM_Version::supports_evex(), "");
5100   tuple_type = EVEX_T1S;
5101   input_size_in_bits = EVEX_32bit;
5102   InstructionMark im(this);
5103   assert(dst != xnoreg, "sanity");
5104   int dst_enc = dst->encoding();
5105   // swap src<->dst for encoding
5106   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5107   emit_int8(0x58);
5108   emit_operand(dst, src);
5109 }
5110 
5111 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5112 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5113   assert(VM_Version::supports_evex(), "");
5114   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5115                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5116   emit_int8(0x59);
5117   emit_int8((unsigned char)(0xC0 | encode));
5118 }
5119 
5120 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5121   assert(VM_Version::supports_evex(), "");
5122   tuple_type = EVEX_T1S;
5123   input_size_in_bits = EVEX_64bit;
5124   InstructionMark im(this);
5125   assert(dst != xnoreg, "sanity");
5126   int dst_enc = dst->encoding();
5127   // swap src<->dst for encoding
5128   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5129   emit_int8(0x59);
5130   emit_operand(dst, src);
5131 }
5132 
5133 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5134 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5135   assert(VM_Version::supports_evex(), "");
5136   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5137                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5138   emit_int8(0x18);
5139   emit_int8((unsigned char)(0xC0 | encode));
5140 }
5141 
5142 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5143   assert(VM_Version::supports_evex(), "");
5144   tuple_type = EVEX_T1S;
5145   input_size_in_bits = EVEX_32bit;
5146   InstructionMark im(this);
5147   assert(dst != xnoreg, "sanity");
5148   int dst_enc = dst->encoding();
5149   // swap src<->dst for encoding
5150   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5151   emit_int8(0x18);
5152   emit_operand(dst, src);
5153 }
5154 
5155 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5156 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5157   assert(VM_Version::supports_evex(), "");
5158   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5159                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5160   emit_int8(0x19);
5161   emit_int8((unsigned char)(0xC0 | encode));
5162 }
5163 
5164 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5165   assert(VM_Version::supports_evex(), "");
5166   tuple_type = EVEX_T1S;
5167   input_size_in_bits = EVEX_64bit;
5168   InstructionMark im(this);
5169   assert(dst != xnoreg, "sanity");
5170   int dst_enc = dst->encoding();
5171   // swap src<->dst for encoding
5172   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5173   emit_int8(0x19);
5174   emit_operand(dst, src);
5175 }
5176 
5177 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5178 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5179   assert(VM_Version::supports_evex(), "");
5180   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5181                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5182   emit_int8(0x7A);
5183   emit_int8((unsigned char)(0xC0 | encode));
5184 }
5185 
5186 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5187 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5188   assert(VM_Version::supports_evex(), "");
5189   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5190                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5191   emit_int8(0x7B);
5192   emit_int8((unsigned char)(0xC0 | encode));
5193 }
5194 
5195 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5196 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5197   assert(VM_Version::supports_evex(), "");
5198   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5199                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5200   emit_int8(0x7C);
5201   emit_int8((unsigned char)(0xC0 | encode));
5202 }
5203 
5204 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5205 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5206   assert(VM_Version::supports_evex(), "");
5207   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5208                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5209   emit_int8(0x7C);
5210   emit_int8((unsigned char)(0xC0 | encode));
5211 }
5212 
5213 // Carry-Less Multiplication Quadword
5214 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5215   assert(VM_Version::supports_clmul(), "");
5216   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
5217                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
5218   emit_int8(0x44);
5219   emit_int8((unsigned char)(0xC0 | encode));
5220   emit_int8((unsigned char)mask);
5221 }
5222 
5223 // Carry-Less Multiplication Quadword
5224 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5225   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5226   int vector_len = AVX_128bit;
5227   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
5228                                      vector_len, VEX_OPCODE_0F_3A, true);
5229   emit_int8(0x44);
5230   emit_int8((unsigned char)(0xC0 | encode));
5231   emit_int8((unsigned char)mask);
5232 }
5233 
5234 void Assembler::vzeroupper() {
5235   assert(VM_Version::supports_avx(), "");
5236   if (UseAVX < 3)
5237   {
5238     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5239     emit_int8(0x77);
5240   }
5241 }
5242 
5243 
5244 #ifndef _LP64
5245 // 32bit only pieces of the assembler
5246 
5247 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5248   // NO PREFIX AS NEVER 64BIT
5249   InstructionMark im(this);
5250   emit_int8((unsigned char)0x81);
5251   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5252   emit_data(imm32, rspec, 0);
5253 }
5254 
5255 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5256   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5257   InstructionMark im(this);
5258   emit_int8((unsigned char)0x81);
5259   emit_operand(rdi, src1);
5260   emit_data(imm32, rspec, 0);
5261 }
5262 
5263 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5264 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5265 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5266 void Assembler::cmpxchg8(Address adr) {
5267   InstructionMark im(this);
5268   emit_int8(0x0F);
5269   emit_int8((unsigned char)0xC7);
5270   emit_operand(rcx, adr);
5271 }
5272 
5273 void Assembler::decl(Register dst) {
5274   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5275  emit_int8(0x48 | dst->encoding());
5276 }
5277 
5278 #endif // _LP64
5279 
5280 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5281 
5282 void Assembler::fabs() {
5283   emit_int8((unsigned char)0xD9);
5284   emit_int8((unsigned char)0xE1);
5285 }
5286 
5287 void Assembler::fadd(int i) {
5288   emit_farith(0xD8, 0xC0, i);
5289 }
5290 
5291 void Assembler::fadd_d(Address src) {
5292   InstructionMark im(this);
5293   emit_int8((unsigned char)0xDC);
5294   emit_operand32(rax, src);
5295 }
5296 
5297 void Assembler::fadd_s(Address src) {
5298   InstructionMark im(this);
5299   emit_int8((unsigned char)0xD8);
5300   emit_operand32(rax, src);
5301 }
5302 
5303 void Assembler::fadda(int i) {
5304   emit_farith(0xDC, 0xC0, i);
5305 }
5306 
5307 void Assembler::faddp(int i) {
5308   emit_farith(0xDE, 0xC0, i);
5309 }
5310 
5311 void Assembler::fchs() {
5312   emit_int8((unsigned char)0xD9);
5313   emit_int8((unsigned char)0xE0);
5314 }
5315 
5316 void Assembler::fcom(int i) {
5317   emit_farith(0xD8, 0xD0, i);
5318 }
5319 
5320 void Assembler::fcomp(int i) {
5321   emit_farith(0xD8, 0xD8, i);
5322 }
5323 
5324 void Assembler::fcomp_d(Address src) {
5325   InstructionMark im(this);
5326   emit_int8((unsigned char)0xDC);
5327   emit_operand32(rbx, src);
5328 }
5329 
5330 void Assembler::fcomp_s(Address src) {
5331   InstructionMark im(this);
5332   emit_int8((unsigned char)0xD8);
5333   emit_operand32(rbx, src);
5334 }
5335 
5336 void Assembler::fcompp() {
5337   emit_int8((unsigned char)0xDE);
5338   emit_int8((unsigned char)0xD9);
5339 }
5340 
5341 void Assembler::fcos() {
5342   emit_int8((unsigned char)0xD9);
5343   emit_int8((unsigned char)0xFF);
5344 }
5345 
5346 void Assembler::fdecstp() {
5347   emit_int8((unsigned char)0xD9);
5348   emit_int8((unsigned char)0xF6);
5349 }
5350 
5351 void Assembler::fdiv(int i) {
5352   emit_farith(0xD8, 0xF0, i);
5353 }
5354 
5355 void Assembler::fdiv_d(Address src) {
5356   InstructionMark im(this);
5357   emit_int8((unsigned char)0xDC);
5358   emit_operand32(rsi, src);
5359 }
5360 
5361 void Assembler::fdiv_s(Address src) {
5362   InstructionMark im(this);
5363   emit_int8((unsigned char)0xD8);
5364   emit_operand32(rsi, src);
5365 }
5366 
5367 void Assembler::fdiva(int i) {
5368   emit_farith(0xDC, 0xF8, i);
5369 }
5370 
5371 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5372 //       is erroneous for some of the floating-point instructions below.
5373 
5374 void Assembler::fdivp(int i) {
5375   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5376 }
5377 
5378 void Assembler::fdivr(int i) {
5379   emit_farith(0xD8, 0xF8, i);
5380 }
5381 
5382 void Assembler::fdivr_d(Address src) {
5383   InstructionMark im(this);
5384   emit_int8((unsigned char)0xDC);
5385   emit_operand32(rdi, src);
5386 }
5387 
5388 void Assembler::fdivr_s(Address src) {
5389   InstructionMark im(this);
5390   emit_int8((unsigned char)0xD8);
5391   emit_operand32(rdi, src);
5392 }
5393 
5394 void Assembler::fdivra(int i) {
5395   emit_farith(0xDC, 0xF0, i);
5396 }
5397 
5398 void Assembler::fdivrp(int i) {
5399   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5400 }
5401 
5402 void Assembler::ffree(int i) {
5403   emit_farith(0xDD, 0xC0, i);
5404 }
5405 
5406 void Assembler::fild_d(Address adr) {
5407   InstructionMark im(this);
5408   emit_int8((unsigned char)0xDF);
5409   emit_operand32(rbp, adr);
5410 }
5411 
5412 void Assembler::fild_s(Address adr) {
5413   InstructionMark im(this);
5414   emit_int8((unsigned char)0xDB);
5415   emit_operand32(rax, adr);
5416 }
5417 
5418 void Assembler::fincstp() {
5419   emit_int8((unsigned char)0xD9);
5420   emit_int8((unsigned char)0xF7);
5421 }
5422 
5423 void Assembler::finit() {
5424   emit_int8((unsigned char)0x9B);
5425   emit_int8((unsigned char)0xDB);
5426   emit_int8((unsigned char)0xE3);
5427 }
5428 
5429 void Assembler::fist_s(Address adr) {
5430   InstructionMark im(this);
5431   emit_int8((unsigned char)0xDB);
5432   emit_operand32(rdx, adr);
5433 }
5434 
5435 void Assembler::fistp_d(Address adr) {
5436   InstructionMark im(this);
5437   emit_int8((unsigned char)0xDF);
5438   emit_operand32(rdi, adr);
5439 }
5440 
5441 void Assembler::fistp_s(Address adr) {
5442   InstructionMark im(this);
5443   emit_int8((unsigned char)0xDB);
5444   emit_operand32(rbx, adr);
5445 }
5446 
5447 void Assembler::fld1() {
5448   emit_int8((unsigned char)0xD9);
5449   emit_int8((unsigned char)0xE8);
5450 }
5451 
5452 void Assembler::fld_d(Address adr) {
5453   InstructionMark im(this);
5454   emit_int8((unsigned char)0xDD);
5455   emit_operand32(rax, adr);
5456 }
5457 
5458 void Assembler::fld_s(Address adr) {
5459   InstructionMark im(this);
5460   emit_int8((unsigned char)0xD9);
5461   emit_operand32(rax, adr);
5462 }
5463 
5464 
5465 void Assembler::fld_s(int index) {
5466   emit_farith(0xD9, 0xC0, index);
5467 }
5468 
5469 void Assembler::fld_x(Address adr) {
5470   InstructionMark im(this);
5471   emit_int8((unsigned char)0xDB);
5472   emit_operand32(rbp, adr);
5473 }
5474 
5475 void Assembler::fldcw(Address src) {
5476   InstructionMark im(this);
5477   emit_int8((unsigned char)0xD9);
5478   emit_operand32(rbp, src);
5479 }
5480 
5481 void Assembler::fldenv(Address src) {
5482   InstructionMark im(this);
5483   emit_int8((unsigned char)0xD9);
5484   emit_operand32(rsp, src);
5485 }
5486 
5487 void Assembler::fldlg2() {
5488   emit_int8((unsigned char)0xD9);
5489   emit_int8((unsigned char)0xEC);
5490 }
5491 
5492 void Assembler::fldln2() {
5493   emit_int8((unsigned char)0xD9);
5494   emit_int8((unsigned char)0xED);
5495 }
5496 
5497 void Assembler::fldz() {
5498   emit_int8((unsigned char)0xD9);
5499   emit_int8((unsigned char)0xEE);
5500 }
5501 
5502 void Assembler::flog() {
5503   fldln2();
5504   fxch();
5505   fyl2x();
5506 }
5507 
5508 void Assembler::flog10() {
5509   fldlg2();
5510   fxch();
5511   fyl2x();
5512 }
5513 
5514 void Assembler::fmul(int i) {
5515   emit_farith(0xD8, 0xC8, i);
5516 }
5517 
5518 void Assembler::fmul_d(Address src) {
5519   InstructionMark im(this);
5520   emit_int8((unsigned char)0xDC);
5521   emit_operand32(rcx, src);
5522 }
5523 
5524 void Assembler::fmul_s(Address src) {
5525   InstructionMark im(this);
5526   emit_int8((unsigned char)0xD8);
5527   emit_operand32(rcx, src);
5528 }
5529 
5530 void Assembler::fmula(int i) {
5531   emit_farith(0xDC, 0xC8, i);
5532 }
5533 
5534 void Assembler::fmulp(int i) {
5535   emit_farith(0xDE, 0xC8, i);
5536 }
5537 
5538 void Assembler::fnsave(Address dst) {
5539   InstructionMark im(this);
5540   emit_int8((unsigned char)0xDD);
5541   emit_operand32(rsi, dst);
5542 }
5543 
5544 void Assembler::fnstcw(Address src) {
5545   InstructionMark im(this);
5546   emit_int8((unsigned char)0x9B);
5547   emit_int8((unsigned char)0xD9);
5548   emit_operand32(rdi, src);
5549 }
5550 
5551 void Assembler::fnstsw_ax() {
5552   emit_int8((unsigned char)0xDF);
5553   emit_int8((unsigned char)0xE0);
5554 }
5555 
5556 void Assembler::fprem() {
5557   emit_int8((unsigned char)0xD9);
5558   emit_int8((unsigned char)0xF8);
5559 }
5560 
5561 void Assembler::fprem1() {
5562   emit_int8((unsigned char)0xD9);
5563   emit_int8((unsigned char)0xF5);
5564 }
5565 
5566 void Assembler::frstor(Address src) {
5567   InstructionMark im(this);
5568   emit_int8((unsigned char)0xDD);
5569   emit_operand32(rsp, src);
5570 }
5571 
5572 void Assembler::fsin() {
5573   emit_int8((unsigned char)0xD9);
5574   emit_int8((unsigned char)0xFE);
5575 }
5576 
5577 void Assembler::fsqrt() {
5578   emit_int8((unsigned char)0xD9);
5579   emit_int8((unsigned char)0xFA);
5580 }
5581 
5582 void Assembler::fst_d(Address adr) {
5583   InstructionMark im(this);
5584   emit_int8((unsigned char)0xDD);
5585   emit_operand32(rdx, adr);
5586 }
5587 
5588 void Assembler::fst_s(Address adr) {
5589   InstructionMark im(this);
5590   emit_int8((unsigned char)0xD9);
5591   emit_operand32(rdx, adr);
5592 }
5593 
5594 void Assembler::fstp_d(Address adr) {
5595   InstructionMark im(this);
5596   emit_int8((unsigned char)0xDD);
5597   emit_operand32(rbx, adr);
5598 }
5599 
5600 void Assembler::fstp_d(int index) {
5601   emit_farith(0xDD, 0xD8, index);
5602 }
5603 
5604 void Assembler::fstp_s(Address adr) {
5605   InstructionMark im(this);
5606   emit_int8((unsigned char)0xD9);
5607   emit_operand32(rbx, adr);
5608 }
5609 
5610 void Assembler::fstp_x(Address adr) {
5611   InstructionMark im(this);
5612   emit_int8((unsigned char)0xDB);
5613   emit_operand32(rdi, adr);
5614 }
5615 
5616 void Assembler::fsub(int i) {
5617   emit_farith(0xD8, 0xE0, i);
5618 }
5619 
5620 void Assembler::fsub_d(Address src) {
5621   InstructionMark im(this);
5622   emit_int8((unsigned char)0xDC);
5623   emit_operand32(rsp, src);
5624 }
5625 
5626 void Assembler::fsub_s(Address src) {
5627   InstructionMark im(this);
5628   emit_int8((unsigned char)0xD8);
5629   emit_operand32(rsp, src);
5630 }
5631 
5632 void Assembler::fsuba(int i) {
5633   emit_farith(0xDC, 0xE8, i);
5634 }
5635 
5636 void Assembler::fsubp(int i) {
5637   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5638 }
5639 
5640 void Assembler::fsubr(int i) {
5641   emit_farith(0xD8, 0xE8, i);
5642 }
5643 
5644 void Assembler::fsubr_d(Address src) {
5645   InstructionMark im(this);
5646   emit_int8((unsigned char)0xDC);
5647   emit_operand32(rbp, src);
5648 }
5649 
5650 void Assembler::fsubr_s(Address src) {
5651   InstructionMark im(this);
5652   emit_int8((unsigned char)0xD8);
5653   emit_operand32(rbp, src);
5654 }
5655 
5656 void Assembler::fsubra(int i) {
5657   emit_farith(0xDC, 0xE0, i);
5658 }
5659 
5660 void Assembler::fsubrp(int i) {
5661   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5662 }
5663 
5664 void Assembler::ftan() {
5665   emit_int8((unsigned char)0xD9);
5666   emit_int8((unsigned char)0xF2);
5667   emit_int8((unsigned char)0xDD);
5668   emit_int8((unsigned char)0xD8);
5669 }
5670 
5671 void Assembler::ftst() {
5672   emit_int8((unsigned char)0xD9);
5673   emit_int8((unsigned char)0xE4);
5674 }
5675 
5676 void Assembler::fucomi(int i) {
5677   // make sure the instruction is supported (introduced for P6, together with cmov)
5678   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5679   emit_farith(0xDB, 0xE8, i);
5680 }
5681 
5682 void Assembler::fucomip(int i) {
5683   // make sure the instruction is supported (introduced for P6, together with cmov)
5684   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5685   emit_farith(0xDF, 0xE8, i);
5686 }
5687 
5688 void Assembler::fwait() {
5689   emit_int8((unsigned char)0x9B);
5690 }
5691 
5692 void Assembler::fxch(int i) {
5693   emit_farith(0xD9, 0xC8, i);
5694 }
5695 
5696 void Assembler::fyl2x() {
5697   emit_int8((unsigned char)0xD9);
5698   emit_int8((unsigned char)0xF1);
5699 }
5700 
5701 void Assembler::frndint() {
5702   emit_int8((unsigned char)0xD9);
5703   emit_int8((unsigned char)0xFC);
5704 }
5705 
5706 void Assembler::f2xm1() {
5707   emit_int8((unsigned char)0xD9);
5708   emit_int8((unsigned char)0xF0);
5709 }
5710 
5711 void Assembler::fldl2e() {
5712   emit_int8((unsigned char)0xD9);
5713   emit_int8((unsigned char)0xEA);
5714 }
5715 
5716 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
5717 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
5718 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
5719 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
5720 
5721 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
5722 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5723   if (pre > 0) {
5724     emit_int8(simd_pre[pre]);
5725   }
5726   if (rex_w) {
5727     prefixq(adr, xreg);
5728   } else {
5729     prefix(adr, xreg);
5730   }
5731   if (opc > 0) {
5732     emit_int8(0x0F);
5733     int opc2 = simd_opc[opc];
5734     if (opc2 > 0) {
5735       emit_int8(opc2);
5736     }
5737   }
5738 }
5739 
5740 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5741   if (pre > 0) {
5742     emit_int8(simd_pre[pre]);
5743   }
5744   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
5745                           prefix_and_encode(dst_enc, src_enc);
5746   if (opc > 0) {
5747     emit_int8(0x0F);
5748     int opc2 = simd_opc[opc];
5749     if (opc2 > 0) {
5750       emit_int8(opc2);
5751     }
5752   }
5753   return encode;
5754 }
5755 
5756 
5757 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
5758   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
5759     prefix(VEX_3bytes);
5760 
5761     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
5762     byte1 = (~byte1) & 0xE0;
5763     byte1 |= opc;
5764     emit_int8(byte1);
5765 
5766     int byte2 = ((~nds_enc) & 0xf) << 3;
5767     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
5768     emit_int8(byte2);
5769   } else {
5770     prefix(VEX_2bytes);
5771 
5772     int byte1 = vex_r ? VEX_R : 0;
5773     byte1 = (~byte1) & 0x80;
5774     byte1 |= ((~nds_enc) & 0xf) << 3;
5775     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
5776     emit_int8(byte1);
5777   }
5778 }
5779 
5780 // This is a 4 byte encoding
5781 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
5782                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
5783                             bool is_extended_context, bool is_merge_context,
5784                             int vector_len, bool no_mask_reg ){
5785   // EVEX 0x62 prefix
5786   prefix(EVEX_4bytes);
5787   evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
5788 
5789   // P0: byte 2, initialized to RXBR`00mm
5790   // instead of not'd
5791   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
5792   byte2 = (~byte2) & 0xF0;
5793   // confine opc opcode extensions in mm bits to lower two bits
5794   // of form {0F, 0F_38, 0F_3A}
5795   byte2 |= opc;
5796   emit_int8(byte2);
5797 
5798   // P1: byte 3 as Wvvvv1pp
5799   int byte3 = ((~nds_enc) & 0xf) << 3;
5800   // p[10] is always 1
5801   byte3 |= EVEX_F;
5802   byte3 |= (vex_w & 1) << 7;
5803   // confine pre opcode extensions in pp bits to lower two bits
5804   // of form {66, F3, F2}
5805   byte3 |= pre;
5806   emit_int8(byte3);
5807 
5808   // P2: byte 4 as zL'Lbv'aaa
5809   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
5810   // EVEX.v` for extending EVEX.vvvv or VIDX
5811   byte4 |= (evex_v ? 0: EVEX_V);
5812   // third EXEC.b for broadcast actions
5813   byte4 |= (is_extended_context ? EVEX_Rb : 0);
5814   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
5815   byte4 |= ((vector_len) & 0x3) << 5;
5816   // last is EVEX.z for zero/merge actions
5817   byte4 |= (is_merge_context ? EVEX_Z : 0);
5818   emit_int8(byte4);
5819 }
5820 
5821 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
5822                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
5823   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
5824   bool vex_b = adr.base_needs_rex();
5825   bool vex_x = adr.index_needs_rex();
5826   avx_vector_len = vector_len;
5827 
5828   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5829   if (VM_Version::supports_avx512vl() == false) {
5830     switch (vector_len) {
5831     case AVX_128bit:
5832     case AVX_256bit:
5833       legacy_mode = true;
5834       break;
5835     }
5836   }
5837 
5838   if ((UseAVX > 2) && (legacy_mode == false))
5839   {
5840     bool evex_r = (xreg_enc >= 16);
5841     bool evex_v = (nds_enc >= 16);
5842     is_evex_instruction = true;
5843     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5844   } else {
5845     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5846   }
5847 }
5848 
5849 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
5850                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
5851   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
5852   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
5853   bool vex_x = false;
5854   avx_vector_len = vector_len;
5855 
5856   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5857   if (VM_Version::supports_avx512vl() == false) {
5858     switch (vector_len) {
5859     case AVX_128bit:
5860     case AVX_256bit:
5861       legacy_mode = true;
5862       break;
5863     }
5864   }
5865 
5866   if ((UseAVX > 2) && (legacy_mode == false))
5867   {
5868     bool evex_r = (dst_enc >= 16);
5869     bool evex_v = (nds_enc >= 16);
5870     // can use vex_x as bank extender on rm encoding
5871     vex_x = (src_enc >= 16);
5872     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5873   } else {
5874     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5875   }
5876 
5877   // return modrm byte components for operands
5878   return (((dst_enc & 7) << 3) | (src_enc & 7));
5879 }
5880 
5881 
5882 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
5883                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5884   if (UseAVX > 0) {
5885     int xreg_enc = xreg->encoding();
5886     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
5887     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5888   } else {
5889     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
5890     rex_prefix(adr, xreg, pre, opc, rex_w);
5891   }
5892 }
5893 
5894 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
5895                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5896   int dst_enc = dst->encoding();
5897   int src_enc = src->encoding();
5898   if (UseAVX > 0) {
5899     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5900     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5901   } else {
5902     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
5903     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
5904   }
5905 }
5906 
5907 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
5908                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5909   int dst_enc = dst->encoding();
5910   int src_enc = src->encoding();
5911   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5912   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5913 }
5914 
5915 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
5916                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5917   int dst_enc = dst->encoding();
5918   int src_enc = src->encoding();
5919   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5920   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5921 }
5922 
5923 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5924   InstructionMark im(this);
5925   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5926   emit_int8(opcode);
5927   emit_operand(dst, src);
5928 }
5929 
5930 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
5931   InstructionMark im(this);
5932   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
5933   emit_int8(opcode);
5934   emit_operand(dst, src);
5935 }
5936 
5937 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5938   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5939   emit_int8(opcode);
5940   emit_int8((unsigned char)(0xC0 | encode));
5941 }
5942 
5943 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5944   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5945   emit_int8(opcode);
5946   emit_int8((unsigned char)(0xC0 | encode));
5947 }
5948 
5949 // Versions with no second source register (non-destructive source).
5950 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5951   InstructionMark im(this);
5952   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
5953   emit_int8(opcode);
5954   emit_operand(dst, src);
5955 }
5956 
5957 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5958   InstructionMark im(this);
5959   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
5960   emit_int8(opcode);
5961   emit_operand(dst, src);
5962 }
5963 
5964 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5965   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
5966   emit_int8(opcode);
5967   emit_int8((unsigned char)(0xC0 | encode));
5968 }
5969 
5970 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5971   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5972   emit_int8(opcode);
5973   emit_int8((unsigned char)(0xC0 | encode));
5974 }
5975 
5976 // 3-operands AVX instructions
5977 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
5978                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5979   InstructionMark im(this);
5980   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
5981   emit_int8(opcode);
5982   emit_operand(dst, src);
5983 }
5984 
5985 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
5986                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5987   InstructionMark im(this);
5988   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
5989   emit_int8(opcode);
5990   emit_operand(dst, src);
5991 }
5992 
5993 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5994                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5995   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
5996   emit_int8(opcode);
5997   emit_int8((unsigned char)(0xC0 | encode));
5998 }
5999 
6000 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
6001                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
6002   int src_enc = src->encoding();
6003   int dst_enc = dst->encoding();
6004   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6005   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
6006   emit_int8(opcode);
6007   emit_int8((unsigned char)(0xC0 | encode));
6008 }
6009 
6010 #ifndef _LP64
6011 
6012 void Assembler::incl(Register dst) {
6013   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6014   emit_int8(0x40 | dst->encoding());
6015 }
6016 
6017 void Assembler::lea(Register dst, Address src) {
6018   leal(dst, src);
6019 }
6020 
6021 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6022   InstructionMark im(this);
6023   emit_int8((unsigned char)0xC7);
6024   emit_operand(rax, dst);
6025   emit_data((int)imm32, rspec, 0);
6026 }
6027 
6028 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6029   InstructionMark im(this);
6030   int encode = prefix_and_encode(dst->encoding());
6031   emit_int8((unsigned char)(0xB8 | encode));
6032   emit_data((int)imm32, rspec, 0);
6033 }
6034 
6035 void Assembler::popa() { // 32bit
6036   emit_int8(0x61);
6037 }
6038 
6039 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
6040   InstructionMark im(this);
6041   emit_int8(0x68);
6042   emit_data(imm32, rspec, 0);
6043 }
6044 
6045 void Assembler::pusha() { // 32bit
6046   emit_int8(0x60);
6047 }
6048 
6049 void Assembler::set_byte_if_not_zero(Register dst) {
6050   emit_int8(0x0F);
6051   emit_int8((unsigned char)0x95);
6052   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6053 }
6054 
6055 void Assembler::shldl(Register dst, Register src) {
6056   emit_int8(0x0F);
6057   emit_int8((unsigned char)0xA5);
6058   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6059 }
6060 
6061 void Assembler::shrdl(Register dst, Register src) {
6062   emit_int8(0x0F);
6063   emit_int8((unsigned char)0xAD);
6064   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6065 }
6066 
6067 #else // LP64
6068 
6069 void Assembler::set_byte_if_not_zero(Register dst) {
6070   int enc = prefix_and_encode(dst->encoding(), true);
6071   emit_int8(0x0F);
6072   emit_int8((unsigned char)0x95);
6073   emit_int8((unsigned char)(0xE0 | enc));
6074 }
6075 
6076 // 64bit only pieces of the assembler
6077 // This should only be used by 64bit instructions that can use rip-relative
6078 // it cannot be used by instructions that want an immediate value.
6079 
6080 bool Assembler::reachable(AddressLiteral adr) {
6081   int64_t disp;
6082   // None will force a 64bit literal to the code stream. Likely a placeholder
6083   // for something that will be patched later and we need to certain it will
6084   // always be reachable.
6085   if (adr.reloc() == relocInfo::none) {
6086     return false;
6087   }
6088   if (adr.reloc() == relocInfo::internal_word_type) {
6089     // This should be rip relative and easily reachable.
6090     return true;
6091   }
6092   if (adr.reloc() == relocInfo::virtual_call_type ||
6093       adr.reloc() == relocInfo::opt_virtual_call_type ||
6094       adr.reloc() == relocInfo::static_call_type ||
6095       adr.reloc() == relocInfo::static_stub_type ) {
6096     // This should be rip relative within the code cache and easily
6097     // reachable until we get huge code caches. (At which point
6098     // ic code is going to have issues).
6099     return true;
6100   }
6101   if (adr.reloc() != relocInfo::external_word_type &&
6102       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6103       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6104       adr.reloc() != relocInfo::runtime_call_type ) {
6105     return false;
6106   }
6107 
6108   // Stress the correction code
6109   if (ForceUnreachable) {
6110     // Must be runtimecall reloc, see if it is in the codecache
6111     // Flipping stuff in the codecache to be unreachable causes issues
6112     // with things like inline caches where the additional instructions
6113     // are not handled.
6114     if (CodeCache::find_blob(adr._target) == NULL) {
6115       return false;
6116     }
6117   }
6118   // For external_word_type/runtime_call_type if it is reachable from where we
6119   // are now (possibly a temp buffer) and where we might end up
6120   // anywhere in the codeCache then we are always reachable.
6121   // This would have to change if we ever save/restore shared code
6122   // to be more pessimistic.
6123   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6124   if (!is_simm32(disp)) return false;
6125   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6126   if (!is_simm32(disp)) return false;
6127 
6128   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6129 
6130   // Because rip relative is a disp + address_of_next_instruction and we
6131   // don't know the value of address_of_next_instruction we apply a fudge factor
6132   // to make sure we will be ok no matter the size of the instruction we get placed into.
6133   // We don't have to fudge the checks above here because they are already worst case.
6134 
6135   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6136   // + 4 because better safe than sorry.
6137   const int fudge = 12 + 4;
6138   if (disp < 0) {
6139     disp -= fudge;
6140   } else {
6141     disp += fudge;
6142   }
6143   return is_simm32(disp);
6144 }
6145 
6146 // Check if the polling page is not reachable from the code cache using rip-relative
6147 // addressing.
6148 bool Assembler::is_polling_page_far() {
6149   intptr_t addr = (intptr_t)os::get_polling_page();
6150   return ForceUnreachable ||
6151          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6152          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6153 }
6154 
6155 void Assembler::emit_data64(jlong data,
6156                             relocInfo::relocType rtype,
6157                             int format) {
6158   if (rtype == relocInfo::none) {
6159     emit_int64(data);
6160   } else {
6161     emit_data64(data, Relocation::spec_simple(rtype), format);
6162   }
6163 }
6164 
6165 void Assembler::emit_data64(jlong data,
6166                             RelocationHolder const& rspec,
6167                             int format) {
6168   assert(imm_operand == 0, "default format must be immediate in this file");
6169   assert(imm_operand == format, "must be immediate");
6170   assert(inst_mark() != NULL, "must be inside InstructionMark");
6171   // Do not use AbstractAssembler::relocate, which is not intended for
6172   // embedded words.  Instead, relocate to the enclosing instruction.
6173   code_section()->relocate(inst_mark(), rspec, format);
6174 #ifdef ASSERT
6175   check_relocation(rspec, format);
6176 #endif
6177   emit_int64(data);
6178 }
6179 
6180 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6181   if (reg_enc >= 8) {
6182     prefix(REX_B);
6183     reg_enc -= 8;
6184   } else if (byteinst && reg_enc >= 4) {
6185     prefix(REX);
6186   }
6187   return reg_enc;
6188 }
6189 
6190 int Assembler::prefixq_and_encode(int reg_enc) {
6191   if (reg_enc < 8) {
6192     prefix(REX_W);
6193   } else {
6194     prefix(REX_WB);
6195     reg_enc -= 8;
6196   }
6197   return reg_enc;
6198 }
6199 
6200 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
6201   if (dst_enc < 8) {
6202     if (src_enc >= 8) {
6203       prefix(REX_B);
6204       src_enc -= 8;
6205     } else if (byteinst && src_enc >= 4) {
6206       prefix(REX);
6207     }
6208   } else {
6209     if (src_enc < 8) {
6210       prefix(REX_R);
6211     } else {
6212       prefix(REX_RB);
6213       src_enc -= 8;
6214     }
6215     dst_enc -= 8;
6216   }
6217   return dst_enc << 3 | src_enc;
6218 }
6219 
6220 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6221   if (dst_enc < 8) {
6222     if (src_enc < 8) {
6223       prefix(REX_W);
6224     } else {
6225       prefix(REX_WB);
6226       src_enc -= 8;
6227     }
6228   } else {
6229     if (src_enc < 8) {
6230       prefix(REX_WR);
6231     } else {
6232       prefix(REX_WRB);
6233       src_enc -= 8;
6234     }
6235     dst_enc -= 8;
6236   }
6237   return dst_enc << 3 | src_enc;
6238 }
6239 
6240 void Assembler::prefix(Register reg) {
6241   if (reg->encoding() >= 8) {
6242     prefix(REX_B);
6243   }
6244 }
6245 
6246 void Assembler::prefix(Address adr) {
6247   if (adr.base_needs_rex()) {
6248     if (adr.index_needs_rex()) {
6249       prefix(REX_XB);
6250     } else {
6251       prefix(REX_B);
6252     }
6253   } else {
6254     if (adr.index_needs_rex()) {
6255       prefix(REX_X);
6256     }
6257   }
6258 }
6259 
6260 void Assembler::prefixq(Address adr) {
6261   if (adr.base_needs_rex()) {
6262     if (adr.index_needs_rex()) {
6263       prefix(REX_WXB);
6264     } else {
6265       prefix(REX_WB);
6266     }
6267   } else {
6268     if (adr.index_needs_rex()) {
6269       prefix(REX_WX);
6270     } else {
6271       prefix(REX_W);
6272     }
6273   }
6274 }
6275 
6276 
6277 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6278   if (reg->encoding() < 8) {
6279     if (adr.base_needs_rex()) {
6280       if (adr.index_needs_rex()) {
6281         prefix(REX_XB);
6282       } else {
6283         prefix(REX_B);
6284       }
6285     } else {
6286       if (adr.index_needs_rex()) {
6287         prefix(REX_X);
6288       } else if (byteinst && reg->encoding() >= 4 ) {
6289         prefix(REX);
6290       }
6291     }
6292   } else {
6293     if (adr.base_needs_rex()) {
6294       if (adr.index_needs_rex()) {
6295         prefix(REX_RXB);
6296       } else {
6297         prefix(REX_RB);
6298       }
6299     } else {
6300       if (adr.index_needs_rex()) {
6301         prefix(REX_RX);
6302       } else {
6303         prefix(REX_R);
6304       }
6305     }
6306   }
6307 }
6308 
6309 void Assembler::prefixq(Address adr, Register src) {
6310   if (src->encoding() < 8) {
6311     if (adr.base_needs_rex()) {
6312       if (adr.index_needs_rex()) {
6313         prefix(REX_WXB);
6314       } else {
6315         prefix(REX_WB);
6316       }
6317     } else {
6318       if (adr.index_needs_rex()) {
6319         prefix(REX_WX);
6320       } else {
6321         prefix(REX_W);
6322       }
6323     }
6324   } else {
6325     if (adr.base_needs_rex()) {
6326       if (adr.index_needs_rex()) {
6327         prefix(REX_WRXB);
6328       } else {
6329         prefix(REX_WRB);
6330       }
6331     } else {
6332       if (adr.index_needs_rex()) {
6333         prefix(REX_WRX);
6334       } else {
6335         prefix(REX_WR);
6336       }
6337     }
6338   }
6339 }
6340 
6341 void Assembler::prefix(Address adr, XMMRegister reg) {
6342   if (reg->encoding() < 8) {
6343     if (adr.base_needs_rex()) {
6344       if (adr.index_needs_rex()) {
6345         prefix(REX_XB);
6346       } else {
6347         prefix(REX_B);
6348       }
6349     } else {
6350       if (adr.index_needs_rex()) {
6351         prefix(REX_X);
6352       }
6353     }
6354   } else {
6355     if (adr.base_needs_rex()) {
6356       if (adr.index_needs_rex()) {
6357         prefix(REX_RXB);
6358       } else {
6359         prefix(REX_RB);
6360       }
6361     } else {
6362       if (adr.index_needs_rex()) {
6363         prefix(REX_RX);
6364       } else {
6365         prefix(REX_R);
6366       }
6367     }
6368   }
6369 }
6370 
6371 void Assembler::prefixq(Address adr, XMMRegister src) {
6372   if (src->encoding() < 8) {
6373     if (adr.base_needs_rex()) {
6374       if (adr.index_needs_rex()) {
6375         prefix(REX_WXB);
6376       } else {
6377         prefix(REX_WB);
6378       }
6379     } else {
6380       if (adr.index_needs_rex()) {
6381         prefix(REX_WX);
6382       } else {
6383         prefix(REX_W);
6384       }
6385     }
6386   } else {
6387     if (adr.base_needs_rex()) {
6388       if (adr.index_needs_rex()) {
6389         prefix(REX_WRXB);
6390       } else {
6391         prefix(REX_WRB);
6392       }
6393     } else {
6394       if (adr.index_needs_rex()) {
6395         prefix(REX_WRX);
6396       } else {
6397         prefix(REX_WR);
6398       }
6399     }
6400   }
6401 }
6402 
6403 void Assembler::adcq(Register dst, int32_t imm32) {
6404   (void) prefixq_and_encode(dst->encoding());
6405   emit_arith(0x81, 0xD0, dst, imm32);
6406 }
6407 
6408 void Assembler::adcq(Register dst, Address src) {
6409   InstructionMark im(this);
6410   prefixq(src, dst);
6411   emit_int8(0x13);
6412   emit_operand(dst, src);
6413 }
6414 
6415 void Assembler::adcq(Register dst, Register src) {
6416   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6417   emit_arith(0x13, 0xC0, dst, src);
6418 }
6419 
6420 void Assembler::addq(Address dst, int32_t imm32) {
6421   InstructionMark im(this);
6422   prefixq(dst);
6423   emit_arith_operand(0x81, rax, dst,imm32);
6424 }
6425 
6426 void Assembler::addq(Address dst, Register src) {
6427   InstructionMark im(this);
6428   prefixq(dst, src);
6429   emit_int8(0x01);
6430   emit_operand(src, dst);
6431 }
6432 
6433 void Assembler::addq(Register dst, int32_t imm32) {
6434   (void) prefixq_and_encode(dst->encoding());
6435   emit_arith(0x81, 0xC0, dst, imm32);
6436 }
6437 
6438 void Assembler::addq(Register dst, Address src) {
6439   InstructionMark im(this);
6440   prefixq(src, dst);
6441   emit_int8(0x03);
6442   emit_operand(dst, src);
6443 }
6444 
6445 void Assembler::addq(Register dst, Register src) {
6446   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6447   emit_arith(0x03, 0xC0, dst, src);
6448 }
6449 
6450 void Assembler::adcxq(Register dst, Register src) {
6451   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6452   emit_int8((unsigned char)0x66);
6453   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6454   emit_int8(0x0F);
6455   emit_int8(0x38);
6456   emit_int8((unsigned char)0xF6);
6457   emit_int8((unsigned char)(0xC0 | encode));
6458 }
6459 
6460 void Assembler::adoxq(Register dst, Register src) {
6461   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6462   emit_int8((unsigned char)0xF3);
6463   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6464   emit_int8(0x0F);
6465   emit_int8(0x38);
6466   emit_int8((unsigned char)0xF6);
6467   emit_int8((unsigned char)(0xC0 | encode));
6468 }
6469 
6470 void Assembler::andq(Address dst, int32_t imm32) {
6471   InstructionMark im(this);
6472   prefixq(dst);
6473   emit_int8((unsigned char)0x81);
6474   emit_operand(rsp, dst, 4);
6475   emit_int32(imm32);
6476 }
6477 
6478 void Assembler::andq(Register dst, int32_t imm32) {
6479   (void) prefixq_and_encode(dst->encoding());
6480   emit_arith(0x81, 0xE0, dst, imm32);
6481 }
6482 
6483 void Assembler::andq(Register dst, Address src) {
6484   InstructionMark im(this);
6485   prefixq(src, dst);
6486   emit_int8(0x23);
6487   emit_operand(dst, src);
6488 }
6489 
6490 void Assembler::andq(Register dst, Register src) {
6491   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6492   emit_arith(0x23, 0xC0, dst, src);
6493 }
6494 
6495 void Assembler::andnq(Register dst, Register src1, Register src2) {
6496   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6497   int encode = vex_prefix_0F38_and_encode_q_legacy(dst, src1, src2);
6498   emit_int8((unsigned char)0xF2);
6499   emit_int8((unsigned char)(0xC0 | encode));
6500 }
6501 
6502 void Assembler::andnq(Register dst, Register src1, Address src2) {
6503   InstructionMark im(this);
6504   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6505   vex_prefix_0F38_q_legacy(dst, src1, src2);
6506   emit_int8((unsigned char)0xF2);
6507   emit_operand(dst, src2);
6508 }
6509 
6510 void Assembler::bsfq(Register dst, Register src) {
6511   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6512   emit_int8(0x0F);
6513   emit_int8((unsigned char)0xBC);
6514   emit_int8((unsigned char)(0xC0 | encode));
6515 }
6516 
6517 void Assembler::bsrq(Register dst, Register src) {
6518   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6519   emit_int8(0x0F);
6520   emit_int8((unsigned char)0xBD);
6521   emit_int8((unsigned char)(0xC0 | encode));
6522 }
6523 
6524 void Assembler::bswapq(Register reg) {
6525   int encode = prefixq_and_encode(reg->encoding());
6526   emit_int8(0x0F);
6527   emit_int8((unsigned char)(0xC8 | encode));
6528 }
6529 
6530 void Assembler::blsiq(Register dst, Register src) {
6531   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6532   int encode = vex_prefix_0F38_and_encode_q_legacy(rbx, dst, src);
6533   emit_int8((unsigned char)0xF3);
6534   emit_int8((unsigned char)(0xC0 | encode));
6535 }
6536 
6537 void Assembler::blsiq(Register dst, Address src) {
6538   InstructionMark im(this);
6539   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6540   vex_prefix_0F38_q_legacy(rbx, dst, src);
6541   emit_int8((unsigned char)0xF3);
6542   emit_operand(rbx, src);
6543 }
6544 
6545 void Assembler::blsmskq(Register dst, Register src) {
6546   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6547   int encode = vex_prefix_0F38_and_encode_q_legacy(rdx, dst, src);
6548   emit_int8((unsigned char)0xF3);
6549   emit_int8((unsigned char)(0xC0 | encode));
6550 }
6551 
6552 void Assembler::blsmskq(Register dst, Address src) {
6553   InstructionMark im(this);
6554   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6555   vex_prefix_0F38_q_legacy(rdx, dst, src);
6556   emit_int8((unsigned char)0xF3);
6557   emit_operand(rdx, src);
6558 }
6559 
6560 void Assembler::blsrq(Register dst, Register src) {
6561   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6562   int encode = vex_prefix_0F38_and_encode_q_legacy(rcx, dst, src);
6563   emit_int8((unsigned char)0xF3);
6564   emit_int8((unsigned char)(0xC0 | encode));
6565 }
6566 
6567 void Assembler::blsrq(Register dst, Address src) {
6568   InstructionMark im(this);
6569   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6570   vex_prefix_0F38_q_legacy(rcx, dst, src);
6571   emit_int8((unsigned char)0xF3);
6572   emit_operand(rcx, src);
6573 }
6574 
6575 void Assembler::cdqq() {
6576   prefix(REX_W);
6577   emit_int8((unsigned char)0x99);
6578 }
6579 
6580 void Assembler::clflush(Address adr) {
6581   prefix(adr);
6582   emit_int8(0x0F);
6583   emit_int8((unsigned char)0xAE);
6584   emit_operand(rdi, adr);
6585 }
6586 
6587 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6588   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6589   emit_int8(0x0F);
6590   emit_int8(0x40 | cc);
6591   emit_int8((unsigned char)(0xC0 | encode));
6592 }
6593 
6594 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6595   InstructionMark im(this);
6596   prefixq(src, dst);
6597   emit_int8(0x0F);
6598   emit_int8(0x40 | cc);
6599   emit_operand(dst, src);
6600 }
6601 
6602 void Assembler::cmpq(Address dst, int32_t imm32) {
6603   InstructionMark im(this);
6604   prefixq(dst);
6605   emit_int8((unsigned char)0x81);
6606   emit_operand(rdi, dst, 4);
6607   emit_int32(imm32);
6608 }
6609 
6610 void Assembler::cmpq(Register dst, int32_t imm32) {
6611   (void) prefixq_and_encode(dst->encoding());
6612   emit_arith(0x81, 0xF8, dst, imm32);
6613 }
6614 
6615 void Assembler::cmpq(Address dst, Register src) {
6616   InstructionMark im(this);
6617   prefixq(dst, src);
6618   emit_int8(0x3B);
6619   emit_operand(src, dst);
6620 }
6621 
6622 void Assembler::cmpq(Register dst, Register src) {
6623   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6624   emit_arith(0x3B, 0xC0, dst, src);
6625 }
6626 
6627 void Assembler::cmpq(Register dst, Address  src) {
6628   InstructionMark im(this);
6629   prefixq(src, dst);
6630   emit_int8(0x3B);
6631   emit_operand(dst, src);
6632 }
6633 
6634 void Assembler::cmpxchgq(Register reg, Address adr) {
6635   InstructionMark im(this);
6636   prefixq(adr, reg);
6637   emit_int8(0x0F);
6638   emit_int8((unsigned char)0xB1);
6639   emit_operand(reg, adr);
6640 }
6641 
6642 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
6643   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6644   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
6645   emit_int8(0x2A);
6646   emit_int8((unsigned char)(0xC0 | encode));
6647 }
6648 
6649 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
6650   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6651   if (VM_Version::supports_evex()) {
6652     tuple_type = EVEX_T1S;
6653     input_size_in_bits = EVEX_32bit;
6654   }
6655   InstructionMark im(this);
6656   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
6657   emit_int8(0x2A);
6658   emit_operand(dst, src);
6659 }
6660 
6661 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
6662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6663   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
6664   emit_int8(0x2A);
6665   emit_int8((unsigned char)(0xC0 | encode));
6666 }
6667 
6668 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
6669   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6670   if (VM_Version::supports_evex()) {
6671     tuple_type = EVEX_T1S;
6672     input_size_in_bits = EVEX_32bit;
6673   }
6674   InstructionMark im(this);
6675   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
6676   emit_int8(0x2A);
6677   emit_operand(dst, src);
6678 }
6679 
6680 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
6681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6682   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
6683   emit_int8(0x2C);
6684   emit_int8((unsigned char)(0xC0 | encode));
6685 }
6686 
6687 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
6688   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6689   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
6690   emit_int8(0x2C);
6691   emit_int8((unsigned char)(0xC0 | encode));
6692 }
6693 
6694 void Assembler::decl(Register dst) {
6695   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6696   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
6697   int encode = prefix_and_encode(dst->encoding());
6698   emit_int8((unsigned char)0xFF);
6699   emit_int8((unsigned char)(0xC8 | encode));
6700 }
6701 
6702 void Assembler::decq(Register dst) {
6703   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6704   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6705   int encode = prefixq_and_encode(dst->encoding());
6706   emit_int8((unsigned char)0xFF);
6707   emit_int8(0xC8 | encode);
6708 }
6709 
6710 void Assembler::decq(Address dst) {
6711   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6712   InstructionMark im(this);
6713   prefixq(dst);
6714   emit_int8((unsigned char)0xFF);
6715   emit_operand(rcx, dst);
6716 }
6717 
6718 void Assembler::fxrstor(Address src) {
6719   prefixq(src);
6720   emit_int8(0x0F);
6721   emit_int8((unsigned char)0xAE);
6722   emit_operand(as_Register(1), src);
6723 }
6724 
6725 void Assembler::fxsave(Address dst) {
6726   prefixq(dst);
6727   emit_int8(0x0F);
6728   emit_int8((unsigned char)0xAE);
6729   emit_operand(as_Register(0), dst);
6730 }
6731 
6732 void Assembler::idivq(Register src) {
6733   int encode = prefixq_and_encode(src->encoding());
6734   emit_int8((unsigned char)0xF7);
6735   emit_int8((unsigned char)(0xF8 | encode));
6736 }
6737 
6738 void Assembler::imulq(Register dst, Register src) {
6739   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6740   emit_int8(0x0F);
6741   emit_int8((unsigned char)0xAF);
6742   emit_int8((unsigned char)(0xC0 | encode));
6743 }
6744 
6745 void Assembler::imulq(Register dst, Register src, int value) {
6746   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6747   if (is8bit(value)) {
6748     emit_int8(0x6B);
6749     emit_int8((unsigned char)(0xC0 | encode));
6750     emit_int8(value & 0xFF);
6751   } else {
6752     emit_int8(0x69);
6753     emit_int8((unsigned char)(0xC0 | encode));
6754     emit_int32(value);
6755   }
6756 }
6757 
6758 void Assembler::imulq(Register dst, Address src) {
6759   InstructionMark im(this);
6760   prefixq(src, dst);
6761   emit_int8(0x0F);
6762   emit_int8((unsigned char) 0xAF);
6763   emit_operand(dst, src);
6764 }
6765 
6766 void Assembler::incl(Register dst) {
6767   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6768   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6769   int encode = prefix_and_encode(dst->encoding());
6770   emit_int8((unsigned char)0xFF);
6771   emit_int8((unsigned char)(0xC0 | encode));
6772 }
6773 
6774 void Assembler::incq(Register dst) {
6775   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6776   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6777   int encode = prefixq_and_encode(dst->encoding());
6778   emit_int8((unsigned char)0xFF);
6779   emit_int8((unsigned char)(0xC0 | encode));
6780 }
6781 
6782 void Assembler::incq(Address dst) {
6783   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6784   InstructionMark im(this);
6785   prefixq(dst);
6786   emit_int8((unsigned char)0xFF);
6787   emit_operand(rax, dst);
6788 }
6789 
6790 void Assembler::lea(Register dst, Address src) {
6791   leaq(dst, src);
6792 }
6793 
6794 void Assembler::leaq(Register dst, Address src) {
6795   InstructionMark im(this);
6796   prefixq(src, dst);
6797   emit_int8((unsigned char)0x8D);
6798   emit_operand(dst, src);
6799 }
6800 
6801 void Assembler::mov64(Register dst, int64_t imm64) {
6802   InstructionMark im(this);
6803   int encode = prefixq_and_encode(dst->encoding());
6804   emit_int8((unsigned char)(0xB8 | encode));
6805   emit_int64(imm64);
6806 }
6807 
6808 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
6809   InstructionMark im(this);
6810   int encode = prefixq_and_encode(dst->encoding());
6811   emit_int8(0xB8 | encode);
6812   emit_data64(imm64, rspec);
6813 }
6814 
6815 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6816   InstructionMark im(this);
6817   int encode = prefix_and_encode(dst->encoding());
6818   emit_int8((unsigned char)(0xB8 | encode));
6819   emit_data((int)imm32, rspec, narrow_oop_operand);
6820 }
6821 
6822 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6823   InstructionMark im(this);
6824   prefix(dst);
6825   emit_int8((unsigned char)0xC7);
6826   emit_operand(rax, dst, 4);
6827   emit_data((int)imm32, rspec, narrow_oop_operand);
6828 }
6829 
6830 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6831   InstructionMark im(this);
6832   int encode = prefix_and_encode(src1->encoding());
6833   emit_int8((unsigned char)0x81);
6834   emit_int8((unsigned char)(0xF8 | encode));
6835   emit_data((int)imm32, rspec, narrow_oop_operand);
6836 }
6837 
6838 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6839   InstructionMark im(this);
6840   prefix(src1);
6841   emit_int8((unsigned char)0x81);
6842   emit_operand(rax, src1, 4);
6843   emit_data((int)imm32, rspec, narrow_oop_operand);
6844 }
6845 
6846 void Assembler::lzcntq(Register dst, Register src) {
6847   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
6848   emit_int8((unsigned char)0xF3);
6849   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6850   emit_int8(0x0F);
6851   emit_int8((unsigned char)0xBD);
6852   emit_int8((unsigned char)(0xC0 | encode));
6853 }
6854 
6855 void Assembler::movdq(XMMRegister dst, Register src) {
6856   // table D-1 says MMX/SSE2
6857   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6858   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
6859   emit_int8(0x6E);
6860   emit_int8((unsigned char)(0xC0 | encode));
6861 }
6862 
6863 void Assembler::movdq(Register dst, XMMRegister src) {
6864   // table D-1 says MMX/SSE2
6865   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6866   // swap src/dst to get correct prefix
6867   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
6868   emit_int8(0x7E);
6869   emit_int8((unsigned char)(0xC0 | encode));
6870 }
6871 
6872 void Assembler::movq(Register dst, Register src) {
6873   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6874   emit_int8((unsigned char)0x8B);
6875   emit_int8((unsigned char)(0xC0 | encode));
6876 }
6877 
6878 void Assembler::movq(Register dst, Address src) {
6879   InstructionMark im(this);
6880   prefixq(src, dst);
6881   emit_int8((unsigned char)0x8B);
6882   emit_operand(dst, src);
6883 }
6884 
6885 void Assembler::movq(Address dst, Register src) {
6886   InstructionMark im(this);
6887   prefixq(dst, src);
6888   emit_int8((unsigned char)0x89);
6889   emit_operand(src, dst);
6890 }
6891 
6892 void Assembler::movsbq(Register dst, Address src) {
6893   InstructionMark im(this);
6894   prefixq(src, dst);
6895   emit_int8(0x0F);
6896   emit_int8((unsigned char)0xBE);
6897   emit_operand(dst, src);
6898 }
6899 
6900 void Assembler::movsbq(Register dst, Register src) {
6901   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6902   emit_int8(0x0F);
6903   emit_int8((unsigned char)0xBE);
6904   emit_int8((unsigned char)(0xC0 | encode));
6905 }
6906 
6907 void Assembler::movslq(Register dst, int32_t imm32) {
6908   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
6909   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
6910   // as a result we shouldn't use until tested at runtime...
6911   ShouldNotReachHere();
6912   InstructionMark im(this);
6913   int encode = prefixq_and_encode(dst->encoding());
6914   emit_int8((unsigned char)(0xC7 | encode));
6915   emit_int32(imm32);
6916 }
6917 
6918 void Assembler::movslq(Address dst, int32_t imm32) {
6919   assert(is_simm32(imm32), "lost bits");
6920   InstructionMark im(this);
6921   prefixq(dst);
6922   emit_int8((unsigned char)0xC7);
6923   emit_operand(rax, dst, 4);
6924   emit_int32(imm32);
6925 }
6926 
6927 void Assembler::movslq(Register dst, Address src) {
6928   InstructionMark im(this);
6929   prefixq(src, dst);
6930   emit_int8(0x63);
6931   emit_operand(dst, src);
6932 }
6933 
6934 void Assembler::movslq(Register dst, Register src) {
6935   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6936   emit_int8(0x63);
6937   emit_int8((unsigned char)(0xC0 | encode));
6938 }
6939 
6940 void Assembler::movswq(Register dst, Address src) {
6941   InstructionMark im(this);
6942   prefixq(src, dst);
6943   emit_int8(0x0F);
6944   emit_int8((unsigned char)0xBF);
6945   emit_operand(dst, src);
6946 }
6947 
6948 void Assembler::movswq(Register dst, Register src) {
6949   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6950   emit_int8((unsigned char)0x0F);
6951   emit_int8((unsigned char)0xBF);
6952   emit_int8((unsigned char)(0xC0 | encode));
6953 }
6954 
6955 void Assembler::movzbq(Register dst, Address src) {
6956   InstructionMark im(this);
6957   prefixq(src, dst);
6958   emit_int8((unsigned char)0x0F);
6959   emit_int8((unsigned char)0xB6);
6960   emit_operand(dst, src);
6961 }
6962 
6963 void Assembler::movzbq(Register dst, Register src) {
6964   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6965   emit_int8(0x0F);
6966   emit_int8((unsigned char)0xB6);
6967   emit_int8(0xC0 | encode);
6968 }
6969 
6970 void Assembler::movzwq(Register dst, Address src) {
6971   InstructionMark im(this);
6972   prefixq(src, dst);
6973   emit_int8((unsigned char)0x0F);
6974   emit_int8((unsigned char)0xB7);
6975   emit_operand(dst, src);
6976 }
6977 
6978 void Assembler::movzwq(Register dst, Register src) {
6979   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6980   emit_int8((unsigned char)0x0F);
6981   emit_int8((unsigned char)0xB7);
6982   emit_int8((unsigned char)(0xC0 | encode));
6983 }
6984 
6985 void Assembler::mulq(Address src) {
6986   InstructionMark im(this);
6987   prefixq(src);
6988   emit_int8((unsigned char)0xF7);
6989   emit_operand(rsp, src);
6990 }
6991 
6992 void Assembler::mulq(Register src) {
6993   int encode = prefixq_and_encode(src->encoding());
6994   emit_int8((unsigned char)0xF7);
6995   emit_int8((unsigned char)(0xE0 | encode));
6996 }
6997 
6998 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
6999   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7000   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
7001                                      VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
7002   emit_int8((unsigned char)0xF6);
7003   emit_int8((unsigned char)(0xC0 | encode));
7004 }
7005 
7006 void Assembler::negq(Register dst) {
7007   int encode = prefixq_and_encode(dst->encoding());
7008   emit_int8((unsigned char)0xF7);
7009   emit_int8((unsigned char)(0xD8 | encode));
7010 }
7011 
7012 void Assembler::notq(Register dst) {
7013   int encode = prefixq_and_encode(dst->encoding());
7014   emit_int8((unsigned char)0xF7);
7015   emit_int8((unsigned char)(0xD0 | encode));
7016 }
7017 
7018 void Assembler::orq(Address dst, int32_t imm32) {
7019   InstructionMark im(this);
7020   prefixq(dst);
7021   emit_int8((unsigned char)0x81);
7022   emit_operand(rcx, dst, 4);
7023   emit_int32(imm32);
7024 }
7025 
7026 void Assembler::orq(Register dst, int32_t imm32) {
7027   (void) prefixq_and_encode(dst->encoding());
7028   emit_arith(0x81, 0xC8, dst, imm32);
7029 }
7030 
7031 void Assembler::orq(Register dst, Address src) {
7032   InstructionMark im(this);
7033   prefixq(src, dst);
7034   emit_int8(0x0B);
7035   emit_operand(dst, src);
7036 }
7037 
7038 void Assembler::orq(Register dst, Register src) {
7039   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7040   emit_arith(0x0B, 0xC0, dst, src);
7041 }
7042 
7043 void Assembler::popa() { // 64bit
7044   movq(r15, Address(rsp, 0));
7045   movq(r14, Address(rsp, wordSize));
7046   movq(r13, Address(rsp, 2 * wordSize));
7047   movq(r12, Address(rsp, 3 * wordSize));
7048   movq(r11, Address(rsp, 4 * wordSize));
7049   movq(r10, Address(rsp, 5 * wordSize));
7050   movq(r9,  Address(rsp, 6 * wordSize));
7051   movq(r8,  Address(rsp, 7 * wordSize));
7052   movq(rdi, Address(rsp, 8 * wordSize));
7053   movq(rsi, Address(rsp, 9 * wordSize));
7054   movq(rbp, Address(rsp, 10 * wordSize));
7055   // skip rsp
7056   movq(rbx, Address(rsp, 12 * wordSize));
7057   movq(rdx, Address(rsp, 13 * wordSize));
7058   movq(rcx, Address(rsp, 14 * wordSize));
7059   movq(rax, Address(rsp, 15 * wordSize));
7060 
7061   addq(rsp, 16 * wordSize);
7062 }
7063 
7064 void Assembler::popcntq(Register dst, Address src) {
7065   assert(VM_Version::supports_popcnt(), "must support");
7066   InstructionMark im(this);
7067   emit_int8((unsigned char)0xF3);
7068   prefixq(src, dst);
7069   emit_int8((unsigned char)0x0F);
7070   emit_int8((unsigned char)0xB8);
7071   emit_operand(dst, src);
7072 }
7073 
7074 void Assembler::popcntq(Register dst, Register src) {
7075   assert(VM_Version::supports_popcnt(), "must support");
7076   emit_int8((unsigned char)0xF3);
7077   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7078   emit_int8((unsigned char)0x0F);
7079   emit_int8((unsigned char)0xB8);
7080   emit_int8((unsigned char)(0xC0 | encode));
7081 }
7082 
7083 void Assembler::popq(Address dst) {
7084   InstructionMark im(this);
7085   prefixq(dst);
7086   emit_int8((unsigned char)0x8F);
7087   emit_operand(rax, dst);
7088 }
7089 
7090 void Assembler::pusha() { // 64bit
7091   // we have to store original rsp.  ABI says that 128 bytes
7092   // below rsp are local scratch.
7093   movq(Address(rsp, -5 * wordSize), rsp);
7094 
7095   subq(rsp, 16 * wordSize);
7096 
7097   movq(Address(rsp, 15 * wordSize), rax);
7098   movq(Address(rsp, 14 * wordSize), rcx);
7099   movq(Address(rsp, 13 * wordSize), rdx);
7100   movq(Address(rsp, 12 * wordSize), rbx);
7101   // skip rsp
7102   movq(Address(rsp, 10 * wordSize), rbp);
7103   movq(Address(rsp, 9 * wordSize), rsi);
7104   movq(Address(rsp, 8 * wordSize), rdi);
7105   movq(Address(rsp, 7 * wordSize), r8);
7106   movq(Address(rsp, 6 * wordSize), r9);
7107   movq(Address(rsp, 5 * wordSize), r10);
7108   movq(Address(rsp, 4 * wordSize), r11);
7109   movq(Address(rsp, 3 * wordSize), r12);
7110   movq(Address(rsp, 2 * wordSize), r13);
7111   movq(Address(rsp, wordSize), r14);
7112   movq(Address(rsp, 0), r15);
7113 }
7114 
7115 void Assembler::pushq(Address src) {
7116   InstructionMark im(this);
7117   prefixq(src);
7118   emit_int8((unsigned char)0xFF);
7119   emit_operand(rsi, src);
7120 }
7121 
7122 void Assembler::rclq(Register dst, int imm8) {
7123   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7124   int encode = prefixq_and_encode(dst->encoding());
7125   if (imm8 == 1) {
7126     emit_int8((unsigned char)0xD1);
7127     emit_int8((unsigned char)(0xD0 | encode));
7128   } else {
7129     emit_int8((unsigned char)0xC1);
7130     emit_int8((unsigned char)(0xD0 | encode));
7131     emit_int8(imm8);
7132   }
7133 }
7134 
7135 void Assembler::rcrq(Register dst, int imm8) {
7136   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7137   int encode = prefixq_and_encode(dst->encoding());
7138   if (imm8 == 1) {
7139     emit_int8((unsigned char)0xD1);
7140     emit_int8((unsigned char)(0xD8 | encode));
7141   } else {
7142     emit_int8((unsigned char)0xC1);
7143     emit_int8((unsigned char)(0xD8 | encode));
7144     emit_int8(imm8);
7145   }
7146 }
7147 
7148 void Assembler::rorq(Register dst, int imm8) {
7149   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7150   int encode = prefixq_and_encode(dst->encoding());
7151   if (imm8 == 1) {
7152     emit_int8((unsigned char)0xD1);
7153     emit_int8((unsigned char)(0xC8 | encode));
7154   } else {
7155     emit_int8((unsigned char)0xC1);
7156     emit_int8((unsigned char)(0xc8 | encode));
7157     emit_int8(imm8);
7158   }
7159 }
7160 
7161 void Assembler::rorxq(Register dst, Register src, int imm8) {
7162   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7163   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
7164                                      VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
7165   emit_int8((unsigned char)0xF0);
7166   emit_int8((unsigned char)(0xC0 | encode));
7167   emit_int8(imm8);
7168 }
7169 
7170 void Assembler::sarq(Register dst, int imm8) {
7171   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7172   int encode = prefixq_and_encode(dst->encoding());
7173   if (imm8 == 1) {
7174     emit_int8((unsigned char)0xD1);
7175     emit_int8((unsigned char)(0xF8 | encode));
7176   } else {
7177     emit_int8((unsigned char)0xC1);
7178     emit_int8((unsigned char)(0xF8 | encode));
7179     emit_int8(imm8);
7180   }
7181 }
7182 
7183 void Assembler::sarq(Register dst) {
7184   int encode = prefixq_and_encode(dst->encoding());
7185   emit_int8((unsigned char)0xD3);
7186   emit_int8((unsigned char)(0xF8 | encode));
7187 }
7188 
7189 void Assembler::sbbq(Address dst, int32_t imm32) {
7190   InstructionMark im(this);
7191   prefixq(dst);
7192   emit_arith_operand(0x81, rbx, dst, imm32);
7193 }
7194 
7195 void Assembler::sbbq(Register dst, int32_t imm32) {
7196   (void) prefixq_and_encode(dst->encoding());
7197   emit_arith(0x81, 0xD8, dst, imm32);
7198 }
7199 
7200 void Assembler::sbbq(Register dst, Address src) {
7201   InstructionMark im(this);
7202   prefixq(src, dst);
7203   emit_int8(0x1B);
7204   emit_operand(dst, src);
7205 }
7206 
7207 void Assembler::sbbq(Register dst, Register src) {
7208   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7209   emit_arith(0x1B, 0xC0, dst, src);
7210 }
7211 
7212 void Assembler::shlq(Register dst, int imm8) {
7213   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7214   int encode = prefixq_and_encode(dst->encoding());
7215   if (imm8 == 1) {
7216     emit_int8((unsigned char)0xD1);
7217     emit_int8((unsigned char)(0xE0 | encode));
7218   } else {
7219     emit_int8((unsigned char)0xC1);
7220     emit_int8((unsigned char)(0xE0 | encode));
7221     emit_int8(imm8);
7222   }
7223 }
7224 
7225 void Assembler::shlq(Register dst) {
7226   int encode = prefixq_and_encode(dst->encoding());
7227   emit_int8((unsigned char)0xD3);
7228   emit_int8((unsigned char)(0xE0 | encode));
7229 }
7230 
7231 void Assembler::shrq(Register dst, int imm8) {
7232   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7233   int encode = prefixq_and_encode(dst->encoding());
7234   emit_int8((unsigned char)0xC1);
7235   emit_int8((unsigned char)(0xE8 | encode));
7236   emit_int8(imm8);
7237 }
7238 
7239 void Assembler::shrq(Register dst) {
7240   int encode = prefixq_and_encode(dst->encoding());
7241   emit_int8((unsigned char)0xD3);
7242   emit_int8(0xE8 | encode);
7243 }
7244 
7245 void Assembler::subq(Address dst, int32_t imm32) {
7246   InstructionMark im(this);
7247   prefixq(dst);
7248   emit_arith_operand(0x81, rbp, dst, imm32);
7249 }
7250 
7251 void Assembler::subq(Address dst, Register src) {
7252   InstructionMark im(this);
7253   prefixq(dst, src);
7254   emit_int8(0x29);
7255   emit_operand(src, dst);
7256 }
7257 
7258 void Assembler::subq(Register dst, int32_t imm32) {
7259   (void) prefixq_and_encode(dst->encoding());
7260   emit_arith(0x81, 0xE8, dst, imm32);
7261 }
7262 
7263 // Force generation of a 4 byte immediate value even if it fits into 8bit
7264 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7265   (void) prefixq_and_encode(dst->encoding());
7266   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7267 }
7268 
7269 void Assembler::subq(Register dst, Address src) {
7270   InstructionMark im(this);
7271   prefixq(src, dst);
7272   emit_int8(0x2B);
7273   emit_operand(dst, src);
7274 }
7275 
7276 void Assembler::subq(Register dst, Register src) {
7277   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7278   emit_arith(0x2B, 0xC0, dst, src);
7279 }
7280 
7281 void Assembler::testq(Register dst, int32_t imm32) {
7282   // not using emit_arith because test
7283   // doesn't support sign-extension of
7284   // 8bit operands
7285   int encode = dst->encoding();
7286   if (encode == 0) {
7287     prefix(REX_W);
7288     emit_int8((unsigned char)0xA9);
7289   } else {
7290     encode = prefixq_and_encode(encode);
7291     emit_int8((unsigned char)0xF7);
7292     emit_int8((unsigned char)(0xC0 | encode));
7293   }
7294   emit_int32(imm32);
7295 }
7296 
7297 void Assembler::testq(Register dst, Register src) {
7298   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7299   emit_arith(0x85, 0xC0, dst, src);
7300 }
7301 
7302 void Assembler::xaddq(Address dst, Register src) {
7303   InstructionMark im(this);
7304   prefixq(dst, src);
7305   emit_int8(0x0F);
7306   emit_int8((unsigned char)0xC1);
7307   emit_operand(src, dst);
7308 }
7309 
7310 void Assembler::xchgq(Register dst, Address src) {
7311   InstructionMark im(this);
7312   prefixq(src, dst);
7313   emit_int8((unsigned char)0x87);
7314   emit_operand(dst, src);
7315 }
7316 
7317 void Assembler::xchgq(Register dst, Register src) {
7318   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7319   emit_int8((unsigned char)0x87);
7320   emit_int8((unsigned char)(0xc0 | encode));
7321 }
7322 
7323 void Assembler::xorq(Register dst, Register src) {
7324   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7325   emit_arith(0x33, 0xC0, dst, src);
7326 }
7327 
7328 void Assembler::xorq(Register dst, Address src) {
7329   InstructionMark im(this);
7330   prefixq(src, dst);
7331   emit_int8(0x33);
7332   emit_operand(dst, src);
7333 }
7334 
7335 #endif // !LP64